GC clean up.

Greater use of directories and namespaces.
Fix bugs that cause verify options to fail.
Address numerous other issues:

GC barrier wait occurring holding locks:
GC barrier waits occur when we wait for threads to run the check point function
on themselves. This is happening with the heap bitmap and mutator lock held
meaning that a thread that tries to take either lock exclusively will block
waiting on a thread that is waiting. If this thread is the thread we're waiting
to run the check point then the VM will deadlock.
This deadlock occurred unnoticed as the call to check for wait safety was
removed in: https://googleplex-android-review.googlesource.com/#/c/249423/1.

NewTimingLogger:
Existing timing log states when a split ends but not when it begins. This isn't
good for systrace, in the context of GC it means that races between mutators
and the GC are hard to discover what phase the GC is in, we know what phase it
just finished and derive but that's not ideal.

Support for only 1 discontinuous space:
Code special cases continuous and large object space, rather than assuming we
can have a collection of both.

Sorted atomic stacks:
Used to improve verification performance. Simplify their use and add extra
checks.

Simplify mod-union table abstractions.

Reduce use of std::strings and their associated overhead in hot code.

Make time units of fields explicit.

Reduce confusion that IsAllocSpace is really IsDlMallocSpace.

Make GetTotalMemory (exposed via System) equal to the footprint (as in Dalvik)
rather than the max memory footprint.

Change-Id: Ie87067140fa4499b15edab691fe6565d79599812
diff --git a/src/gc/space/space_test.cc b/src/gc/space/space_test.cc
new file mode 100644
index 0000000..08ae894
--- /dev/null
+++ b/src/gc/space/space_test.cc
@@ -0,0 +1,429 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dlmalloc_space.h"
+
+#include "common_test.h"
+#include "globals.h"
+#include "UniquePtr.h"
+
+#include <stdint.h>
+
+namespace art {
+namespace gc {
+namespace space {
+
+class SpaceTest : public CommonTest {
+ public:
+  void SizeFootPrintGrowthLimitAndTrimBody(DlMallocSpace* space, intptr_t object_size,
+                                           int round, size_t growth_limit);
+  void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size);
+
+  void AddContinuousSpace(ContinuousSpace* space) {
+    Runtime::Current()->GetHeap()->AddContinuousSpace(space);
+  }
+};
+
+TEST_F(SpaceTest, Init) {
+  {
+    // Init < max == growth
+    UniquePtr<Space> space(DlMallocSpace::Create("test", 16 * MB, 32 * MB, 32 * MB, NULL));
+    EXPECT_TRUE(space.get() != NULL);
+  }
+  {
+    // Init == max == growth
+    UniquePtr<Space> space(DlMallocSpace::Create("test", 16 * MB, 16 * MB, 16 * MB, NULL));
+    EXPECT_TRUE(space.get() != NULL);
+  }
+  {
+    // Init > max == growth
+    UniquePtr<Space> space(DlMallocSpace::Create("test", 32 * MB, 16 * MB, 16 * MB, NULL));
+    EXPECT_TRUE(space.get() == NULL);
+  }
+  {
+    // Growth == init < max
+    UniquePtr<Space> space(DlMallocSpace::Create("test", 16 * MB, 16 * MB, 32 * MB, NULL));
+    EXPECT_TRUE(space.get() != NULL);
+  }
+  {
+    // Growth < init < max
+    UniquePtr<Space> space(DlMallocSpace::Create("test", 16 * MB, 8 * MB, 32 * MB, NULL));
+    EXPECT_TRUE(space.get() == NULL);
+  }
+  {
+    // Init < growth < max
+    UniquePtr<Space> space(DlMallocSpace::Create("test", 8 * MB, 16 * MB, 32 * MB, NULL));
+    EXPECT_TRUE(space.get() != NULL);
+  }
+  {
+    // Init < max < growth
+    UniquePtr<Space> space(DlMallocSpace::Create("test", 8 * MB, 32 * MB, 16 * MB, NULL));
+    EXPECT_TRUE(space.get() == NULL);
+  }
+}
+
+// TODO: This test is not very good, we should improve it.
+// The test should do more allocations before the creation of the ZygoteSpace, and then do
+// allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
+// the GC works with the ZygoteSpace.
+TEST_F(SpaceTest, ZygoteSpace) {
+    DlMallocSpace* space(DlMallocSpace::Create("test", 4 * MB, 16 * MB, 16 * MB, NULL));
+    ASSERT_TRUE(space != NULL);
+
+    // Make space findable to the heap, will also delete space when runtime is cleaned up
+    AddContinuousSpace(space);
+    Thread* self = Thread::Current();
+
+    // Succeeds, fits without adjusting the footprint limit.
+    mirror::Object* ptr1 = space->Alloc(self, 1 * MB);
+    EXPECT_TRUE(ptr1 != NULL);
+
+    // Fails, requires a higher footprint limit.
+    mirror::Object* ptr2 = space->Alloc(self, 8 * MB);
+    EXPECT_TRUE(ptr2 == NULL);
+
+    // Succeeds, adjusts the footprint.
+    mirror::Object* ptr3 = space->AllocWithGrowth(self, 8 * MB);
+    EXPECT_TRUE(ptr3 != NULL);
+
+    // Fails, requires a higher footprint limit.
+    mirror::Object* ptr4 = space->Alloc(self, 8 * MB);
+    EXPECT_TRUE(ptr4 == NULL);
+
+    // Also fails, requires a higher allowed footprint.
+    mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB);
+    EXPECT_TRUE(ptr5 == NULL);
+
+    // Release some memory.
+    size_t free3 = space->AllocationSize(ptr3);
+    EXPECT_EQ(free3, space->Free(self, ptr3));
+    EXPECT_LE(8U * MB, free3);
+
+    // Succeeds, now that memory has been freed.
+    void* ptr6 = space->AllocWithGrowth(self, 9 * MB);
+    EXPECT_TRUE(ptr6 != NULL);
+
+    // Final clean up.
+    size_t free1 = space->AllocationSize(ptr1);
+    space->Free(self, ptr1);
+    EXPECT_LE(1U * MB, free1);
+
+    // Make sure that the zygote space isn't directly at the start of the space.
+    space->Alloc(self, 1U * MB);
+    space = space->CreateZygoteSpace();
+
+    // Make space findable to the heap, will also delete space when runtime is cleaned up
+    AddContinuousSpace(space);
+
+    // Succeeds, fits without adjusting the footprint limit.
+    ptr1 = space->Alloc(self, 1 * MB);
+    EXPECT_TRUE(ptr1 != NULL);
+
+    // Fails, requires a higher footprint limit.
+    ptr2 = space->Alloc(self, 8 * MB);
+    EXPECT_TRUE(ptr2 == NULL);
+
+    // Succeeds, adjusts the footprint.
+    ptr3 = space->AllocWithGrowth(self, 2 * MB);
+    EXPECT_TRUE(ptr3 != NULL);
+    space->Free(self, ptr3);
+
+    // Final clean up.
+    free1 = space->AllocationSize(ptr1);
+    space->Free(self, ptr1);
+    EXPECT_LE(1U * MB, free1);
+}
+
+TEST_F(SpaceTest, AllocAndFree) {
+  DlMallocSpace* space(DlMallocSpace::Create("test", 4 * MB, 16 * MB, 16 * MB, NULL));
+  ASSERT_TRUE(space != NULL);
+  Thread* self = Thread::Current();
+
+  // Make space findable to the heap, will also delete space when runtime is cleaned up
+  AddContinuousSpace(space);
+
+  // Succeeds, fits without adjusting the footprint limit.
+  mirror::Object* ptr1 = space->Alloc(self, 1 * MB);
+  EXPECT_TRUE(ptr1 != NULL);
+
+  // Fails, requires a higher footprint limit.
+  mirror::Object* ptr2 = space->Alloc(self, 8 * MB);
+  EXPECT_TRUE(ptr2 == NULL);
+
+  // Succeeds, adjusts the footprint.
+  mirror::Object* ptr3 = space->AllocWithGrowth(self, 8 * MB);
+  EXPECT_TRUE(ptr3 != NULL);
+
+  // Fails, requires a higher footprint limit.
+  mirror::Object* ptr4 = space->Alloc(self, 8 * MB);
+  EXPECT_TRUE(ptr4 == NULL);
+
+  // Also fails, requires a higher allowed footprint.
+  mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB);
+  EXPECT_TRUE(ptr5 == NULL);
+
+  // Release some memory.
+  size_t free3 = space->AllocationSize(ptr3);
+  space->Free(self, ptr3);
+  EXPECT_LE(8U * MB, free3);
+
+  // Succeeds, now that memory has been freed.
+  void* ptr6 = space->AllocWithGrowth(self, 9 * MB);
+  EXPECT_TRUE(ptr6 != NULL);
+
+  // Final clean up.
+  size_t free1 = space->AllocationSize(ptr1);
+  space->Free(self, ptr1);
+  EXPECT_LE(1U * MB, free1);
+}
+
+TEST_F(SpaceTest, AllocAndFreeList) {
+  DlMallocSpace* space(DlMallocSpace::Create("test", 4 * MB, 16 * MB, 16 * MB, NULL));
+  ASSERT_TRUE(space != NULL);
+
+  // Make space findable to the heap, will also delete space when runtime is cleaned up
+  AddContinuousSpace(space);
+  Thread* self = Thread::Current();
+
+  // Succeeds, fits without adjusting the max allowed footprint.
+  mirror::Object* lots_of_objects[1024];
+  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
+    lots_of_objects[i] = space->Alloc(self, 16);
+    EXPECT_TRUE(lots_of_objects[i] != NULL);
+  }
+
+  // Release memory and check pointers are NULL
+  space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
+  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
+    EXPECT_TRUE(lots_of_objects[i] == NULL);
+  }
+
+  // Succeeds, fits by adjusting the max allowed footprint.
+  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
+    lots_of_objects[i] = space->AllocWithGrowth(self, 1024);
+    EXPECT_TRUE(lots_of_objects[i] != NULL);
+  }
+
+  // Release memory and check pointers are NULL
+  space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
+  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
+    EXPECT_TRUE(lots_of_objects[i] == NULL);
+  }
+}
+
+static size_t test_rand() {
+  // TODO: replace this with something random yet deterministic
+  return rand();
+}
+
+void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(DlMallocSpace* space, intptr_t object_size,
+                                                    int round, size_t growth_limit) {
+  if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
+      ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
+    // No allocation can succeed
+    return;
+  }
+  // Mspace for raw dlmalloc operations
+  void* mspace = space->GetMspace();
+
+  // mspace's footprint equals amount of resources requested from system
+  size_t footprint = mspace_footprint(mspace);
+
+  // mspace must at least have its book keeping allocated
+  EXPECT_GT(footprint, 0u);
+
+  // mspace but it shouldn't exceed the initial size
+  EXPECT_LE(footprint, growth_limit);
+
+  // space's size shouldn't exceed the initial size
+  EXPECT_LE(space->Size(), growth_limit);
+
+  // this invariant should always hold or else the mspace has grown to be larger than what the
+  // space believes its size is (which will break invariants)
+  EXPECT_GE(space->Size(), footprint);
+
+  // Fill the space with lots of small objects up to the growth limit
+  size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
+  UniquePtr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
+  size_t last_object = 0;  // last object for which allocation succeeded
+  size_t amount_allocated = 0;  // amount of space allocated
+  Thread* self = Thread::Current();
+  for (size_t i = 0; i < max_objects; i++) {
+    size_t alloc_fails = 0;  // number of failed allocations
+    size_t max_fails = 30;  // number of times we fail allocation before giving up
+    for (; alloc_fails < max_fails; alloc_fails++) {
+      size_t alloc_size;
+      if (object_size > 0) {
+        alloc_size = object_size;
+      } else {
+        alloc_size = test_rand() % static_cast<size_t>(-object_size);
+        if (alloc_size < 8) {
+          alloc_size = 8;
+        }
+      }
+      mirror::Object* object;
+      if (round <= 1) {
+        object = space->Alloc(self, alloc_size);
+      } else {
+        object = space->AllocWithGrowth(self, alloc_size);
+      }
+      footprint = mspace_footprint(mspace);
+      EXPECT_GE(space->Size(), footprint);  // invariant
+      if (object != NULL) {  // allocation succeeded
+        lots_of_objects.get()[i] = object;
+        size_t allocation_size = space->AllocationSize(object);
+        if (object_size > 0) {
+          EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
+        } else {
+          EXPECT_GE(allocation_size, 8u);
+        }
+        amount_allocated += allocation_size;
+        break;
+      }
+    }
+    if (alloc_fails == max_fails) {
+      last_object = i;
+      break;
+    }
+  }
+  CHECK_NE(last_object, 0u);  // we should have filled the space
+  EXPECT_GT(amount_allocated, 0u);
+
+  // We shouldn't have gone past the growth_limit
+  EXPECT_LE(amount_allocated, growth_limit);
+  EXPECT_LE(footprint, growth_limit);
+  EXPECT_LE(space->Size(), growth_limit);
+
+  // footprint and size should agree with amount allocated
+  EXPECT_GE(footprint, amount_allocated);
+  EXPECT_GE(space->Size(), amount_allocated);
+
+  // Release storage in a semi-adhoc manner
+  size_t free_increment = 96;
+  while (true) {
+    // Give the space a haircut
+    space->Trim();
+
+    // Bounds sanity
+    footprint = mspace_footprint(mspace);
+    EXPECT_LE(amount_allocated, growth_limit);
+    EXPECT_GE(footprint, amount_allocated);
+    EXPECT_LE(footprint, growth_limit);
+    EXPECT_GE(space->Size(), amount_allocated);
+    EXPECT_LE(space->Size(), growth_limit);
+
+    if (free_increment == 0) {
+      break;
+    }
+
+    // Free some objects
+    for (size_t i = 0; i < last_object; i += free_increment) {
+      mirror::Object* object = lots_of_objects.get()[i];
+      if (object == NULL) {
+        continue;
+      }
+      size_t allocation_size = space->AllocationSize(object);
+      if (object_size > 0) {
+        EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
+      } else {
+        EXPECT_GE(allocation_size, 8u);
+      }
+      space->Free(self, object);
+      lots_of_objects.get()[i] = NULL;
+      amount_allocated -= allocation_size;
+      footprint = mspace_footprint(mspace);
+      EXPECT_GE(space->Size(), footprint);  // invariant
+    }
+
+    free_increment >>= 1;
+  }
+
+  // All memory was released, try a large allocation to check freed memory is being coalesced
+  mirror::Object* large_object;
+  size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
+  if (round <= 1) {
+    large_object = space->Alloc(self, three_quarters_space);
+  } else {
+    large_object = space->AllocWithGrowth(self, three_quarters_space);
+  }
+  EXPECT_TRUE(large_object != NULL);
+
+  // Sanity check footprint
+  footprint = mspace_footprint(mspace);
+  EXPECT_LE(footprint, growth_limit);
+  EXPECT_GE(space->Size(), footprint);
+  EXPECT_LE(space->Size(), growth_limit);
+
+  // Clean up
+  space->Free(self, large_object);
+
+  // Sanity check footprint
+  footprint = mspace_footprint(mspace);
+  EXPECT_LE(footprint, growth_limit);
+  EXPECT_GE(space->Size(), footprint);
+  EXPECT_LE(space->Size(), growth_limit);
+}
+
+void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size) {
+  size_t initial_size = 4 * MB;
+  size_t growth_limit = 8 * MB;
+  size_t capacity = 16 * MB;
+  DlMallocSpace* space(DlMallocSpace::Create("test", initial_size, growth_limit, capacity, NULL));
+  ASSERT_TRUE(space != NULL);
+
+  // Basic sanity
+  EXPECT_EQ(space->Capacity(), growth_limit);
+  EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
+
+  // Make space findable to the heap, will also delete space when runtime is cleaned up
+  AddContinuousSpace(space);
+
+  // In this round we don't allocate with growth and therefore can't grow past the initial size.
+  // This effectively makes the growth_limit the initial_size, so assert this.
+  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
+  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
+  // Remove growth limit
+  space->ClearGrowthLimit();
+  EXPECT_EQ(space->Capacity(), capacity);
+  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
+}
+
+#define TEST_SizeFootPrintGrowthLimitAndTrim(name, size) \
+  TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
+    SizeFootPrintGrowthLimitAndTrimDriver(size); \
+  } \
+  TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
+    SizeFootPrintGrowthLimitAndTrimDriver(-size); \
+  }
+
+// Each size test is its own test so that we get a fresh heap each time
+TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_8B) {
+  SizeFootPrintGrowthLimitAndTrimDriver(8);
+}
+TEST_SizeFootPrintGrowthLimitAndTrim(16B, 16)
+TEST_SizeFootPrintGrowthLimitAndTrim(24B, 24)
+TEST_SizeFootPrintGrowthLimitAndTrim(32B, 32)
+TEST_SizeFootPrintGrowthLimitAndTrim(64B, 64)
+TEST_SizeFootPrintGrowthLimitAndTrim(128B, 128)
+TEST_SizeFootPrintGrowthLimitAndTrim(1KB, 1 * KB)
+TEST_SizeFootPrintGrowthLimitAndTrim(4KB, 4 * KB)
+TEST_SizeFootPrintGrowthLimitAndTrim(1MB, 1 * MB)
+TEST_SizeFootPrintGrowthLimitAndTrim(4MB, 4 * MB)
+TEST_SizeFootPrintGrowthLimitAndTrim(8MB, 8 * MB)
+
+}  // namespace space
+}  // namespace gc
+}  // namespace art