More of the concurrent copying collector.

Bug: 12687968
Change-Id: I62f70274d47df6d6cab714df95c518b750ce3105
diff --git a/runtime/gc/collector/concurrent_copying.cc b/runtime/gc/collector/concurrent_copying.cc
index 079eeba..5fa3c8b 100644
--- a/runtime/gc/collector/concurrent_copying.cc
+++ b/runtime/gc/collector/concurrent_copying.cc
@@ -16,10 +16,1627 @@
 
 #include "concurrent_copying.h"
 
+#include "gc/accounting/heap_bitmap-inl.h"
+#include "gc/accounting/space_bitmap-inl.h"
+#include "gc/space/image_space.h"
+#include "gc/space/space.h"
+#include "intern_table.h"
+#include "mirror/art_field-inl.h"
+#include "mirror/object-inl.h"
+#include "scoped_thread_state_change.h"
+#include "thread-inl.h"
+#include "thread_list.h"
+#include "well_known_classes.h"
+
 namespace art {
 namespace gc {
 namespace collector {
 
+ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
+    : GarbageCollector(heap,
+                       name_prefix + (name_prefix.empty() ? "" : " ") +
+                       "concurrent copying + mark sweep"),
+      region_space_(nullptr), gc_barrier_(new Barrier(0)), mark_queue_(2 * MB),
+      is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
+      heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0),
+      skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
+      rb_table_(heap_->GetReadBarrierTable()),
+      force_evacuate_all_(false) {
+  static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
+                "The region space size and the read barrier table region size must match");
+  cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
+  {
+    Thread* self = Thread::Current();
+    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
+    // Cache this so that we won't have to lock heap_bitmap_lock_ in
+    // Mark() which could cause a nested lock on heap_bitmap_lock_
+    // when GC causes a RB while doing GC or a lock order violation
+    // (class_linker_lock_ and heap_bitmap_lock_).
+    heap_mark_bitmap_ = heap->GetMarkBitmap();
+  }
+}
+
+ConcurrentCopying::~ConcurrentCopying() {
+}
+
+void ConcurrentCopying::RunPhases() {
+  CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
+  CHECK(!is_active_);
+  is_active_ = true;
+  Thread* self = Thread::Current();
+  Locks::mutator_lock_->AssertNotHeld(self);
+  {
+    ReaderMutexLock mu(self, *Locks::mutator_lock_);
+    InitializePhase();
+  }
+  FlipThreadRoots();
+  {
+    ReaderMutexLock mu(self, *Locks::mutator_lock_);
+    MarkingPhase();
+  }
+  // Verify no from space refs. This causes a pause.
+  if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
+    TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
+    ScopedPause pause(this);
+    CheckEmptyMarkQueue();
+    if (kVerboseMode) {
+      LOG(INFO) << "Verifying no from-space refs";
+    }
+    VerifyNoFromSpaceReferences();
+    CheckEmptyMarkQueue();
+  }
+  {
+    ReaderMutexLock mu(self, *Locks::mutator_lock_);
+    ReclaimPhase();
+  }
+  FinishPhase();
+  CHECK(is_active_);
+  is_active_ = false;
+}
+
+void ConcurrentCopying::BindBitmaps() {
+  Thread* self = Thread::Current();
+  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
+  // Mark all of the spaces we never collect as immune.
+  for (const auto& space : heap_->GetContinuousSpaces()) {
+    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
+        || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
+      CHECK(space->IsZygoteSpace() || space->IsImageSpace());
+      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
+      const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
+          "cc zygote space bitmap";
+      // TODO: try avoiding using bitmaps for image/zygote to save space.
+      accounting::ContinuousSpaceBitmap* bitmap =
+          accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
+      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
+      cc_bitmaps_.push_back(bitmap);
+    } else if (space == region_space_) {
+      accounting::ContinuousSpaceBitmap* bitmap =
+          accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
+                                                    space->Begin(), space->Capacity());
+      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
+      cc_bitmaps_.push_back(bitmap);
+      region_space_bitmap_ = bitmap;
+    }
+  }
+}
+
+void ConcurrentCopying::InitializePhase() {
+  TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
+  if (kVerboseMode) {
+    LOG(INFO) << "GC InitializePhase";
+    LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
+              << reinterpret_cast<void*>(region_space_->Limit());
+  }
+  CHECK(mark_queue_.IsEmpty());
+  immune_region_.Reset();
+  bytes_moved_.StoreRelaxed(0);
+  objects_moved_.StoreRelaxed(0);
+  if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
+      GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
+      GetCurrentIteration()->GetClearSoftReferences()) {
+    force_evacuate_all_ = true;
+  } else {
+    force_evacuate_all_ = false;
+  }
+  BindBitmaps();
+  if (kVerboseMode) {
+    LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
+    LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
+    LOG(INFO) << "GC end of InitializePhase";
+  }
+}
+
+// Used to switch the thread roots of a thread from from-space refs to to-space refs.
+class ThreadFlipVisitor : public Closure {
+ public:
+  explicit ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
+      : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
+  }
+
+  virtual void Run(Thread* thread) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+    // Note: self is not necessarily equal to thread since thread may be suspended.
+    Thread* self = Thread::Current();
+    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
+        << thread->GetState() << " thread " << thread << " self " << self;
+    if (use_tlab_ && thread->HasTlab()) {
+      if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
+        // This must come before the revoke.
+        size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
+        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
+        reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
+            FetchAndAddSequentiallyConsistent(thread_local_objects);
+      } else {
+        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
+      }
+    }
+    if (kUseThreadLocalAllocationStack) {
+      thread->RevokeThreadLocalAllocationStack();
+    }
+    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
+    thread->VisitRoots(ConcurrentCopying::ProcessRootCallback, concurrent_copying_);
+    concurrent_copying_->GetBarrier().Pass(self);
+  }
+
+ private:
+  ConcurrentCopying* const concurrent_copying_;
+  const bool use_tlab_;
+};
+
+// Called back from Runtime::FlipThreadRoots() during a pause.
+class FlipCallback : public Closure {
+ public:
+  explicit FlipCallback(ConcurrentCopying* concurrent_copying)
+      : concurrent_copying_(concurrent_copying) {
+  }
+
+  virtual void Run(Thread* thread) OVERRIDE EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) {
+    ConcurrentCopying* cc = concurrent_copying_;
+    TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
+    // Note: self is not necessarily equal to thread since thread may be suspended.
+    Thread* self = Thread::Current();
+    CHECK(thread == self);
+    Locks::mutator_lock_->AssertExclusiveHeld(self);
+    cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
+    cc->SwapStacks(self);
+    if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
+      cc->RecordLiveStackFreezeSize(self);
+      cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
+      cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
+    }
+    cc->is_marking_ = true;
+    if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
+      CHECK(Runtime::Current()->IsCompiler());
+      TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
+      Runtime::Current()->VisitTransactionRoots(ConcurrentCopying::ProcessRootCallback, cc);
+    }
+  }
+
+ private:
+  ConcurrentCopying* const concurrent_copying_;
+};
+
+// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
+void ConcurrentCopying::FlipThreadRoots() {
+  TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
+  if (kVerboseMode) {
+    LOG(INFO) << "time=" << region_space_->Time();
+    region_space_->DumpNonFreeRegions(LOG(INFO));
+  }
+  Thread* self = Thread::Current();
+  Locks::mutator_lock_->AssertNotHeld(self);
+  gc_barrier_->Init(self, 0);
+  ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
+  FlipCallback flip_callback(this);
+  size_t barrier_count = Runtime::Current()->FlipThreadRoots(
+      &thread_flip_visitor, &flip_callback, this);
+  {
+    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
+    gc_barrier_->Increment(self, barrier_count);
+  }
+  is_asserting_to_space_invariant_ = true;
+  QuasiAtomic::ThreadFenceForConstructor();
+  if (kVerboseMode) {
+    LOG(INFO) << "time=" << region_space_->Time();
+    region_space_->DumpNonFreeRegions(LOG(INFO));
+    LOG(INFO) << "GC end of FlipThreadRoots";
+  }
+}
+
+void ConcurrentCopying::SwapStacks(Thread* self) {
+  heap_->SwapStacks(self);
+}
+
+void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
+  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
+  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
+}
+
+// Used to visit objects in the immune spaces.
+class ConcurrentCopyingImmuneSpaceObjVisitor {
+ public:
+  explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
+      : collector_(cc) {}
+
+  void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
+      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
+    DCHECK(obj != nullptr);
+    DCHECK(collector_->immune_region_.ContainsObject(obj));
+    accounting::ContinuousSpaceBitmap* cc_bitmap =
+        collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
+    DCHECK(cc_bitmap != nullptr)
+        << "An immune space object must have a bitmap";
+    if (kIsDebugBuild) {
+      DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
+          << "Immune space object must be already marked";
+    }
+    // This may or may not succeed, which is ok.
+    if (kUseBakerReadBarrier) {
+      obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
+    }
+    if (cc_bitmap->AtomicTestAndSet(obj)) {
+      // Already marked. Do nothing.
+    } else {
+      // Newly marked. Set the gray bit and push it onto the mark stack.
+      CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
+      collector_->PushOntoMarkStack<true>(obj);
+    }
+  }
+
+ private:
+  ConcurrentCopying* collector_;
+};
+
+class EmptyCheckpoint : public Closure {
+ public:
+  explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
+      : concurrent_copying_(concurrent_copying) {
+  }
+
+  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
+    // Note: self is not necessarily equal to thread since thread may be suspended.
+    Thread* self = Thread::Current();
+    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
+        << thread->GetState() << " thread " << thread << " self " << self;
+    concurrent_copying_->GetBarrier().Pass(self);
+  }
+
+ private:
+  ConcurrentCopying* const concurrent_copying_;
+};
+
+// Concurrently mark roots that are guarded by read barriers and process the mark stack.
+void ConcurrentCopying::MarkingPhase() {
+  TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
+  if (kVerboseMode) {
+    LOG(INFO) << "GC MarkingPhase";
+  }
+  {
+    // Mark the image root. The WB-based collectors do not need to
+    // scan the image objects from roots by relying on the card table,
+    // but it's necessary for the RB to-space invariant to hold.
+    TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
+    gc::space::ImageSpace* image = heap_->GetImageSpace();
+    if (image != nullptr) {
+      mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
+      mirror::Object* marked_image_root = Mark(image_root);
+      CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
+      if (ReadBarrier::kEnableToSpaceInvariantChecks) {
+        AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
+      }
+    }
+  }
+  {
+    TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
+    Runtime::Current()->VisitConstantRoots(ProcessRootCallback, this);
+  }
+  {
+    TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
+    Runtime::Current()->GetInternTable()->VisitRoots(ProcessRootCallback,
+                                                     this, kVisitRootFlagAllRoots);
+  }
+  {
+    TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
+    Runtime::Current()->GetClassLinker()->VisitRoots(ProcessRootCallback,
+                                                     this, kVisitRootFlagAllRoots);
+  }
+  {
+    // TODO: don't visit the transaction roots if it's not active.
+    TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
+    Runtime::Current()->VisitNonThreadRoots(ProcessRootCallback, this);
+  }
+
+  // Immune spaces.
+  for (auto& space : heap_->GetContinuousSpaces()) {
+    if (immune_region_.ContainsSpace(space)) {
+      DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
+      accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
+      ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
+      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
+                                    reinterpret_cast<uintptr_t>(space->Limit()),
+                                    visitor);
+    }
+  }
+
+  Thread* self = Thread::Current();
+  {
+    TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
+    // Process the mark stack and issue an empty check point. If the
+    // mark stack is still empty after the check point, we're
+    // done. Otherwise, repeat.
+    ProcessMarkStack();
+    size_t count = 0;
+    while (!ProcessMarkStack()) {
+      ++count;
+      if (kVerboseMode) {
+        LOG(INFO) << "Issue an empty check point. " << count;
+      }
+      IssueEmptyCheckpoint();
+    }
+    // Need to ensure the mark stack is empty before reference
+    // processing to get rid of non-reference gray objects.
+    CheckEmptyMarkQueue();
+    // Enable the GetReference slow path and disallow access to the system weaks.
+    GetHeap()->GetReferenceProcessor()->EnableSlowPath();
+    Runtime::Current()->DisallowNewSystemWeaks();
+    QuasiAtomic::ThreadFenceForConstructor();
+    // Lock-unlock the system weak locks so that there's no thread in
+    // the middle of accessing system weaks.
+    Runtime::Current()->EnsureNewSystemWeaksDisallowed();
+    // Note: Do not issue a checkpoint from here to the
+    // SweepSystemWeaks call or else a deadlock due to
+    // WaitHoldingLocks() would occur.
+    if (kVerboseMode) {
+      LOG(INFO) << "Enabled the ref proc slow path & disabled access to system weaks.";
+      LOG(INFO) << "ProcessReferences";
+    }
+    ProcessReferences(self, true);
+    CheckEmptyMarkQueue();
+    if (kVerboseMode) {
+      LOG(INFO) << "SweepSystemWeaks";
+    }
+    SweepSystemWeaks(self);
+    if (kVerboseMode) {
+      LOG(INFO) << "SweepSystemWeaks done";
+    }
+    // Because hash_set::Erase() can call the hash function for
+    // arbitrary elements in the weak intern table in
+    // InternTable::Table::SweepWeaks(), the above SweepSystemWeaks()
+    // call may have marked some objects (strings) alive. So process
+    // the mark stack here once again.
+    ProcessMarkStack();
+    CheckEmptyMarkQueue();
+    // Disable marking.
+    if (kUseTableLookupReadBarrier) {
+      heap_->rb_table_->ClearAll();
+      DCHECK(heap_->rb_table_->IsAllCleared());
+    }
+    is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(1);
+    is_marking_ = false;
+    if (kVerboseMode) {
+      LOG(INFO) << "AllowNewSystemWeaks";
+    }
+    Runtime::Current()->AllowNewSystemWeaks();
+    CheckEmptyMarkQueue();
+  }
+
+  if (kVerboseMode) {
+    LOG(INFO) << "GC end of MarkingPhase";
+  }
+}
+
+void ConcurrentCopying::IssueEmptyCheckpoint() {
+  Thread* self = Thread::Current();
+  EmptyCheckpoint check_point(this);
+  ThreadList* thread_list = Runtime::Current()->GetThreadList();
+  gc_barrier_->Init(self, 0);
+  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
+  // Release locks then wait for all mutator threads to pass the barrier.
+  Locks::mutator_lock_->SharedUnlock(self);
+  {
+    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
+    gc_barrier_->Increment(self, barrier_count);
+  }
+  Locks::mutator_lock_->SharedLock(self);
+}
+
+mirror::Object* ConcurrentCopying::PopOffMarkStack() {
+  return mark_queue_.Dequeue();
+}
+
+template<bool kThreadSafe>
+void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
+  CHECK_EQ(is_mark_queue_push_disallowed_.LoadRelaxed(), 0)
+      << " " << to_ref << " " << PrettyTypeOf(to_ref);
+  if (kThreadSafe) {
+    CHECK(mark_queue_.Enqueue(to_ref)) << "Mark queue overflow";
+  } else {
+    CHECK(mark_queue_.EnqueueThreadUnsafe(to_ref)) << "Mark queue overflow";
+  }
+}
+
+accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
+  return heap_->allocation_stack_.get();
+}
+
+accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
+  return heap_->live_stack_.get();
+}
+
+inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
+  DCHECK(region_space_->IsInFromSpace(from_ref));
+  LockWord lw = from_ref->GetLockWord(false);
+  if (lw.GetState() == LockWord::kForwardingAddress) {
+    mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
+    CHECK(fwd_ptr != nullptr);
+    return fwd_ptr;
+  } else {
+    return nullptr;
+  }
+}
+
+inline void ConcurrentCopying::SetFwdPtr(mirror::Object* from_ref, mirror::Object* to_ref) {
+  DCHECK(region_space_->IsInFromSpace(from_ref));
+  DCHECK(region_space_->IsInToSpace(to_ref) || heap_->GetNonMovingSpace()->HasAddress(to_ref));
+  LockWord lw = from_ref->GetLockWord(false);
+  DCHECK_NE(lw.GetState(), LockWord::kForwardingAddress);
+  from_ref->SetLockWord(LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref)), false);
+}
+
+// The following visitors are that used to verify that there's no
+// references to the from-space left after marking.
+class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor {
+ public:
+  explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
+      : collector_(collector) {}
+
+  void operator()(mirror::Object* ref) const
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
+    if (ref == nullptr) {
+      // OK.
+      return;
+    }
+    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
+    if (kUseBakerReadBarrier) {
+      if (collector_->RegionSpace()->IsInToSpace(ref)) {
+        CHECK(ref->GetReadBarrierPointer() == nullptr)
+            << "To-space ref " << ref << " " << PrettyTypeOf(ref)
+            << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
+      } else {
+        CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
+              (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
+               collector_->IsOnAllocStack(ref)))
+            << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
+            << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
+            << " but isn't on the alloc stack (and has white rb_ptr)."
+            << " Is it in the non-moving space="
+            << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
+      }
+    }
+  }
+
+  static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
+    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector);
+    DCHECK(root != nullptr);
+    visitor(*root);
+  }
+
+ private:
+  ConcurrentCopying* collector_;
+};
+
+class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
+ public:
+  explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
+      : collector_(collector) {}
+
+  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
+    mirror::Object* ref =
+        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
+    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
+    visitor(ref);
+  }
+  void operator()(mirror::Class* klass, mirror::Reference* ref) const
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
+    CHECK(klass->IsTypeOfReferenceClass());
+    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
+  }
+
+ private:
+  ConcurrentCopying* collector_;
+};
+
+class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
+ public:
+  explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
+      : collector_(collector) {}
+  void operator()(mirror::Object* obj) const
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+    ObjectCallback(obj, collector_);
+  }
+  static void ObjectCallback(mirror::Object* obj, void *arg)
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+    CHECK(obj != nullptr);
+    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
+    space::RegionSpace* region_space = collector->RegionSpace();
+    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
+    ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
+    obj->VisitReferences<true>(visitor, visitor);
+    if (kUseBakerReadBarrier) {
+      if (collector->RegionSpace()->IsInToSpace(obj)) {
+        CHECK(obj->GetReadBarrierPointer() == nullptr)
+            << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
+      } else {
+        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
+              (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
+               collector->IsOnAllocStack(obj)))
+            << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
+            << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
+            << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
+            << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
+      }
+    }
+  }
+
+ private:
+  ConcurrentCopying* const collector_;
+};
+
+// Verify there's no from-space references left after the marking phase.
+void ConcurrentCopying::VerifyNoFromSpaceReferences() {
+  Thread* self = Thread::Current();
+  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
+  ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
+  // Roots.
+  {
+    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
+    Runtime::Current()->VisitRoots(
+        ConcurrentCopyingVerifyNoFromSpaceRefsVisitor::RootCallback, this);
+  }
+  // The to-space.
+  region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
+                             this);
+  // Non-moving spaces.
+  {
+    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
+    heap_->GetMarkBitmap()->Visit(visitor);
+  }
+  // The alloc stack.
+  {
+    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
+    for (mirror::Object** it = heap_->allocation_stack_->Begin(),
+             **end = heap_->allocation_stack_->End(); it < end; ++it) {
+      mirror::Object* obj = *it;
+      if (obj != nullptr && obj->GetClass() != nullptr) {
+        // TODO: need to call this only if obj is alive?
+        ref_visitor(obj);
+        visitor(obj);
+      }
+    }
+  }
+  // TODO: LOS. But only refs in LOS are classes.
+}
+
+// The following visitors are used to assert the to-space invariant.
+class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
+ public:
+  explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
+      : collector_(collector) {}
+
+  void operator()(mirror::Object* ref) const
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
+    if (ref == nullptr) {
+      // OK.
+      return;
+    }
+    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
+  }
+  static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
+    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector);
+    DCHECK(root != nullptr);
+    visitor(*root);
+  }
+
+ private:
+  ConcurrentCopying* collector_;
+};
+
+class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
+ public:
+  explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
+      : collector_(collector) {}
+
+  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
+    mirror::Object* ref =
+        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
+    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
+    visitor(ref);
+  }
+  void operator()(mirror::Class* klass, mirror::Reference* /* ref */) const
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
+    CHECK(klass->IsTypeOfReferenceClass());
+  }
+
+ private:
+  ConcurrentCopying* collector_;
+};
+
+class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
+ public:
+  explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
+      : collector_(collector) {}
+  void operator()(mirror::Object* obj) const
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+    ObjectCallback(obj, collector_);
+  }
+  static void ObjectCallback(mirror::Object* obj, void *arg)
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+    CHECK(obj != nullptr);
+    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
+    space::RegionSpace* region_space = collector->RegionSpace();
+    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
+    collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
+    ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
+    obj->VisitReferences<true>(visitor, visitor);
+  }
+
+ private:
+  ConcurrentCopying* collector_;
+};
+
+bool ConcurrentCopying::ProcessMarkStack() {
+  if (kVerboseMode) {
+    LOG(INFO) << "ProcessMarkStack. ";
+  }
+  size_t count = 0;
+  mirror::Object* to_ref;
+  while ((to_ref = PopOffMarkStack()) != nullptr) {
+    ++count;
+    DCHECK(!region_space_->IsInFromSpace(to_ref));
+    if (kUseBakerReadBarrier) {
+      DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
+          << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
+          << " is_marked=" << IsMarked(to_ref);
+    }
+    // Scan ref fields.
+    Scan(to_ref);
+    // Mark the gray ref as white or black.
+    if (kUseBakerReadBarrier) {
+      DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
+          << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
+          << " is_marked=" << IsMarked(to_ref);
+    }
+    if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
+        to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
+        !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
+      // Leave References gray so that GetReferent() will trigger RB.
+      CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
+    } else {
+      if (kUseBakerReadBarrier) {
+        if (region_space_->IsInToSpace(to_ref)) {
+          // If to-space, change from gray to white.
+          bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
+                                                             ReadBarrier::WhitePtr());
+          CHECK(success) << "Must succeed as we won the race.";
+          CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
+        } else {
+          // If non-moving space/unevac from space, change from gray
+          // to black. We can't change gray to white because it's not
+          // safe to use CAS if two threads change values in opposite
+          // directions (A->B and B->A). So, we change it to black to
+          // indicate non-moving objects that have been marked
+          // through. Note we'd need to change from black to white
+          // later (concurrently).
+          bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
+                                                             ReadBarrier::BlackPtr());
+          CHECK(success) << "Must succeed as we won the race.";
+          CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
+        }
+      }
+    }
+    if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
+      ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
+      visitor(to_ref);
+    }
+  }
+  // Return true if the stack was empty.
+  return count == 0;
+}
+
+void ConcurrentCopying::CheckEmptyMarkQueue() {
+  if (!mark_queue_.IsEmpty()) {
+    while (!mark_queue_.IsEmpty()) {
+      mirror::Object* obj = mark_queue_.Dequeue();
+      if (kUseBakerReadBarrier) {
+        mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
+        LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
+                  << " is_marked=" << IsMarked(obj);
+      } else {
+        LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
+                  << " is_marked=" << IsMarked(obj);
+      }
+    }
+    LOG(FATAL) << "mark queue is not empty";
+  }
+}
+
+void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
+  TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
+  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
+  Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
+}
+
+void ConcurrentCopying::Sweep(bool swap_bitmaps) {
+  {
+    TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
+    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
+    if (kEnableFromSpaceAccountingCheck) {
+      CHECK_GE(live_stack_freeze_size_, live_stack->Size());
+    }
+    heap_->MarkAllocStackAsLive(live_stack);
+    live_stack->Reset();
+  }
+  CHECK(mark_queue_.IsEmpty());
+  TimingLogger::ScopedTiming split("Sweep", GetTimings());
+  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
+    if (space->IsContinuousMemMapAllocSpace()) {
+      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
+      if (space == region_space_ || immune_region_.ContainsSpace(space)) {
+        continue;
+      }
+      TimingLogger::ScopedTiming split2(
+          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
+      RecordFree(alloc_space->Sweep(swap_bitmaps));
+    }
+  }
+  SweepLargeObjects(swap_bitmaps);
+}
+
+void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
+  TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
+  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
+}
+
+class ConcurrentCopyingClearBlackPtrsVisitor {
+ public:
+  explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
+      : collector_(cc) {}
+  void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
+      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
+    DCHECK(obj != nullptr);
+    CHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
+    CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
+    obj->SetReadBarrierPointer(ReadBarrier::WhitePtr());
+    CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
+  }
+
+ private:
+  ConcurrentCopying* const collector_;
+};
+
+// Clear the black ptrs in non-moving objects back to white.
+void ConcurrentCopying::ClearBlackPtrs() {
+  CHECK(kUseBakerReadBarrier);
+  TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
+  ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
+  for (auto& space : heap_->GetContinuousSpaces()) {
+    if (space == region_space_) {
+      continue;
+    }
+    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
+    if (kVerboseMode) {
+      LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
+    }
+    mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
+                                  reinterpret_cast<uintptr_t>(space->Limit()),
+                                  visitor);
+  }
+  space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
+  large_object_space->GetMarkBitmap()->VisitMarkedRange(
+      reinterpret_cast<uintptr_t>(large_object_space->Begin()),
+      reinterpret_cast<uintptr_t>(large_object_space->End()),
+      visitor);
+  // Objects on the allocation stack?
+  if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
+    size_t count = GetAllocationStack()->Size();
+    mirror::Object** it = GetAllocationStack()->Begin();
+    mirror::Object** end = GetAllocationStack()->End();
+    for (size_t i = 0; i < count; ++i, ++it) {
+      CHECK(it < end);
+      mirror::Object* obj = *it;
+      if (obj != nullptr) {
+        // Must have been cleared above.
+        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr()) << obj;
+      }
+    }
+  }
+}
+
+void ConcurrentCopying::ReclaimPhase() {
+  TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
+  if (kVerboseMode) {
+    LOG(INFO) << "GC ReclaimPhase";
+  }
+  Thread* self = Thread::Current();
+
+  {
+    // Double-check that the mark stack is empty.
+    // Note: need to set this after VerifyNoFromSpaceRef().
+    is_asserting_to_space_invariant_ = false;
+    QuasiAtomic::ThreadFenceForConstructor();
+    if (kVerboseMode) {
+      LOG(INFO) << "Issue an empty check point. ";
+    }
+    IssueEmptyCheckpoint();
+    // Disable the check.
+    is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(0);
+    CheckEmptyMarkQueue();
+  }
+
+  {
+    // Record freed objects.
+    TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
+    // Don't include thread-locals that are in the to-space.
+    uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
+    uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
+    uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
+    uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
+    uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
+    uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
+    if (kEnableFromSpaceAccountingCheck) {
+      CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
+      CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
+    }
+    CHECK_LE(to_objects, from_objects);
+    CHECK_LE(to_bytes, from_bytes);
+    int64_t freed_bytes = from_bytes - to_bytes;
+    int64_t freed_objects = from_objects - to_objects;
+    if (kVerboseMode) {
+      LOG(INFO) << "RecordFree:"
+                << " from_bytes=" << from_bytes << " from_objects=" << from_objects
+                << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
+                << " to_bytes=" << to_bytes << " to_objects=" << to_objects
+                << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
+                << " from_space size=" << region_space_->FromSpaceSize()
+                << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
+                << " to_space size=" << region_space_->ToSpaceSize();
+      LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
+    }
+    RecordFree(ObjectBytePair(freed_objects, freed_bytes));
+    if (kVerboseMode) {
+      LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
+    }
+  }
+
+  {
+    TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
+    ComputeUnevacFromSpaceLiveRatio();
+  }
+
+  {
+    TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
+    region_space_->ClearFromSpace();
+  }
+
+  {
+    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
+    if (kUseBakerReadBarrier) {
+      ClearBlackPtrs();
+    }
+    Sweep(false);
+    SwapBitmaps();
+    heap_->UnBindBitmaps();
+
+    // Remove bitmaps for the immune spaces.
+    while (!cc_bitmaps_.empty()) {
+      accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
+      cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
+      delete cc_bitmap;
+      cc_bitmaps_.pop_back();
+    }
+    region_space_bitmap_ = nullptr;
+  }
+
+  if (kVerboseMode) {
+    LOG(INFO) << "GC end of ReclaimPhase";
+  }
+}
+
+class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
+ public:
+  explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
+      : collector_(cc) {}
+  void operator()(mirror::Object* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
+      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
+    DCHECK(ref != nullptr);
+    CHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
+    CHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
+    if (kUseBakerReadBarrier) {
+      CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr()) << ref;
+      // Clear the black ptr.
+      ref->SetReadBarrierPointer(ReadBarrier::WhitePtr());
+    }
+    size_t obj_size = ref->SizeOf();
+    size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
+    collector_->region_space_->AddLiveBytes(ref, alloc_size);
+  }
+
+ private:
+  ConcurrentCopying* collector_;
+};
+
+// Compute how much live objects are left in regions.
+void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
+  region_space_->AssertAllRegionLiveBytesZeroOrCleared();
+  ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
+  region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
+                                         reinterpret_cast<uintptr_t>(region_space_->Limit()),
+                                         visitor);
+}
+
+// Assert the to-space invariant.
+void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
+                                               mirror::Object* ref) {
+  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
+  if (is_asserting_to_space_invariant_) {
+    if (region_space_->IsInToSpace(ref)) {
+      // OK.
+      return;
+    } else if (region_space_->IsInUnevacFromSpace(ref)) {
+      CHECK(region_space_bitmap_->Test(ref)) << ref;
+    } else if (region_space_->IsInFromSpace(ref)) {
+      // Not OK. Do extra logging.
+      if (obj != nullptr) {
+        if (kUseBakerReadBarrier) {
+          LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
+                    << " holder rb_ptr=" << obj->GetReadBarrierPointer();
+        } else {
+          LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
+        }
+        if (region_space_->IsInFromSpace(obj)) {
+          LOG(INFO) << "holder is in the from-space.";
+        } else if (region_space_->IsInToSpace(obj)) {
+          LOG(INFO) << "holder is in the to-space.";
+        } else if (region_space_->IsInUnevacFromSpace(obj)) {
+          LOG(INFO) << "holder is in the unevac from-space.";
+          if (region_space_bitmap_->Test(obj)) {
+            LOG(INFO) << "holder is marked in the region space bitmap.";
+          } else {
+            LOG(INFO) << "holder is not marked in the region space bitmap.";
+          }
+        } else {
+          // In a non-moving space.
+          if (immune_region_.ContainsObject(obj)) {
+            LOG(INFO) << "holder is in the image or the zygote space.";
+            accounting::ContinuousSpaceBitmap* cc_bitmap =
+                cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
+            CHECK(cc_bitmap != nullptr)
+                << "An immune space object must have a bitmap.";
+            if (cc_bitmap->Test(obj)) {
+              LOG(INFO) << "holder is marked in the bit map.";
+            } else {
+              LOG(INFO) << "holder is NOT marked in the bit map.";
+            }
+          } else {
+            LOG(INFO) << "holder is in a non-moving (or main) space.";
+            accounting::ContinuousSpaceBitmap* mark_bitmap =
+                heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
+            accounting::LargeObjectBitmap* los_bitmap =
+                heap_mark_bitmap_->GetLargeObjectBitmap(obj);
+            CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
+            bool is_los = mark_bitmap == nullptr;
+            if (!is_los && mark_bitmap->Test(obj)) {
+              LOG(INFO) << "holder is marked in the mark bit map.";
+            } else if (is_los && los_bitmap->Test(obj)) {
+              LOG(INFO) << "holder is marked in the los bit map.";
+            } else {
+              // If ref is on the allocation stack, then it is considered
+              // mark/alive (but not necessarily on the live stack.)
+              if (IsOnAllocStack(obj)) {
+                LOG(INFO) << "holder is on the alloc stack.";
+              } else {
+                LOG(INFO) << "holder is not marked or on the alloc stack.";
+              }
+            }
+          }
+        }
+        LOG(INFO) << "offset=" << offset.SizeValue();
+      }
+      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
+    } else {
+      // In a non-moving spaces. Check that the ref is marked.
+      if (immune_region_.ContainsObject(ref)) {
+        accounting::ContinuousSpaceBitmap* cc_bitmap =
+            cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
+        CHECK(cc_bitmap != nullptr)
+            << "An immune space ref must have a bitmap. " << ref;
+        if (kUseBakerReadBarrier) {
+          CHECK(cc_bitmap->Test(ref))
+              << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
+              << obj->GetReadBarrierPointer() << " ref=" << ref;
+        } else {
+          CHECK(cc_bitmap->Test(ref))
+              << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
+        }
+      } else {
+        accounting::ContinuousSpaceBitmap* mark_bitmap =
+            heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
+        accounting::LargeObjectBitmap* los_bitmap =
+            heap_mark_bitmap_->GetLargeObjectBitmap(ref);
+        CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
+        bool is_los = mark_bitmap == nullptr;
+        if ((!is_los && mark_bitmap->Test(ref)) ||
+            (is_los && los_bitmap->Test(ref))) {
+          // OK.
+        } else {
+          // If ref is on the allocation stack, then it may not be
+          // marked live, but considered marked/alive (but not
+          // necessarily on the live stack).
+          CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
+                                     << "obj=" << obj << " ref=" << ref;
+        }
+      }
+    }
+  }
+}
+
+void ConcurrentCopying::ProcessRootCallback(mirror::Object** root, void* arg,
+                                            const RootInfo& /*root_info*/) {
+  reinterpret_cast<ConcurrentCopying*>(arg)->Process(root);
+}
+
+// Used to scan ref fields of an object.
+class ConcurrentCopyingRefFieldsVisitor {
+ public:
+  explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
+      : collector_(collector) {}
+
+  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
+      const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
+      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
+    collector_->Process(obj, offset);
+  }
+
+  void operator()(mirror::Class* klass, mirror::Reference* ref) const
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
+    CHECK(klass->IsTypeOfReferenceClass());
+    collector_->DelayReferenceReferent(klass, ref);
+  }
+
+ private:
+  ConcurrentCopying* const collector_;
+};
+
+// Scan ref fields of an object.
+void ConcurrentCopying::Scan(mirror::Object* to_ref) {
+  DCHECK(!region_space_->IsInFromSpace(to_ref));
+  ConcurrentCopyingRefFieldsVisitor visitor(this);
+  to_ref->VisitReferences<true>(visitor, visitor);
+}
+
+// Process a field.
+inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
+  mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
+  if (ref == nullptr || region_space_->IsInToSpace(ref)) {
+    return;
+  }
+  mirror::Object* to_ref = Mark(ref);
+  if (to_ref == ref) {
+    return;
+  }
+  // This may fail if the mutator writes to the field at the same time. But it's ok.
+  mirror::Object* expected_ref = ref;
+  mirror::Object* new_ref = to_ref;
+  do {
+    if (expected_ref !=
+        obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
+      // It was updated by the mutator.
+      break;
+    }
+  } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<false, false, kVerifyNone>(
+      offset, expected_ref, new_ref));
+}
+
+// Process a root.
+void ConcurrentCopying::Process(mirror::Object** root) {
+  mirror::Object* ref = *root;
+  if (ref == nullptr || region_space_->IsInToSpace(ref)) {
+    return;
+  }
+  mirror::Object* to_ref = Mark(ref);
+  if (to_ref == ref) {
+    return;
+  }
+  Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
+  mirror::Object* expected_ref = ref;
+  mirror::Object* new_ref = to_ref;
+  do {
+    if (expected_ref != addr->LoadRelaxed()) {
+      // It was updated by the mutator.
+      break;
+    }
+  } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
+}
+
+// Fill the given memory block with a dummy object. Used to fill in a
+// copy of objects that was lost in race.
+void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
+  CHECK(IsAligned<kObjectAlignment>(byte_size));
+  memset(dummy_obj, 0, byte_size);
+  mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
+  CHECK(int_array_class != nullptr);
+  AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
+  size_t component_size = int_array_class->GetComponentSize();
+  CHECK_EQ(component_size, sizeof(int32_t));
+  size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
+  if (data_offset > byte_size) {
+    // An int array is too big. Use java.lang.Object.
+    mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
+    AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
+    CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
+    dummy_obj->SetClass(java_lang_Object);
+    CHECK_EQ(byte_size, dummy_obj->SizeOf());
+  } else {
+    // Use an int array.
+    dummy_obj->SetClass(int_array_class);
+    CHECK(dummy_obj->IsArrayInstance());
+    int32_t length = (byte_size - data_offset) / component_size;
+    dummy_obj->AsArray()->SetLength(length);
+    CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
+        << "byte_size=" << byte_size << " length=" << length
+        << " component_size=" << component_size << " data_offset=" << data_offset;
+    CHECK_EQ(byte_size, dummy_obj->SizeOf())
+        << "byte_size=" << byte_size << " length=" << length
+        << " component_size=" << component_size << " data_offset=" << data_offset;
+  }
+}
+
+// Reuse the memory blocks that were copy of objects that were lost in race.
+mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
+  // Try to reuse the blocks that were unused due to CAS failures.
+  CHECK(IsAligned<space::RegionSpace::kAlignment>(alloc_size));
+  Thread* self = Thread::Current();
+  size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
+  MutexLock mu(self, skipped_blocks_lock_);
+  auto it = skipped_blocks_map_.lower_bound(alloc_size);
+  if (it == skipped_blocks_map_.end()) {
+    // Not found.
+    return nullptr;
+  }
+  {
+    size_t byte_size = it->first;
+    CHECK_GE(byte_size, alloc_size);
+    if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
+      // If remainder would be too small for a dummy object, retry with a larger request size.
+      it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
+      if (it == skipped_blocks_map_.end()) {
+        // Not found.
+        return nullptr;
+      }
+      CHECK(IsAligned<space::RegionSpace::kAlignment>(it->first - alloc_size));
+      CHECK_GE(it->first - alloc_size, min_object_size)
+          << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
+    }
+  }
+  // Found a block.
+  CHECK(it != skipped_blocks_map_.end());
+  size_t byte_size = it->first;
+  uint8_t* addr = it->second;
+  CHECK_GE(byte_size, alloc_size);
+  CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
+  CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size));
+  if (kVerboseMode) {
+    LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
+  }
+  skipped_blocks_map_.erase(it);
+  memset(addr, 0, byte_size);
+  if (byte_size > alloc_size) {
+    // Return the remainder to the map.
+    CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size - alloc_size));
+    CHECK_GE(byte_size - alloc_size, min_object_size);
+    FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
+                        byte_size - alloc_size);
+    CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
+    skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
+  }
+  return reinterpret_cast<mirror::Object*>(addr);
+}
+
+mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
+  DCHECK(region_space_->IsInFromSpace(from_ref));
+  // No read barrier to avoid nested RB that might violate the to-space
+  // invariant. Note that from_ref is a from space ref so the SizeOf()
+  // call will access the from-space meta objects, but it's ok and necessary.
+  size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
+  size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
+  size_t region_space_bytes_allocated = 0U;
+  size_t non_moving_space_bytes_allocated = 0U;
+  size_t bytes_allocated = 0U;
+  mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
+      region_space_alloc_size, &region_space_bytes_allocated, nullptr);
+  bytes_allocated = region_space_bytes_allocated;
+  if (to_ref != nullptr) {
+    DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
+  }
+  bool fall_back_to_non_moving = false;
+  if (UNLIKELY(to_ref == nullptr)) {
+    // Failed to allocate in the region space. Try the skipped blocks.
+    to_ref = AllocateInSkippedBlock(region_space_alloc_size);
+    if (to_ref != nullptr) {
+      // Succeeded to allocate in a skipped block.
+      if (heap_->use_tlab_) {
+        // This is necessary for the tlab case as it's not accounted in the space.
+        region_space_->RecordAlloc(to_ref);
+      }
+      bytes_allocated = region_space_alloc_size;
+    } else {
+      // Fall back to the non-moving space.
+      fall_back_to_non_moving = true;
+      if (kVerboseMode) {
+        LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
+                  << to_space_bytes_skipped_.LoadSequentiallyConsistent()
+                  << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
+      }
+      fall_back_to_non_moving = true;
+      to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
+                                               &non_moving_space_bytes_allocated, nullptr);
+      CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
+      bytes_allocated = non_moving_space_bytes_allocated;
+      // Mark it in the mark bitmap.
+      accounting::ContinuousSpaceBitmap* mark_bitmap =
+          heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
+      CHECK(mark_bitmap != nullptr);
+      CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
+    }
+  }
+  DCHECK(to_ref != nullptr);
+
+  // Attempt to install the forward pointer. This is in a loop as the
+  // lock word atomic write can fail.
+  while (true) {
+    // Copy the object. TODO: copy only the lockword in the second iteration and on?
+    memcpy(to_ref, from_ref, obj_size);
+    // Set the gray ptr.
+    if (kUseBakerReadBarrier) {
+      to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
+    }
+
+    LockWord old_lock_word = to_ref->GetLockWord(false);
+
+    if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
+      // Lost the race. Another thread (either GC or mutator) stored
+      // the forwarding pointer first. Make the lost copy (to_ref)
+      // look like a valid but dead (dummy) object and keep it for
+      // future reuse.
+      FillWithDummyObject(to_ref, bytes_allocated);
+      if (!fall_back_to_non_moving) {
+        DCHECK(region_space_->IsInToSpace(to_ref));
+        if (bytes_allocated > space::RegionSpace::kRegionSize) {
+          // Free the large alloc.
+          region_space_->FreeLarge(to_ref, bytes_allocated);
+        } else {
+          // Record the lost copy for later reuse.
+          heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
+          to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
+          to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
+          MutexLock mu(Thread::Current(), skipped_blocks_lock_);
+          skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
+                                                    reinterpret_cast<uint8_t*>(to_ref)));
+        }
+      } else {
+        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
+        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
+        // Free the non-moving-space chunk.
+        accounting::ContinuousSpaceBitmap* mark_bitmap =
+            heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
+        CHECK(mark_bitmap != nullptr);
+        CHECK(mark_bitmap->Clear(to_ref));
+        heap_->non_moving_space_->Free(Thread::Current(), to_ref);
+      }
+
+      // Get the winner's forward ptr.
+      mirror::Object* lost_fwd_ptr = to_ref;
+      to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
+      CHECK(to_ref != nullptr);
+      CHECK_NE(to_ref, lost_fwd_ptr);
+      CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
+      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
+      return to_ref;
+    }
+
+    LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
+
+    // Try to atomically write the fwd ptr.
+    bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
+    if (LIKELY(success)) {
+      // The CAS succeeded.
+      objects_moved_.FetchAndAddSequentiallyConsistent(1);
+      bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
+      if (LIKELY(!fall_back_to_non_moving)) {
+        DCHECK(region_space_->IsInToSpace(to_ref));
+      } else {
+        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
+        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
+      }
+      if (kUseBakerReadBarrier) {
+        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
+      }
+      DCHECK(GetFwdPtr(from_ref) == to_ref);
+      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
+      PushOntoMarkStack<true>(to_ref);
+      return to_ref;
+    } else {
+      // The CAS failed. It may have lost the race or may have failed
+      // due to monitor/hashcode ops. Either way, retry.
+    }
+  }
+}
+
+mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
+  DCHECK(from_ref != nullptr);
+  if (region_space_->IsInToSpace(from_ref)) {
+    // It's already marked.
+    return from_ref;
+  }
+  mirror::Object* to_ref;
+  if (region_space_->IsInFromSpace(from_ref)) {
+    to_ref = GetFwdPtr(from_ref);
+    DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
+           heap_->non_moving_space_->HasAddress(to_ref))
+        << "from_ref=" << from_ref << " to_ref=" << to_ref;
+  } else if (region_space_->IsInUnevacFromSpace(from_ref)) {
+    if (region_space_bitmap_->Test(from_ref)) {
+      to_ref = from_ref;
+    } else {
+      to_ref = nullptr;
+    }
+  } else {
+    // from_ref is in a non-moving space.
+    if (immune_region_.ContainsObject(from_ref)) {
+      accounting::ContinuousSpaceBitmap* cc_bitmap =
+          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
+      DCHECK(cc_bitmap != nullptr)
+          << "An immune space object must have a bitmap";
+      if (kIsDebugBuild) {
+        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
+            << "Immune space object must be already marked";
+      }
+      if (cc_bitmap->Test(from_ref)) {
+        // Already marked.
+        to_ref = from_ref;
+      } else {
+        // Newly marked.
+        to_ref = nullptr;
+      }
+    } else {
+      // Non-immune non-moving space. Use the mark bitmap.
+      accounting::ContinuousSpaceBitmap* mark_bitmap =
+          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
+      accounting::LargeObjectBitmap* los_bitmap =
+          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
+      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
+      bool is_los = mark_bitmap == nullptr;
+      if (!is_los && mark_bitmap->Test(from_ref)) {
+        // Already marked.
+        to_ref = from_ref;
+      } else if (is_los && los_bitmap->Test(from_ref)) {
+        // Already marked in LOS.
+        to_ref = from_ref;
+      } else {
+        // Not marked.
+        if (IsOnAllocStack(from_ref)) {
+          // If on the allocation stack, it's considered marked.
+          to_ref = from_ref;
+        } else {
+          // Not marked.
+          to_ref = nullptr;
+        }
+      }
+    }
+  }
+  return to_ref;
+}
+
+bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
+  QuasiAtomic::ThreadFenceAcquire();
+  accounting::ObjectStack* alloc_stack = GetAllocationStack();
+  mirror::Object** begin = alloc_stack->Begin();
+  // Important to read end once as it could be concurrently updated and screw up std::find().
+  mirror::Object** end = alloc_stack->End();
+  return std::find(begin, end, ref) != end;
+}
+
+mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
+  if (from_ref == nullptr) {
+    return nullptr;
+  }
+  DCHECK(from_ref != nullptr);
+  DCHECK(heap_->collector_type_ == kCollectorTypeCC);
+  if (region_space_->IsInToSpace(from_ref)) {
+    // It's already marked.
+    return from_ref;
+  }
+  mirror::Object* to_ref;
+  if (region_space_->IsInFromSpace(from_ref)) {
+    to_ref = GetFwdPtr(from_ref);
+    if (kUseBakerReadBarrier) {
+      DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
+    }
+    if (to_ref == nullptr) {
+      // It isn't marked yet. Mark it by copying it to the to-space.
+      to_ref = Copy(from_ref);
+    }
+    DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
+        << "from_ref=" << from_ref << " to_ref=" << to_ref;
+  } else if (region_space_->IsInUnevacFromSpace(from_ref)) {
+    // This may or may not succeed, which is ok.
+    if (kUseBakerReadBarrier) {
+      from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
+    }
+    if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
+      // Already marked.
+      to_ref = from_ref;
+    } else {
+      // Newly marked.
+      to_ref = from_ref;
+      if (kUseBakerReadBarrier) {
+        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
+      }
+      PushOntoMarkStack<true>(to_ref);
+    }
+  } else {
+    // from_ref is in a non-moving space.
+    DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
+    if (immune_region_.ContainsObject(from_ref)) {
+      accounting::ContinuousSpaceBitmap* cc_bitmap =
+          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
+      DCHECK(cc_bitmap != nullptr)
+          << "An immune space object must have a bitmap";
+      if (kIsDebugBuild) {
+        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
+            << "Immune space object must be already marked";
+      }
+      // This may or may not succeed, which is ok.
+      if (kUseBakerReadBarrier) {
+        from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
+      }
+      if (cc_bitmap->AtomicTestAndSet(from_ref)) {
+        // Already marked.
+        to_ref = from_ref;
+      } else {
+        // Newly marked.
+        to_ref = from_ref;
+        if (kUseBakerReadBarrier) {
+          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
+        }
+        PushOntoMarkStack<true>(to_ref);
+      }
+    } else {
+      // Use the mark bitmap.
+      accounting::ContinuousSpaceBitmap* mark_bitmap =
+          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
+      accounting::LargeObjectBitmap* los_bitmap =
+          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
+      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
+      bool is_los = mark_bitmap == nullptr;
+      if (!is_los && mark_bitmap->Test(from_ref)) {
+        // Already marked.
+        to_ref = from_ref;
+        if (kUseBakerReadBarrier) {
+          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
+                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
+        }
+      } else if (is_los && los_bitmap->Test(from_ref)) {
+        // Already marked in LOS.
+        to_ref = from_ref;
+        if (kUseBakerReadBarrier) {
+          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
+                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
+        }
+      } else {
+        // Not marked.
+        if (IsOnAllocStack(from_ref)) {
+          // If it's on the allocation stack, it's considered marked. Keep it white.
+          to_ref = from_ref;
+          // Objects on the allocation stack need not be marked.
+          if (!is_los) {
+            DCHECK(!mark_bitmap->Test(to_ref));
+          } else {
+            DCHECK(!los_bitmap->Test(to_ref));
+          }
+          if (kUseBakerReadBarrier) {
+            DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
+          }
+        } else {
+          // Not marked or on the allocation stack. Try to mark it.
+          // This may or may not succeed, which is ok.
+          if (kUseBakerReadBarrier) {
+            from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
+          }
+          if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
+            // Already marked.
+            to_ref = from_ref;
+          } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
+            // Already marked in LOS.
+            to_ref = from_ref;
+          } else {
+            // Newly marked.
+            to_ref = from_ref;
+            if (kUseBakerReadBarrier) {
+              DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
+            }
+            PushOntoMarkStack<true>(to_ref);
+          }
+        }
+      }
+    }
+  }
+  return to_ref;
+}
+
+void ConcurrentCopying::FinishPhase() {
+  region_space_ = nullptr;
+  CHECK(mark_queue_.IsEmpty());
+  mark_queue_.Clear();
+  {
+    MutexLock mu(Thread::Current(), skipped_blocks_lock_);
+    skipped_blocks_map_.clear();
+  }
+  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
+  heap_->ClearMarkedObjects();
+}
+
+mirror::Object* ConcurrentCopying::IsMarkedCallback(mirror::Object* from_ref, void* arg) {
+  return reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
+}
+
+bool ConcurrentCopying::IsHeapReferenceMarkedCallback(
+    mirror::HeapReference<mirror::Object>* field, void* arg) {
+  mirror::Object* from_ref = field->AsMirrorPtr();
+  mirror::Object* to_ref = reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
+  if (to_ref == nullptr) {
+    return false;
+  }
+  if (from_ref != to_ref) {
+    QuasiAtomic::ThreadFenceRelease();
+    field->Assign(to_ref);
+    QuasiAtomic::ThreadFenceSequentiallyConsistent();
+  }
+  return true;
+}
+
+mirror::Object* ConcurrentCopying::MarkCallback(mirror::Object* from_ref, void* arg) {
+  return reinterpret_cast<ConcurrentCopying*>(arg)->Mark(from_ref);
+}
+
+void ConcurrentCopying::ProcessMarkStackCallback(void* arg) {
+  reinterpret_cast<ConcurrentCopying*>(arg)->ProcessMarkStack();
+}
+
+void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
+  heap_->GetReferenceProcessor()->DelayReferenceReferent(
+      klass, reference, &IsHeapReferenceMarkedCallback, this);
+}
+
+void ConcurrentCopying::ProcessReferences(Thread* self, bool concurrent) {
+  TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
+  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
+  GetHeap()->GetReferenceProcessor()->ProcessReferences(
+      concurrent, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
+      &IsHeapReferenceMarkedCallback, &MarkCallback, &ProcessMarkStackCallback, this);
+}
+
+void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
+  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
+  region_space_->RevokeAllThreadLocalBuffers();
+}
+
 }  // namespace collector
 }  // namespace gc
 }  // namespace art