Supporting de-virtualization for precise types.

Sharpening invoke-virtual and invoke-interface calls to invoke-direct for cases
where the type of "this" pointer in the invoke- params is precisely known.

Instructions that have an invoke opcode are marked as interesting, for each invoke-virtual/interface
we come across with a precise type for "this" we mark the location as a candidate for sharpening,
resolve the concrete method and save its method reference <DexFile, DexMethodIndex> to be sharpened
in CompilerDriver::ComputeInvokeInfo().

Added a new entry to AOT statistics showing the percentage of sharpened calls that were based on
type analysis.

Fix a minor bug in type creation for GetSuperClass(). Previously super class of a precise reference
had precise types created which is not necessarily the case.

Fixed DCHECK in Class::FindVirtualMethodForVirtual to handle cases for Miranda methods.

Sharpening only takes place for cases where no soft failures happen at verification time.

Change-Id: Ic027d0226d6f95260c1918014cb6313f2e0ca455
diff --git a/src/verifier/method_verifier.cc b/src/verifier/method_verifier.cc
index 2b70e26..2eb0c20 100644
--- a/src/verifier/method_verifier.cc
+++ b/src/verifier/method_verifier.cc
@@ -56,8 +56,8 @@
       case kTrackRegsAll:
         interesting = flags[i].IsOpcode();
         break;
-      case kTrackRegsGcPoints:
-        interesting = flags[i].IsGcPoint() || flags[i].IsBranchTarget();
+      case kTrackCompilerInterestPoints:
+        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget() ;
         break;
       case kTrackRegsBranches:
         interesting = flags[i].IsBranchTarget();
@@ -496,7 +496,7 @@
 
   /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
   insn_flags_[0].SetBranchTarget();
-  insn_flags_[0].SetGcPoint();
+  insn_flags_[0].SetCompileTimeInfoPoint();
 
   uint32_t insns_size = code_item_->insns_size_in_code_units_;
   for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
@@ -505,8 +505,10 @@
       return false;
     }
     /* Flag instructions that are garbage collection points */
+    // All invoke points are marked as "Throw" points already.
+    // We are relying on this to also count all the invokes as interesting.
     if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow() || inst->IsReturn()) {
-      insn_flags_[dex_pc].SetGcPoint();
+      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
     }
     dex_pc += inst->SizeInCodeUnits();
     inst = inst->Next();
@@ -918,7 +920,8 @@
                  << " insns_size=" << insns_size << ")";
   }
   /* Create and initialize table holding register status */
-  reg_table_.Init(kTrackRegsGcPoints, insn_flags_.get(), insns_size, registers_size, this);
+  reg_table_.Init(kTrackCompilerInterestPoints, insn_flags_.get(), insns_size, registers_size, this);
+
 
   work_line_.reset(new RegisterLine(registers_size, this));
   saved_line_.reset(new RegisterLine(registers_size, this));
@@ -952,6 +955,10 @@
   const std::vector<uint8_t>* dex_gc_map = CreateLengthPrefixedDexGcMap(*(map.get()));
   verifier::MethodVerifier::SetDexGcMap(ref, *dex_gc_map);
 
+  MethodVerifier::PcToConreteMethod* pc_to_conrete_method = GenerateDevirtMap();
+  if(pc_to_conrete_method != NULL ) {
+    SetDevirtMap(ref, pc_to_conrete_method);
+  }
   return true;
 }
 
@@ -3137,7 +3144,7 @@
   size_t max_insn = 0;
   size_t max_ref_reg = -1;
   for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
-    if (insn_flags_[i].IsGcPoint()) {
+    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
       local_gc_points++;
       max_insn = i;
       RegisterLine* line = reg_table_.GetLine(i);
@@ -3153,6 +3160,84 @@
   *log2_max_gc_pc = i;
 }
 
+MethodVerifier::PcToConreteMethod* MethodVerifier::GenerateDevirtMap() {
+
+  // It is risky to rely on reg_types for sharpening in cases of soft
+  // verification, we might end up sharpening to a wrong implementation. Just abort.
+  if (!failure_messages_.empty()) {
+    return NULL;
+  }
+
+  PcToConreteMethod* pc_to_concrete_method = new PcToConreteMethod();
+  uint32_t dex_pc = 0;
+  const uint16_t* insns = code_item_->insns_ ;
+  const Instruction* inst = Instruction::At(insns);
+
+  for (; dex_pc < code_item_->insns_size_in_code_units_;
+         dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits(), inst = inst->Next()) {
+
+    bool is_virtual   = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
+        (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE);
+    bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
+        (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
+
+   if(!(is_interface || is_virtual))
+     continue;
+
+    // Check if vC ("this" pointer in the instruction) has a precise type.
+    RegisterLine* line = reg_table_.GetLine(dex_pc);
+    DecodedInstruction dec_insn(inst);
+    const RegType& reg_type(line->GetRegisterType(dec_insn.vC));
+
+    if (!reg_type.IsPreciseReference()) {
+       continue;
+    }
+
+    CHECK(!(reg_type.GetClass()->IsInterface()));
+    // If the class is an array class, it can be both Abstract and final and so
+    // the reg_type will be created as precise.
+    CHECK(!(reg_type.GetClass()->IsAbstract()) || reg_type.GetClass()->IsArrayClass());
+    // Find the abstract method.
+    // vB has the method index.
+    mirror::AbstractMethod* abstract_method =  NULL ;
+    abstract_method =  dex_cache_->GetResolvedMethod(dec_insn.vB);
+    if(abstract_method == NULL) {
+      // If the method is not found in the cache this means that it was never found
+      // by ResolveMethodAndCheckAccess() called when verifying invoke_*.
+      continue;
+    }
+    // Find the concrete method.
+    mirror::AbstractMethod* concrete_method = NULL;
+    if (is_interface) {
+      concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method);
+    }
+    if (is_virtual) {
+      concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method);
+    }
+
+    if(concrete_method == NULL) {
+      // In cases where concrete_method is not found continue to the next invoke instead
+      // of crashing.
+      continue;
+    }
+
+    CHECK(!concrete_method->IsAbstract()) << PrettyMethod(concrete_method);
+    // Build method reference.
+    CompilerDriver::MethodReference concrete_ref(
+        concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(),
+        concrete_method->GetDexMethodIndex());
+    // Now Save the current PC and the concrete method reference to be used
+    // in compiler driver.
+    pc_to_concrete_method->Put(dex_pc, concrete_ref );
+    }
+
+  if (pc_to_concrete_method->size() == 0) {
+    delete pc_to_concrete_method;
+    return NULL ;
+  }
+  return pc_to_concrete_method;
+}
+
 const std::vector<uint8_t>* MethodVerifier::GenerateGcMap() {
   size_t num_entries, ref_bitmap_bits, pc_bits;
   ComputeGcMapSizes(&num_entries, &ref_bitmap_bits, &pc_bits);
@@ -3199,7 +3284,7 @@
   table->push_back((num_entries >> 8) & 0xFF);
   // Write table data
   for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
-    if (insn_flags_[i].IsGcPoint()) {
+    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
       table->push_back(i & 0xFF);
       if (pc_bytes == 2) {
         table->push_back((i >> 8) & 0xFF);
@@ -3219,7 +3304,7 @@
   size_t map_index = 0;
   for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
     const uint8_t* reg_bitmap = map.FindBitMap(i, false);
-    if (insn_flags_[i].IsGcPoint()) {
+    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
       CHECK_LT(map_index, map.NumEntries());
       CHECK_EQ(map.GetDexPc(map_index), i);
       CHECK_EQ(map.GetBitMap(map_index), reg_bitmap);
@@ -3254,6 +3339,19 @@
   CHECK(GetDexGcMap(ref) != NULL);
 }
 
+void  MethodVerifier::SetDevirtMap(CompilerDriver::MethodReference ref, const PcToConreteMethod* devirt_map) {
+
+  MutexLock mu(Thread::Current(), *devirt_maps_lock_);
+  DevirtualizationMapTable::iterator it = devirt_maps_->find(ref);
+  if (it != devirt_maps_->end()) {
+    delete it->second;
+    devirt_maps_->erase(it);
+  }
+
+  devirt_maps_->Put(ref, devirt_map);
+  CHECK(devirt_maps_->find(ref) != devirt_maps_->end());
+}
+
 const std::vector<uint8_t>* MethodVerifier::GetDexGcMap(CompilerDriver::MethodReference ref) {
   MutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
   DexGcMapTable::const_iterator it = dex_gc_maps_->find(ref);
@@ -3265,6 +3363,22 @@
   return it->second;
 }
 
+const CompilerDriver::MethodReference* MethodVerifier::GetDevirtMap(CompilerDriver::MethodReference ref, uint32_t pc) {
+  MutexLock mu(Thread::Current(), *devirt_maps_lock_);
+  DevirtualizationMapTable::const_iterator it = devirt_maps_->find(ref);
+  if (it == devirt_maps_->end()) {
+    return NULL;
+  }
+
+  // Look up the PC in the map, get the concrete method to execute and return its reference.
+  MethodVerifier::PcToConreteMethod::const_iterator pc_to_concrete_method = it->second->find(pc);
+  if(pc_to_concrete_method != it->second->end()) {
+    return &(pc_to_concrete_method->second);
+  } else {
+    return NULL;
+  }
+}
+
 std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
   RegisterLine* line = reg_table_.GetLine(dex_pc);
   std::vector<int32_t> result;
@@ -3312,6 +3426,9 @@
 Mutex* MethodVerifier::dex_gc_maps_lock_ = NULL;
 MethodVerifier::DexGcMapTable* MethodVerifier::dex_gc_maps_ = NULL;
 
+Mutex* MethodVerifier::devirt_maps_lock_ = NULL;
+MethodVerifier::DevirtualizationMapTable* MethodVerifier::devirt_maps_ = NULL;
+
 Mutex* MethodVerifier::rejected_classes_lock_ = NULL;
 MethodVerifier::RejectedClassesTable* MethodVerifier::rejected_classes_ = NULL;
 
@@ -3323,6 +3440,12 @@
     dex_gc_maps_ = new MethodVerifier::DexGcMapTable;
   }
 
+  devirt_maps_lock_ = new Mutex("verifier Devirtualization lock");
+  {
+    MutexLock mu(self, *devirt_maps_lock_);
+    devirt_maps_ = new MethodVerifier::DevirtualizationMapTable();
+  }
+
   rejected_classes_lock_ = new Mutex("verifier rejected classes lock");
   {
     MutexLock mu(self, *rejected_classes_lock_);
@@ -3343,6 +3466,15 @@
   dex_gc_maps_lock_ = NULL;
 
   {
+    MutexLock mu(self, *devirt_maps_lock_);
+    STLDeleteValues(devirt_maps_);
+    delete devirt_maps_;
+    devirt_maps_ = NULL;
+  }
+  delete devirt_maps_lock_;
+  devirt_maps_lock_ = NULL;
+
+  {
     MutexLock mu(self, *rejected_classes_lock_);
     delete rejected_classes_;
     rejected_classes_ = NULL;