Compiler: rearranging the deck chairs.

First of several steps to adopt the new source directory layout.  No
logic changes - just moved files around.

Change-Id: I087631f8aa23973e18da4dc7706249c490bee061
diff --git a/src/compiler/dex/bb_opt.cc b/src/compiler/dex/bb_opt.cc
new file mode 100644
index 0000000..3ad5821
--- /dev/null
+++ b/src/compiler/dex/bb_opt.cc
@@ -0,0 +1,519 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "bb_opt.h"
+#include "dataflow.h"
+
+namespace art {
+
+
+uint16_t BBOpt::GetValueNumber(MIR* mir)
+{
+  uint16_t res = NO_VALUE;
+  uint16_t opcode = mir->dalvikInsn.opcode;
+  switch (opcode) {
+    case Instruction::NOP:
+    case Instruction::RETURN_VOID:
+    case Instruction::RETURN:
+    case Instruction::RETURN_OBJECT:
+    case Instruction::RETURN_WIDE:
+    case Instruction::MONITOR_ENTER:
+    case Instruction::MONITOR_EXIT:
+    case Instruction::GOTO:
+    case Instruction::GOTO_16:
+    case Instruction::GOTO_32:
+    case Instruction::CHECK_CAST:
+    case Instruction::THROW:
+    case Instruction::FILL_ARRAY_DATA:
+    case Instruction::FILLED_NEW_ARRAY:
+    case Instruction::FILLED_NEW_ARRAY_RANGE:
+    case Instruction::PACKED_SWITCH:
+    case Instruction::SPARSE_SWITCH:
+    case Instruction::IF_EQ:
+    case Instruction::IF_NE:
+    case Instruction::IF_LT:
+    case Instruction::IF_GE:
+    case Instruction::IF_GT:
+    case Instruction::IF_LE:
+    case Instruction::IF_EQZ:
+    case Instruction::IF_NEZ:
+    case Instruction::IF_LTZ:
+    case Instruction::IF_GEZ:
+    case Instruction::IF_GTZ:
+    case Instruction::IF_LEZ:
+    case Instruction::INVOKE_STATIC_RANGE:
+    case Instruction::INVOKE_STATIC:
+    case Instruction::INVOKE_DIRECT:
+    case Instruction::INVOKE_DIRECT_RANGE:
+    case Instruction::INVOKE_VIRTUAL:
+    case Instruction::INVOKE_VIRTUAL_RANGE:
+    case Instruction::INVOKE_SUPER:
+    case Instruction::INVOKE_SUPER_RANGE:
+    case Instruction::INVOKE_INTERFACE:
+    case Instruction::INVOKE_INTERFACE_RANGE:
+    case kMirOpFusedCmplFloat:
+    case kMirOpFusedCmpgFloat:
+    case kMirOpFusedCmplDouble:
+    case kMirOpFusedCmpgDouble:
+    case kMirOpFusedCmpLong:
+      // Nothing defined - take no action.
+      break;
+
+    case Instruction::MOVE_EXCEPTION:
+    case Instruction::MOVE_RESULT:
+    case Instruction::MOVE_RESULT_OBJECT:
+    case Instruction::INSTANCE_OF:
+    case Instruction::NEW_INSTANCE:
+    case Instruction::CONST_STRING:
+    case Instruction::CONST_STRING_JUMBO:
+    case Instruction::CONST_CLASS:
+    case Instruction::NEW_ARRAY: {
+        // 1 result, treat as unique each time, use result s_reg - will be unique.
+        uint16_t res = GetOperandValue(mir->ssa_rep->defs[0]);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+    case Instruction::MOVE_RESULT_WIDE: {
+        // 1 wide result, treat as unique each time, use result s_reg - will be unique.
+        uint16_t res = GetOperandValueWide(mir->ssa_rep->defs[0]);
+        SetOperandValueWide(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case kMirOpPhi:
+      /*
+       * Because we'll only see phi nodes at the beginning of an extended basic block,
+       * we can ignore them.  Revisit if we shift to global value numbering.
+       */
+      break;
+
+    case Instruction::MOVE:
+    case Instruction::MOVE_OBJECT:
+    case Instruction::MOVE_16:
+    case Instruction::MOVE_OBJECT_16:
+    case Instruction::MOVE_FROM16:
+    case Instruction::MOVE_OBJECT_FROM16:
+    case kMirOpCopy: {
+        // Just copy value number of source to value number of resulit.
+        uint16_t res = GetOperandValue(mir->ssa_rep->uses[0]);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::MOVE_WIDE:
+    case Instruction::MOVE_WIDE_16:
+    case Instruction::MOVE_WIDE_FROM16: {
+        // Just copy value number of source to value number of result.
+        uint16_t res = GetOperandValueWide(mir->ssa_rep->uses[0]);
+        SetOperandValueWide(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::CONST:
+    case Instruction::CONST_4:
+    case Instruction::CONST_16: {
+        uint16_t res = LookupValue(Instruction::CONST, Low16Bits(mir->dalvikInsn.vB),
+                                   High16Bits(mir->dalvikInsn.vB >> 16), 0);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::CONST_HIGH16: {
+        uint16_t res = LookupValue(Instruction::CONST, 0, mir->dalvikInsn.vB, 0);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::CONST_WIDE_16:
+    case Instruction::CONST_WIDE_32: {
+        uint16_t low_res = LookupValue(Instruction::CONST, Low16Bits(mir->dalvikInsn.vB),
+                                       High16Bits(mir->dalvikInsn.vB >> 16), 1);
+        uint16_t high_res;
+        if (mir->dalvikInsn.vB & 0x80000000) {
+          high_res = LookupValue(Instruction::CONST, 0xffff, 0xffff, 2);
+        } else {
+          high_res = LookupValue(Instruction::CONST, 0, 0, 2);
+        }
+        uint16_t res = LookupValue(Instruction::CONST, low_res, high_res, 3);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::CONST_WIDE: {
+        uint32_t low_word = Low32Bits(mir->dalvikInsn.vB_wide);
+        uint32_t high_word = High32Bits(mir->dalvikInsn.vB_wide);
+        uint16_t low_res = LookupValue(Instruction::CONST, Low16Bits(low_word),
+                                       High16Bits(low_word), 1);
+        uint16_t high_res = LookupValue(Instruction::CONST, Low16Bits(high_word),
+                                       High16Bits(high_word), 2);
+        uint16_t res = LookupValue(Instruction::CONST, low_res, high_res, 3);
+        SetOperandValueWide(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::CONST_WIDE_HIGH16: {
+        uint16_t low_res = LookupValue(Instruction::CONST, 0, 0, 1);
+        uint16_t high_res = LookupValue(Instruction::CONST, 0, Low16Bits(mir->dalvikInsn.vB), 2);
+        uint16_t res = LookupValue(Instruction::CONST, low_res, high_res, 3);
+        SetOperandValueWide(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::ARRAY_LENGTH:
+    case Instruction::NEG_INT:
+    case Instruction::NOT_INT:
+    case Instruction::NEG_FLOAT:
+    case Instruction::INT_TO_BYTE:
+    case Instruction::INT_TO_SHORT:
+    case Instruction::INT_TO_CHAR:
+    case Instruction::INT_TO_FLOAT:
+    case Instruction::FLOAT_TO_INT: {
+        // res = op + 1 operand
+        uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
+        uint16_t res = LookupValue(opcode, operand1, NO_VALUE, NO_VALUE);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::LONG_TO_FLOAT:
+    case Instruction::LONG_TO_INT:
+    case Instruction::DOUBLE_TO_FLOAT:
+    case Instruction::DOUBLE_TO_INT: {
+        // res = op + 1 wide operand
+        uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
+        uint16_t res = LookupValue(opcode, operand1, NO_VALUE, NO_VALUE);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+
+    case Instruction::DOUBLE_TO_LONG:
+    case Instruction::LONG_TO_DOUBLE:
+    case Instruction::NEG_LONG:
+    case Instruction::NOT_LONG:
+    case Instruction::NEG_DOUBLE: {
+        // wide res = op + 1 wide operand
+        uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
+        uint16_t res = LookupValue(opcode, operand1, NO_VALUE, NO_VALUE);
+        SetOperandValueWide(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::FLOAT_TO_DOUBLE:
+    case Instruction::FLOAT_TO_LONG:
+    case Instruction::INT_TO_DOUBLE:
+    case Instruction::INT_TO_LONG: {
+        // wide res = op + 1 operand
+        uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
+        uint16_t res = LookupValue(opcode, operand1, NO_VALUE, NO_VALUE);
+        SetOperandValueWide(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::CMPL_DOUBLE:
+    case Instruction::CMPG_DOUBLE:
+    case Instruction::CMP_LONG: {
+        // res = op + 2 wide operands
+        uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
+        uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]);
+        uint16_t res = LookupValue(opcode, operand1, operand2, NO_VALUE);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::CMPG_FLOAT:
+    case Instruction::CMPL_FLOAT:
+    case Instruction::ADD_INT:
+    case Instruction::ADD_INT_2ADDR:
+    case Instruction::MUL_INT:
+    case Instruction::MUL_INT_2ADDR:
+    case Instruction::AND_INT:
+    case Instruction::AND_INT_2ADDR:
+    case Instruction::OR_INT:
+    case Instruction::OR_INT_2ADDR:
+    case Instruction::XOR_INT:
+    case Instruction::XOR_INT_2ADDR:
+    case Instruction::SUB_INT:
+    case Instruction::SUB_INT_2ADDR:
+    case Instruction::DIV_INT:
+    case Instruction::DIV_INT_2ADDR:
+    case Instruction::REM_INT:
+    case Instruction::REM_INT_2ADDR:
+    case Instruction::SHL_INT:
+    case Instruction::SHL_INT_2ADDR:
+    case Instruction::SHR_INT:
+    case Instruction::SHR_INT_2ADDR:
+    case Instruction::USHR_INT:
+    case Instruction::USHR_INT_2ADDR: {
+        // res = op + 2 operands
+        uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
+        uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[1]);
+        uint16_t res = LookupValue(opcode, operand1, operand2, NO_VALUE);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::ADD_LONG:
+    case Instruction::SUB_LONG:
+    case Instruction::MUL_LONG:
+    case Instruction::DIV_LONG:
+    case Instruction::REM_LONG:
+    case Instruction::AND_LONG:
+    case Instruction::OR_LONG:
+    case Instruction::XOR_LONG:
+    case Instruction::ADD_LONG_2ADDR:
+    case Instruction::SUB_LONG_2ADDR:
+    case Instruction::MUL_LONG_2ADDR:
+    case Instruction::DIV_LONG_2ADDR:
+    case Instruction::REM_LONG_2ADDR:
+    case Instruction::AND_LONG_2ADDR:
+    case Instruction::OR_LONG_2ADDR:
+    case Instruction::XOR_LONG_2ADDR:
+    case Instruction::ADD_DOUBLE:
+    case Instruction::SUB_DOUBLE:
+    case Instruction::MUL_DOUBLE:
+    case Instruction::DIV_DOUBLE:
+    case Instruction::REM_DOUBLE:
+    case Instruction::ADD_DOUBLE_2ADDR:
+    case Instruction::SUB_DOUBLE_2ADDR:
+    case Instruction::MUL_DOUBLE_2ADDR:
+    case Instruction::DIV_DOUBLE_2ADDR:
+    case Instruction::REM_DOUBLE_2ADDR: {
+        // wide res = op + 2 wide operands
+        uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
+        uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]);
+        uint16_t res = LookupValue(opcode, operand1, operand2, NO_VALUE);
+        SetOperandValueWide(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::SHL_LONG:
+    case Instruction::SHR_LONG:
+    case Instruction::USHR_LONG:
+    case Instruction::SHL_LONG_2ADDR:
+    case Instruction::SHR_LONG_2ADDR:
+    case Instruction::USHR_LONG_2ADDR: {
+        // wide res = op + 1 wide operand + 1 operand
+        uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
+        uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]);
+        uint16_t res = LookupValue(opcode, operand1, operand2, NO_VALUE);
+        SetOperandValueWide(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::ADD_FLOAT:
+    case Instruction::SUB_FLOAT:
+    case Instruction::MUL_FLOAT:
+    case Instruction::DIV_FLOAT:
+    case Instruction::REM_FLOAT:
+    case Instruction::ADD_FLOAT_2ADDR:
+    case Instruction::SUB_FLOAT_2ADDR:
+    case Instruction::MUL_FLOAT_2ADDR:
+    case Instruction::DIV_FLOAT_2ADDR:
+    case Instruction::REM_FLOAT_2ADDR: {
+        // res = op + 2 operands
+        uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
+        uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[1]);
+        uint16_t res = LookupValue(opcode, operand1, operand2, NO_VALUE);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::RSUB_INT:
+    case Instruction::ADD_INT_LIT16:
+    case Instruction::MUL_INT_LIT16:
+    case Instruction::DIV_INT_LIT16:
+    case Instruction::REM_INT_LIT16:
+    case Instruction::AND_INT_LIT16:
+    case Instruction::OR_INT_LIT16:
+    case Instruction::XOR_INT_LIT16:
+    case Instruction::ADD_INT_LIT8:
+    case Instruction::RSUB_INT_LIT8:
+    case Instruction::MUL_INT_LIT8:
+    case Instruction::DIV_INT_LIT8:
+    case Instruction::REM_INT_LIT8:
+    case Instruction::AND_INT_LIT8:
+    case Instruction::OR_INT_LIT8:
+    case Instruction::XOR_INT_LIT8:
+    case Instruction::SHL_INT_LIT8:
+    case Instruction::SHR_INT_LIT8:
+    case Instruction::USHR_INT_LIT8: {
+        // Same as res = op + 2 operands, except use vB as operand 2
+        uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
+        uint16_t operand2 = LookupValue(Instruction::CONST, mir->dalvikInsn.vB, 0, 0);
+        uint16_t res = LookupValue(opcode, operand1, operand2, NO_VALUE);
+        SetOperandValue(mir->ssa_rep->defs[0], res);
+      }
+      break;
+
+    case Instruction::AGET_WIDE:
+    case Instruction::AGET:
+    case Instruction::AGET_OBJECT:
+    case Instruction::AGET_BOOLEAN:
+    case Instruction::AGET_BYTE:
+    case Instruction::AGET_CHAR:
+    case Instruction::AGET_SHORT: {
+        uint16_t array = GetOperandValue(mir->ssa_rep->uses[0]);
+        if (null_checked_.find(array) != null_checked_.end()) {
+          if (cu_->verbose) {
+            LOG(INFO) << "Removing null check for 0x" << std::hex << mir->offset;
+          }
+          mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
+        } else {
+          null_checked_.insert(array);
+        }
+        uint16_t index = GetOperandValue(mir->ssa_rep->uses[1]);
+        if (ValueExists(ARRAY_REF, array, index, NO_VALUE)) {
+          if (cu_->verbose) {
+            LOG(INFO) << "Removing range check for 0x" << std::hex << mir->offset;
+          }
+          mir->optimization_flags |= MIR_IGNORE_RANGE_CHECK;
+        }
+        mir->meta.throw_insn->optimization_flags |= mir->optimization_flags;
+        // Use side effect to note range check completed.
+        (void)LookupValue(ARRAY_REF, array, index, NO_VALUE);
+        // Establish value number for loaded register. Note use of memory version.
+        uint16_t memory_version = GetMemoryVersion(array, NO_VALUE);
+        uint16_t res = LookupValue(ARRAY_REF, array, index, memory_version);
+        if (opcode == Instruction::AGET_WIDE) {
+          SetOperandValueWide(mir->ssa_rep->defs[0], res);
+        } else {
+          SetOperandValue(mir->ssa_rep->defs[0], res);
+        }
+      }
+      break;
+
+    case Instruction::APUT_WIDE:
+    case Instruction::APUT:
+    case Instruction::APUT_OBJECT:
+    case Instruction::APUT_SHORT:
+    case Instruction::APUT_CHAR:
+    case Instruction::APUT_BYTE:
+    case Instruction::APUT_BOOLEAN: {
+        int array_idx = (opcode == Instruction::APUT_WIDE) ? 2 : 1;
+        int index_idx = array_idx + 1;
+        uint16_t array = GetOperandValue(mir->ssa_rep->uses[array_idx]);
+        if (null_checked_.find(array) != null_checked_.end()) {
+          if (cu_->verbose) {
+            LOG(INFO) << "Removing range check for 0x" << std::hex << mir->offset;
+          }
+          mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
+        } else {
+          null_checked_.insert(array);
+        }
+        uint16_t index = GetOperandValue(mir->ssa_rep->uses[index_idx]);
+        if (ValueExists(ARRAY_REF, array, index, NO_VALUE)) {
+          if (cu_->verbose) {
+            LOG(INFO) << "Removing range check for 0x" << std::hex << mir->offset;
+          }
+          mir->optimization_flags |= MIR_IGNORE_RANGE_CHECK;
+        }
+        mir->meta.throw_insn->optimization_flags |= mir->optimization_flags;
+        // Use side effect to note range check completed.
+        (void)LookupValue(ARRAY_REF, array, index, NO_VALUE);
+        // Rev the memory version
+        AdvanceMemoryVersion(array, NO_VALUE);
+      }
+      break;
+
+    case Instruction::IGET_OBJECT:
+    case Instruction::IGET_WIDE:
+    case Instruction::IGET:
+    case Instruction::IGET_CHAR:
+    case Instruction::IGET_SHORT:
+    case Instruction::IGET_BOOLEAN:
+    case Instruction::IGET_BYTE: {
+        uint16_t base = GetOperandValue(mir->ssa_rep->uses[0]);
+        if (null_checked_.find(base) != null_checked_.end()) {
+          if (cu_->verbose) {
+            LOG(INFO) << "Removing null check for 0x" << std::hex << mir->offset;
+          }
+          mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
+        } else {
+          null_checked_.insert(base);
+        }
+        mir->meta.throw_insn->optimization_flags |= mir->optimization_flags;
+        uint16_t field_ref = mir->dalvikInsn.vC;
+        uint16_t memory_version = GetMemoryVersion(base, field_ref);
+        if (opcode == Instruction::IGET_WIDE) {
+          uint16_t res = LookupValue(Instruction::IGET_WIDE, base, field_ref, memory_version);
+          SetOperandValueWide(mir->ssa_rep->defs[0], res);
+        } else {
+          uint16_t res = LookupValue(Instruction::IGET, base, field_ref, memory_version);
+          SetOperandValue(mir->ssa_rep->defs[0], res);
+        }
+      }
+      break;
+
+    case Instruction::IPUT_WIDE:
+    case Instruction::IPUT_OBJECT:
+    case Instruction::IPUT:
+    case Instruction::IPUT_BOOLEAN:
+    case Instruction::IPUT_BYTE:
+    case Instruction::IPUT_CHAR:
+    case Instruction::IPUT_SHORT: {
+        int base_reg = (opcode == Instruction::IPUT_WIDE) ? 2 : 1;
+        uint16_t base = GetOperandValue(mir->ssa_rep->uses[base_reg]);
+        if (null_checked_.find(base) != null_checked_.end()) {
+          if (cu_->verbose) {
+            LOG(INFO) << "Removing null check for 0x" << std::hex << mir->offset;
+          }
+          mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
+        } else {
+          null_checked_.insert(base);
+        }
+        mir->meta.throw_insn->optimization_flags |= mir->optimization_flags;
+        uint16_t field_ref = mir->dalvikInsn.vC;
+        AdvanceMemoryVersion(base, field_ref);
+      }
+      break;
+
+    case Instruction::SGET_OBJECT:
+    case Instruction::SGET:
+    case Instruction::SGET_BOOLEAN:
+    case Instruction::SGET_BYTE:
+    case Instruction::SGET_CHAR:
+    case Instruction::SGET_SHORT:
+    case Instruction::SGET_WIDE: {
+        uint16_t field_ref = mir->dalvikInsn.vB;
+        uint16_t memory_version = GetMemoryVersion(NO_VALUE, field_ref);
+        if (opcode == Instruction::SGET_WIDE) {
+          uint16_t res = LookupValue(Instruction::SGET_WIDE, NO_VALUE, field_ref, memory_version);
+          SetOperandValueWide(mir->ssa_rep->defs[0], res);
+        } else {
+          uint16_t res = LookupValue(Instruction::SGET, NO_VALUE, field_ref, memory_version);
+          SetOperandValue(mir->ssa_rep->defs[0], res);
+        }
+      }
+      break;
+
+    case Instruction::SPUT_OBJECT:
+    case Instruction::SPUT:
+    case Instruction::SPUT_BOOLEAN:
+    case Instruction::SPUT_BYTE:
+    case Instruction::SPUT_CHAR:
+    case Instruction::SPUT_SHORT:
+    case Instruction::SPUT_WIDE: {
+        uint16_t field_ref = mir->dalvikInsn.vB;
+        AdvanceMemoryVersion(NO_VALUE, field_ref);
+      }
+      break;
+
+  }
+  return res;
+}
+
+}    // namespace art
diff --git a/src/compiler/dex/bb_opt.h b/src/compiler/dex/bb_opt.h
new file mode 100644
index 0000000..aedbc10
--- /dev/null
+++ b/src/compiler/dex/bb_opt.h
@@ -0,0 +1,152 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_BBOPT_H_
+#define ART_SRC_COMPILER_DEX_BBOPT_H_
+
+#include "compiler_internals.h"
+
+#define NO_VALUE 0xffff
+#define ARRAY_REF 0xfffe
+
+namespace art {
+
+// Key is s_reg, value is value name.
+typedef SafeMap<uint16_t, uint16_t> SregValueMap;
+// Key is concatenation of quad, value is value name.
+typedef SafeMap<uint64_t, uint16_t> ValueMap;
+// Key represents a memory address, value is generation.
+typedef SafeMap<uint32_t, uint16_t> MemoryVersionMap;
+
+class BBOpt {
+ public:
+  BBOpt(CompilationUnit* cu) : cu_(cu) {};
+
+  uint64_t BuildKey(uint16_t op, uint16_t operand1, uint16_t operand2, uint16_t modifier)
+  {
+    return (static_cast<uint64_t>(op) << 48 | static_cast<uint64_t>(operand1) << 32 |
+            static_cast<uint64_t>(operand2) << 16 | static_cast<uint64_t>(modifier));
+  };
+
+  uint16_t LookupValue(uint16_t op, uint16_t operand1, uint16_t operand2, uint16_t modifier)
+  {
+    uint16_t res;
+    uint64_t key = BuildKey(op, operand1, operand2, modifier);
+    ValueMap::iterator it = value_map_.find(key);
+    if (it != value_map_.end()) {
+      res = it->second;
+    } else {
+      res = value_map_.size() + 1;
+      value_map_.Put(key, res);
+    }
+    return res;
+  };
+
+  bool ValueExists(uint16_t op, uint16_t operand1, uint16_t operand2, uint16_t modifier)
+  {
+    uint64_t key = BuildKey(op, operand1, operand2, modifier);
+    ValueMap::iterator it = value_map_.find(key);
+    return (it != value_map_.end());
+  };
+
+  uint16_t GetMemoryVersion(uint16_t base, uint16_t field)
+  {
+    uint32_t key = (base << 16) | field;
+    uint16_t res;
+    MemoryVersionMap::iterator it = memory_version_map_.find(key);
+    if (it == memory_version_map_.end()) {
+      res = 0;
+      memory_version_map_.Put(key, res);
+    } else {
+      res = it->second;
+    }
+    return res;
+  };
+
+  void AdvanceMemoryVersion(uint16_t base, uint16_t field)
+  {
+    uint32_t key = (base << 16) | field;
+    MemoryVersionMap::iterator it = memory_version_map_.find(key);
+    if (it == memory_version_map_.end()) {
+      memory_version_map_.Put(key, 0);
+    } else {
+      it->second++;
+    }
+  };
+
+  void SetOperandValue(uint16_t s_reg, uint16_t value)
+  {
+    SregValueMap::iterator it = sreg_value_map_.find(s_reg);
+    if (it != sreg_value_map_.end()) {
+      DCHECK_EQ(it->second, value);
+    } else {
+      sreg_value_map_.Put(s_reg, value);
+    }
+  };
+
+  uint16_t GetOperandValue(int s_reg)
+  {
+    uint16_t res = NO_VALUE;
+    SregValueMap::iterator it = sreg_value_map_.find(s_reg);
+    if (it != sreg_value_map_.end()) {
+      res = it->second;
+    } else {
+      // First use
+      res = LookupValue(NO_VALUE, s_reg, NO_VALUE, NO_VALUE);
+      sreg_value_map_.Put(s_reg, res);
+    }
+    return res;
+  };
+
+  void SetOperandValueWide(uint16_t s_reg, uint16_t value)
+  {
+    SregValueMap::iterator it = sreg_wide_value_map_.find(s_reg);
+    if (it != sreg_wide_value_map_.end()) {
+      DCHECK_EQ(it->second, value);
+    } else {
+      sreg_wide_value_map_.Put(s_reg, value);
+    }
+  };
+
+  uint16_t GetOperandValueWide(int s_reg)
+  {
+    uint16_t res = NO_VALUE;
+    SregValueMap::iterator it = sreg_wide_value_map_.find(s_reg);
+    if (it != sreg_wide_value_map_.end()) {
+      res = it->second;
+    } else {
+      // First use
+      res = LookupValue(NO_VALUE, s_reg, NO_VALUE, NO_VALUE);
+      sreg_wide_value_map_.Put(s_reg, res);
+    }
+    return res;
+  };
+
+  uint16_t GetValueNumber(MIR* mir);
+
+ private:
+  CompilationUnit* cu_;
+  SregValueMap sreg_value_map_;
+  SregValueMap sreg_wide_value_map_;
+  ValueMap value_map_;
+  MemoryVersionMap memory_version_map_;
+  std::set<uint16_t> null_checked_;
+
+};
+
+} // namespace art
+
+#endif   // ART_SRC_COMPILER_DEX_BBOPT_H_
diff --git a/src/compiler/dex/compiler_enums.h b/src/compiler/dex/compiler_enums.h
new file mode 100644
index 0000000..3eb862f
--- /dev/null
+++ b/src/compiler/dex/compiler_enums.h
@@ -0,0 +1,406 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_COMPILERENUMS_H_
+#define ART_SRC_COMPILER_DEX_COMPILERENUMS_H_
+
+#include "dex_instruction.h"
+
+namespace art {
+
+enum RegisterClass {
+  kCoreReg,
+  kFPReg,
+  kAnyReg,
+};
+
+enum SpecialTargetRegister {
+  kSelf,            // Thread pointer.
+  kSuspend,         // Used to reduce suspend checks for some targets.
+  kLr,
+  kPc,
+  kSp,
+  kArg0,
+  kArg1,
+  kArg2,
+  kArg3,
+  kFArg0,
+  kFArg1,
+  kFArg2,
+  kFArg3,
+  kRet0,
+  kRet1,
+  kInvokeTgt,
+  kCount
+};
+
+enum RegLocationType {
+  kLocDalvikFrame = 0, // Normal Dalvik register
+  kLocPhysReg,
+  kLocCompilerTemp,
+  kLocInvalid
+};
+
+enum BBType {
+  kEntryBlock,
+  kDalvikByteCode,
+  kExitBlock,
+  kExceptionHandling,
+  kDead,
+};
+
+/*
+ * Def/Use encoding in 64-bit use_mask/def_mask.  Low positions used for target-specific
+ * registers (and typically use the register number as the position).  High positions
+ * reserved for common and abstract resources.
+ */
+
+enum ResourceEncodingPos {
+  kMustNotAlias = 63,
+  kHeapRef = 62,          // Default memory reference type.
+  kLiteral = 61,          // Literal pool memory reference.
+  kDalvikReg = 60,        // Dalvik v_reg memory reference.
+  kFPStatus = 59,
+  kCCode = 58,
+  kLowestCommonResource = kCCode
+};
+
+// Shared pseudo opcodes - must be < 0.
+enum LIRPseudoOpcode {
+  kPseudoExportedPC = -16,
+  kPseudoSafepointPC = -15,
+  kPseudoIntrinsicRetry = -14,
+  kPseudoSuspendTarget = -13,
+  kPseudoThrowTarget = -12,
+  kPseudoCaseLabel = -11,
+  kPseudoMethodEntry = -10,
+  kPseudoMethodExit = -9,
+  kPseudoBarrier = -8,
+  kPseudoEntryBlock = -7,
+  kPseudoExitBlock = -6,
+  kPseudoTargetLabel = -5,
+  kPseudoDalvikByteCodeBoundary = -4,
+  kPseudoPseudoAlign4 = -3,
+  kPseudoEHBlockLabel = -2,
+  kPseudoNormalBlockLabel = -1,
+};
+
+enum ExtendedMIROpcode {
+  kMirOpFirst = kNumPackedOpcodes,
+  kMirOpPhi = kMirOpFirst,
+  kMirOpCopy,
+  kMirOpFusedCmplFloat,
+  kMirOpFusedCmpgFloat,
+  kMirOpFusedCmplDouble,
+  kMirOpFusedCmpgDouble,
+  kMirOpFusedCmpLong,
+  kMirOpNop,
+  kMirOpNullCheck,
+  kMirOpRangeCheck,
+  kMirOpDivZeroCheck,
+  kMirOpCheck,
+  kMirOpCheckPart2,
+  kMirOpSelect,
+  kMirOpLast,
+};
+
+enum MIROptimizationFlagPositons {
+  kMIRIgnoreNullCheck = 0,
+  kMIRNullCheckOnly,
+  kMIRIgnoreRangeCheck,
+  kMIRRangeCheckOnly,
+  kMIRInlined,                        // Invoke is inlined (ie dead).
+  kMIRInlinedPred,                    // Invoke is inlined via prediction.
+  kMIRCallee,                         // Instruction is inlined from callee.
+  kMIRIgnoreSuspendCheck,
+  kMIRDup,
+  kMIRMark,                           // Temporary node mark.
+};
+
+// For successor_block_list.
+enum BlockListType {
+  kNotUsed = 0,
+  kCatch,
+  kPackedSwitch,
+  kSparseSwitch,
+};
+
+enum AssemblerStatus {
+  kSuccess,
+  kRetryAll,
+};
+
+enum OpSize {
+  kWord,
+  kLong,
+  kSingle,
+  kDouble,
+  kUnsignedHalf,
+  kSignedHalf,
+  kUnsignedByte,
+  kSignedByte,
+};
+
+std::ostream& operator<<(std::ostream& os, const OpSize& kind);
+
+enum OpKind {
+  kOpMov,
+  kOpMvn,
+  kOpCmp,
+  kOpLsl,
+  kOpLsr,
+  kOpAsr,
+  kOpRor,
+  kOpNot,
+  kOpAnd,
+  kOpOr,
+  kOpXor,
+  kOpNeg,
+  kOpAdd,
+  kOpAdc,
+  kOpSub,
+  kOpSbc,
+  kOpRsub,
+  kOpMul,
+  kOpDiv,
+  kOpRem,
+  kOpBic,
+  kOpCmn,
+  kOpTst,
+  kOpBkpt,
+  kOpBlx,
+  kOpPush,
+  kOpPop,
+  kOp2Char,
+  kOp2Short,
+  kOp2Byte,
+  kOpCondBr,
+  kOpUncondBr,
+  kOpBx,
+  kOpInvalid,
+};
+
+std::ostream& operator<<(std::ostream& os, const OpKind& kind);
+
+enum ConditionCode {
+  kCondEq,  // equal
+  kCondNe,  // not equal
+  kCondCs,  // carry set (unsigned less than)
+  kCondUlt = kCondCs,
+  kCondCc,  // carry clear (unsigned greater than or same)
+  kCondUge = kCondCc,
+  kCondMi,  // minus
+  kCondPl,  // plus, positive or zero
+  kCondVs,  // overflow
+  kCondVc,  // no overflow
+  kCondHi,  // unsigned greater than
+  kCondLs,  // unsigned lower or same
+  kCondGe,  // signed greater than or equal
+  kCondLt,  // signed less than
+  kCondGt,  // signed greater than
+  kCondLe,  // signed less than or equal
+  kCondAl,  // always
+  kCondNv,  // never
+};
+
+std::ostream& operator<<(std::ostream& os, const ConditionCode& kind);
+
+// Target specific condition encodings
+enum ArmConditionCode {
+  kArmCondEq = 0x0,  // 0000
+  kArmCondNe = 0x1,  // 0001
+  kArmCondCs = 0x2,  // 0010
+  kArmCondCc = 0x3,  // 0011
+  kArmCondMi = 0x4,  // 0100
+  kArmCondPl = 0x5,  // 0101
+  kArmCondVs = 0x6,  // 0110
+  kArmCondVc = 0x7,  // 0111
+  kArmCondHi = 0x8,  // 1000
+  kArmCondLs = 0x9,  // 1001
+  kArmCondGe = 0xa,  // 1010
+  kArmCondLt = 0xb,  // 1011
+  kArmCondGt = 0xc,  // 1100
+  kArmCondLe = 0xd,  // 1101
+  kArmCondAl = 0xe,  // 1110
+  kArmCondNv = 0xf,  // 1111
+};
+
+std::ostream& operator<<(std::ostream& os, const ArmConditionCode& kind);
+
+enum X86ConditionCode {
+  kX86CondO   = 0x0,    // overflow
+  kX86CondNo  = 0x1,    // not overflow
+
+  kX86CondB   = 0x2,    // below
+  kX86CondNae = kX86CondB,  // not-above-equal
+  kX86CondC   = kX86CondB,  // carry
+
+  kX86CondNb  = 0x3,    // not-below
+  kX86CondAe  = kX86CondNb, // above-equal
+  kX86CondNc  = kX86CondNb, // not-carry
+
+  kX86CondZ   = 0x4,    // zero
+  kX86CondEq  = kX86CondZ,  // equal
+
+  kX86CondNz  = 0x5,    // not-zero
+  kX86CondNe  = kX86CondNz, // not-equal
+
+  kX86CondBe  = 0x6,    // below-equal
+  kX86CondNa  = kX86CondBe, // not-above
+
+  kX86CondNbe = 0x7,    // not-below-equal
+  kX86CondA   = kX86CondNbe,// above
+
+  kX86CondS   = 0x8,    // sign
+  kX86CondNs  = 0x9,    // not-sign
+
+  kX86CondP   = 0xa,    // 8-bit parity even
+  kX86CondPE  = kX86CondP,
+
+  kX86CondNp  = 0xb,    // 8-bit parity odd
+  kX86CondPo  = kX86CondNp,
+
+  kX86CondL   = 0xc,    // less-than
+  kX86CondNge = kX86CondL,  // not-greater-equal
+
+  kX86CondNl  = 0xd,    // not-less-than
+  kX86CondGe  = kX86CondNl, // not-greater-equal
+
+  kX86CondLe  = 0xe,    // less-than-equal
+  kX86CondNg  = kX86CondLe, // not-greater
+
+  kX86CondNle = 0xf,    // not-less-than
+  kX86CondG   = kX86CondNle,// greater
+};
+
+std::ostream& operator<<(std::ostream& os, const X86ConditionCode& kind);
+
+enum ThrowKind {
+  kThrowNullPointer,
+  kThrowDivZero,
+  kThrowArrayBounds,
+  kThrowConstantArrayBounds,
+  kThrowNoSuchMethod,
+  kThrowStackOverflow,
+};
+
+enum SpecialCaseHandler {
+  kNoHandler,
+  kNullMethod,
+  kConstFunction,
+  kIGet,
+  kIGetBoolean,
+  kIGetObject,
+  kIGetByte,
+  kIGetChar,
+  kIGetShort,
+  kIGetWide,
+  kIPut,
+  kIPutBoolean,
+  kIPutObject,
+  kIPutByte,
+  kIPutChar,
+  kIPutShort,
+  kIPutWide,
+  kIdentity,
+};
+
+enum DividePattern {
+  DivideNone,
+  Divide3,
+  Divide5,
+  Divide7,
+};
+
+std::ostream& operator<<(std::ostream& os, const DividePattern& pattern);
+
+/* Customized node traversal orders for different needs */
+enum DataFlowAnalysisMode {
+  kAllNodes = 0,              // All nodes.
+  kReachableNodes,            // All reachable nodes.
+  kPreOrderDFSTraversal,      // Depth-First-Search / Pre-Order.
+  kPostOrderDFSTraversal,     // Depth-First-Search / Post-Order.
+  kPostOrderDOMTraversal,     // Dominator tree / Post-Order.
+  kReversePostOrderTraversal, // Depth-First-Search / reverse Post-Order.
+};
+
+std::ostream& operator<<(std::ostream& os, const DataFlowAnalysisMode& mode);
+
+// Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers").
+enum MemBarrierKind {
+  kLoadStore,
+  kLoadLoad,
+  kStoreStore,
+  kStoreLoad
+};
+
+std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind);
+
+enum OpFeatureFlags {
+  kIsBranch = 0,
+  kNoOperand,
+  kIsUnaryOp,
+  kIsBinaryOp,
+  kIsTertiaryOp,
+  kIsQuadOp,
+  kIsQuinOp,
+  kIsSextupleOp,
+  kIsIT,
+  kMemLoad,
+  kMemStore,
+  kPCRelFixup, // x86 FIXME: add NEEDS_FIXUP to instruction attributes.
+  kRegDef0,
+  kRegDef1,
+  kRegDefA,
+  kRegDefD,
+  kRegDefFPCSList0,
+  kRegDefFPCSList2,
+  kRegDefList0,
+  kRegDefList1,
+  kRegDefList2,
+  kRegDefLR,
+  kRegDefSP,
+  kRegUse0,
+  kRegUse1,
+  kRegUse2,
+  kRegUse3,
+  kRegUse4,
+  kRegUseA,
+  kRegUseC,
+  kRegUseD,
+  kRegUseFPCSList0,
+  kRegUseFPCSList2,
+  kRegUseList0,
+  kRegUseList1,
+  kRegUseLR,
+  kRegUsePC,
+  kRegUseSP,
+  kSetsCCodes,
+  kUsesCCodes
+};
+
+enum SelectInstructionKind {
+  kSelectNone,
+  kSelectConst,
+  kSelectMove,
+  kSelectGoto
+};
+
+std::ostream& operator<<(std::ostream& os, const OpFeatureFlags& flag);
+
+}  // namespace art
+
+#endif // ART_SRC_COMPILER_DEX_COMPILERENUMS_H_
diff --git a/src/compiler/dex/compiler_internals.h b/src/compiler/dex/compiler_internals.h
new file mode 100644
index 0000000..c85700a
--- /dev/null
+++ b/src/compiler/dex/compiler_internals.h
@@ -0,0 +1,39 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_COMPILER_INTERNAL_H_
+#define ART_SRC_COMPILER_DEX_COMPILER_INTERNAL_H_
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+
+#include "base/logging.h"
+#include "class_linker.h"
+#include "quick/codegen.h"
+#include "compiler.h"
+#include "compiler_ir.h"
+#include "compiler_utility.h"
+#include "frontend.h"
+#include "gc/card_table.h"
+#include "mirror/dex_cache.h"
+#include "monitor.h"
+#include "ralloc.h"
+#include "thread.h"
+#include "utils.h"
+
+#endif  // ART_SRC_COMPILER_DEX_COMPILER_INTERNAL_H_
diff --git a/src/compiler/dex/compiler_ir.h b/src/compiler/dex/compiler_ir.h
new file mode 100644
index 0000000..246d200
--- /dev/null
+++ b/src/compiler/dex/compiler_ir.h
@@ -0,0 +1,627 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_COMPILER_IR_H_
+#define ART_SRC_COMPILER_DEX_COMPILER_IR_H_
+
+#include <vector>
+#include "dex_instruction.h"
+#include "compiler.h"
+#include "compiler_utility.h"
+#include "oat_compilation_unit.h"
+#include "safe_map.h"
+#include "greenland/ir_builder.h"
+#include "llvm/Module.h"
+#include "compiler_enums.h"
+
+namespace art {
+
+#define SLOW_FIELD_PATH (cu->enable_debug & (1 << kDebugSlowFieldPath))
+#define SLOW_INVOKE_PATH (cu->enable_debug & (1 << kDebugSlowInvokePath))
+#define SLOW_STRING_PATH (cu->enable_debug & (1 << kDebugSlowStringPath))
+#define SLOW_TYPE_PATH (cu->enable_debug & (1 << kDebugSlowTypePath))
+#define EXERCISE_SLOWEST_STRING_PATH (cu->enable_debug & \
+  (1 << kDebugSlowestStringPath))
+
+// Minimum field size to contain Dalvik v_reg number.
+#define VREG_NUM_WIDTH 16
+
+struct ArenaBitVector;
+struct LIR;
+class LLVMInfo;
+
+struct PromotionMap {
+  RegLocationType core_location:3;
+  uint8_t core_reg;
+  RegLocationType fp_location:3;
+  uint8_t FpReg;
+  bool first_in_pair;
+};
+
+struct RegLocation {
+  RegLocationType location:3;
+  unsigned wide:1;
+  unsigned defined:1;   // Do we know the type?
+  unsigned is_const:1;  // Constant, value in cu->constant_values[].
+  unsigned fp:1;        // Floating point?
+  unsigned core:1;      // Non-floating point?
+  unsigned ref:1;       // Something GC cares about.
+  unsigned high_word:1; // High word of pair?
+  unsigned home:1;      // Does this represent the home location?
+  uint8_t low_reg;      // First physical register.
+  uint8_t high_reg;     // 2nd physical register (if wide).
+  int32_t s_reg_low;    // SSA name for low Dalvik word.
+  int32_t orig_sreg;    // TODO: remove after Bitcode gen complete
+                        // and consolodate usage w/ s_reg_low.
+};
+
+struct CompilerTemp {
+  int s_reg;
+  ArenaBitVector* bv;
+};
+
+struct CallInfo {
+  int num_arg_words;    // Note: word count, not arg count.
+  RegLocation* args;    // One for each word of arguments.
+  RegLocation result;   // Eventual target of MOVE_RESULT.
+  int opt_flags;
+  InvokeType type;
+  uint32_t dex_idx;
+  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
+  uintptr_t direct_code;
+  uintptr_t direct_method;
+  RegLocation target;    // Target of following move_result.
+  bool skip_this;
+  bool is_range;
+  int offset;            // Dalvik offset.
+};
+
+ /*
+ * Data structure tracking the mapping between a Dalvik register (pair) and a
+ * native register (pair). The idea is to reuse the previously loaded value
+ * if possible, otherwise to keep the value in a native register as long as
+ * possible.
+ */
+struct RegisterInfo {
+  int reg;                    // Reg number
+  bool in_use;                // Has it been allocated?
+  bool is_temp;               // Can allocate as temp?
+  bool pair;                  // Part of a register pair?
+  int partner;                // If pair, other reg of pair.
+  bool live;                  // Is there an associated SSA name?
+  bool dirty;                 // If live, is it dirty?
+  int s_reg;                  // Name of live value.
+  LIR *def_start;             // Starting inst in last def sequence.
+  LIR *def_end;               // Ending inst in last def sequence.
+};
+
+struct RegisterPool {
+  int num_core_regs;
+  RegisterInfo *core_regs;
+  int next_core_reg;
+  int num_fp_regs;
+  RegisterInfo *FPRegs;
+  int next_fp_reg;
+};
+
+#define INVALID_SREG (-1)
+#define INVALID_VREG (0xFFFFU)
+#define INVALID_REG (0xFF)
+#define INVALID_OFFSET (0xDEADF00FU)
+
+/* SSA encodings for special registers */
+#define SSA_METHOD_BASEREG (-2)
+/* First compiler temp basereg, grows smaller */
+#define SSA_CTEMP_BASEREG (SSA_METHOD_BASEREG - 1)
+
+/*
+ * Some code patterns cause the generation of excessively large
+ * methods - in particular initialization sequences.  There isn't much
+ * benefit in optimizing these methods, and the cost can be very high.
+ * We attempt to identify these cases, and avoid performing most dataflow
+ * analysis.  Two thresholds are used - one for known initializers and one
+ * for everything else.
+ */
+#define MANY_BLOCKS_INITIALIZER 1000 /* Threshold for switching dataflow off */
+#define MANY_BLOCKS 4000 /* Non-initializer threshold */
+
+// Utility macros to traverse the LIR list.
+#define NEXT_LIR(lir) (lir->next)
+#define PREV_LIR(lir) (lir->prev)
+
+// Defines for alias_info (tracks Dalvik register references).
+#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
+#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x80000000)
+#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
+#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
+
+// Common resource macros.
+#define ENCODE_CCODE            (1ULL << kCCode)
+#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
+
+// Abstract memory locations.
+#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
+#define ENCODE_LITERAL          (1ULL << kLiteral)
+#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
+#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
+
+#define ENCODE_ALL              (~0ULL)
+#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
+                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
+
+#define is_pseudo_opcode(opcode) (static_cast<int>(opcode) < 0)
+
+struct LIR {
+  int offset;               // Offset of this instruction.
+  int dalvik_offset;        // Offset of Dalvik opcode.
+  LIR* next;
+  LIR* prev;
+  LIR* target;
+  int opcode;
+  int operands[5];          // [0..4] = [dest, src1, src2, extra, extra2].
+  struct {
+    bool is_nop:1;          // LIR is optimized away.
+    bool pcRelFixup:1;      // May need pc-relative fixup.
+    unsigned int size:5;    // Note: size is in bytes.
+    unsigned int unused:25;
+  } flags;
+  int alias_info;           // For Dalvik register & litpool disambiguation.
+  uint64_t use_mask;        // Resource mask for use.
+  uint64_t def_mask;        // Resource mask for def.
+};
+
+extern const char* extended_mir_op_names[kMirOpLast - kMirOpFirst];
+
+struct SSARepresentation;
+
+#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
+#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
+#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
+#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
+#define MIR_INLINED                     (1 << kMIRInlined)
+#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
+#define MIR_CALLEE                      (1 << kMIRCallee)
+#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
+#define MIR_DUP                         (1 << kMIRDup)
+
+struct Checkstats {
+  int null_checks;
+  int null_checks_eliminated;
+  int range_checks;
+  int range_checks_eliminated;
+};
+
+struct MIR {
+  DecodedInstruction dalvikInsn;
+  unsigned int width;
+  unsigned int offset;
+  MIR* prev;
+  MIR* next;
+  SSARepresentation* ssa_rep;
+  int optimization_flags;
+  union {
+    // Establish link between two halves of throwing instructions.
+    MIR* throw_insn;
+    // Saved opcode for NOP'd MIRs
+    Instruction::Code original_opcode;
+  } meta;
+};
+
+struct BasicBlockDataFlow;
+
+struct BasicBlock {
+  int id;
+  int dfs_id;
+  bool visited;
+  bool hidden;
+  bool catch_entry;
+  bool explicit_throw;
+  bool conditional_branch;
+  bool terminated_by_return;        // Block ends with a Dalvik return opcode.
+  bool dominates_return;            // Is a member of return extended basic block.
+  uint16_t start_offset;
+  uint16_t nesting_depth;
+  BBType block_type;
+  MIR* first_mir_insn;
+  MIR* last_mir_insn;
+  BasicBlock* fall_through;
+  BasicBlock* taken;
+  BasicBlock* i_dom;                // Immediate dominator.
+  BasicBlockDataFlow* data_flow_info;
+  GrowableList* predecessors;
+  ArenaBitVector* dominators;
+  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
+  ArenaBitVector* dom_frontier;     // Dominance frontier.
+  struct {                          // For one-to-many successors like.
+    BlockListType block_list_type;  // switch and exception handling.
+    GrowableList blocks;
+  } successor_block_list;
+};
+
+/*
+ * The "blocks" field in "successor_block_list" points to an array of
+ * elements with the type "SuccessorBlockInfo".
+ * For catch blocks, key is type index for the exception.
+ * For swtich blocks, key is the case value.
+ */
+struct SuccessorBlockInfo {
+  BasicBlock* block;
+  int key;
+};
+
+struct LoopAnalysis;
+struct RegisterPool;
+struct ArenaMemBlock;
+struct Memstats;
+class Codegen;
+
+#define NOTVISITED (-1)
+
+struct CompilationUnit {
+  CompilationUnit()
+    : num_blocks(0),
+      compiler(NULL),
+      class_linker(NULL),
+      dex_file(NULL),
+      class_loader(NULL),
+      class_def_idx(0),
+      method_idx(0),
+      code_item(NULL),
+      access_flags(0),
+      invoke_type(kDirect),
+      shorty(NULL),
+      first_lir_insn(NULL),
+      last_lir_insn(NULL),
+      literal_list(NULL),
+      method_literal_list(NULL),
+      code_literal_list(NULL),
+      disable_opt(0),
+      enable_debug(0),
+      data_offset(0),
+      total_size(0),
+      assembler_status(kSuccess),
+      assembler_retries(0),
+      verbose(false),
+      has_loop(false),
+      has_invoke(false),
+      qd_mode(false),
+      reg_pool(NULL),
+      instruction_set(kNone),
+      num_ssa_regs(0),
+      ssa_base_vregs(NULL),
+      ssa_subscripts(NULL),
+      ssa_strings(NULL),
+      vreg_to_ssa_map(NULL),
+      ssa_last_defs(NULL),
+      is_constant_v(NULL),
+      must_flush_constant_v(NULL),
+      constant_values(NULL),
+      reg_location(NULL),
+      promotion_map(NULL),
+      method_sreg(0),
+      num_reachable_blocks(0),
+      num_dalvik_registers(0),
+      entry_block(NULL),
+      exit_block(NULL),
+      cur_block(NULL),
+      i_dom_list(NULL),
+      try_block_addr(NULL),
+      def_block_matrix(NULL),
+      temp_block_v(NULL),
+      temp_dalvik_register_v(NULL),
+      temp_ssa_register_v(NULL),
+      temp_ssa_block_id_v(NULL),
+      block_label_list(NULL),
+      num_ins(0),
+      num_outs(0),
+      num_regs(0),
+      num_core_spills(0),
+      num_fp_spills(0),
+      num_compiler_temps(0),
+      frame_size(0),
+      core_spill_mask(0U),
+      fp_spill_mask(0U),
+      attrs(0U),
+      current_dalvik_offset(0),
+      insns(NULL),
+      insns_size(0U),
+      disable_dataflow(false),
+      def_count(0),
+      compiler_flip_match(false),
+      arena_head(NULL),
+      current_arena(NULL),
+      num_arena_blocks(0),
+      mstats(NULL),
+      checkstats(NULL),
+      gen_bitcode(false),
+      llvm_info(NULL),
+      context(NULL),
+      module(NULL),
+      func(NULL),
+      intrinsic_helper(NULL),
+      irb(NULL),
+      placeholder_bb(NULL),
+      entry_bb(NULL),
+      entryTarget_bb(NULL),
+      temp_name(0),
+#ifndef NDEBUG
+      live_sreg(0),
+#endif
+      opcode_count(NULL),
+      cg(NULL) {}
+
+  int num_blocks;
+  GrowableList block_list;
+  Compiler* compiler;                  // Compiler driving this compiler.
+  ClassLinker* class_linker;           // Linker to resolve fields and methods.
+  const DexFile* dex_file;             // DexFile containing the method being compiled.
+  jobject class_loader;                // compiling method's class loader.
+  uint32_t class_def_idx;              // compiling method's defining class definition index.
+  uint32_t method_idx;                 // compiling method's index into method_ids of DexFile.
+  const DexFile::CodeItem* code_item;  // compiling method's DexFile code_item.
+  uint32_t access_flags;               // compiling method's access flags.
+  InvokeType invoke_type;              // compiling method's invocation type.
+  const char* shorty;                  // compiling method's shorty.
+  LIR* first_lir_insn;
+  LIR* last_lir_insn;
+  LIR* literal_list;                   // Constants.
+  LIR* method_literal_list;            // Method literals requiring patching.
+  LIR* code_literal_list;              // Code literals requiring patching.
+  uint32_t disable_opt;                // opt_control_vector flags.
+  uint32_t enable_debug;               // debugControlVector flags.
+  int data_offset;                     // starting offset of literal pool.
+  int total_size;                      // header + code size.
+  AssemblerStatus assembler_status;    // Success or fix and retry.
+  int assembler_retries;
+  std::vector<uint8_t> code_buffer;
+  /*
+   * Holds mapping from native PC to dex PC for safepoints where we may deoptimize.
+   * Native PC is on the return address of the safepointed operation.  Dex PC is for
+   * the instruction being executed at the safepoint.
+   */
+  std::vector<uint32_t> pc2dexMappingTable;
+  /*
+   * Holds mapping from Dex PC to native PC for catch entry points.  Native PC and Dex PC
+   * immediately preceed the instruction.
+   */
+  std::vector<uint32_t> dex2pcMappingTable;
+  std::vector<uint32_t> combined_mapping_table;
+  std::vector<uint32_t> core_vmap_table;
+  std::vector<uint32_t> fp_vmap_table;
+  std::vector<uint8_t> native_gc_map;
+  std::vector<BasicBlock*> extended_basic_blocks;
+  bool verbose;
+  bool has_loop;                       // Contains a loop.
+  bool has_invoke;                     // Contains an invoke instruction.
+  bool qd_mode;                        // Compile for code size/compile time.
+  RegisterPool* reg_pool;
+  InstructionSet instruction_set;
+  // Number of total regs used in the whole cu after SSA transformation .
+  int num_ssa_regs;
+  // Map SSA reg i to the base virtual register/subscript.
+  GrowableList* ssa_base_vregs;
+  GrowableList* ssa_subscripts;
+  GrowableList* ssa_strings;
+
+  // Map original Dalvik virtual reg i to the current SSA name.
+  int* vreg_to_ssa_map;            // length == method->registers_size
+  int* ssa_last_defs;              // length == method->registers_size
+  ArenaBitVector* is_constant_v;   // length == num_ssa_reg
+  ArenaBitVector* must_flush_constant_v;   // length == num_ssa_reg
+  int* constant_values;            // length == num_ssa_reg
+
+  // Use counts of ssa names.
+  GrowableList use_counts;         // Weighted by nesting depth
+  GrowableList raw_use_counts;     // Not weighted
+
+  // Optimization support.
+  GrowableList loop_headers;
+
+  // Map SSA names to location.
+  RegLocation* reg_location;
+
+  // Keep track of Dalvik v_reg to physical register mappings.
+  PromotionMap* promotion_map;
+
+  // SSA name for Method*.
+  int method_sreg;
+  RegLocation method_loc;          // Describes location of method*.
+
+  int num_reachable_blocks;
+  int num_dalvik_registers;        // method->registers_size.
+  BasicBlock* entry_block;
+  BasicBlock* exit_block;
+  BasicBlock* cur_block;
+  GrowableList dfs_order;
+  GrowableList dfs_post_order;
+  GrowableList dom_post_order_traversal;
+  GrowableList throw_launchpads;
+  GrowableList suspend_launchpads;
+  GrowableList intrinsic_launchpads;
+  GrowableList compiler_temps;
+  int* i_dom_list;
+  ArenaBitVector* try_block_addr;
+  ArenaBitVector** def_block_matrix;    // num_dalvik_register x num_blocks.
+  ArenaBitVector* temp_block_v;
+  ArenaBitVector* temp_dalvik_register_v;
+  ArenaBitVector* temp_ssa_register_v;  // num_ssa_regs.
+  int* temp_ssa_block_id_v;             // working storage for Phi labels.
+  LIR* block_label_list;
+  /*
+   * Frame layout details.
+   * NOTE: for debug support it will be necessary to add a structure
+   * to map the Dalvik virtual registers to the promoted registers.
+   * NOTE: "num" fields are in 4-byte words, "Size" and "Offset" in bytes.
+   */
+  int num_ins;
+  int num_outs;
+  int num_regs;            // Unlike num_dalvik_registers, does not include ins.
+  int num_core_spills;
+  int num_fp_spills;
+  int num_compiler_temps;
+  int frame_size;
+  unsigned int core_spill_mask;
+  unsigned int fp_spill_mask;
+  unsigned int attrs;
+  /*
+   * TODO: The code generation utilities don't have a built-in
+   * mechanism to propagate the original Dalvik opcode address to the
+   * associated generated instructions.  For the trace compiler, this wasn't
+   * necessary because the interpreter handled all throws and debugging
+   * requests.  For now we'll handle this by placing the Dalvik offset
+   * in the CompilationUnit struct before codegen for each instruction.
+   * The low-level LIR creation utilites will pull it from here.  Rework this.
+   */
+  int current_dalvik_offset;
+  GrowableList switch_tables;
+  GrowableList fill_array_data;
+  const uint16_t* insns;
+  uint32_t insns_size;
+  bool disable_dataflow; // Skip dataflow analysis if possible
+  SafeMap<unsigned int, BasicBlock*> block_map; // FindBlock lookup cache.
+  SafeMap<unsigned int, unsigned int> block_id_map; // Block collapse lookup cache.
+  SafeMap<unsigned int, LIR*> boundary_map; // boundary lookup cache.
+  int def_count;         // Used to estimate number of SSA names.
+
+  // If non-empty, apply optimizer/debug flags only to matching methods.
+  std::string compiler_method_match;
+  // Flips sense of compiler_method_match - apply flags if doesn't match.
+  bool compiler_flip_match;
+  ArenaMemBlock* arena_head;
+  ArenaMemBlock* current_arena;
+  int num_arena_blocks;
+  Memstats* mstats;
+  Checkstats* checkstats;
+  bool gen_bitcode;
+  LLVMInfo* llvm_info;
+  llvm::LLVMContext* context;
+  llvm::Module* module;
+  llvm::Function* func;
+  greenland::IntrinsicHelper* intrinsic_helper;
+  greenland::IRBuilder* irb;
+  llvm::BasicBlock* placeholder_bb;
+  llvm::BasicBlock* entry_bb;
+  llvm::BasicBlock* entryTarget_bb;
+  std::string bitcode_filename;
+  GrowableList llvm_values;
+  int32_t temp_name;
+  SafeMap<llvm::BasicBlock*, LIR*> block_to_label_map; // llvm bb -> LIR label.
+  SafeMap<int32_t, llvm::BasicBlock*> id_to_block_map; // block id -> llvm bb.
+  SafeMap<llvm::Value*, RegLocation> loc_map; // llvm Value to loc rec.
+  std::set<llvm::BasicBlock*> llvm_blocks;
+#ifndef NDEBUG
+  /*
+   * Sanity checking for the register temp tracking.  The same ssa
+   * name should never be associated with one temp register per
+   * instruction compilation.
+   */
+  int live_sreg;
+#endif
+  std::set<uint32_t> catches;
+  int* opcode_count;    // Count Dalvik opcodes for tuning.
+  UniquePtr<Codegen> cg;
+};
+
+struct SwitchTable {
+  int offset;
+  const uint16_t* table;      // Original dex table.
+  int vaddr;                  // Dalvik offset of switch opcode.
+  LIR* anchor;                // Reference instruction for relative offsets.
+  LIR** targets;              // Array of case targets.
+};
+
+struct FillArrayData {
+  int offset;
+  const uint16_t* table;      // Original dex table.
+  int size;
+  int vaddr;                  // Dalvik offset of FILL_ARRAY_DATA opcode.
+};
+
+#define MAX_PATTERN_LEN 5
+
+struct CodePattern {
+  const Instruction::Code opcodes[MAX_PATTERN_LEN];
+  const SpecialCaseHandler handler_code;
+};
+
+static const CodePattern special_patterns[] = {
+  {{Instruction::RETURN_VOID}, kNullMethod},
+  {{Instruction::CONST, Instruction::RETURN}, kConstFunction},
+  {{Instruction::CONST_4, Instruction::RETURN}, kConstFunction},
+  {{Instruction::CONST_4, Instruction::RETURN_OBJECT}, kConstFunction},
+  {{Instruction::CONST_16, Instruction::RETURN}, kConstFunction},
+  {{Instruction::IGET, Instruction:: RETURN}, kIGet},
+  {{Instruction::IGET_BOOLEAN, Instruction::RETURN}, kIGetBoolean},
+  {{Instruction::IGET_OBJECT, Instruction::RETURN_OBJECT}, kIGetObject},
+  {{Instruction::IGET_BYTE, Instruction::RETURN}, kIGetByte},
+  {{Instruction::IGET_CHAR, Instruction::RETURN}, kIGetChar},
+  {{Instruction::IGET_SHORT, Instruction::RETURN}, kIGetShort},
+  {{Instruction::IGET_WIDE, Instruction::RETURN_WIDE}, kIGetWide},
+  {{Instruction::IPUT, Instruction::RETURN_VOID}, kIPut},
+  {{Instruction::IPUT_BOOLEAN, Instruction::RETURN_VOID}, kIPutBoolean},
+  {{Instruction::IPUT_OBJECT, Instruction::RETURN_VOID}, kIPutObject},
+  {{Instruction::IPUT_BYTE, Instruction::RETURN_VOID}, kIPutByte},
+  {{Instruction::IPUT_CHAR, Instruction::RETURN_VOID}, kIPutChar},
+  {{Instruction::IPUT_SHORT, Instruction::RETURN_VOID}, kIPutShort},
+  {{Instruction::IPUT_WIDE, Instruction::RETURN_VOID}, kIPutWide},
+  {{Instruction::RETURN}, kIdentity},
+  {{Instruction::RETURN_OBJECT}, kIdentity},
+  {{Instruction::RETURN_WIDE}, kIdentity},
+};
+
+static inline bool IsConst(const CompilationUnit* cu, int32_t s_reg)
+{
+  return (IsBitSet(cu->is_constant_v, s_reg));
+}
+
+static inline bool IsConst(const CompilationUnit* cu, RegLocation loc)
+{
+  return (IsConst(cu, loc.orig_sreg));
+}
+
+static inline int32_t ConstantValue(const CompilationUnit* cu, RegLocation loc)
+{
+  DCHECK(IsConst(cu, loc));
+  return cu->constant_values[loc.orig_sreg];
+}
+
+static inline int32_t ConstantValue(const CompilationUnit* cu, int32_t s_reg)
+{
+  DCHECK(IsConst(cu, s_reg));
+  return cu->constant_values[s_reg];
+}
+
+static inline int64_t ConstantValueWide(const CompilationUnit* cu, RegLocation loc)
+{
+  DCHECK(IsConst(cu, loc));
+  return (static_cast<int64_t>(cu->constant_values[loc.orig_sreg + 1]) << 32) |
+      Low32Bits(static_cast<int64_t>(cu->constant_values[loc.orig_sreg]));
+}
+
+static inline bool IsConstantNullRef(const CompilationUnit* cu, RegLocation loc)
+{
+  return loc.ref && loc.is_const && (ConstantValue(cu, loc) == 0);
+}
+
+static inline bool MustFlushConstant(const CompilationUnit* cu, RegLocation loc)
+{
+  DCHECK(IsConst(cu, loc));
+  return IsBitSet(cu->must_flush_constant_v, loc.orig_sreg);
+}
+
+}  // namespace art
+
+#endif // ART_SRC_COMPILER_DEX_COMPILER_IR_H_
diff --git a/src/compiler/dex/compiler_utility.cc b/src/compiler/dex/compiler_utility.cc
new file mode 100644
index 0000000..b5185b0
--- /dev/null
+++ b/src/compiler/dex/compiler_utility.cc
@@ -0,0 +1,799 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler_internals.h"
+
+namespace art {
+
+const char* extended_mir_op_names[kMirOpLast - kMirOpFirst] = {
+  "Phi",
+  "Copy",
+  "FusedCmplFloat",
+  "FusedCmpgFloat",
+  "FusedCmplDouble",
+  "FusedCmpgDouble",
+  "FusedCmpLong",
+  "Nop",
+  "OpNullCheck",
+  "OpRangeCheck",
+  "OpDivZeroCheck",
+  "Check1",
+  "Check2",
+  "Select",
+};
+
+#ifdef WITH_MEMSTATS
+struct Memstats {
+  uint32_t alloc_stats[kNumAllocKinds];
+  int list_sizes[kNumListKinds];
+  int list_wasted[kNumListKinds];
+  int list_grows[kNumListKinds];
+  int list_max_elems[kNumListKinds];
+  int bit_map_sizes[kNumBitMapKinds];
+  int bit_map_wasted[kNumBitMapKinds];
+  int bit_map_grows[kNumBitMapKinds];
+};
+
+const char* alloc_names[kNumAllocKinds] = {
+  "Misc       ",
+  "BasicBlock ",
+  "LIR        ",
+  "MIR        ",
+  "DataFlow   ",
+  "GrowList   ",
+  "GrowBitMap ",
+  "Dalvik2SSA ",
+  "DebugInfo  ",
+  "Successor  ",
+  "RegAlloc   ",
+  "Data       ",
+  "Preds      ",
+};
+
+const char* list_names[kNumListKinds] = {
+  "Misc                  ",
+  "block_list             ",
+  "SSAtoDalvik           ",
+  "dfs_order              ",
+  "dfs_post_order          ",
+  "dom_post_order_traversal ",
+  "throw_launch_pads       ",
+  "suspend_launch_pads     ",
+  "switch_tables          ",
+  "fill_array_data         ",
+  "SuccessorBlocks       ",
+  "Predecessors          ",
+};
+
+const char* bit_map_names[kNumBitMapKinds] = {
+  "Misc                  ",
+  "Use                   ",
+  "Def                   ",
+  "LiveIn                ",
+  "BlockMatrix           ",
+  "Dominators            ",
+  "IDominated            ",
+  "DomFrontier           ",
+  "Phi                   ",
+  "TmpBlocks             ",
+  "InputBlocks           ",
+  "RegisterV             ",
+  "TempSSARegisterV      ",
+  "Null Check            ",
+  "TmpBlockV             ",
+  "Predecessors          ",
+};
+#endif
+
+#define kArenaBitVectorGrowth    4   /* increase by 4 uint32_ts when limit hit */
+
+/* Allocate the initial memory block for arena-based allocation */
+bool HeapInit(CompilationUnit* cu)
+{
+  DCHECK(cu->arena_head == NULL);
+  cu->arena_head =
+      static_cast<ArenaMemBlock*>(malloc(sizeof(ArenaMemBlock) + ARENA_DEFAULT_SIZE));
+  if (cu->arena_head == NULL) {
+    LOG(FATAL) << "No memory left to create compiler heap memory";
+  }
+  cu->arena_head->block_size = ARENA_DEFAULT_SIZE;
+  cu->current_arena = cu->arena_head;
+  cu->current_arena->bytes_allocated = 0;
+  cu->current_arena->next = NULL;
+  cu->num_arena_blocks = 1;
+#ifdef WITH_MEMSTATS
+  cu->mstats = (Memstats*) NewMem(cu, sizeof(Memstats), true,
+                   kAllocDebugInfo);
+#endif
+  return true;
+}
+
+/* Arena-based malloc for compilation tasks */
+void* NewMem(CompilationUnit* cu, size_t size, bool zero, oat_alloc_kind kind)
+{
+  size = (size + 3) & ~3;
+#ifdef WITH_MEMSTATS
+  if (cu->mstats != NULL) {
+    cu->mstats->alloc_stats[kind] += size;
+  }
+#endif
+retry:
+  /* Normal case - space is available in the current page */
+  if (size + cu->current_arena->bytes_allocated <=
+    cu->current_arena->block_size) {
+    void *ptr;
+    ptr = &cu->current_arena->ptr[cu->current_arena->bytes_allocated];
+    cu->current_arena->bytes_allocated += size;
+    if (zero) {
+      memset(ptr, 0, size);
+    }
+    return ptr;
+  } else {
+    /*
+     * See if there are previously allocated arena blocks before the last
+     * reset
+     */
+    if (cu->current_arena->next) {
+        cu->current_arena = cu->current_arena->next;
+        cu->current_arena->bytes_allocated = 0;
+        goto retry;
+    }
+
+    size_t block_size = (size < ARENA_DEFAULT_SIZE) ?  ARENA_DEFAULT_SIZE : size;
+    /* Time to allocate a new arena */
+    ArenaMemBlock *new_arena =
+        static_cast<ArenaMemBlock*>(malloc(sizeof(ArenaMemBlock) + block_size));
+    if (new_arena == NULL) {
+      LOG(FATAL) << "Arena allocation failure";
+    }
+    new_arena->block_size = block_size;
+    new_arena->bytes_allocated = 0;
+    new_arena->next = NULL;
+    cu->current_arena->next = new_arena;
+    cu->current_arena = new_arena;
+    cu->num_arena_blocks++;
+    if (cu->num_arena_blocks > 20000) {
+      LOG(INFO) << "Total arena pages: " << cu->num_arena_blocks;
+    }
+    goto retry;
+  }
+}
+
+/* Reclaim all the arena blocks allocated so far */
+void ArenaReset(CompilationUnit* cu)
+{
+  ArenaMemBlock* head = cu->arena_head;
+  while (head != NULL) {
+    ArenaMemBlock* p = head;
+    head = head->next;
+    free(p);
+  }
+  cu->arena_head = NULL;
+  cu->current_arena = NULL;
+}
+
+/* Growable List initialization */
+void CompilerInitGrowableList(CompilationUnit* cu, GrowableList* g_list,
+                       size_t init_length, oat_list_kind kind)
+{
+  g_list->num_allocated = init_length;
+  g_list->num_used = 0;
+  g_list->elem_list = static_cast<uintptr_t *>(NewMem(cu, sizeof(intptr_t) * init_length,
+                                             true, kAllocGrowableList));
+#ifdef WITH_MEMSTATS
+  cu->mstats->list_sizes[kind] += sizeof(uintptr_t) * init_length;
+  g_list->kind = kind;
+  if (static_cast<int>(init_length) > cu->mstats->list_max_elems[kind]) {
+    cu->mstats->list_max_elems[kind] = init_length;
+  }
+#endif
+}
+
+/* Expand the capacity of a growable list */
+static void ExpandGrowableList(CompilationUnit* cu, GrowableList* g_list)
+{
+  int new_length = g_list->num_allocated;
+  if (new_length < 128) {
+    new_length <<= 1;
+  } else {
+    new_length += 128;
+  }
+  uintptr_t *new_array =
+      static_cast<uintptr_t*>(NewMem(cu, sizeof(uintptr_t) * new_length, true,
+                                     kAllocGrowableList));
+  memcpy(new_array, g_list->elem_list, sizeof(uintptr_t) * g_list->num_allocated);
+#ifdef WITH_MEMSTATS
+  cu->mstats->list_sizes[g_list->kind] += sizeof(uintptr_t) * new_length;
+  cu->mstats->list_wasted[g_list->kind] +=
+      sizeof(uintptr_t) * g_list->num_allocated;
+  cu->mstats->list_grows[g_list->kind]++;
+  if (new_length > cu->mstats->list_max_elems[g_list->kind]) {
+    cu->mstats->list_max_elems[g_list->kind] = new_length;
+  }
+#endif
+  g_list->num_allocated = new_length;
+  g_list->elem_list = new_array;
+}
+
+/* Insert a new element into the growable list */
+void InsertGrowableList(CompilationUnit* cu, GrowableList* g_list,
+                           uintptr_t elem)
+{
+  DCHECK_NE(g_list->num_allocated, 0U);
+  if (g_list->num_used == g_list->num_allocated) {
+    ExpandGrowableList(cu, g_list);
+  }
+  g_list->elem_list[g_list->num_used++] = elem;
+}
+
+/* Delete an element from a growable list. Element must be present */
+void DeleteGrowableList(GrowableList* g_list, uintptr_t elem)
+{
+  bool found = false;
+  for (unsigned int i = 0; i < g_list->num_used; i++) {
+    if (!found && g_list->elem_list[i] == elem) {
+      found = true;
+    }
+    if (found) {
+      g_list->elem_list[i] = g_list->elem_list[i+1];
+    }
+  }
+  DCHECK_EQ(found, true);
+  g_list->num_used--;
+}
+
+void GrowableListIteratorInit(GrowableList* g_list,
+                               GrowableListIterator* iterator)
+{
+  iterator->list = g_list;
+  iterator->idx = 0;
+  iterator->size = g_list->num_used;
+}
+
+uintptr_t GrowableListIteratorNext(GrowableListIterator* iterator)
+{
+  DCHECK_EQ(iterator->size, iterator->list->num_used);
+  if (iterator->idx == iterator->size) return 0;
+  return iterator->list->elem_list[iterator->idx++];
+}
+
+uintptr_t GrowableListGetElement(const GrowableList* g_list, size_t idx)
+{
+  DCHECK_LT(idx, g_list->num_used);
+  return g_list->elem_list[idx];
+}
+
+#ifdef WITH_MEMSTATS
+/* Dump memory usage stats */
+void DumpMemStats(CompilationUnit* cu)
+{
+  uint32_t total = 0;
+  for (int i = 0; i < kNumAllocKinds; i++) {
+    total += cu->mstats->alloc_stats[i];
+  }
+  if (total > (10 * 1024 * 1024)) {
+    LOG(INFO) << "MEMUSAGE: " << total << " : "
+        << PrettyMethod(cu->method_idx, *cu->dex_file);
+    LOG(INFO) << "insns_size: " << cu->insns_size;
+    if (cu->disable_dataflow) {
+        LOG(INFO) << " ** Dataflow disabled ** ";
+    }
+    LOG(INFO) << "===== Overall allocations";
+    for (int i = 0; i < kNumAllocKinds; i++) {
+        LOG(INFO) << alloc_names[i] << std::setw(10) <<
+        cu->mstats->alloc_stats[i];
+    }
+    LOG(INFO) << "===== GrowableList allocations";
+    for (int i = 0; i < kNumListKinds; i++) {
+      LOG(INFO) << list_names[i]
+                << " S:" << cu->mstats->list_sizes[i]
+                << ", W:" << cu->mstats->list_wasted[i]
+                << ", G:" << cu->mstats->list_grows[i]
+                << ", E:" << cu->mstats->list_max_elems[i];
+    }
+    LOG(INFO) << "===== GrowableBitMap allocations";
+    for (int i = 0; i < kNumBitMapKinds; i++) {
+      LOG(INFO) << bit_map_names[i]
+                << " S:" << cu->mstats->bit_map_sizes[i]
+                << ", W:" << cu->mstats->bit_map_wasted[i]
+                << ", G:" << cu->mstats->bit_map_grows[i];
+    }
+  }
+}
+#endif
+
+/* Debug Utility - dump a compilation unit */
+void DumpCompilationUnit(CompilationUnit* cu)
+{
+  BasicBlock* bb;
+  const char* block_type_names[] = {
+    "Entry Block",
+    "Code Block",
+    "Exit Block",
+    "Exception Handling",
+    "Catch Block"
+  };
+
+  LOG(INFO) << "Compiling " << PrettyMethod(cu->method_idx, *cu->dex_file);
+  LOG(INFO) << cu->insns << " insns";
+  LOG(INFO) << cu->num_blocks << " blocks in total";
+  GrowableListIterator iterator;
+
+  GrowableListIteratorInit(&cu->block_list, &iterator);
+
+  while (true) {
+    bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iterator));
+    if (bb == NULL) break;
+    LOG(INFO) << StringPrintf("Block %d (%s) (insn %04x - %04x%s)",
+        bb->id,
+        block_type_names[bb->block_type],
+        bb->start_offset,
+        bb->last_mir_insn ? bb->last_mir_insn->offset : bb->start_offset,
+        bb->last_mir_insn ? "" : " empty");
+    if (bb->taken) {
+      LOG(INFO) << "  Taken branch: block " << bb->taken->id
+                << "(0x" << std::hex << bb->taken->start_offset << ")";
+    }
+    if (bb->fall_through) {
+      LOG(INFO) << "  Fallthrough : block " << bb->fall_through->id
+                << " (0x" << std::hex << bb->fall_through->start_offset << ")";
+    }
+  }
+}
+
+static uint32_t check_masks[32] = {
+  0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010,
+  0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200,
+  0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000,
+  0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000,
+  0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000,
+  0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000,
+  0x40000000, 0x80000000 };
+
+/*
+ * Allocate a bit vector with enough space to hold at least the specified
+ * number of bits.
+ *
+ * NOTE: memory is allocated from the compiler arena.
+ */
+ArenaBitVector* AllocBitVector(CompilationUnit* cu,
+                                unsigned int start_bits, bool expandable,
+                                oat_bit_map_kind kind)
+{
+  ArenaBitVector* bv;
+  unsigned int count;
+
+  DCHECK_EQ(sizeof(bv->storage[0]), 4U);        /* assuming 32-bit units */
+
+  bv = static_cast<ArenaBitVector*>(NewMem(cu, sizeof(ArenaBitVector), false,
+                                                kAllocGrowableBitMap));
+
+  count = (start_bits + 31) >> 5;
+
+  bv->storage_size = count;
+  bv->expandable = expandable;
+  bv->storage = static_cast<uint32_t*>(NewMem(cu, count * sizeof(uint32_t), true,
+                                              kAllocGrowableBitMap));
+#ifdef WITH_MEMSTATS
+  bv->kind = kind;
+  cu->mstats->bit_map_sizes[kind] += count * sizeof(uint32_t);
+#endif
+  return bv;
+}
+
+/*
+ * Determine whether or not the specified bit is set.
+ */
+bool IsBitSet(const ArenaBitVector* p_bits, unsigned int num)
+{
+  DCHECK_LT(num, p_bits->storage_size * sizeof(uint32_t) * 8);
+
+  unsigned int val = p_bits->storage[num >> 5] & check_masks[num & 0x1f];
+  return (val != 0);
+}
+
+/*
+ * Mark all bits bit as "clear".
+ */
+void ClearAllBits(ArenaBitVector* p_bits)
+{
+  unsigned int count = p_bits->storage_size;
+  memset(p_bits->storage, 0, count * sizeof(uint32_t));
+}
+
+/*
+ * Mark the specified bit as "set".
+ *
+ * Returns "false" if the bit is outside the range of the vector and we're
+ * not allowed to expand.
+ *
+ * NOTE: memory is allocated from the compiler arena.
+ */
+bool SetBit(CompilationUnit* cu, ArenaBitVector* p_bits, unsigned int num)
+{
+  if (num >= p_bits->storage_size * sizeof(uint32_t) * 8) {
+    if (!p_bits->expandable) {
+      LOG(FATAL) << "Can't expand";
+    }
+
+    /* Round up to word boundaries for "num+1" bits */
+    unsigned int new_size = (num + 1 + 31) >> 5;
+    DCHECK_GT(new_size, p_bits->storage_size);
+    uint32_t *new_storage = static_cast<uint32_t*>(NewMem(cu, new_size * sizeof(uint32_t), false,
+                                                         kAllocGrowableBitMap));
+    memcpy(new_storage, p_bits->storage, p_bits->storage_size * sizeof(uint32_t));
+    memset(&new_storage[p_bits->storage_size], 0,
+           (new_size - p_bits->storage_size) * sizeof(uint32_t));
+#ifdef WITH_MEMSTATS
+    cu->mstats->bit_map_wasted[p_bits->kind] +=
+        p_bits->storage_size * sizeof(uint32_t);
+    cu->mstats->bit_map_sizes[p_bits->kind] += new_size * sizeof(uint32_t);
+    cu->mstats->bit_map_grows[p_bits->kind]++;
+#endif
+    p_bits->storage = new_storage;
+    p_bits->storage_size = new_size;
+  }
+
+  p_bits->storage[num >> 5] |= check_masks[num & 0x1f];
+  return true;
+}
+
+/*
+ * Mark the specified bit as "unset".
+ *
+ * Returns "false" if the bit is outside the range of the vector and we're
+ * not allowed to expand.
+ *
+ * NOTE: memory is allocated from the compiler arena.
+ */
+bool ClearBit(ArenaBitVector* p_bits, unsigned int num)
+{
+  if (num >= p_bits->storage_size * sizeof(uint32_t) * 8) {
+    LOG(FATAL) << "Attempt to clear a bit not set in the vector yet";;
+  }
+
+  p_bits->storage[num >> 5] &= ~check_masks[num & 0x1f];
+  return true;
+}
+
+/* Initialize the iterator structure */
+void BitVectorIteratorInit(ArenaBitVector* p_bits,
+                            ArenaBitVectorIterator* iterator)
+{
+  iterator->p_bits = p_bits;
+  iterator->bit_size = p_bits->storage_size * sizeof(uint32_t) * 8;
+  iterator->idx = 0;
+}
+
+/*
+ * If the vector sizes don't match, log an error and abort.
+ */
+static void CheckSizes(const ArenaBitVector* bv1, const ArenaBitVector* bv2)
+{
+  if (bv1->storage_size != bv2->storage_size) {
+    LOG(FATAL) << "Mismatched vector sizes (" << bv1->storage_size
+               << ", " << bv2->storage_size << ")";
+  }
+}
+
+/*
+ * Copy a whole vector to the other. Only do that when the both vectors have
+ * the same size.
+ */
+void CopyBitVector(ArenaBitVector* dest, const ArenaBitVector* src)
+{
+  /* if dest is expandable and < src, we could expand dest to match */
+  CheckSizes(dest, src);
+
+  memcpy(dest->storage, src->storage, sizeof(uint32_t) * dest->storage_size);
+}
+
+/*
+ * Intersect two bit vectors and store the result to the dest vector.
+ */
+
+bool IntersectBitVectors(ArenaBitVector* dest, const ArenaBitVector* src1,
+                          const ArenaBitVector* src2)
+{
+  DCHECK(src1 != NULL);
+  DCHECK(src2 != NULL);
+  if (dest->storage_size != src1->storage_size ||
+      dest->storage_size != src2->storage_size ||
+      dest->expandable != src1->expandable ||
+      dest->expandable != src2->expandable)
+    return false;
+
+  unsigned int idx;
+  for (idx = 0; idx < dest->storage_size; idx++) {
+    dest->storage[idx] = src1->storage[idx] & src2->storage[idx];
+  }
+  return true;
+}
+
+/*
+ * Unify two bit vectors and store the result to the dest vector.
+ */
+bool UnifyBitVetors(ArenaBitVector* dest, const ArenaBitVector* src1,
+                      const ArenaBitVector* src2)
+{
+  DCHECK(src1 != NULL);
+  DCHECK(src2 != NULL);
+  if (dest->storage_size != src1->storage_size ||
+      dest->storage_size != src2->storage_size ||
+      dest->expandable != src1->expandable ||
+      dest->expandable != src2->expandable)
+    return false;
+
+  unsigned int idx;
+  for (idx = 0; idx < dest->storage_size; idx++) {
+    dest->storage[idx] = src1->storage[idx] | src2->storage[idx];
+  }
+  return true;
+}
+
+/*
+ * Return true if any bits collide.  Vectors must be same size.
+ */
+bool TestBitVectors(const ArenaBitVector* src1,
+                     const ArenaBitVector* src2)
+{
+  DCHECK_EQ(src1->storage_size, src2->storage_size);
+  for (uint32_t idx = 0; idx < src1->storage_size; idx++) {
+    if (src1->storage[idx] & src2->storage[idx]) return true;
+  }
+  return false;
+}
+
+/*
+ * Compare two bit vectors and return true if difference is seen.
+ */
+bool CompareBitVectors(const ArenaBitVector* src1,
+                        const ArenaBitVector* src2)
+{
+  if (src1->storage_size != src2->storage_size ||
+      src1->expandable != src2->expandable)
+    return true;
+
+  unsigned int idx;
+  for (idx = 0; idx < src1->storage_size; idx++) {
+    if (src1->storage[idx] != src2->storage[idx]) return true;
+  }
+  return false;
+}
+
+/*
+ * Count the number of bits that are set.
+ */
+int CountSetBits(const ArenaBitVector* p_bits)
+{
+  unsigned int word;
+  unsigned int count = 0;
+
+  for (word = 0; word < p_bits->storage_size; word++) {
+    uint32_t val = p_bits->storage[word];
+
+    if (val != 0) {
+      if (val == 0xffffffff) {
+        count += 32;
+      } else {
+        /* count the number of '1' bits */
+        while (val != 0) {
+          val &= val - 1;
+          count++;
+        }
+      }
+    }
+  }
+
+  return count;
+}
+
+/* Return the next position set to 1. -1 means end-of-element reached */
+int BitVectorIteratorNext(ArenaBitVectorIterator* iterator)
+{
+  ArenaBitVector* p_bits = iterator->p_bits;
+  uint32_t bit_index = iterator->idx;
+  uint32_t bit_size = iterator->bit_size;
+
+  DCHECK_EQ(bit_size, p_bits->storage_size * sizeof(uint32_t) * 8);
+
+  if (bit_index >= bit_size) return -1;
+
+  uint32_t word_index = bit_index >> 5;
+  uint32_t end_word_index = bit_size >> 5;
+  uint32_t* storage = p_bits->storage;
+  uint32_t word = storage[word_index++];
+
+  // Mask out any bits in the first word we've already considered
+  word &= ~((1 << (bit_index & 0x1f))-1);
+
+  for (; word_index <= end_word_index;) {
+    uint32_t bit_pos = bit_index & 0x1f;
+    if (word == 0) {
+      bit_index += (32 - bit_pos);
+      word = storage[word_index++];
+      continue;
+    }
+    for (; bit_pos < 32; bit_pos++) {
+      if (word & (1 << bit_pos)) {
+        iterator->idx = bit_index + 1;
+        return bit_index;
+      }
+      bit_index++;
+    }
+    word = storage[word_index++];
+  }
+  iterator->idx = iterator->bit_size;
+  return -1;
+}
+
+/*
+ * Mark specified number of bits as "set". Cannot set all bits like ClearAll
+ * since there might be unused bits - setting those to one will confuse the
+ * iterator.
+ */
+void SetInitialBits(ArenaBitVector* p_bits, unsigned int num_bits)
+{
+  unsigned int idx;
+  DCHECK_LE(((num_bits + 31) >> 5), p_bits->storage_size);
+  for (idx = 0; idx < (num_bits >> 5); idx++) {
+    p_bits->storage[idx] = -1;
+  }
+  unsigned int rem_num_bits = num_bits & 0x1f;
+  if (rem_num_bits) {
+    p_bits->storage[idx] = (1 << rem_num_bits) - 1;
+  }
+}
+
+void GetBlockName(BasicBlock* bb, char* name)
+{
+  switch (bb->block_type) {
+    case kEntryBlock:
+      snprintf(name, BLOCK_NAME_LEN, "entry_%d", bb->id);
+      break;
+    case kExitBlock:
+      snprintf(name, BLOCK_NAME_LEN, "exit_%d", bb->id);
+      break;
+    case kDalvikByteCode:
+      snprintf(name, BLOCK_NAME_LEN, "block%04x_%d", bb->start_offset, bb->id);
+      break;
+    case kExceptionHandling:
+      snprintf(name, BLOCK_NAME_LEN, "exception%04x_%d", bb->start_offset,
+               bb->id);
+      break;
+    default:
+      snprintf(name, BLOCK_NAME_LEN, "_%d", bb->id);
+      break;
+  }
+}
+
+const char* GetShortyFromTargetIdx(CompilationUnit *cu, int target_idx)
+{
+  const DexFile::MethodId& method_id = cu->dex_file->GetMethodId(target_idx);
+  return cu->dex_file->GetShorty(method_id.proto_idx_);
+}
+
+/* Allocate a new basic block */
+BasicBlock* NewMemBB(CompilationUnit* cu, BBType block_type, int block_id)
+{
+  BasicBlock* bb = static_cast<BasicBlock*>(NewMem(cu, sizeof(BasicBlock), true, kAllocBB));
+  bb->block_type = block_type;
+  bb->id = block_id;
+  bb->predecessors = static_cast<GrowableList*>
+      (NewMem(cu, sizeof(GrowableList), false, kAllocPredecessors));
+  CompilerInitGrowableList(cu, bb->predecessors,
+                      (block_type == kExitBlock) ? 2048 : 2,
+                      kListPredecessors);
+  cu->block_id_map.Put(block_id, block_id);
+  return bb;
+}
+
+/* Insert an MIR instruction to the end of a basic block */
+void AppendMIR(BasicBlock* bb, MIR* mir)
+{
+  if (bb->first_mir_insn == NULL) {
+    DCHECK(bb->last_mir_insn == NULL);
+    bb->last_mir_insn = bb->first_mir_insn = mir;
+    mir->prev = mir->next = NULL;
+  } else {
+    bb->last_mir_insn->next = mir;
+    mir->prev = bb->last_mir_insn;
+    mir->next = NULL;
+    bb->last_mir_insn = mir;
+  }
+}
+
+/* Insert an MIR instruction to the head of a basic block */
+void PrependMIR(BasicBlock* bb, MIR* mir)
+{
+  if (bb->first_mir_insn == NULL) {
+    DCHECK(bb->last_mir_insn == NULL);
+    bb->last_mir_insn = bb->first_mir_insn = mir;
+    mir->prev = mir->next = NULL;
+  } else {
+    bb->first_mir_insn->prev = mir;
+    mir->next = bb->first_mir_insn;
+    mir->prev = NULL;
+    bb->first_mir_insn = mir;
+  }
+}
+
+/* Insert a MIR instruction after the specified MIR */
+void InsertMIRAfter(BasicBlock* bb, MIR* current_mir, MIR* new_mir)
+{
+  new_mir->prev = current_mir;
+  new_mir->next = current_mir->next;
+  current_mir->next = new_mir;
+
+  if (new_mir->next) {
+    /* Is not the last MIR in the block */
+    new_mir->next->prev = new_mir;
+  } else {
+    /* Is the last MIR in the block */
+    bb->last_mir_insn = new_mir;
+  }
+}
+
+/*
+ * Append an LIR instruction to the LIR list maintained by a compilation
+ * unit
+ */
+void AppendLIR(CompilationUnit *cu, LIR* lir)
+{
+  if (cu->first_lir_insn == NULL) {
+    DCHECK(cu->last_lir_insn == NULL);
+     cu->last_lir_insn = cu->first_lir_insn = lir;
+    lir->prev = lir->next = NULL;
+  } else {
+    cu->last_lir_insn->next = lir;
+    lir->prev = cu->last_lir_insn;
+    lir->next = NULL;
+    cu->last_lir_insn = lir;
+  }
+}
+
+/*
+ * Insert an LIR instruction before the current instruction, which cannot be the
+ * first instruction.
+ *
+ * prev_lir <-> new_lir <-> current_lir
+ */
+void InsertLIRBefore(LIR* current_lir, LIR* new_lir)
+{
+  DCHECK(current_lir->prev != NULL);
+  LIR *prev_lir = current_lir->prev;
+
+  prev_lir->next = new_lir;
+  new_lir->prev = prev_lir;
+  new_lir->next = current_lir;
+  current_lir->prev = new_lir;
+}
+
+/*
+ * Insert an LIR instruction after the current instruction, which cannot be the
+ * first instruction.
+ *
+ * current_lir -> new_lir -> old_next
+ */
+void InsertLIRAfter(LIR* current_lir, LIR* new_lir)
+{
+  new_lir->prev = current_lir;
+  new_lir->next = current_lir->next;
+  current_lir->next = new_lir;
+  new_lir->next->prev = new_lir;
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/compiler_utility.h b/src/compiler/dex/compiler_utility.h
new file mode 100644
index 0000000..582d32d
--- /dev/null
+++ b/src/compiler/dex/compiler_utility.h
@@ -0,0 +1,197 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_COMPILER_UTILITY_H_
+#define ART_SRC_COMPILER_DEX_COMPILER_UTILITY_H_
+
+#include <stdint.h>
+#include <stddef.h>
+#include "compiler_enums.h"
+
+namespace art {
+
+struct CompilationUnit;
+
+// Each arena page has some overhead, so take a few bytes off.
+#define ARENA_DEFAULT_SIZE ((2 * 1024 * 1024) - 256)
+
+// Type of allocation for memory tuning.
+enum oat_alloc_kind {
+  kAllocMisc,
+  kAllocBB,
+  kAllocLIR,
+  kAllocMIR,
+  kAllocDFInfo,
+  kAllocGrowableList,
+  kAllocGrowableBitMap,
+  kAllocDalvikToSSAMap,
+  kAllocDebugInfo,
+  kAllocSuccessor,
+  kAllocRegAlloc,
+  kAllocData,
+  kAllocPredecessors,
+  kNumAllocKinds
+};
+
+// Type of growable list for memory tuning.
+enum oat_list_kind {
+  kListMisc = 0,
+  kListBlockList,
+  kListSSAtoDalvikMap,
+  kListDfsOrder,
+  kListDfsPostOrder,
+  kListDomPostOrderTraversal,
+  kListThrowLaunchPads,
+  kListSuspendLaunchPads,
+  kListSwitchTables,
+  kListFillArrayData,
+  kListSuccessorBlocks,
+  kListPredecessors,
+  kNumListKinds
+};
+
+// Type of growable bitmap for memory tuning.
+enum oat_bit_map_kind {
+  kBitMapMisc = 0,
+  kBitMapUse,
+  kBitMapDef,
+  kBitMapLiveIn,
+  kBitMapBMatrix,
+  kBitMapDominators,
+  kBitMapIDominated,
+  kBitMapDomFrontier,
+  kBitMapPhi,
+  kBitMapTmpBlocks,
+  kBitMapInputBlocks,
+  kBitMapRegisterV,
+  kBitMapTempSSARegisterV,
+  kBitMapNullCheck,
+  kBitMapTmpBlockV,
+  kBitMapPredecessors,
+  kNumBitMapKinds
+};
+
+// Allocate the initial memory block for arena-based allocation.
+bool HeapInit(CompilationUnit* cu);
+
+// Uncomment to collect memory usage statistics.
+//#define WITH_MEMSTATS
+
+struct ArenaMemBlock {
+  size_t block_size;
+  size_t bytes_allocated;
+  ArenaMemBlock *next;
+  char ptr[0];
+};
+
+void* NewMem(CompilationUnit* cu, size_t size, bool zero, oat_alloc_kind kind);
+
+void ArenaReset(CompilationUnit *cu);
+
+struct GrowableList {
+  GrowableList() : num_allocated(0), num_used(0), elem_list(NULL) {
+  }
+
+  size_t num_allocated;
+  size_t num_used;
+  uintptr_t* elem_list;
+#ifdef WITH_MEMSTATS
+  oat_list_kind kind;
+#endif
+};
+
+struct GrowableListIterator {
+  GrowableList* list;
+  size_t idx;
+  size_t size;
+};
+
+/*
+ * Expanding bitmap, used for tracking resources.  Bits are numbered starting
+ * from zero.  All operations on a BitVector are unsynchronized.
+ */
+struct ArenaBitVector {
+  bool       expandable;   // expand bitmap if we run out?
+  uint32_t   storage_size; // current size, in 32-bit words.
+  uint32_t*  storage;
+#ifdef WITH_MEMSTATS
+  oat_bit_map_kind kind;   // for memory use tuning.
+#endif
+};
+
+// Handy iterator to walk through the bit positions set to 1.
+struct ArenaBitVectorIterator {
+  ArenaBitVector* p_bits;
+  uint32_t idx;
+  uint32_t bit_size;
+};
+
+#define GET_ELEM_N(LIST, TYPE, N) ((reinterpret_cast<TYPE*>(LIST->elem_list)[N]))
+
+#define BLOCK_NAME_LEN 80
+
+// Forward declarations
+struct BasicBlock;
+struct CompilationUnit;
+struct LIR;
+struct RegLocation;
+struct MIR;
+enum BBType;
+
+void CompilerInitGrowableList(CompilationUnit* cu, GrowableList* g_list,
+                              size_t init_length, oat_list_kind kind = kListMisc);
+void InsertGrowableList(CompilationUnit* cu, GrowableList* g_list, uintptr_t elem);
+void DeleteGrowableList(GrowableList* g_list, uintptr_t elem);
+void GrowableListIteratorInit(GrowableList* g_list, GrowableListIterator* iterator);
+uintptr_t GrowableListIteratorNext(GrowableListIterator* iterator);
+uintptr_t GrowableListGetElement(const GrowableList* g_list, size_t idx);
+ArenaBitVector* AllocBitVector(CompilationUnit* cu, unsigned int start_bits, bool expandable,
+                               oat_bit_map_kind = kBitMapMisc);
+void BitVectorIteratorInit(ArenaBitVector* p_bits, ArenaBitVectorIterator* iterator);
+int BitVectorIteratorNext(ArenaBitVectorIterator* iterator);
+bool SetBit(CompilationUnit *cu, ArenaBitVector* p_bits, unsigned int num);
+bool ClearBit(ArenaBitVector* p_bits, unsigned int num);
+void MarkAllBits(ArenaBitVector* p_bits, bool set);
+void DebugBitVector(char* msg, const ArenaBitVector* bv, int length);
+bool IsBitSet(const ArenaBitVector* p_bits, unsigned int num);
+void ClearAllBits(ArenaBitVector* p_bits);
+void SetInitialBits(ArenaBitVector* p_bits, unsigned int num_bits);
+void CopyBitVector(ArenaBitVector* dest, const ArenaBitVector* src);
+bool IntersectBitVectors(ArenaBitVector* dest, const ArenaBitVector* src1,
+                         const ArenaBitVector* src2);
+bool UnifyBitVetors(ArenaBitVector* dest, const ArenaBitVector* src1, const ArenaBitVector* src2);
+bool CompareBitVectors(const ArenaBitVector* src1, const ArenaBitVector* src2);
+bool TestBitVectors(const ArenaBitVector* src1, const ArenaBitVector* src2);
+int CountSetBits(const ArenaBitVector* p_bits);
+void DumpLIRInsn(CompilationUnit* cu, LIR* lir, unsigned char* base_addr);
+void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix);
+void DumpBlockBitVector(const GrowableList* blocks, char* msg, const ArenaBitVector* bv,
+                        int length);
+void GetBlockName(BasicBlock* bb, char* name);
+const char* GetShortyFromTargetIdx(CompilationUnit*, int);
+void DumpMemStats(CompilationUnit* cu);
+void DumpCompilationUnit(CompilationUnit* cu);
+BasicBlock* NewMemBB(CompilationUnit* cu, BBType block_type, int block_id);
+void AppendMIR(BasicBlock* bb, MIR* mir);
+void PrependMIR(BasicBlock* bb, MIR* mir);
+void InsertMIRAfter(BasicBlock* bb, MIR* current_mir, MIR* new_mir);
+void AppendLIR(CompilationUnit *cu, LIR* lir);
+void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
+void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
+
+}  // namespace art
+
+#endif  // ART_SRC_COMPILER_DEX_COMPILER_UTILITY_H_
diff --git a/src/compiler/dex/dataflow.cc b/src/compiler/dex/dataflow.cc
new file mode 100644
index 0000000..2ce16a4
--- /dev/null
+++ b/src/compiler/dex/dataflow.cc
@@ -0,0 +1,2574 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler_internals.h"
+#include "dataflow.h"
+#include "bb_opt.h"
+
+namespace art {
+
+/*
+ * Main table containing data flow attributes for each bytecode. The
+ * first kNumPackedOpcodes entries are for Dalvik bytecode
+ * instructions, where extended opcode at the MIR level are appended
+ * afterwards.
+ *
+ * TODO - many optimization flags are incomplete - they will only limit the
+ * scope of optimizations but will not cause mis-optimizations.
+ */
+const int oat_data_flow_attributes[kMirOpLast] = {
+  // 00 NOP
+  DF_NOP,
+
+  // 01 MOVE vA, vB
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 02 MOVE_FROM16 vAA, vBBBB
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 03 MOVE_16 vAAAA, vBBBB
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 04 MOVE_WIDE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
+
+  // 05 MOVE_WIDE_FROM16 vAA, vBBBB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
+
+  // 06 MOVE_WIDE_16 vAAAA, vBBBB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
+
+  // 07 MOVE_OBJECT vA, vB
+  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
+
+  // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
+  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
+
+  // 09 MOVE_OBJECT_16 vAAAA, vBBBB
+  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
+
+  // 0A MOVE_RESULT vAA
+  DF_DA,
+
+  // 0B MOVE_RESULT_WIDE vAA
+  DF_DA | DF_A_WIDE,
+
+  // 0C MOVE_RESULT_OBJECT vAA
+  DF_DA | DF_REF_A,
+
+  // 0D MOVE_EXCEPTION vAA
+  DF_DA | DF_REF_A,
+
+  // 0E RETURN_VOID
+  DF_NOP,
+
+  // 0F RETURN vAA
+  DF_UA,
+
+  // 10 RETURN_WIDE vAA
+  DF_UA | DF_A_WIDE,
+
+  // 11 RETURN_OBJECT vAA
+  DF_UA | DF_REF_A,
+
+  // 12 CONST_4 vA, #+B
+  DF_DA | DF_SETS_CONST,
+
+  // 13 CONST_16 vAA, #+BBBB
+  DF_DA | DF_SETS_CONST,
+
+  // 14 CONST vAA, #+BBBBBBBB
+  DF_DA | DF_SETS_CONST,
+
+  // 15 CONST_HIGH16 VAA, #+BBBB0000
+  DF_DA | DF_SETS_CONST,
+
+  // 16 CONST_WIDE_16 vAA, #+BBBB
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 1A CONST_STRING vAA, string@BBBB
+  DF_DA | DF_REF_A,
+
+  // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
+  DF_DA | DF_REF_A,
+
+  // 1C CONST_CLASS vAA, type@BBBB
+  DF_DA | DF_REF_A,
+
+  // 1D MONITOR_ENTER vAA
+  DF_UA | DF_NULL_CHK_0 | DF_REF_A,
+
+  // 1E MONITOR_EXIT vAA
+  DF_UA | DF_NULL_CHK_0 | DF_REF_A,
+
+  // 1F CHK_CAST vAA, type@BBBB
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 20 INSTANCE_OF vA, vB, type@CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
+
+  // 21 ARRAY_LENGTH vA, vB
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B,
+
+  // 22 NEW_INSTANCE vAA, type@BBBB
+  DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
+
+  // 23 NEW_ARRAY vA, vB, type@CCCC
+  DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
+
+  // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
+
+  // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
+  DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
+
+  // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 27 THROW vAA
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 28 GOTO
+  DF_NOP,
+
+  // 29 GOTO_16
+  DF_NOP,
+
+  // 2A GOTO_32
+  DF_NOP,
+
+  // 2B PACKED_SWITCH vAA, +BBBBBBBB
+  DF_UA,
+
+  // 2C SPARSE_SWITCH vAA, +BBBBBBBB
+  DF_UA,
+
+  // 2D CMPL_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 2E CMPG_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 2F CMPL_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 30 CMPG_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 31 CMP_LONG vAA, vBB, vCC
+  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 32 IF_EQ vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 33 IF_NE vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 34 IF_LT vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 35 IF_GE vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 36 IF_GT vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 37 IF_LE vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 38 IF_EQZ vAA, +BBBB
+  DF_UA,
+
+  // 39 IF_NEZ vAA, +BBBB
+  DF_UA,
+
+  // 3A IF_LTZ vAA, +BBBB
+  DF_UA,
+
+  // 3B IF_GEZ vAA, +BBBB
+  DF_UA,
+
+  // 3C IF_GTZ vAA, +BBBB
+  DF_UA,
+
+  // 3D IF_LEZ vAA, +BBBB
+  DF_UA,
+
+  // 3E UNUSED_3E
+  DF_NOP,
+
+  // 3F UNUSED_3F
+  DF_NOP,
+
+  // 40 UNUSED_40
+  DF_NOP,
+
+  // 41 UNUSED_41
+  DF_NOP,
+
+  // 42 UNUSED_42
+  DF_NOP,
+
+  // 43 UNUSED_43
+  DF_NOP,
+
+  // 44 AGET vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 45 AGET_WIDE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 46 AGET_OBJECT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C,
+
+  // 47 AGET_BOOLEAN vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 48 AGET_BYTE vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 49 AGET_CHAR vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 4A AGET_SHORT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 4B APUT vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 4C APUT_WIDE vAA, vBB, vCC
+  DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C,
+
+  // 4D APUT_OBJECT vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C,
+
+  // 4E APUT_BOOLEAN vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 4F APUT_BYTE vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 50 APUT_CHAR vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 51 APUT_SHORT vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 52 IGET vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 53 IGET_WIDE vA, vB, field@CCCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 54 IGET_OBJECT vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
+
+  // 55 IGET_BOOLEAN vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 56 IGET_BYTE vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 57 IGET_CHAR vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 58 IGET_SHORT vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 59 IPUT vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5A IPUT_WIDE vA, vB, field@CCCC
+  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
+
+  // 5B IPUT_OBJECT vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
+
+  // 5C IPUT_BOOLEAN vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5D IPUT_BYTE vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5E IPUT_CHAR vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5F IPUT_SHORT vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 60 SGET vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 61 SGET_WIDE vAA, field@BBBB
+  DF_DA | DF_A_WIDE | DF_UMS,
+
+  // 62 SGET_OBJECT vAA, field@BBBB
+  DF_DA | DF_REF_A | DF_UMS,
+
+  // 63 SGET_BOOLEAN vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 64 SGET_BYTE vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 65 SGET_CHAR vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 66 SGET_SHORT vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 67 SPUT vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 68 SPUT_WIDE vAA, field@BBBB
+  DF_UA | DF_A_WIDE | DF_UMS,
+
+  // 69 SPUT_OBJECT vAA, field@BBBB
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 6A SPUT_BOOLEAN vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6B SPUT_BYTE vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6C SPUT_CHAR vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6D SPUT_SHORT vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_UMS,
+
+  // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_UMS,
+
+  // 73 UNUSED_73
+  DF_NOP,
+
+  // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_UMS,
+
+  // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_UMS,
+
+  // 79 UNUSED_79
+  DF_NOP,
+
+  // 7A UNUSED_7A
+  DF_NOP,
+
+  // 7B NEG_INT vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 7C NOT_INT vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 7D NEG_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 7E NOT_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 7F NEG_FLOAT vA, vB
+  DF_DA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 80 NEG_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 81 INT_TO_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 82 INT_TO_FLOAT vA, vB
+  DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
+
+  // 83 INT_TO_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
+
+  // 84 LONG_TO_INT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 85 LONG_TO_FLOAT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
+
+  // 86 LONG_TO_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
+
+  // 87 FLOAT_TO_INT vA, vB
+  DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
+
+  // 88 FLOAT_TO_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
+
+  // 89 FLOAT_TO_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 8A DOUBLE_TO_INT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
+
+  // 8B DOUBLE_TO_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
+
+  // 8C DOUBLE_TO_FLOAT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 8D INT_TO_BYTE vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 8E INT_TO_CHAR vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 8F INT_TO_SHORT vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 90 ADD_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 91 SUB_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 92 MUL_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 93 DIV_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 94 REM_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 95 AND_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 96 OR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 97 XOR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 98 SHL_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 99 SHR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9A USHR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9B ADD_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9C SUB_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9D MUL_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9E DIV_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9F REM_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A0 AND_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A1 OR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A2 XOR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A3 SHL_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A4 SHR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A5 USHR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A6 ADD_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // A7 SUB_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // A8 MUL_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // A9 DIV_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AA REM_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AB ADD_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AC SUB_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AD MUL_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AE DIV_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AF REM_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // B0 ADD_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B1 SUB_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B2 MUL_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B3 DIV_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B4 REM_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B5 AND_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B6 OR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B7 XOR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B8 SHL_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B9 SHR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // BA USHR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // BB ADD_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BC SUB_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BD MUL_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BE DIV_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BF REM_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C0 AND_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C1 OR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C2 XOR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C3 SHL_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // C4 SHR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // C5 USHR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // C6 ADD_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // C7 SUB_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // C8 MUL_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // C9 DIV_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // CA REM_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // CB ADD_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CC SUB_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CD MUL_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CE DIV_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CF REM_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // D0 ADD_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D1 RSUB_INT vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D2 MUL_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D3 DIV_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D4 REM_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D5 AND_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D6 OR_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D7 XOR_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D8 ADD_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DA MUL_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DB DIV_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DC REM_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DD AND_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DE OR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DF XOR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E0 SHL_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E1 SHR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E2 USHR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E3 IGET_VOLATILE
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // E4 IPUT_VOLATILE
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // E5 SGET_VOLATILE
+  DF_DA | DF_UMS,
+
+  // E6 SPUT_VOLATILE
+  DF_UA | DF_UMS,
+
+  // E7 IGET_OBJECT_VOLATILE
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
+
+  // E8 IGET_WIDE_VOLATILE
+  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // E9 IPUT_WIDE_VOLATILE
+  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
+
+  // EA SGET_WIDE_VOLATILE
+  DF_DA | DF_A_WIDE | DF_UMS,
+
+  // EB SPUT_WIDE_VOLATILE
+  DF_UA | DF_A_WIDE | DF_UMS,
+
+  // EC BREAKPOINT
+  DF_NOP,
+
+  // ED THROW_VERIFICATION_ERROR
+  DF_NOP | DF_UMS,
+
+  // EE EXECUTE_INLINE
+  DF_FORMAT_35C,
+
+  // EF EXECUTE_INLINE_RANGE
+  DF_FORMAT_3RC,
+
+  // F0 INVOKE_OBJECT_INIT_RANGE
+  DF_NOP | DF_NULL_CHK_0,
+
+  // F1 RETURN_VOID_BARRIER
+  DF_NOP,
+
+  // F2 IGET_QUICK
+  DF_DA | DF_UB | DF_NULL_CHK_0,
+
+  // F3 IGET_WIDE_QUICK
+  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0,
+
+  // F4 IGET_OBJECT_QUICK
+  DF_DA | DF_UB | DF_NULL_CHK_0,
+
+  // F5 IPUT_QUICK
+  DF_UA | DF_UB | DF_NULL_CHK_1,
+
+  // F6 IPUT_WIDE_QUICK
+  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2,
+
+  // F7 IPUT_OBJECT_QUICK
+  DF_UA | DF_UB | DF_NULL_CHK_1,
+
+  // F8 INVOKE_VIRTUAL_QUICK
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // F9 INVOKE_VIRTUAL_QUICK_RANGE
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // FA INVOKE_SUPER_QUICK
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // FB INVOKE_SUPER_QUICK_RANGE
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // FC IPUT_OBJECT_VOLATILE
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
+
+  // FD SGET_OBJECT_VOLATILE
+  DF_DA | DF_REF_A | DF_UMS,
+
+  // FE SPUT_OBJECT_VOLATILE
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // FF UNUSED_FF
+  DF_NOP,
+
+  // Beginning of extended MIR opcodes
+  // 100 MIR_PHI
+  DF_DA | DF_NULL_TRANSFER_N,
+
+  // 101 MIR_COPY
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 102 MIR_FUSED_CMPL_FLOAT
+  DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 103 MIR_FUSED_CMPG_FLOAT
+  DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 104 MIR_FUSED_CMPL_DOUBLE
+  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 105 MIR_FUSED_CMPG_DOUBLE
+  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 106 MIR_FUSED_CMP_LONG
+  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 107 MIR_NOP
+  DF_NOP,
+
+  // 108 MIR_NULL_CHECK
+  0,
+
+  // 109 MIR_RANGE_CHECK
+  0,
+
+  // 110 MIR_DIV_ZERO_CHECK
+  0,
+
+  // 111 MIR_CHECK
+  0,
+
+  // 112 MIR_CHECKPART2
+  0,
+
+  // 113 MIR_SELECT
+  DF_DA | DF_UB,
+};
+
+/* Return the base virtual register for a SSA name */
+int SRegToVReg(const CompilationUnit* cu, int ssa_reg)
+{
+  DCHECK_LT(ssa_reg, static_cast<int>(cu->ssa_base_vregs->num_used));
+  return GET_ELEM_N(cu->ssa_base_vregs, int, ssa_reg);
+}
+
+int SRegToSubscript(const CompilationUnit* cu, int ssa_reg)
+{
+  DCHECK(ssa_reg < static_cast<int>(cu->ssa_subscripts->num_used));
+  return GET_ELEM_N(cu->ssa_subscripts, int, ssa_reg);
+}
+
+static int GetSSAUseCount(CompilationUnit* cu, int s_reg)
+{
+  DCHECK(s_reg < static_cast<int>(cu->raw_use_counts.num_used));
+  return cu->raw_use_counts.elem_list[s_reg];
+}
+
+static std::string GetSSAName(const CompilationUnit* cu, int ssa_reg)
+{
+  return StringPrintf("v%d_%d", SRegToVReg(cu, ssa_reg), SRegToSubscript(cu, ssa_reg));
+}
+
+// Similar to GetSSAName, but if ssa name represents an immediate show that as well.
+static std::string GetSSANameWithConst(const CompilationUnit* cu, int ssa_reg, bool singles_only)
+{
+  if (cu->reg_location == NULL) {
+    // Pre-SSA - just use the standard name
+    return GetSSAName(cu, ssa_reg);
+  }
+  if (IsConst(cu, cu->reg_location[ssa_reg])) {
+    if (!singles_only && cu->reg_location[ssa_reg].wide) {
+      return StringPrintf("v%d_%d#0x%llx", SRegToVReg(cu, ssa_reg),
+                          SRegToSubscript(cu, ssa_reg),
+                          ConstantValueWide(cu, cu->reg_location[ssa_reg]));
+    } else {
+      return StringPrintf("v%d_%d#0x%x", SRegToVReg(cu, ssa_reg),
+                          SRegToSubscript(cu, ssa_reg),
+                          ConstantValue(cu, cu->reg_location[ssa_reg]));
+    }
+  } else {
+    return StringPrintf("v%d_%d", SRegToVReg(cu, ssa_reg), SRegToSubscript(cu, ssa_reg));
+  }
+}
+
+
+char* GetDalvikDisassembly(CompilationUnit* cu, const MIR* mir)
+{
+  DecodedInstruction insn = mir->dalvikInsn;
+  std::string str;
+  int flags = 0;
+  int opcode = insn.opcode;
+  char* ret;
+  bool nop = false;
+  SSARepresentation* ssa_rep = mir->ssa_rep;
+  Instruction::Format dalvik_format = Instruction::k10x;  // Default to no-operand format
+  int defs = (ssa_rep != NULL) ? ssa_rep->num_defs : 0;
+  int uses = (ssa_rep != NULL) ? ssa_rep->num_uses : 0;
+
+  // Handle special cases.
+  if ((opcode == kMirOpCheck) || (opcode == kMirOpCheckPart2)) {
+    str.append(extended_mir_op_names[opcode - kMirOpFirst]);
+    str.append(": ");
+    // Recover the original Dex instruction
+    insn = mir->meta.throw_insn->dalvikInsn;
+    ssa_rep = mir->meta.throw_insn->ssa_rep;
+    defs = ssa_rep->num_defs;
+    uses = ssa_rep->num_uses;
+    opcode = insn.opcode;
+  } else if (opcode == kMirOpNop) {
+    str.append("[");
+    insn.opcode = mir->meta.original_opcode;
+    opcode = mir->meta.original_opcode;
+    nop = true;
+  }
+
+  if (opcode >= kMirOpFirst) {
+    str.append(extended_mir_op_names[opcode - kMirOpFirst]);
+  } else {
+    dalvik_format = Instruction::FormatOf(insn.opcode);
+    flags = Instruction::FlagsOf(insn.opcode);
+    str.append(Instruction::Name(insn.opcode));
+  }
+
+  if (opcode == kMirOpPhi) {
+    int* incoming = reinterpret_cast<int*>(insn.vB);
+    str.append(StringPrintf(" %s = (%s",
+               GetSSANameWithConst(cu, ssa_rep->defs[0], true).c_str(),
+               GetSSANameWithConst(cu, ssa_rep->uses[0], true).c_str()));
+    str.append(StringPrintf(":%d",incoming[0]));
+    int i;
+    for (i = 1; i < uses; i++) {
+      str.append(StringPrintf(", %s:%d",
+                              GetSSANameWithConst(cu, ssa_rep->uses[i], true).c_str(),
+                              incoming[i]));
+    }
+    str.append(")");
+  } else if (flags & Instruction::kBranch) {
+    // For branches, decode the instructions to print out the branch targets.
+    int offset = 0;
+    switch (dalvik_format) {
+      case Instruction::k21t:
+        str.append(StringPrintf(" %s,", GetSSANameWithConst(cu, ssa_rep->uses[0], false).c_str()));
+        offset = insn.vB;
+        break;
+      case Instruction::k22t:
+        str.append(StringPrintf(" %s, %s,", GetSSANameWithConst(cu, ssa_rep->uses[0], false).c_str(),
+                   GetSSANameWithConst(cu, ssa_rep->uses[1], false).c_str()));
+        offset = insn.vC;
+        break;
+      case Instruction::k10t:
+      case Instruction::k20t:
+      case Instruction::k30t:
+        offset = insn.vA;
+        break;
+      default:
+        LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode;
+    }
+    str.append(StringPrintf(" 0x%x (%c%x)", mir->offset + offset,
+                            offset > 0 ? '+' : '-', offset > 0 ? offset : -offset));
+  } else {
+    // For invokes-style formats, treat wide regs as a pair of singles
+    bool show_singles = ((dalvik_format == Instruction::k35c) ||
+                         (dalvik_format == Instruction::k3rc));
+    if (defs != 0) {
+      str.append(StringPrintf(" %s", GetSSANameWithConst(cu, ssa_rep->defs[0], false).c_str()));
+      if (uses != 0) {
+        str.append(", ");
+      }
+    }
+    for (int i = 0; i < uses; i++) {
+      str.append(
+          StringPrintf(" %s", GetSSANameWithConst(cu, ssa_rep->uses[i], show_singles).c_str()));
+      if (!show_singles && (cu->reg_location != NULL) && cu->reg_location[i].wide) {
+        // For the listing, skip the high sreg.
+        i++;
+      }
+      if (i != (uses -1)) {
+        str.append(",");
+      }
+    }
+    switch (dalvik_format) {
+      case Instruction::k11n: // Add one immediate from vB
+      case Instruction::k21s:
+      case Instruction::k31i:
+      case Instruction::k21h:
+        str.append(StringPrintf(", #%d", insn.vB));
+        break;
+      case Instruction::k51l: // Add one wide immediate
+        str.append(StringPrintf(", #%lld", insn.vB_wide));
+        break;
+      case Instruction::k21c: // One register, one string/type/method index
+      case Instruction::k31c:
+        str.append(StringPrintf(", index #%d", insn.vB));
+        break;
+      case Instruction::k22c: // Two registers, one string/type/method index
+        str.append(StringPrintf(", index #%d", insn.vC));
+        break;
+      case Instruction::k22s: // Add one immediate from vC
+      case Instruction::k22b:
+        str.append(StringPrintf(", #%d", insn.vC));
+        break;
+      default:
+        ; // Nothing left to print
+      }
+  }
+  if (nop) {
+    str.append("]--optimized away");
+  }
+  int length = str.length() + 1;
+  ret = static_cast<char*>(NewMem(cu, length, false, kAllocDFInfo));
+  strncpy(ret, str.c_str(), length);
+  return ret;
+}
+
+/* Any register that is used before being defined is considered live-in */
+static void HandleLiveInUse(CompilationUnit* cu, ArenaBitVector* use_v, ArenaBitVector* def_v,
+                            ArenaBitVector* live_in_v, int dalvik_reg_id)
+{
+  SetBit(cu, use_v, dalvik_reg_id);
+  if (!IsBitSet(def_v, dalvik_reg_id)) {
+    SetBit(cu, live_in_v, dalvik_reg_id);
+  }
+}
+
+/* Mark a reg as being defined */
+static void HandleDef(CompilationUnit* cu, ArenaBitVector* def_v, int dalvik_reg_id)
+{
+  SetBit(cu, def_v, dalvik_reg_id);
+}
+
+/*
+ * Find out live-in variables for natural loops. Variables that are live-in in
+ * the main loop body are considered to be defined in the entry block.
+ */
+bool FindLocalLiveIn(CompilationUnit* cu, BasicBlock* bb)
+{
+  MIR* mir;
+  ArenaBitVector *use_v, *def_v, *live_in_v;
+
+  if (bb->data_flow_info == NULL) return false;
+
+  use_v = bb->data_flow_info->use_v =
+      AllocBitVector(cu, cu->num_dalvik_registers, false, kBitMapUse);
+  def_v = bb->data_flow_info->def_v =
+      AllocBitVector(cu, cu->num_dalvik_registers, false, kBitMapDef);
+  live_in_v = bb->data_flow_info->live_in_v =
+      AllocBitVector(cu, cu->num_dalvik_registers, false,
+                        kBitMapLiveIn);
+
+  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+    DecodedInstruction *d_insn = &mir->dalvikInsn;
+
+    if (df_attributes & DF_HAS_USES) {
+      if (df_attributes & DF_UA) {
+        HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vA);
+        if (df_attributes & DF_A_WIDE) {
+          HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vA+1);
+        }
+      }
+      if (df_attributes & DF_UB) {
+        HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vB);
+        if (df_attributes & DF_B_WIDE) {
+          HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vB+1);
+        }
+      }
+      if (df_attributes & DF_UC) {
+        HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vC);
+        if (df_attributes & DF_C_WIDE) {
+          HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vC+1);
+        }
+      }
+    }
+    if (df_attributes & DF_FORMAT_35C) {
+      for (unsigned int i = 0; i < d_insn->vA; i++) {
+        HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->arg[i]);
+      }
+    }
+    if (df_attributes & DF_FORMAT_3RC) {
+      for (unsigned int i = 0; i < d_insn->vA; i++) {
+        HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vC+i);
+      }
+    }
+    if (df_attributes & DF_HAS_DEFS) {
+      HandleDef(cu, def_v, d_insn->vA);
+      if (df_attributes & DF_A_WIDE) {
+        HandleDef(cu, def_v, d_insn->vA+1);
+      }
+    }
+  }
+  return true;
+}
+
+static int AddNewSReg(CompilationUnit* cu, int v_reg)
+{
+  // Compiler temps always have a subscript of 0
+  int subscript = (v_reg < 0) ? 0 : ++cu->ssa_last_defs[v_reg];
+  int ssa_reg = cu->num_ssa_regs++;
+  InsertGrowableList(cu, cu->ssa_base_vregs, v_reg);
+  InsertGrowableList(cu, cu->ssa_subscripts, subscript);
+  std::string ssa_name = GetSSAName(cu, ssa_reg);
+  char* name = static_cast<char*>(NewMem(cu, ssa_name.length() + 1, false, kAllocDFInfo));
+  strncpy(name, ssa_name.c_str(), ssa_name.length() + 1);
+  InsertGrowableList(cu, cu->ssa_strings, reinterpret_cast<uintptr_t>(name));
+  DCHECK_EQ(cu->ssa_base_vregs->num_used, cu->ssa_subscripts->num_used);
+  return ssa_reg;
+}
+
+/* Find out the latest SSA register for a given Dalvik register */
+static void HandleSSAUse(CompilationUnit* cu, int* uses, int dalvik_reg, int reg_index)
+{
+  DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu->num_dalvik_registers));
+  uses[reg_index] = cu->vreg_to_ssa_map[dalvik_reg];
+}
+
+/* Setup a new SSA register for a given Dalvik register */
+static void HandleSSADef(CompilationUnit* cu, int* defs, int dalvik_reg, int reg_index)
+{
+  DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu->num_dalvik_registers));
+  int ssa_reg = AddNewSReg(cu, dalvik_reg);
+  cu->vreg_to_ssa_map[dalvik_reg] = ssa_reg;
+  defs[reg_index] = ssa_reg;
+}
+
+/* Look up new SSA names for format_35c instructions */
+static void DataFlowSSAFormat35C(CompilationUnit* cu, MIR* mir)
+{
+  DecodedInstruction *d_insn = &mir->dalvikInsn;
+  int num_uses = d_insn->vA;
+  int i;
+
+  mir->ssa_rep->num_uses = num_uses;
+  mir->ssa_rep->uses = static_cast<int*>(NewMem(cu, sizeof(int) * num_uses, true, kAllocDFInfo));
+  // NOTE: will be filled in during type & size inference pass
+  mir->ssa_rep->fp_use = static_cast<bool*>(NewMem(cu, sizeof(bool) * num_uses, true,
+                                                 kAllocDFInfo));
+
+  for (i = 0; i < num_uses; i++) {
+    HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->arg[i], i);
+  }
+}
+
+/* Look up new SSA names for format_3rc instructions */
+static void DataFlowSSAFormat3RC(CompilationUnit* cu, MIR* mir)
+{
+  DecodedInstruction *d_insn = &mir->dalvikInsn;
+  int num_uses = d_insn->vA;
+  int i;
+
+  mir->ssa_rep->num_uses = num_uses;
+  mir->ssa_rep->uses = static_cast<int*>(NewMem(cu, sizeof(int) * num_uses, true, kAllocDFInfo));
+  // NOTE: will be filled in during type & size inference pass
+  mir->ssa_rep->fp_use = static_cast<bool*>(NewMem(cu, sizeof(bool) * num_uses, true,
+                                                 kAllocDFInfo));
+
+  for (i = 0; i < num_uses; i++) {
+    HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vC+i, i);
+  }
+}
+
+/* Entry function to convert a block into SSA representation */
+bool DoSSAConversion(CompilationUnit* cu, BasicBlock* bb)
+{
+  MIR* mir;
+
+  if (bb->data_flow_info == NULL) return false;
+
+  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    mir->ssa_rep = static_cast<struct SSARepresentation *>(NewMem(cu, sizeof(SSARepresentation),
+                                                                 true, kAllocDFInfo));
+
+    int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+
+      // If not a pseudo-op, note non-leaf or can throw
+    if (static_cast<int>(mir->dalvikInsn.opcode) <
+        static_cast<int>(kNumPackedOpcodes)) {
+      int flags = Instruction::FlagsOf(mir->dalvikInsn.opcode);
+
+      if (flags & Instruction::kThrow) {
+        cu->attrs &= ~METHOD_IS_THROW_FREE;
+      }
+
+      if (flags & Instruction::kInvoke) {
+        cu->attrs &= ~METHOD_IS_LEAF;
+      }
+    }
+
+    int num_uses = 0;
+
+    if (df_attributes & DF_FORMAT_35C) {
+      DataFlowSSAFormat35C(cu, mir);
+      continue;
+    }
+
+    if (df_attributes & DF_FORMAT_3RC) {
+      DataFlowSSAFormat3RC(cu, mir);
+      continue;
+    }
+
+    if (df_attributes & DF_HAS_USES) {
+      if (df_attributes & DF_UA) {
+        num_uses++;
+        if (df_attributes & DF_A_WIDE) {
+          num_uses ++;
+        }
+      }
+      if (df_attributes & DF_UB) {
+        num_uses++;
+        if (df_attributes & DF_B_WIDE) {
+          num_uses ++;
+        }
+      }
+      if (df_attributes & DF_UC) {
+        num_uses++;
+        if (df_attributes & DF_C_WIDE) {
+          num_uses ++;
+        }
+      }
+    }
+
+    if (num_uses) {
+      mir->ssa_rep->num_uses = num_uses;
+      mir->ssa_rep->uses = static_cast<int*>(NewMem(cu, sizeof(int) * num_uses, false,
+                                                   kAllocDFInfo));
+      mir->ssa_rep->fp_use = static_cast<bool*>(NewMem(cu, sizeof(bool) * num_uses, false,
+                                                     kAllocDFInfo));
+    }
+
+    int num_defs = 0;
+
+    if (df_attributes & DF_HAS_DEFS) {
+      num_defs++;
+      if (df_attributes & DF_A_WIDE) {
+        num_defs++;
+      }
+    }
+
+    if (num_defs) {
+      mir->ssa_rep->num_defs = num_defs;
+      mir->ssa_rep->defs = static_cast<int*>(NewMem(cu, sizeof(int) * num_defs, false,
+                                                   kAllocDFInfo));
+      mir->ssa_rep->fp_def = static_cast<bool*>(NewMem(cu, sizeof(bool) * num_defs, false,
+                                                     kAllocDFInfo));
+    }
+
+    DecodedInstruction *d_insn = &mir->dalvikInsn;
+
+    if (df_attributes & DF_HAS_USES) {
+      num_uses = 0;
+      if (df_attributes & DF_UA) {
+        mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
+        HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vA, num_uses++);
+        if (df_attributes & DF_A_WIDE) {
+          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
+          HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vA+1, num_uses++);
+        }
+      }
+      if (df_attributes & DF_UB) {
+        mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
+        HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vB, num_uses++);
+        if (df_attributes & DF_B_WIDE) {
+          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
+          HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vB+1, num_uses++);
+        }
+      }
+      if (df_attributes & DF_UC) {
+        mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
+        HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vC, num_uses++);
+        if (df_attributes & DF_C_WIDE) {
+          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
+          HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vC+1, num_uses++);
+        }
+      }
+    }
+    if (df_attributes & DF_HAS_DEFS) {
+      mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A;
+      HandleSSADef(cu, mir->ssa_rep->defs, d_insn->vA, 0);
+      if (df_attributes & DF_A_WIDE) {
+        mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A;
+        HandleSSADef(cu, mir->ssa_rep->defs, d_insn->vA+1, 1);
+      }
+    }
+  }
+
+  if (!cu->disable_dataflow) {
+    /*
+     * Take a snapshot of Dalvik->SSA mapping at the end of each block. The
+     * input to PHI nodes can be derived from the snapshot of all
+     * predecessor blocks.
+     */
+    bb->data_flow_info->vreg_to_ssa_map =
+        static_cast<int*>(NewMem(cu, sizeof(int) * cu->num_dalvik_registers, false,
+                                 kAllocDFInfo));
+
+    memcpy(bb->data_flow_info->vreg_to_ssa_map, cu->vreg_to_ssa_map,
+           sizeof(int) * cu->num_dalvik_registers);
+  }
+  return true;
+}
+
+/* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
+static void SetConstant(CompilationUnit* cu, int32_t ssa_reg, int value)
+{
+  SetBit(cu, cu->is_constant_v, ssa_reg);
+  cu->constant_values[ssa_reg] = value;
+}
+
+static void SetConstantWide(CompilationUnit* cu, int ssa_reg, int64_t value)
+{
+  SetBit(cu, cu->is_constant_v, ssa_reg);
+  cu->constant_values[ssa_reg] = Low32Bits(value);
+  cu->constant_values[ssa_reg + 1] = High32Bits(value);
+}
+
+bool DoConstantPropogation(CompilationUnit* cu, BasicBlock* bb)
+{
+  MIR* mir;
+  ArenaBitVector *is_constant_v = cu->is_constant_v;
+
+  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+
+    DecodedInstruction *d_insn = &mir->dalvikInsn;
+
+    if (!(df_attributes & DF_HAS_DEFS)) continue;
+
+    /* Handle instructions that set up constants directly */
+    if (df_attributes & DF_SETS_CONST) {
+      if (df_attributes & DF_DA) {
+        int32_t vB = static_cast<int32_t>(d_insn->vB);
+        switch (d_insn->opcode) {
+          case Instruction::CONST_4:
+          case Instruction::CONST_16:
+          case Instruction::CONST:
+            SetConstant(cu, mir->ssa_rep->defs[0], vB);
+            break;
+          case Instruction::CONST_HIGH16:
+            SetConstant(cu, mir->ssa_rep->defs[0], vB << 16);
+            break;
+          case Instruction::CONST_WIDE_16:
+          case Instruction::CONST_WIDE_32:
+            SetConstantWide(cu, mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
+            break;
+          case Instruction::CONST_WIDE:
+            SetConstantWide(cu, mir->ssa_rep->defs[0],d_insn->vB_wide);
+            break;
+          case Instruction::CONST_WIDE_HIGH16:
+            SetConstantWide(cu, mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
+            break;
+          default:
+            break;
+        }
+      }
+      /* Handle instructions that set up constants directly */
+    } else if (df_attributes & DF_IS_MOVE) {
+      int i;
+
+      for (i = 0; i < mir->ssa_rep->num_uses; i++) {
+        if (!IsBitSet(is_constant_v, mir->ssa_rep->uses[i])) break;
+      }
+      /* Move a register holding a constant to another register */
+      if (i == mir->ssa_rep->num_uses) {
+        SetConstant(cu, mir->ssa_rep->defs[0],
+                    cu->constant_values[mir->ssa_rep->uses[0]]);
+        if (df_attributes & DF_A_WIDE) {
+          SetConstant(cu, mir->ssa_rep->defs[1],
+                      cu->constant_values[mir->ssa_rep->uses[1]]);
+        }
+      }
+    } else if (df_attributes & DF_NULL_TRANSFER_N) {
+      /*
+       * Mark const sregs that appear in merges.  Need to flush those to home location.
+       * TUNING: instead of flushing on def, we could insert a flush on the appropriate
+       * edge[s].
+       */
+      DCHECK_EQ(static_cast<int32_t>(d_insn->opcode), kMirOpPhi);
+      for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
+        if (IsConst(cu, mir->ssa_rep->uses[i])) {
+          SetBit(cu, cu->must_flush_constant_v, mir->ssa_rep->uses[i]);
+        }
+      }
+    }
+  }
+  /* TODO: implement code to handle arithmetic operations */
+  return true;
+}
+
+/* Setup the basic data structures for SSA conversion */
+void CompilerInitializeSSAConversion(CompilationUnit* cu)
+{
+  int i;
+  int num_dalvik_reg = cu->num_dalvik_registers;
+
+  cu->ssa_base_vregs =
+      static_cast<GrowableList*>(NewMem(cu, sizeof(GrowableList), false, kAllocDFInfo));
+  cu->ssa_subscripts =
+      static_cast<GrowableList*>(NewMem(cu, sizeof(GrowableList), false, kAllocDFInfo));
+  cu->ssa_strings =
+      static_cast<GrowableList*>(NewMem(cu, sizeof(GrowableList), false, kAllocDFInfo));
+  // Create the ssa mappings, estimating the max size
+  CompilerInitGrowableList(cu, cu->ssa_base_vregs,
+                      num_dalvik_reg + cu->def_count + 128,
+                      kListSSAtoDalvikMap);
+  CompilerInitGrowableList(cu, cu->ssa_subscripts,
+                      num_dalvik_reg + cu->def_count + 128,
+                      kListSSAtoDalvikMap);
+  CompilerInitGrowableList(cu, cu->ssa_strings,
+                      num_dalvik_reg + cu->def_count + 128,
+                      kListSSAtoDalvikMap);
+  /*
+   * Initial number of SSA registers is equal to the number of Dalvik
+   * registers.
+   */
+  cu->num_ssa_regs = num_dalvik_reg;
+
+  /*
+   * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements,
+   * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
+   * into "(0 << 16) | i"
+   */
+  for (i = 0; i < num_dalvik_reg; i++) {
+    InsertGrowableList(cu, cu->ssa_base_vregs, i);
+    InsertGrowableList(cu, cu->ssa_subscripts, 0);
+    std::string ssa_name = GetSSAName(cu, i);
+    char* name = static_cast<char*>(NewMem(cu, ssa_name.length() + 1, true, kAllocDFInfo));
+    strncpy(name, ssa_name.c_str(), ssa_name.length() + 1);
+    InsertGrowableList(cu, cu->ssa_strings, reinterpret_cast<uintptr_t>(name));
+  }
+
+  /*
+   * Initialize the DalvikToSSAMap map. There is one entry for each
+   * Dalvik register, and the SSA names for those are the same.
+   */
+  cu->vreg_to_ssa_map =
+      static_cast<int*>(NewMem(cu, sizeof(int) * num_dalvik_reg, false, kAllocDFInfo));
+  /* Keep track of the higest def for each dalvik reg */
+  cu->ssa_last_defs =
+      static_cast<int*>(NewMem(cu, sizeof(int) * num_dalvik_reg, false, kAllocDFInfo));
+
+  for (i = 0; i < num_dalvik_reg; i++) {
+    cu->vreg_to_ssa_map[i] = i;
+    cu->ssa_last_defs[i] = 0;
+  }
+
+  /* Add ssa reg for Method* */
+  cu->method_sreg = AddNewSReg(cu, SSA_METHOD_BASEREG);
+
+  /*
+   * Allocate the BasicBlockDataFlow structure for the entry and code blocks
+   */
+  GrowableListIterator iterator;
+
+  GrowableListIteratorInit(&cu->block_list, &iterator);
+
+  while (true) {
+    BasicBlock* bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iterator));
+    if (bb == NULL) break;
+    if (bb->hidden == true) continue;
+    if (bb->block_type == kDalvikByteCode ||
+      bb->block_type == kEntryBlock ||
+      bb->block_type == kExitBlock) {
+      bb->data_flow_info = static_cast<BasicBlockDataFlow*>(NewMem(cu, sizeof(BasicBlockDataFlow),
+                                                                 true, kAllocDFInfo));
+      }
+  }
+}
+
+/* Clear the visited flag for each BB */
+bool ClearVisitedFlag(struct CompilationUnit* cu, struct BasicBlock* bb)
+{
+  bb->visited = false;
+  return true;
+}
+
+void DataFlowAnalysisDispatcher(CompilationUnit* cu,
+                                   bool (*func)(CompilationUnit*, BasicBlock*),
+                                   DataFlowAnalysisMode dfa_mode,
+                                   bool is_iterative)
+{
+  bool change = true;
+
+  while (change) {
+    change = false;
+
+    switch (dfa_mode) {
+      /* Scan all blocks and perform the operations specified in func */
+      case kAllNodes:
+        {
+          GrowableListIterator iterator;
+          GrowableListIteratorInit(&cu->block_list, &iterator);
+          while (true) {
+            BasicBlock* bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iterator));
+            if (bb == NULL) break;
+            if (bb->hidden == true) continue;
+              change |= (*func)(cu, bb);
+          }
+        }
+        break;
+      /* Scan reachable blocks and perform the ops specified in func. */
+      case kReachableNodes:
+        {
+          int num_reachable_blocks = cu->num_reachable_blocks;
+          int idx;
+          const GrowableList *block_list = &cu->block_list;
+
+          for (idx = 0; idx < num_reachable_blocks; idx++) {
+            int block_idx = cu->dfs_order.elem_list[idx];
+            BasicBlock* bb =
+                reinterpret_cast<BasicBlock*>( GrowableListGetElement(block_list, block_idx));
+            change |= (*func)(cu, bb);
+          }
+        }
+        break;
+
+      /* Scan reachable blocks by pre-order dfs and invoke func on each. */
+      case kPreOrderDFSTraversal:
+        {
+          int num_reachable_blocks = cu->num_reachable_blocks;
+          int idx;
+          const GrowableList *block_list = &cu->block_list;
+
+          for (idx = 0; idx < num_reachable_blocks; idx++) {
+            int dfs_idx = cu->dfs_order.elem_list[idx];
+            BasicBlock* bb =
+                reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, dfs_idx));
+            change |= (*func)(cu, bb);
+            }
+        }
+        break;
+      /* Scan reachable blocks post-order dfs and invoke func on each. */
+      case kPostOrderDFSTraversal:
+        {
+          int num_reachable_blocks = cu->num_reachable_blocks;
+          int idx;
+          const GrowableList *block_list = &cu->block_list;
+
+          for (idx = num_reachable_blocks - 1; idx >= 0; idx--) {
+            int dfs_idx = cu->dfs_order.elem_list[idx];
+            BasicBlock* bb =
+                reinterpret_cast<BasicBlock *>( GrowableListGetElement(block_list, dfs_idx));
+            change |= (*func)(cu, bb);
+            }
+        }
+        break;
+      /* Scan reachable post-order dom tree and invoke func on each. */
+      case kPostOrderDOMTraversal:
+        {
+          int num_reachable_blocks = cu->num_reachable_blocks;
+          int idx;
+          const GrowableList *block_list = &cu->block_list;
+
+          for (idx = 0; idx < num_reachable_blocks; idx++) {
+            int dom_idx = cu->dom_post_order_traversal.elem_list[idx];
+            BasicBlock* bb =
+                reinterpret_cast<BasicBlock*>( GrowableListGetElement(block_list, dom_idx));
+            change |= (*func)(cu, bb);
+          }
+        }
+        break;
+      /* Scan reachable blocks reverse post-order dfs, invoke func on each */
+      case kReversePostOrderTraversal:
+        {
+          int num_reachable_blocks = cu->num_reachable_blocks;
+          int idx;
+          const GrowableList *block_list = &cu->block_list;
+
+          for (idx = num_reachable_blocks - 1; idx >= 0; idx--) {
+            int rev_idx = cu->dfs_post_order.elem_list[idx];
+            BasicBlock* bb =
+                reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, rev_idx));
+            change |= (*func)(cu, bb);
+            }
+        }
+        break;
+      default:
+        LOG(FATAL) << "Unknown traversal mode: " << dfa_mode;
+    }
+    /* If is_iterative is false, exit the loop after the first iteration */
+    change &= is_iterative;
+  }
+}
+
+/* Advance to next strictly dominated MIR node in an extended basic block */
+static MIR* AdvanceMIR(CompilationUnit* cu, BasicBlock** p_bb, MIR* mir)
+{
+  BasicBlock* bb = *p_bb;
+  if (mir != NULL) {
+    mir = mir->next;
+    if (mir == NULL) {
+      bb = bb->fall_through;
+      if ((bb == NULL) || Predecessors(bb) != 1) {
+        mir = NULL;
+      } else {
+      *p_bb = bb;
+      mir = bb->first_mir_insn;
+      }
+    }
+  }
+  return mir;
+}
+
+/*
+ * To be used at an invoke mir.  If the logically next mir node represents
+ * a move-result, return it.  Else, return NULL.  If a move-result exists,
+ * it is required to immediately follow the invoke with no intervening
+ * opcodes or incoming arcs.  However, if the result of the invoke is not
+ * used, a move-result may not be present.
+ */
+MIR* FindMoveResult(CompilationUnit* cu, BasicBlock* bb, MIR* mir)
+{
+  BasicBlock* tbb = bb;
+  mir = AdvanceMIR(cu, &tbb, mir);
+  while (mir != NULL) {
+    int opcode = mir->dalvikInsn.opcode;
+    if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
+        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
+        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
+      break;
+    }
+    // Keep going if pseudo op, otherwise terminate
+    if (opcode < kNumPackedOpcodes) {
+      mir = NULL;
+    } else {
+      mir = AdvanceMIR(cu, &tbb, mir);
+    }
+  }
+  return mir;
+}
+
+static BasicBlock* NextDominatedBlock(CompilationUnit* cu, BasicBlock* bb)
+{
+  if (bb->block_type == kDead) {
+    return NULL;
+  }
+  DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
+      || (bb->block_type == kExitBlock));
+  bb = bb->fall_through;
+  if (bb == NULL || (Predecessors(bb) != 1)) {
+    return NULL;
+  }
+  DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
+  return bb;
+}
+
+static MIR* FindPhi(CompilationUnit* cu, BasicBlock* bb, int ssa_name)
+{
+  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
+      for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
+        if (mir->ssa_rep->uses[i] == ssa_name) {
+          return mir;
+        }
+      }
+    }
+  }
+  return NULL;
+}
+
+static SelectInstructionKind SelectKind(MIR* mir)
+{
+  switch (mir->dalvikInsn.opcode) {
+    case Instruction::MOVE:
+    case Instruction::MOVE_OBJECT:
+    case Instruction::MOVE_16:
+    case Instruction::MOVE_OBJECT_16:
+    case Instruction::MOVE_FROM16:
+    case Instruction::MOVE_OBJECT_FROM16:
+      return kSelectMove;
+   case Instruction::CONST:
+   case Instruction::CONST_4:
+   case Instruction::CONST_16:
+      return kSelectConst;
+   case Instruction::GOTO:
+   case Instruction::GOTO_16:
+   case Instruction::GOTO_32:
+      return kSelectGoto;
+   default:;
+  }
+  return kSelectNone;
+}
+
+/* Do some MIR-level extended basic block optimizations */
+static bool BasicBlockOpt(CompilationUnit* cu, BasicBlock* bb)
+{
+  if (bb->block_type == kDead) {
+    return true;
+  }
+  int num_temps = 0;
+  BBOpt bb_opt(cu);
+  while (bb != NULL) {
+    for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+      // TUNING: use the returned value number for CSE.
+      bb_opt.GetValueNumber(mir);
+      // Look for interesting opcodes, skip otherwise
+      Instruction::Code opcode = mir->dalvikInsn.opcode;
+      switch (opcode) {
+        case Instruction::CMPL_FLOAT:
+        case Instruction::CMPL_DOUBLE:
+        case Instruction::CMPG_FLOAT:
+        case Instruction::CMPG_DOUBLE:
+        case Instruction::CMP_LONG:
+          if (cu->gen_bitcode) {
+            // Bitcode doesn't allow this optimization.
+            break;
+          }
+          if (mir->next != NULL) {
+            MIR* mir_next = mir->next;
+            Instruction::Code br_opcode = mir_next->dalvikInsn.opcode;
+            ConditionCode ccode = kCondNv;
+            switch(br_opcode) {
+              case Instruction::IF_EQZ:
+                ccode = kCondEq;
+                break;
+              case Instruction::IF_NEZ:
+                ccode = kCondNe;
+                break;
+              case Instruction::IF_LTZ:
+                ccode = kCondLt;
+                break;
+              case Instruction::IF_GEZ:
+                ccode = kCondGe;
+                break;
+              case Instruction::IF_GTZ:
+                ccode = kCondGt;
+                break;
+              case Instruction::IF_LEZ:
+                ccode = kCondLe;
+                break;
+              default:
+                break;
+            }
+            // Make sure result of cmp is used by next insn and nowhere else
+            if ((ccode != kCondNv) &&
+                (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
+                (GetSSAUseCount(cu, mir->ssa_rep->defs[0]) == 1)) {
+              mir_next->dalvikInsn.arg[0] = ccode;
+              switch(opcode) {
+                case Instruction::CMPL_FLOAT:
+                  mir_next->dalvikInsn.opcode =
+                      static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
+                  break;
+                case Instruction::CMPL_DOUBLE:
+                  mir_next->dalvikInsn.opcode =
+                      static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
+                  break;
+                case Instruction::CMPG_FLOAT:
+                  mir_next->dalvikInsn.opcode =
+                      static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
+                  break;
+                case Instruction::CMPG_DOUBLE:
+                  mir_next->dalvikInsn.opcode =
+                      static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
+                  break;
+                case Instruction::CMP_LONG:
+                  mir_next->dalvikInsn.opcode =
+                      static_cast<Instruction::Code>(kMirOpFusedCmpLong);
+                  break;
+                default: LOG(ERROR) << "Unexpected opcode: " << opcode;
+              }
+              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
+              mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
+              mir_next->ssa_rep->uses = mir->ssa_rep->uses;
+              mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
+              mir_next->ssa_rep->num_defs = 0;
+              mir->ssa_rep->num_uses = 0;
+              mir->ssa_rep->num_defs = 0;
+            }
+          }
+          break;
+        case Instruction::GOTO:
+        case Instruction::GOTO_16:
+        case Instruction::GOTO_32:
+        case Instruction::IF_EQ:
+        case Instruction::IF_NE:
+        case Instruction::IF_LT:
+        case Instruction::IF_GE:
+        case Instruction::IF_GT:
+        case Instruction::IF_LE:
+        case Instruction::IF_EQZ:
+        case Instruction::IF_NEZ:
+        case Instruction::IF_LTZ:
+        case Instruction::IF_GEZ:
+        case Instruction::IF_GTZ:
+        case Instruction::IF_LEZ:
+          if (bb->taken->dominates_return) {
+            mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
+            if (cu->verbose) {
+              LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex << mir->offset;
+            }
+          }
+          break;
+        default:
+          break;
+      }
+      // Is this the select pattern?
+      // TODO: flesh out support for Mips and X86.  NOTE: llvm's select op doesn't quite work here.
+      // TUNING: expand to support IF_xx compare & branches
+      if (!cu->gen_bitcode && (cu->instruction_set == kThumb2) &&
+          ((mir->dalvikInsn.opcode == Instruction::IF_EQZ) ||
+          (mir->dalvikInsn.opcode == Instruction::IF_NEZ))) {
+        BasicBlock* ft = bb->fall_through;
+        DCHECK(ft != NULL);
+        BasicBlock* ft_ft = ft->fall_through;
+        BasicBlock* ft_tk = ft->taken;
+
+        BasicBlock* tk = bb->taken;
+        DCHECK(tk != NULL);
+        BasicBlock* tk_ft = tk->fall_through;
+        BasicBlock* tk_tk = tk->taken;
+
+        /*
+         * In the select pattern, the taken edge goes to a block that unconditionally
+         * transfers to the rejoin block and the fall_though edge goes to a block that
+         * unconditionally falls through to the rejoin block.
+         */
+        if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) &&
+            (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
+          /*
+           * Okay - we have the basic diamond shape.  At the very least, we can eliminate the
+           * suspend check on the taken-taken branch back to the join point.
+           */
+          if (SelectKind(tk->last_mir_insn) == kSelectGoto) {
+              tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK);
+          }
+          // Are the block bodies something we can handle?
+          if ((ft->first_mir_insn == ft->last_mir_insn) &&
+              (tk->first_mir_insn != tk->last_mir_insn) &&
+              (tk->first_mir_insn->next == tk->last_mir_insn) &&
+              ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
+              (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
+              (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
+              (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
+            // Almost there.  Are the instructions targeting the same vreg?
+            MIR* if_true = tk->first_mir_insn;
+            MIR* if_false = ft->first_mir_insn;
+            // It's possible that the target of the select isn't used - skip those (rare) cases.
+            MIR* phi = FindPhi(cu, tk_tk, if_true->ssa_rep->defs[0]);
+            if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
+              /*
+               * We'll convert the IF_EQZ/IF_NEZ to a SELECT.  We need to find the
+               * Phi node in the merge block and delete it (while using the SSA name
+               * of the merge as the target of the SELECT.  Delete both taken and
+               * fallthrough blocks, and set fallthrough to merge block.
+               * NOTE: not updating other dataflow info (no longer used at this point).
+               * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
+               */
+              if (opcode == Instruction::IF_NEZ) {
+                // Normalize.
+                MIR* tmp_mir = if_true;
+                if_true = if_false;
+                if_false = tmp_mir;
+              }
+              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
+              bool const_form = (SelectKind(if_true) == kSelectConst);
+              if ((SelectKind(if_true) == kSelectMove)) {
+                if (IsConst(cu, if_true->ssa_rep->uses[0]) &&
+                    IsConst(cu, if_false->ssa_rep->uses[0])) {
+                    const_form = true;
+                    if_true->dalvikInsn.vB = ConstantValue(cu, if_true->ssa_rep->uses[0]);
+                    if_false->dalvikInsn.vB = ConstantValue(cu, if_false->ssa_rep->uses[0]);
+                }
+              }
+              if (const_form) {
+                // "true" set val in vB
+                mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
+                // "false" set val in vC
+                mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
+              } else {
+                DCHECK_EQ(SelectKind(if_true), kSelectMove);
+                DCHECK_EQ(SelectKind(if_false), kSelectMove);
+                int* src_ssa = static_cast<int*>(NewMem(cu, sizeof(int) * 3, false,
+                                                 kAllocDFInfo));
+                src_ssa[0] = mir->ssa_rep->uses[0];
+                src_ssa[1] = if_true->ssa_rep->uses[0];
+                src_ssa[2] = if_false->ssa_rep->uses[0];
+                mir->ssa_rep->uses = src_ssa;
+                mir->ssa_rep->num_uses = 3;
+              }
+              mir->ssa_rep->num_defs = 1;
+              mir->ssa_rep->defs = static_cast<int*>(NewMem(cu, sizeof(int) * 1, false,
+                                                     kAllocDFInfo));
+              mir->ssa_rep->fp_def = static_cast<bool*>(NewMem(cu, sizeof(bool) * 1, false,
+                                                     kAllocDFInfo));
+              mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
+              /*
+               * There is usually a Phi node in the join block for our two cases.  If the
+               * Phi node only contains our two cases as input, we will use the result
+               * SSA name of the Phi node as our select result and delete the Phi.  If
+               * the Phi node has more than two operands, we will arbitrarily use the SSA
+               * name of the "true" path, delete the SSA name of the "false" path from the
+               * Phi node (and fix up the incoming arc list).
+               */
+              if (phi->ssa_rep->num_uses == 2) {
+                mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
+                phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
+              } else {
+                int dead_def = if_false->ssa_rep->defs[0];
+                int live_def = if_true->ssa_rep->defs[0];
+                mir->ssa_rep->defs[0] = live_def;
+                int* incoming = reinterpret_cast<int*>(phi->dalvikInsn.vB);
+                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
+                  if (phi->ssa_rep->uses[i] == live_def) {
+                    incoming[i] = bb->id;
+                  }
+                }
+                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
+                  if (phi->ssa_rep->uses[i] == dead_def) {
+                    int last_slot = phi->ssa_rep->num_uses - 1;
+                    phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot];
+                    incoming[i] = incoming[last_slot];
+                  }
+                }
+              }
+              phi->ssa_rep->num_uses--;
+              bb->taken = NULL;
+              tk->block_type = kDead;
+              for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) {
+                tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
+              }
+            }
+          }
+        }
+      }
+    }
+    bb = NextDominatedBlock(cu, bb);
+  }
+
+  if (num_temps > cu->num_compiler_temps) {
+    cu->num_compiler_temps = num_temps;
+  }
+  return true;
+}
+
+static bool NullCheckEliminationInit(struct CompilationUnit* cu, struct BasicBlock* bb)
+{
+  if (bb->data_flow_info == NULL) return false;
+  bb->data_flow_info->ending_null_check_v =
+      AllocBitVector(cu, cu->num_ssa_regs, false, kBitMapNullCheck);
+  ClearAllBits(bb->data_flow_info->ending_null_check_v);
+  return true;
+}
+
+/* Collect stats on number of checks removed */
+static bool CountChecks( struct CompilationUnit* cu, struct BasicBlock* bb)
+{
+  if (bb->data_flow_info == NULL) return false;
+  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    if (mir->ssa_rep == NULL) {
+      continue;
+    }
+    int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+    if (df_attributes & DF_HAS_NULL_CHKS) {
+      cu->checkstats->null_checks++;
+      if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
+        cu->checkstats->null_checks_eliminated++;
+      }
+    }
+    if (df_attributes & DF_HAS_RANGE_CHKS) {
+      cu->checkstats->range_checks++;
+      if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
+        cu->checkstats->range_checks_eliminated++;
+      }
+    }
+  }
+  return false;
+}
+
+/* Try to make common case the fallthrough path */
+static bool LayoutBlocks(struct CompilationUnit* cu, struct BasicBlock* bb)
+{
+  // TODO: For now, just looking for direct throws.  Consider generalizing for profile feedback
+  if (!bb->explicit_throw) {
+    return false;
+  }
+  BasicBlock* walker = bb;
+  while (true) {
+    // Check termination conditions
+    if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
+      break;
+    }
+    BasicBlock* prev = GET_ELEM_N(walker->predecessors, BasicBlock*, 0);
+    if (prev->conditional_branch) {
+      if (prev->fall_through == walker) {
+        // Already done - return
+        break;
+      }
+      DCHECK_EQ(walker, prev->taken);
+      // Got one.  Flip it and exit
+      Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
+      switch (opcode) {
+        case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
+        case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
+        case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
+        case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
+        case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
+        case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
+        case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
+        case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
+        case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
+        case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
+        case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
+        case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
+        default: LOG(FATAL) << "Unexpected opcode " << opcode;
+      }
+      prev->last_mir_insn->dalvikInsn.opcode = opcode;
+      BasicBlock* t_bb = prev->taken;
+      prev->taken = prev->fall_through;
+      prev->fall_through = t_bb;
+      break;
+    }
+    walker = prev;
+  }
+  return false;
+}
+
+/* Combine any basic blocks terminated by instructions that we now know can't throw */
+static bool CombineBlocks(struct CompilationUnit* cu, struct BasicBlock* bb)
+{
+  // Loop here to allow combining a sequence of blocks
+  while (true) {
+    // Check termination conditions
+    if ((bb->first_mir_insn == NULL)
+        || (bb->data_flow_info == NULL)
+        || (bb->block_type == kExceptionHandling)
+        || (bb->block_type == kExitBlock)
+        || (bb->block_type == kDead)
+        || ((bb->taken == NULL) || (bb->taken->block_type != kExceptionHandling))
+        || (bb->successor_block_list.block_list_type != kNotUsed)
+        || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) {
+      break;
+    }
+
+    // Test the kMirOpCheck instruction
+    MIR* mir = bb->last_mir_insn;
+    // Grab the attributes from the paired opcode
+    MIR* throw_insn = mir->meta.throw_insn;
+    int df_attributes = oat_data_flow_attributes[throw_insn->dalvikInsn.opcode];
+    bool can_combine = true;
+    if (df_attributes & DF_HAS_NULL_CHKS) {
+      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0);
+    }
+    if (df_attributes & DF_HAS_RANGE_CHKS) {
+      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0);
+    }
+    if (!can_combine) {
+      break;
+    }
+    // OK - got one.  Combine
+    BasicBlock* bb_next = bb->fall_through;
+    DCHECK(!bb_next->catch_entry);
+    DCHECK_EQ(Predecessors(bb_next), 1U);
+    MIR* t_mir = bb->last_mir_insn->prev;
+    // Overwrite the kOpCheck insn with the paired opcode
+    DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
+    *bb->last_mir_insn = *throw_insn;
+    bb->last_mir_insn->prev = t_mir;
+    // Use the successor info from the next block
+    bb->successor_block_list = bb_next->successor_block_list;
+    // Use the ending block linkage from the next block
+    bb->fall_through = bb_next->fall_through;
+    bb->taken->block_type = kDead;  // Kill the unused exception block
+    bb->taken = bb_next->taken;
+    // Include the rest of the instructions
+    bb->last_mir_insn = bb_next->last_mir_insn;
+    /*
+     * If lower-half of pair of blocks to combine contained a return, move the flag
+     * to the newly combined block.
+     */
+    bb->terminated_by_return = bb_next->terminated_by_return;
+
+    /*
+     * NOTE: we aren't updating all dataflow info here.  Should either make sure this pass
+     * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
+     */
+
+    // Kill bb_next and remap now-dead id to parent
+    bb_next->block_type = kDead;
+    cu->block_id_map.Overwrite(bb_next->id, bb->id);
+
+    // Now, loop back and see if we can keep going
+  }
+  return false;
+}
+
+/* Eliminate unnecessary null checks for a basic block. */
+static bool EliminateNullChecks( struct CompilationUnit* cu, struct BasicBlock* bb)
+{
+  if (bb->data_flow_info == NULL) return false;
+
+  /*
+   * Set initial state.  Be conservative with catch
+   * blocks and start with no assumptions about null check
+   * status (except for "this").
+   */
+  if ((bb->block_type == kEntryBlock) | bb->catch_entry) {
+    ClearAllBits(cu->temp_ssa_register_v);
+    if ((cu->access_flags & kAccStatic) == 0) {
+      // If non-static method, mark "this" as non-null
+      int this_reg = cu->num_dalvik_registers - cu->num_ins;
+      SetBit(cu, cu->temp_ssa_register_v, this_reg);
+    }
+  } else {
+    // Starting state is intesection of all incoming arcs
+    GrowableListIterator iter;
+    GrowableListIteratorInit(bb->predecessors, &iter);
+    BasicBlock* pred_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter));
+    DCHECK(pred_bb != NULL);
+    CopyBitVector(cu->temp_ssa_register_v,
+                     pred_bb->data_flow_info->ending_null_check_v);
+    while (true) {
+      pred_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter));
+      if (!pred_bb) break;
+      if ((pred_bb->data_flow_info == NULL) ||
+          (pred_bb->data_flow_info->ending_null_check_v == NULL)) {
+        continue;
+      }
+      IntersectBitVectors(cu->temp_ssa_register_v,
+                             cu->temp_ssa_register_v,
+                             pred_bb->data_flow_info->ending_null_check_v);
+    }
+  }
+
+  // Walk through the instruction in the block, updating as necessary
+  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    if (mir->ssa_rep == NULL) {
+        continue;
+    }
+    int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+
+    // Mark target of NEW* as non-null
+    if (df_attributes & DF_NON_NULL_DST) {
+      SetBit(cu, cu->temp_ssa_register_v, mir->ssa_rep->defs[0]);
+    }
+
+    // Mark non-null returns from invoke-style NEW*
+    if (df_attributes & DF_NON_NULL_RET) {
+      MIR* next_mir = mir->next;
+      // Next should be an MOVE_RESULT_OBJECT
+      if (next_mir &&
+          next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
+        // Mark as null checked
+        SetBit(cu, cu->temp_ssa_register_v, next_mir->ssa_rep->defs[0]);
+      } else {
+        if (next_mir) {
+          LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
+        } else if (bb->fall_through) {
+          // Look in next basic block
+          struct BasicBlock* next_bb = bb->fall_through;
+          for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL;
+            tmir =tmir->next) {
+            if (static_cast<int>(tmir->dalvikInsn.opcode) >= static_cast<int>(kMirOpFirst)) {
+              continue;
+            }
+            // First non-pseudo should be MOVE_RESULT_OBJECT
+            if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
+              // Mark as null checked
+              SetBit(cu, cu->temp_ssa_register_v, tmir->ssa_rep->defs[0]);
+            } else {
+              LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode;
+            }
+            break;
+          }
+        }
+      }
+    }
+
+    /*
+     * Propagate nullcheck state on register copies (including
+     * Phi pseudo copies.  For the latter, nullcheck state is
+     * the "and" of all the Phi's operands.
+     */
+    if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) {
+      int tgt_sreg = mir->ssa_rep->defs[0];
+      int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 :
+          mir->ssa_rep->num_uses;
+      bool null_checked = true;
+      for (int i = 0; i < operands; i++) {
+        null_checked &= IsBitSet(cu->temp_ssa_register_v,
+        mir->ssa_rep->uses[i]);
+      }
+      if (null_checked) {
+        SetBit(cu, cu->temp_ssa_register_v, tgt_sreg);
+      }
+    }
+
+    // Already nullchecked?
+    if ((df_attributes & DF_HAS_NULL_CHKS) && !(mir->optimization_flags & MIR_IGNORE_NULL_CHECK)) {
+      int src_idx;
+      if (df_attributes & DF_NULL_CHK_1) {
+        src_idx = 1;
+      } else if (df_attributes & DF_NULL_CHK_2) {
+        src_idx = 2;
+      } else {
+        src_idx = 0;
+      }
+      int src_sreg = mir->ssa_rep->uses[src_idx];
+        if (IsBitSet(cu->temp_ssa_register_v, src_sreg)) {
+          // Eliminate the null check
+          mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
+        } else {
+          // Mark s_reg as null-checked
+          SetBit(cu, cu->temp_ssa_register_v, src_sreg);
+        }
+     }
+  }
+
+  // Did anything change?
+  bool res = CompareBitVectors(bb->data_flow_info->ending_null_check_v,
+                                  cu->temp_ssa_register_v);
+  if (res) {
+    CopyBitVector(bb->data_flow_info->ending_null_check_v,
+                     cu->temp_ssa_register_v);
+  }
+  return res;
+}
+
+void NullCheckElimination(CompilationUnit *cu)
+{
+  if (!(cu->disable_opt & (1 << kNullCheckElimination))) {
+    DCHECK(cu->temp_ssa_register_v != NULL);
+    DataFlowAnalysisDispatcher(cu, NullCheckEliminationInit, kAllNodes,
+                                  false /* is_iterative */);
+    DataFlowAnalysisDispatcher(cu, EliminateNullChecks,
+                                  kPreOrderDFSTraversal,
+                                  true /* is_iterative */);
+  }
+}
+
+void BasicBlockCombine(CompilationUnit* cu)
+{
+  DataFlowAnalysisDispatcher(cu, CombineBlocks, kPreOrderDFSTraversal, false);
+}
+
+void CodeLayout(CompilationUnit* cu)
+{
+  DataFlowAnalysisDispatcher(cu, LayoutBlocks, kAllNodes, false);
+}
+
+void DumpCheckStats(CompilationUnit *cu)
+{
+  Checkstats* stats =
+      static_cast<Checkstats*>(NewMem(cu, sizeof(Checkstats), true, kAllocDFInfo));
+  cu->checkstats = stats;
+  DataFlowAnalysisDispatcher(cu, CountChecks, kAllNodes, false /* is_iterative */);
+  if (stats->null_checks > 0) {
+    float eliminated = static_cast<float>(stats->null_checks_eliminated);
+    float checks = static_cast<float>(stats->null_checks);
+    LOG(INFO) << "Null Checks: " << PrettyMethod(cu->method_idx, *cu->dex_file) << " "
+              << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
+              << (eliminated/checks) * 100.0 << "%";
+    }
+  if (stats->range_checks > 0) {
+    float eliminated = static_cast<float>(stats->range_checks_eliminated);
+    float checks = static_cast<float>(stats->range_checks);
+    LOG(INFO) << "Range Checks: " << PrettyMethod(cu->method_idx, *cu->dex_file) << " "
+              << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
+              << (eliminated/checks) * 100.0 << "%";
+  }
+}
+
+bool BuildExtendedBBList(struct CompilationUnit* cu, struct BasicBlock* bb)
+{
+  if (bb->visited) return false;
+  if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
+      || (bb->block_type == kExitBlock))) {
+    // Ignore special blocks
+    bb->visited = true;
+    return false;
+  }
+  // Must be head of extended basic block.
+  BasicBlock* start_bb = bb;
+  cu->extended_basic_blocks.push_back(bb);
+  bool terminated_by_return = false;
+  // Visit blocks strictly dominated by this head.
+  while (bb != NULL) {
+    bb->visited = true;
+    terminated_by_return |= bb->terminated_by_return;
+    bb = NextDominatedBlock(cu, bb);
+  }
+  if (terminated_by_return) {
+    // This extended basic block contains a return, so mark all members.
+    bb = start_bb;
+    while (bb != NULL) {
+      bb->dominates_return = true;
+      bb = NextDominatedBlock(cu, bb);
+    }
+  }
+  return false; // Not iterative - return value will be ignored
+}
+
+void BasicBlockOptimization(CompilationUnit *cu)
+{
+  if (!(cu->disable_opt & (1 << kBBOpt))) {
+    CompilerInitGrowableList(cu, &cu->compiler_temps, 6, kListMisc);
+    DCHECK_EQ(cu->num_compiler_temps, 0);
+    // Mark all blocks as not visited
+    DataFlowAnalysisDispatcher(cu, ClearVisitedFlag,
+                                  kAllNodes, false /* is_iterative */);
+    DataFlowAnalysisDispatcher(cu, BuildExtendedBBList,
+                                  kPreOrderDFSTraversal,
+                                  false /* is_iterative */);
+    // Perform extended basic block optimizations.
+    for (unsigned int i = 0; i < cu->extended_basic_blocks.size(); i++) {
+      BasicBlockOpt(cu, cu->extended_basic_blocks[i]);
+    }
+  }
+}
+
+static void AddLoopHeader(CompilationUnit* cu, BasicBlock* header,
+                          BasicBlock* back_edge)
+{
+  GrowableListIterator iter;
+  GrowableListIteratorInit(&cu->loop_headers, &iter);
+  for (LoopInfo* loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter));
+      (loop != NULL); loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter))) {
+    if (loop->header == header) {
+      InsertGrowableList(cu, &loop->incoming_back_edges,
+                            reinterpret_cast<uintptr_t>(back_edge));
+      return;
+    }
+  }
+  LoopInfo* info = static_cast<LoopInfo*>(NewMem(cu, sizeof(LoopInfo), true, kAllocDFInfo));
+  info->header = header;
+  CompilerInitGrowableList(cu, &info->incoming_back_edges, 2, kListMisc);
+  InsertGrowableList(cu, &info->incoming_back_edges, reinterpret_cast<uintptr_t>(back_edge));
+  InsertGrowableList(cu, &cu->loop_headers, reinterpret_cast<uintptr_t>(info));
+}
+
+static bool FindBackEdges(struct CompilationUnit* cu, struct BasicBlock* bb)
+{
+  if ((bb->data_flow_info == NULL) || (bb->last_mir_insn == NULL)) {
+    return false;
+  }
+  Instruction::Code opcode = bb->last_mir_insn->dalvikInsn.opcode;
+  if (Instruction::FlagsOf(opcode) & Instruction::kBranch) {
+    if (bb->taken && (bb->taken->start_offset <= bb->start_offset)) {
+      DCHECK(bb->dominators != NULL);
+      if (IsBitSet(bb->dominators, bb->taken->id)) {
+        if (cu->verbose) {
+          LOG(INFO) << "Loop backedge from 0x"
+                    << std::hex << bb->last_mir_insn->offset
+                    << " to 0x" << std::hex << bb->taken->start_offset;
+        }
+        AddLoopHeader(cu, bb->taken, bb);
+      }
+    }
+  }
+  return false;
+}
+
+static void AddBlocksToLoop(CompilationUnit* cu, ArenaBitVector* blocks,
+                            BasicBlock* bb, int head_id)
+{
+  if (!IsBitSet(bb->dominators, head_id) ||
+    IsBitSet(blocks, bb->id)) {
+    return;
+  }
+  SetBit(cu, blocks, bb->id);
+  GrowableListIterator iter;
+  GrowableListIteratorInit(bb->predecessors, &iter);
+  BasicBlock* pred_bb;
+  for (pred_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter)); pred_bb != NULL;
+       pred_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter))) {
+    AddBlocksToLoop(cu, blocks, pred_bb, head_id);
+  }
+}
+
+static void DumpLoops(CompilationUnit *cu)
+{
+  GrowableListIterator iter;
+  GrowableListIteratorInit(&cu->loop_headers, &iter);
+  for (LoopInfo* loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter));
+      (loop != NULL); loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter))) {
+    LOG(INFO) << "Loop head block id " << loop->header->id
+              << ", offset 0x" << std::hex << loop->header->start_offset
+              << ", Depth: " << loop->header->nesting_depth;
+    GrowableListIterator iter;
+    GrowableListIteratorInit(&loop->incoming_back_edges, &iter);
+    BasicBlock* edge_bb;
+    for (edge_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter)); edge_bb != NULL;
+         edge_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter))) {
+      LOG(INFO) << "    Backedge block id " << edge_bb->id
+                << ", offset 0x" << std::hex << edge_bb->start_offset;
+      ArenaBitVectorIterator b_iter;
+      BitVectorIteratorInit(loop->blocks, &b_iter);
+      for (int bb_id = BitVectorIteratorNext(&b_iter); bb_id != -1;
+           bb_id = BitVectorIteratorNext(&b_iter)) {
+        BasicBlock *bb;
+        bb = reinterpret_cast<BasicBlock*>(GrowableListGetElement(&cu->block_list, bb_id));
+        LOG(INFO) << "        (" << bb->id << ", 0x" << std::hex
+                  << bb->start_offset << ")";
+      }
+    }
+  }
+}
+
+void LoopDetection(CompilationUnit *cu)
+{
+  if (cu->disable_opt & (1 << kPromoteRegs)) {
+    return;
+  }
+  CompilerInitGrowableList(cu, &cu->loop_headers, 6, kListMisc);
+  // Find the loop headers
+  DataFlowAnalysisDispatcher(cu, FindBackEdges, kAllNodes, false /* is_iterative */);
+  GrowableListIterator iter;
+  GrowableListIteratorInit(&cu->loop_headers, &iter);
+  // Add blocks to each header
+  for (LoopInfo* loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter));
+       loop != NULL; loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter))) {
+    loop->blocks = AllocBitVector(cu, cu->num_blocks, true,
+                                     kBitMapMisc);
+    SetBit(cu, loop->blocks, loop->header->id);
+    GrowableListIterator iter;
+    GrowableListIteratorInit(&loop->incoming_back_edges, &iter);
+    BasicBlock* edge_bb;
+    for (edge_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter)); edge_bb != NULL;
+         edge_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter))) {
+      AddBlocksToLoop(cu, loop->blocks, edge_bb, loop->header->id);
+    }
+  }
+  // Compute the nesting depth of each header
+  GrowableListIteratorInit(&cu->loop_headers, &iter);
+  for (LoopInfo* loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter));
+       loop != NULL; loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter))) {
+    GrowableListIterator iter2;
+    GrowableListIteratorInit(&cu->loop_headers, &iter2);
+    LoopInfo* loop2;
+    for (loop2 = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter2));
+         loop2 != NULL; loop2 = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter2))) {
+      if (IsBitSet(loop2->blocks, loop->header->id)) {
+         loop->header->nesting_depth++;
+      }
+    }
+  }
+  // Assign nesting depth to each block in all loops
+  GrowableListIteratorInit(&cu->loop_headers, &iter);
+  for (LoopInfo* loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter));
+       (loop != NULL); loop = reinterpret_cast<LoopInfo*>(GrowableListIteratorNext(&iter))) {
+    ArenaBitVectorIterator b_iter;
+    BitVectorIteratorInit(loop->blocks, &b_iter);
+    for (int bb_id = BitVectorIteratorNext(&b_iter); bb_id != -1;
+        bb_id = BitVectorIteratorNext(&b_iter)) {
+      BasicBlock *bb;
+      bb = reinterpret_cast<BasicBlock*>(GrowableListGetElement(&cu->block_list, bb_id));
+      bb->nesting_depth = std::max(bb->nesting_depth,
+                                  loop->header->nesting_depth);
+    }
+  }
+  if (cu->verbose) {
+    DumpLoops(cu);
+  }
+}
+
+/*
+ * This function will make a best guess at whether the invoke will
+ * end up using Method*.  It isn't critical to get it exactly right,
+ * and attempting to do would involve more complexity than it's
+ * worth.
+ */
+static bool InvokeUsesMethodStar(CompilationUnit* cu, MIR* mir)
+{
+  InvokeType type;
+  Instruction::Code opcode = mir->dalvikInsn.opcode;
+  switch (opcode) {
+    case Instruction::INVOKE_STATIC:
+    case Instruction::INVOKE_STATIC_RANGE:
+      type = kStatic;
+      break;
+    case Instruction::INVOKE_DIRECT:
+    case Instruction::INVOKE_DIRECT_RANGE:
+      type = kDirect;
+      break;
+    case Instruction::INVOKE_VIRTUAL:
+    case Instruction::INVOKE_VIRTUAL_RANGE:
+      type = kVirtual;
+      break;
+    case Instruction::INVOKE_INTERFACE:
+    case Instruction::INVOKE_INTERFACE_RANGE:
+      return false;
+    case Instruction::INVOKE_SUPER_RANGE:
+    case Instruction::INVOKE_SUPER:
+      type = kSuper;
+      break;
+    default:
+      LOG(WARNING) << "Unexpected invoke op: " << opcode;
+      return false;
+  }
+  OatCompilationUnit m_unit(cu->class_loader, cu->class_linker,
+                            *cu->dex_file, cu->code_item,
+                            cu->class_def_idx, cu->method_idx,
+                            cu->access_flags);
+  // TODO: add a flag so we don't counts the stats for this twice
+  uint32_t dex_method_idx = mir->dalvikInsn.vB;
+  int vtable_idx;
+  uintptr_t direct_code;
+  uintptr_t direct_method;
+  bool fast_path =
+      cu->compiler->ComputeInvokeInfo(dex_method_idx, &m_unit, type,
+                                         vtable_idx, direct_code,
+                                         direct_method) &&
+      !SLOW_INVOKE_PATH;
+  return (((type == kDirect) || (type == kStatic)) &&
+          fast_path && ((direct_code == 0) || (direct_method == 0)));
+}
+
+/*
+ * Count uses, weighting by loop nesting depth.  This code only
+ * counts explicitly used s_regs.  A later phase will add implicit
+ * counts for things such as Method*, null-checked references, etc.
+ */
+static bool CountUses(struct CompilationUnit* cu, struct BasicBlock* bb)
+{
+  if (bb->block_type != kDalvikByteCode) {
+    return false;
+  }
+  for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) {
+    if (mir->ssa_rep == NULL) {
+      continue;
+    }
+    uint32_t weight = std::min(16U, static_cast<uint32_t>(bb->nesting_depth));
+    for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
+      int s_reg = mir->ssa_rep->uses[i];
+      DCHECK_LT(s_reg, static_cast<int>(cu->use_counts.num_used));
+      cu->raw_use_counts.elem_list[s_reg]++;
+      cu->use_counts.elem_list[s_reg] += (1 << weight);
+    }
+    if (!(cu->disable_opt & (1 << kPromoteCompilerTemps))) {
+      int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+      // Implicit use of Method* ? */
+      if (df_attributes & DF_UMS) {
+        /*
+         * Some invokes will not use Method* - need to perform test similar
+         * to that found in GenInvoke() to decide whether to count refs
+         * for Method* on invoke-class opcodes.
+         * TODO: refactor for common test here, save results for GenInvoke
+         */
+        int uses_method_star = true;
+        if ((df_attributes & (DF_FORMAT_35C | DF_FORMAT_3RC)) &&
+            !(df_attributes & DF_NON_NULL_RET)) {
+          uses_method_star &= InvokeUsesMethodStar(cu, mir);
+        }
+        if (uses_method_star) {
+          cu->raw_use_counts.elem_list[cu->method_sreg]++;
+          cu->use_counts.elem_list[cu->method_sreg] += (1 << weight);
+        }
+      }
+    }
+  }
+  return false;
+}
+
+void MethodUseCount(CompilationUnit *cu)
+{
+  CompilerInitGrowableList(cu, &cu->use_counts, cu->num_ssa_regs + 32, kListMisc);
+  CompilerInitGrowableList(cu, &cu->raw_use_counts, cu->num_ssa_regs + 32, kListMisc);
+  // Initialize list
+  for (int i = 0; i < cu->num_ssa_regs; i++) {
+    InsertGrowableList(cu, &cu->use_counts, 0);
+    InsertGrowableList(cu, &cu->raw_use_counts, 0);
+  }
+  if (cu->disable_opt & (1 << kPromoteRegs)) {
+    return;
+  }
+  DataFlowAnalysisDispatcher(cu, CountUses,
+                                kAllNodes, false /* is_iterative */);
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/dataflow.h b/src/compiler/dex/dataflow.h
new file mode 100644
index 0000000..5bf97ec
--- /dev/null
+++ b/src/compiler/dex/dataflow.h
@@ -0,0 +1,182 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_DATAFLOW_H_
+#define ART_SRC_COMPILER_DEX_DATAFLOW_H_
+
+#include "compiler_internals.h"
+
+namespace art {
+
+enum DataFlowAttributePos {
+  kUA = 0,
+  kUB,
+  kUC,
+  kAWide,
+  kBWide,
+  kCWide,
+  kDA,
+  kIsMove,
+  kSetsConst,
+  kFormat35c,
+  kFormat3rc,
+  kNullCheckSrc0,        // Null check of uses[0].
+  kNullCheckSrc1,        // Null check of uses[1].
+  kNullCheckSrc2,        // Null check of uses[2].
+  kNullCheckOut0,        // Null check out outgoing arg0.
+  kDstNonNull,           // May assume dst is non-null.
+  kRetNonNull,           // May assume retval is non-null.
+  kNullTransferSrc0,     // Object copy src[0] -> dst.
+  kNullTransferSrcN,     // Phi null check state transfer.
+  kRangeCheckSrc1,       // Range check of uses[1].
+  kRangeCheckSrc2,       // Range check of uses[2].
+  kRangeCheckSrc3,       // Range check of uses[3].
+  kFPA,
+  kFPB,
+  kFPC,
+  kCoreA,
+  kCoreB,
+  kCoreC,
+  kRefA,
+  kRefB,
+  kRefC,
+  kUsesMethodStar,       // Implicit use of Method*.
+};
+
+#define DF_NOP                  0
+#define DF_UA                   (1 << kUA)
+#define DF_UB                   (1 << kUB)
+#define DF_UC                   (1 << kUC)
+#define DF_A_WIDE               (1 << kAWide)
+#define DF_B_WIDE               (1 << kBWide)
+#define DF_C_WIDE               (1 << kCWide)
+#define DF_DA                   (1 << kDA)
+#define DF_IS_MOVE              (1 << kIsMove)
+#define DF_SETS_CONST           (1 << kSetsConst)
+#define DF_FORMAT_35C           (1 << kFormat35c)
+#define DF_FORMAT_3RC           (1 << kFormat3rc)
+#define DF_NULL_CHK_0           (1 << kNullCheckSrc0)
+#define DF_NULL_CHK_1           (1 << kNullCheckSrc1)
+#define DF_NULL_CHK_2           (1 << kNullCheckSrc2)
+#define DF_NULL_CHK_OUT0        (1 << kNullCheckOut0)
+#define DF_NON_NULL_DST         (1 << kDstNonNull)
+#define DF_NON_NULL_RET         (1 << kRetNonNull)
+#define DF_NULL_TRANSFER_0      (1 << kNullTransferSrc0)
+#define DF_NULL_TRANSFER_N      (1 << kNullTransferSrcN)
+#define DF_RANGE_CHK_1          (1 << kRangeCheckSrc1)
+#define DF_RANGE_CHK_2          (1 << kRangeCheckSrc2)
+#define DF_RANGE_CHK_3          (1 << kRangeCheckSrc3)
+#define DF_FP_A                 (1 << kFPA)
+#define DF_FP_B                 (1 << kFPB)
+#define DF_FP_C                 (1 << kFPC)
+#define DF_CORE_A               (1 << kCoreA)
+#define DF_CORE_B               (1 << kCoreB)
+#define DF_CORE_C               (1 << kCoreC)
+#define DF_REF_A                (1 << kRefA)
+#define DF_REF_B                (1 << kRefB)
+#define DF_REF_C                (1 << kRefC)
+#define DF_UMS                  (1 << kUsesMethodStar)
+
+#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
+
+#define DF_HAS_DEFS             (DF_DA)
+
+#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
+                                 DF_NULL_CHK_1 | \
+                                 DF_NULL_CHK_2 | \
+                                 DF_NULL_CHK_OUT0)
+
+#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
+                                 DF_RANGE_CHK_2 | \
+                                 DF_RANGE_CHK_3)
+
+#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
+                                 DF_HAS_RANGE_CHKS)
+
+#define DF_A_IS_REG             (DF_UA | DF_DA)
+#define DF_B_IS_REG             (DF_UB)
+#define DF_C_IS_REG             (DF_UC)
+#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
+#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
+
+extern const int oat_data_flow_attributes[kMirOpLast];
+
+struct BasicBlockDataFlow {
+  ArenaBitVector* use_v;
+  ArenaBitVector* def_v;
+  ArenaBitVector* live_in_v;
+  ArenaBitVector* phi_v;
+  int* vreg_to_ssa_map;
+  ArenaBitVector* ending_null_check_v;
+};
+
+struct SSARepresentation {
+  int num_uses;
+  int* uses;
+  bool* fp_use;
+  int num_defs;
+  int* defs;
+  bool* fp_def;
+};
+
+/*
+ * An induction variable is represented by "m*i + c", where i is a basic
+ * induction variable.
+ */
+struct InductionVariableInfo {
+  int ssa_reg;
+  int basic_ssa_reg;
+  int m;      // multiplier
+  int c;      // constant
+  int inc;    // loop increment
+};
+
+struct ArrayAccessInfo {
+  int array_reg;
+  int iv_reg;
+  int max_c;                   // For DIV - will affect upper bound checking.
+  int min_c;                   // For DIV - will affect lower bound checking.
+};
+
+struct LoopInfo {
+  BasicBlock* header;
+  GrowableList incoming_back_edges;
+  ArenaBitVector* blocks;
+};
+
+static inline unsigned int Predecessors(BasicBlock* bb) {return bb->predecessors->num_used;}
+
+int SRegToVReg(const CompilationUnit* cu, int ssa_reg);
+char* GetDalvikDisassembly(CompilationUnit* cu, const MIR* mir);
+bool FindLocalLiveIn(CompilationUnit* cu, BasicBlock* bb);
+bool DoSSAConversion(CompilationUnit* cu, BasicBlock* bb);
+bool DoConstantPropogation(CompilationUnit* cu, BasicBlock* bb);
+void CompilerInitializeSSAConversion(CompilationUnit* cu);
+bool ClearVisitedFlag(struct CompilationUnit* cu, struct BasicBlock* bb);
+void DataFlowAnalysisDispatcher(CompilationUnit* cu, bool (*func)(CompilationUnit*, BasicBlock*),
+                                DataFlowAnalysisMode dfa_mode, bool is_iterative);
+MIR* FindMoveResult(CompilationUnit* cu, BasicBlock* bb, MIR* mir);
+void NullCheckElimination(CompilationUnit *cu);
+void BasicBlockCombine(CompilationUnit* cu);
+void CodeLayout(CompilationUnit* cu);
+void DumpCheckStats(CompilationUnit *cu);
+void BasicBlockOptimization(CompilationUnit *cu);
+void LoopDetection(CompilationUnit *cu);
+void MethodUseCount(CompilationUnit *cu);
+
+}  // namespace art
+
+#endif  // ART_SRC_COMPILER_DEX_DATAFLOW_H_
diff --git a/src/compiler/dex/frontend.cc b/src/compiler/dex/frontend.cc
new file mode 100644
index 0000000..498600f
--- /dev/null
+++ b/src/compiler/dex/frontend.cc
@@ -0,0 +1,1253 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler.h"
+#include "compiler_internals.h"
+#include "dataflow.h"
+#include "ssa_transformation.h"
+#include "leb128.h"
+#include "mirror/object.h"
+#include "runtime.h"
+#include "quick/codegen_util.h"
+#include "portable/mir_to_gbc.h"
+#include "quick/mir_to_lir.h"
+
+#include <llvm/Support/Threading.h>
+
+namespace {
+#if !defined(ART_USE_PORTABLE_COMPILER)
+  pthread_once_t llvm_multi_init = PTHREAD_ONCE_INIT;
+#endif
+  void InitializeLLVMForQuick() {
+    llvm::llvm_start_multithreaded();
+  }
+}
+
+namespace art {
+
+LLVMInfo::LLVMInfo() {
+#if !defined(ART_USE_PORTABLE_COMPILER)
+  pthread_once(&llvm_multi_init, InitializeLLVMForQuick);
+#endif
+  // Create context, module, intrinsic helper & ir builder
+  llvm_context_.reset(new llvm::LLVMContext());
+  llvm_module_ = new llvm::Module("art", *llvm_context_);
+  llvm::StructType::create(*llvm_context_, "JavaObject");
+  intrinsic_helper_.reset( new greenland::IntrinsicHelper(*llvm_context_, *llvm_module_));
+  ir_builder_.reset(new greenland::IRBuilder(*llvm_context_, *llvm_module_, *intrinsic_helper_));
+}
+
+LLVMInfo::~LLVMInfo() {
+}
+
+extern "C" void ArtInitQuickCompilerContext(art::Compiler& compiler) {
+  CHECK(compiler.GetCompilerContext() == NULL);
+  LLVMInfo* llvm_info = new LLVMInfo();
+  compiler.SetCompilerContext(llvm_info);
+}
+
+extern "C" void ArtUnInitQuickCompilerContext(art::Compiler& compiler) {
+  delete reinterpret_cast<LLVMInfo*>(compiler.GetCompilerContext());
+  compiler.SetCompilerContext(NULL);
+}
+
+/* Default optimizer/debug setting for the compiler. */
+static uint32_t kCompilerOptimizerDisableFlags = 0 | // Disable specific optimizations
+  (1 << kLoadStoreElimination) |
+  //(1 << kLoadHoisting) |
+  //(1 << kSuppressLoads) |
+  //(1 << kNullCheckElimination) |
+  //(1 << kPromoteRegs) |
+  //(1 << kTrackLiveTemps) |
+  (1 << kSkipLargeMethodOptimization) |
+  //(1 << kSafeOptimizations) |
+  //(1 << kBBOpt) |
+  //(1 << kMatch) |
+  //(1 << kPromoteCompilerTemps) |
+  0;
+
+static uint32_t kCompilerDebugFlags = 0 |     // Enable debug/testing modes
+  //(1 << kDebugDisplayMissingTargets) |
+  //(1 << kDebugVerbose) |
+  //(1 << kDebugDumpCFG) |
+  //(1 << kDebugSlowFieldPath) |
+  //(1 << kDebugSlowInvokePath) |
+  //(1 << kDebugSlowStringPath) |
+  //(1 << kDebugSlowestFieldPath) |
+  //(1 << kDebugSlowestStringPath) |
+  //(1 << kDebugExerciseResolveMethod) |
+  //(1 << kDebugVerifyDataflow) |
+  //(1 << kDebugShowMemoryUsage) |
+  //(1 << kDebugShowNops) |
+  //(1 << kDebugCountOpcodes) |
+  //(1 << kDebugDumpCheckStats) |
+  //(1 << kDebugDumpBitcodeFile) |
+  //(1 << kDebugVerifyBitcode) |
+  0;
+
+static bool ContentIsInsn(const uint16_t* code_ptr) {
+  uint16_t instr = *code_ptr;
+  Instruction::Code opcode = static_cast<Instruction::Code>(instr & 0xff);
+
+  /*
+   * Since the low 8-bit in metadata may look like NOP, we need to check
+   * both the low and whole sub-word to determine whether it is code or data.
+   */
+  return (opcode != Instruction::NOP || instr == 0);
+}
+
+/*
+ * Parse an instruction, return the length of the instruction
+ */
+static int ParseInsn(CompilationUnit* cu, const uint16_t* code_ptr,
+                     DecodedInstruction* decoded_instruction)
+{
+  // Don't parse instruction data
+  if (!ContentIsInsn(code_ptr)) {
+    return 0;
+  }
+
+  const Instruction* instruction = Instruction::At(code_ptr);
+  *decoded_instruction = DecodedInstruction(instruction);
+
+  return instruction->SizeInCodeUnits();
+}
+
+#define UNKNOWN_TARGET 0xffffffff
+
+/* Split an existing block from the specified code offset into two */
+static BasicBlock *SplitBlock(CompilationUnit* cu, unsigned int code_offset,
+                              BasicBlock* orig_block, BasicBlock** immed_pred_block_p)
+{
+  MIR* insn = orig_block->first_mir_insn;
+  while (insn) {
+    if (insn->offset == code_offset) break;
+    insn = insn->next;
+  }
+  if (insn == NULL) {
+    LOG(FATAL) << "Break split failed";
+  }
+  BasicBlock *bottom_block = NewMemBB(cu, kDalvikByteCode,
+                                     cu->num_blocks++);
+  InsertGrowableList(cu, &cu->block_list, reinterpret_cast<uintptr_t>(bottom_block));
+
+  bottom_block->start_offset = code_offset;
+  bottom_block->first_mir_insn = insn;
+  bottom_block->last_mir_insn = orig_block->last_mir_insn;
+
+  /* If this block was terminated by a return, the flag needs to go with the bottom block */
+  bottom_block->terminated_by_return = orig_block->terminated_by_return;
+  orig_block->terminated_by_return = false;
+
+  /* Add it to the quick lookup cache */
+  cu->block_map.Put(bottom_block->start_offset, bottom_block);
+
+  /* Handle the taken path */
+  bottom_block->taken = orig_block->taken;
+  if (bottom_block->taken) {
+    orig_block->taken = NULL;
+    DeleteGrowableList(bottom_block->taken->predecessors, reinterpret_cast<uintptr_t>(orig_block));
+    InsertGrowableList(cu, bottom_block->taken->predecessors,
+                          reinterpret_cast<uintptr_t>(bottom_block));
+  }
+
+  /* Handle the fallthrough path */
+  bottom_block->fall_through = orig_block->fall_through;
+  orig_block->fall_through = bottom_block;
+  InsertGrowableList(cu, bottom_block->predecessors,
+                        reinterpret_cast<uintptr_t>(orig_block));
+  if (bottom_block->fall_through) {
+    DeleteGrowableList(bottom_block->fall_through->predecessors,
+                          reinterpret_cast<uintptr_t>(orig_block));
+    InsertGrowableList(cu, bottom_block->fall_through->predecessors,
+                          reinterpret_cast<uintptr_t>(bottom_block));
+  }
+
+  /* Handle the successor list */
+  if (orig_block->successor_block_list.block_list_type != kNotUsed) {
+    bottom_block->successor_block_list = orig_block->successor_block_list;
+    orig_block->successor_block_list.block_list_type = kNotUsed;
+    GrowableListIterator iterator;
+
+    GrowableListIteratorInit(&bottom_block->successor_block_list.blocks,
+                                &iterator);
+    while (true) {
+      SuccessorBlockInfo *successor_block_info =
+          reinterpret_cast<SuccessorBlockInfo*>(GrowableListIteratorNext(&iterator));
+      if (successor_block_info == NULL) break;
+      BasicBlock *bb = successor_block_info->block;
+      DeleteGrowableList(bb->predecessors, reinterpret_cast<uintptr_t>(orig_block));
+      InsertGrowableList(cu, bb->predecessors, reinterpret_cast<uintptr_t>(bottom_block));
+    }
+  }
+
+  orig_block->last_mir_insn = insn->prev;
+
+  insn->prev->next = NULL;
+  insn->prev = NULL;
+  /*
+   * Update the immediate predecessor block pointer so that outgoing edges
+   * can be applied to the proper block.
+   */
+  if (immed_pred_block_p) {
+    DCHECK_EQ(*immed_pred_block_p, orig_block);
+    *immed_pred_block_p = bottom_block;
+  }
+  return bottom_block;
+}
+
+/*
+ * Given a code offset, find out the block that starts with it. If the offset
+ * is in the middle of an existing block, split it into two.  If immed_pred_block_p
+ * is not non-null and is the block being split, update *immed_pred_block_p to
+ * point to the bottom block so that outgoing edges can be set up properly
+ * (by the caller)
+ * Utilizes a map for fast lookup of the typical cases.
+ */
+BasicBlock *FindBlock(CompilationUnit* cu, unsigned int code_offset,
+                      bool split, bool create, BasicBlock** immed_pred_block_p)
+{
+  GrowableList* block_list = &cu->block_list;
+  BasicBlock* bb;
+  unsigned int i;
+  SafeMap<unsigned int, BasicBlock*>::iterator it;
+
+  it = cu->block_map.find(code_offset);
+  if (it != cu->block_map.end()) {
+    return it->second;
+  } else if (!create) {
+    return NULL;
+  }
+
+  if (split) {
+    for (i = 0; i < block_list->num_used; i++) {
+      bb = reinterpret_cast<BasicBlock*>(block_list->elem_list[i]);
+      if (bb->block_type != kDalvikByteCode) continue;
+      /* Check if a branch jumps into the middle of an existing block */
+      if ((code_offset > bb->start_offset) && (bb->last_mir_insn != NULL) &&
+          (code_offset <= bb->last_mir_insn->offset)) {
+        BasicBlock *new_bb = SplitBlock(cu, code_offset, bb,
+                                       bb == *immed_pred_block_p ?
+                                       immed_pred_block_p : NULL);
+        return new_bb;
+      }
+    }
+  }
+
+  /* Create a new one */
+  bb = NewMemBB(cu, kDalvikByteCode, cu->num_blocks++);
+  InsertGrowableList(cu, &cu->block_list, reinterpret_cast<uintptr_t>(bb));
+  bb->start_offset = code_offset;
+  cu->block_map.Put(bb->start_offset, bb);
+  return bb;
+}
+
+/* Find existing block */
+BasicBlock* FindBlock(CompilationUnit* cu, unsigned int code_offset)
+{
+  return FindBlock(cu, code_offset, false, false, NULL);
+}
+
+/* Turn method name into a legal Linux file name */
+void ReplaceSpecialChars(std::string& str)
+{
+  static const struct { const char before; const char after; } match[] =
+      {{'/','-'}, {';','#'}, {' ','#'}, {'$','+'},
+       {'(','@'}, {')','@'}, {'<','='}, {'>','='}};
+  for (unsigned int i = 0; i < sizeof(match)/sizeof(match[0]); i++) {
+    std::replace(str.begin(), str.end(), match[i].before, match[i].after);
+  }
+}
+
+/* Dump the CFG into a DOT graph */
+void DumpCFG(CompilationUnit* cu, const char* dir_prefix, bool all_blocks)
+{
+  FILE* file;
+  std::string fname(PrettyMethod(cu->method_idx, *cu->dex_file));
+  ReplaceSpecialChars(fname);
+  fname = StringPrintf("%s%s%x.dot", dir_prefix, fname.c_str(),
+                      cu->entry_block->fall_through->start_offset);
+  file = fopen(fname.c_str(), "w");
+  if (file == NULL) {
+    return;
+  }
+  fprintf(file, "digraph G {\n");
+
+  fprintf(file, "  rankdir=TB\n");
+
+  int num_blocks = all_blocks ? cu->num_blocks : cu->num_reachable_blocks;
+  int idx;
+  const GrowableList *block_list = &cu->block_list;
+
+  for (idx = 0; idx < num_blocks; idx++) {
+    int block_idx = all_blocks ? idx : cu->dfs_order.elem_list[idx];
+    BasicBlock *bb = reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, block_idx));
+    if (bb == NULL) break;
+    if (bb->block_type == kDead) continue;
+    if (bb->block_type == kEntryBlock) {
+      fprintf(file, "  entry_%d [shape=Mdiamond];\n", bb->id);
+    } else if (bb->block_type == kExitBlock) {
+      fprintf(file, "  exit_%d [shape=Mdiamond];\n", bb->id);
+    } else if (bb->block_type == kDalvikByteCode) {
+      fprintf(file, "  block%04x_%d [shape=record,label = \"{ \\\n",
+              bb->start_offset, bb->id);
+      const MIR *mir;
+        fprintf(file, "    {block id %d\\l}%s\\\n", bb->id,
+                bb->first_mir_insn ? " | " : " ");
+        for (mir = bb->first_mir_insn; mir; mir = mir->next) {
+            int opcode = mir->dalvikInsn.opcode;
+            fprintf(file, "    {%04x %s %s %s\\l}%s\\\n", mir->offset,
+                    mir->ssa_rep ? GetDalvikDisassembly(cu, mir) :
+                    (opcode < kMirOpFirst) ?  Instruction::Name(mir->dalvikInsn.opcode) :
+                    extended_mir_op_names[opcode - kMirOpFirst],
+                    (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0 ? " no_rangecheck" : " ",
+                    (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0 ? " no_nullcheck" : " ",
+                    mir->next ? " | " : " ");
+        }
+        fprintf(file, "  }\"];\n\n");
+    } else if (bb->block_type == kExceptionHandling) {
+      char block_name[BLOCK_NAME_LEN];
+
+      GetBlockName(bb, block_name);
+      fprintf(file, "  %s [shape=invhouse];\n", block_name);
+    }
+
+    char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
+
+    if (bb->taken) {
+      GetBlockName(bb, block_name1);
+      GetBlockName(bb->taken, block_name2);
+      fprintf(file, "  %s:s -> %s:n [style=dotted]\n",
+              block_name1, block_name2);
+    }
+    if (bb->fall_through) {
+      GetBlockName(bb, block_name1);
+      GetBlockName(bb->fall_through, block_name2);
+      fprintf(file, "  %s:s -> %s:n\n", block_name1, block_name2);
+    }
+
+    if (bb->successor_block_list.block_list_type != kNotUsed) {
+      fprintf(file, "  succ%04x_%d [shape=%s,label = \"{ \\\n",
+              bb->start_offset, bb->id,
+              (bb->successor_block_list.block_list_type == kCatch) ?
+               "Mrecord" : "record");
+      GrowableListIterator iterator;
+      GrowableListIteratorInit(&bb->successor_block_list.blocks,
+                                  &iterator);
+      SuccessorBlockInfo *successor_block_info =
+          reinterpret_cast<SuccessorBlockInfo*>(GrowableListIteratorNext(&iterator));
+
+      int succ_id = 0;
+      while (true) {
+        if (successor_block_info == NULL) break;
+
+        BasicBlock *dest_block = successor_block_info->block;
+        SuccessorBlockInfo *next_successor_block_info =
+            reinterpret_cast<SuccessorBlockInfo*>(GrowableListIteratorNext(&iterator));
+
+        fprintf(file, "    {<f%d> %04x: %04x\\l}%s\\\n",
+                succ_id++,
+                successor_block_info->key,
+                dest_block->start_offset,
+                (next_successor_block_info != NULL) ? " | " : " ");
+
+        successor_block_info = next_successor_block_info;
+      }
+      fprintf(file, "  }\"];\n\n");
+
+      GetBlockName(bb, block_name1);
+      fprintf(file, "  %s:s -> succ%04x_%d:n [style=dashed]\n",
+              block_name1, bb->start_offset, bb->id);
+
+      if (bb->successor_block_list.block_list_type == kPackedSwitch ||
+          bb->successor_block_list.block_list_type == kSparseSwitch) {
+
+        GrowableListIteratorInit(&bb->successor_block_list.blocks,
+                                    &iterator);
+
+        succ_id = 0;
+        while (true) {
+          SuccessorBlockInfo *successor_block_info =
+              reinterpret_cast<SuccessorBlockInfo*>( GrowableListIteratorNext(&iterator));
+          if (successor_block_info == NULL) break;
+
+          BasicBlock *dest_block = successor_block_info->block;
+
+          GetBlockName(dest_block, block_name2);
+          fprintf(file, "  succ%04x_%d:f%d:e -> %s:n\n", bb->start_offset,
+                  bb->id, succ_id++, block_name2);
+        }
+      }
+    }
+    fprintf(file, "\n");
+
+    if (cu->verbose) {
+      /* Display the dominator tree */
+      GetBlockName(bb, block_name1);
+      fprintf(file, "  cfg%s [label=\"%s\", shape=none];\n",
+              block_name1, block_name1);
+      if (bb->i_dom) {
+        GetBlockName(bb->i_dom, block_name2);
+        fprintf(file, "  cfg%s:s -> cfg%s:n\n\n", block_name2, block_name1);
+      }
+    }
+  }
+  fprintf(file, "}\n");
+  fclose(file);
+}
+
+/* Verify if all the successor is connected with all the claimed predecessors */
+static bool VerifyPredInfo(CompilationUnit* cu, BasicBlock* bb)
+{
+  GrowableListIterator iter;
+
+  GrowableListIteratorInit(bb->predecessors, &iter);
+  while (true) {
+    BasicBlock *pred_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter));
+    if (!pred_bb) break;
+    bool found = false;
+    if (pred_bb->taken == bb) {
+        found = true;
+    } else if (pred_bb->fall_through == bb) {
+        found = true;
+    } else if (pred_bb->successor_block_list.block_list_type != kNotUsed) {
+      GrowableListIterator iterator;
+      GrowableListIteratorInit(&pred_bb->successor_block_list.blocks,
+                                  &iterator);
+      while (true) {
+        SuccessorBlockInfo *successor_block_info =
+            reinterpret_cast<SuccessorBlockInfo*>(GrowableListIteratorNext(&iterator));
+        if (successor_block_info == NULL) break;
+        BasicBlock *succ_bb = successor_block_info->block;
+        if (succ_bb == bb) {
+            found = true;
+            break;
+        }
+      }
+    }
+    if (found == false) {
+      char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
+      GetBlockName(bb, block_name1);
+      GetBlockName(pred_bb, block_name2);
+      DumpCFG(cu, "/sdcard/cfg/", false);
+      LOG(FATAL) << "Successor " << block_name1 << "not found from "
+                 << block_name2;
+    }
+  }
+  return true;
+}
+
+/* Identify code range in try blocks and set up the empty catch blocks */
+static void ProcessTryCatchBlocks(CompilationUnit* cu)
+{
+  const DexFile::CodeItem* code_item = cu->code_item;
+  int tries_size = code_item->tries_size_;
+  int offset;
+
+  if (tries_size == 0) {
+    return;
+  }
+
+  ArenaBitVector* try_block_addr = cu->try_block_addr;
+
+  for (int i = 0; i < tries_size; i++) {
+    const DexFile::TryItem* pTry =
+        DexFile::GetTryItems(*code_item, i);
+    int start_offset = pTry->start_addr_;
+    int end_offset = start_offset + pTry->insn_count_;
+    for (offset = start_offset; offset < end_offset; offset++) {
+      SetBit(cu, try_block_addr, offset);
+    }
+  }
+
+  // Iterate over each of the handlers to enqueue the empty Catch blocks
+  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0);
+  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
+  for (uint32_t idx = 0; idx < handlers_size; idx++) {
+    CatchHandlerIterator iterator(handlers_ptr);
+    for (; iterator.HasNext(); iterator.Next()) {
+      uint32_t address = iterator.GetHandlerAddress();
+      FindBlock(cu, address, false /* split */, true /*create*/,
+                /* immed_pred_block_p */ NULL);
+    }
+    handlers_ptr = iterator.EndDataPointer();
+  }
+}
+
+/* Process instructions with the kBranch flag */
+static BasicBlock* ProcessCanBranch(CompilationUnit* cu, BasicBlock* cur_block,
+                                    MIR* insn, int cur_offset, int width, int flags,
+                                    const uint16_t* code_ptr, const uint16_t* code_end)
+{
+  int target = cur_offset;
+  switch (insn->dalvikInsn.opcode) {
+    case Instruction::GOTO:
+    case Instruction::GOTO_16:
+    case Instruction::GOTO_32:
+      target += insn->dalvikInsn.vA;
+      break;
+    case Instruction::IF_EQ:
+    case Instruction::IF_NE:
+    case Instruction::IF_LT:
+    case Instruction::IF_GE:
+    case Instruction::IF_GT:
+    case Instruction::IF_LE:
+      cur_block->conditional_branch = true;
+      target += insn->dalvikInsn.vC;
+      break;
+    case Instruction::IF_EQZ:
+    case Instruction::IF_NEZ:
+    case Instruction::IF_LTZ:
+    case Instruction::IF_GEZ:
+    case Instruction::IF_GTZ:
+    case Instruction::IF_LEZ:
+      cur_block->conditional_branch = true;
+      target += insn->dalvikInsn.vB;
+      break;
+    default:
+      LOG(FATAL) << "Unexpected opcode(" << insn->dalvikInsn.opcode << ") with kBranch set";
+  }
+  BasicBlock *taken_block = FindBlock(cu, target,
+                                     /* split */
+                                     true,
+                                     /* create */
+                                     true,
+                                     /* immed_pred_block_p */
+                                     &cur_block);
+  cur_block->taken = taken_block;
+  InsertGrowableList(cu, taken_block->predecessors, reinterpret_cast<uintptr_t>(cur_block));
+
+  /* Always terminate the current block for conditional branches */
+  if (flags & Instruction::kContinue) {
+    BasicBlock *fallthrough_block = FindBlock(cu,
+                                             cur_offset +  width,
+                                             /*
+                                              * If the method is processed
+                                              * in sequential order from the
+                                              * beginning, we don't need to
+                                              * specify split for continue
+                                              * blocks. However, this
+                                              * routine can be called by
+                                              * compileLoop, which starts
+                                              * parsing the method from an
+                                              * arbitrary address in the
+                                              * method body.
+                                              */
+                                             true,
+                                             /* create */
+                                             true,
+                                             /* immed_pred_block_p */
+                                             &cur_block);
+    cur_block->fall_through = fallthrough_block;
+    InsertGrowableList(cu, fallthrough_block->predecessors,
+                          reinterpret_cast<uintptr_t>(cur_block));
+  } else if (code_ptr < code_end) {
+    /* Create a fallthrough block for real instructions (incl. NOP) */
+    if (ContentIsInsn(code_ptr)) {
+      FindBlock(cu, cur_offset + width,
+                /* split */
+                false,
+                /* create */
+                true,
+                /* immed_pred_block_p */
+                NULL);
+    }
+  }
+  return cur_block;
+}
+
+/* Process instructions with the kSwitch flag */
+static void ProcessCanSwitch(CompilationUnit* cu, BasicBlock* cur_block,
+                             MIR* insn, int cur_offset, int width, int flags)
+{
+  const uint16_t* switch_data =
+      reinterpret_cast<const uint16_t*>(cu->insns + cur_offset + insn->dalvikInsn.vB);
+  int size;
+  const int* keyTable;
+  const int* target_table;
+  int i;
+  int first_key;
+
+  /*
+   * Packed switch data format:
+   *  ushort ident = 0x0100   magic value
+   *  ushort size             number of entries in the table
+   *  int first_key           first (and lowest) switch case value
+   *  int targets[size]       branch targets, relative to switch opcode
+   *
+   * Total size is (4+size*2) 16-bit code units.
+   */
+  if (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) {
+    DCHECK_EQ(static_cast<int>(switch_data[0]),
+              static_cast<int>(Instruction::kPackedSwitchSignature));
+    size = switch_data[1];
+    first_key = switch_data[2] | (switch_data[3] << 16);
+    target_table = reinterpret_cast<const int*>(&switch_data[4]);
+    keyTable = NULL;        // Make the compiler happy
+  /*
+   * Sparse switch data format:
+   *  ushort ident = 0x0200   magic value
+   *  ushort size             number of entries in the table; > 0
+   *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
+   *  int targets[size]       branch targets, relative to switch opcode
+   *
+   * Total size is (2+size*4) 16-bit code units.
+   */
+  } else {
+    DCHECK_EQ(static_cast<int>(switch_data[0]),
+              static_cast<int>(Instruction::kSparseSwitchSignature));
+    size = switch_data[1];
+    keyTable = reinterpret_cast<const int*>(&switch_data[2]);
+    target_table = reinterpret_cast<const int*>(&switch_data[2 + size*2]);
+    first_key = 0;   // To make the compiler happy
+  }
+
+  if (cur_block->successor_block_list.block_list_type != kNotUsed) {
+    LOG(FATAL) << "Successor block list already in use: "
+               << static_cast<int>(cur_block->successor_block_list.block_list_type);
+  }
+  cur_block->successor_block_list.block_list_type =
+      (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?
+      kPackedSwitch : kSparseSwitch;
+  CompilerInitGrowableList(cu, &cur_block->successor_block_list.blocks, size,
+                      kListSuccessorBlocks);
+
+  for (i = 0; i < size; i++) {
+    BasicBlock *case_block = FindBlock(cu, cur_offset + target_table[i],
+                                      /* split */
+                                      true,
+                                      /* create */
+                                      true,
+                                      /* immed_pred_block_p */
+                                      &cur_block);
+    SuccessorBlockInfo *successor_block_info =
+        static_cast<SuccessorBlockInfo*>(NewMem(cu, sizeof(SuccessorBlockInfo),
+                                         false, kAllocSuccessor));
+    successor_block_info->block = case_block;
+    successor_block_info->key =
+        (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?
+        first_key + i : keyTable[i];
+    InsertGrowableList(cu, &cur_block->successor_block_list.blocks,
+                          reinterpret_cast<uintptr_t>(successor_block_info));
+    InsertGrowableList(cu, case_block->predecessors,
+                          reinterpret_cast<uintptr_t>(cur_block));
+  }
+
+  /* Fall-through case */
+  BasicBlock* fallthrough_block = FindBlock(cu,
+                                           cur_offset +  width,
+                                           /* split */
+                                           false,
+                                           /* create */
+                                           true,
+                                           /* immed_pred_block_p */
+                                           NULL);
+  cur_block->fall_through = fallthrough_block;
+  InsertGrowableList(cu, fallthrough_block->predecessors,
+                        reinterpret_cast<uintptr_t>(cur_block));
+}
+
+/* Process instructions with the kThrow flag */
+static BasicBlock* ProcessCanThrow(CompilationUnit* cu, BasicBlock* cur_block,
+                                   MIR* insn, int cur_offset, int width, int flags,
+                                   ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
+                                   const uint16_t* code_end)
+{
+  const DexFile::CodeItem* code_item = cu->code_item;
+  bool in_try_block = IsBitSet(try_block_addr, cur_offset);
+
+  /* In try block */
+  if (in_try_block) {
+    CatchHandlerIterator iterator(*code_item, cur_offset);
+
+    if (cur_block->successor_block_list.block_list_type != kNotUsed) {
+      LOG(INFO) << PrettyMethod(cu->method_idx, *cu->dex_file);
+      LOG(FATAL) << "Successor block list already in use: "
+                 << static_cast<int>(cur_block->successor_block_list.block_list_type);
+    }
+
+    cur_block->successor_block_list.block_list_type = kCatch;
+    CompilerInitGrowableList(cu, &cur_block->successor_block_list.blocks, 2,
+                        kListSuccessorBlocks);
+
+    for (;iterator.HasNext(); iterator.Next()) {
+      BasicBlock *catch_block = FindBlock(cu, iterator.GetHandlerAddress(),
+                                         false /* split*/,
+                                         false /* creat */,
+                                         NULL  /* immed_pred_block_p */);
+      catch_block->catch_entry = true;
+      cu->catches.insert(catch_block->start_offset);
+      SuccessorBlockInfo *successor_block_info = reinterpret_cast<SuccessorBlockInfo*>
+          (NewMem(cu, sizeof(SuccessorBlockInfo), false, kAllocSuccessor));
+      successor_block_info->block = catch_block;
+      successor_block_info->key = iterator.GetHandlerTypeIndex();
+      InsertGrowableList(cu, &cur_block->successor_block_list.blocks,
+                            reinterpret_cast<uintptr_t>(successor_block_info));
+      InsertGrowableList(cu, catch_block->predecessors,
+                            reinterpret_cast<uintptr_t>(cur_block));
+    }
+  } else {
+    BasicBlock *eh_block = NewMemBB(cu, kExceptionHandling,
+                                   cu->num_blocks++);
+    cur_block->taken = eh_block;
+    InsertGrowableList(cu, &cu->block_list, reinterpret_cast<uintptr_t>(eh_block));
+    eh_block->start_offset = cur_offset;
+    InsertGrowableList(cu, eh_block->predecessors, reinterpret_cast<uintptr_t>(cur_block));
+  }
+
+  if (insn->dalvikInsn.opcode == Instruction::THROW){
+    cur_block->explicit_throw = true;
+    if ((code_ptr < code_end) && ContentIsInsn(code_ptr)) {
+      // Force creation of new block following THROW via side-effect
+      FindBlock(cu, cur_offset + width, /* split */ false,
+                /* create */ true, /* immed_pred_block_p */ NULL);
+    }
+    if (!in_try_block) {
+       // Don't split a THROW that can't rethrow - we're done.
+      return cur_block;
+    }
+  }
+
+  /*
+   * Split the potentially-throwing instruction into two parts.
+   * The first half will be a pseudo-op that captures the exception
+   * edges and terminates the basic block.  It always falls through.
+   * Then, create a new basic block that begins with the throwing instruction
+   * (minus exceptions).  Note: this new basic block must NOT be entered into
+   * the block_map.  If the potentially-throwing instruction is the target of a
+   * future branch, we need to find the check psuedo half.  The new
+   * basic block containing the work portion of the instruction should
+   * only be entered via fallthrough from the block containing the
+   * pseudo exception edge MIR.  Note also that this new block is
+   * not automatically terminated after the work portion, and may
+   * contain following instructions.
+   */
+  BasicBlock *new_block = NewMemBB(cu, kDalvikByteCode, cu->num_blocks++);
+  InsertGrowableList(cu, &cu->block_list, reinterpret_cast<uintptr_t>(new_block));
+  new_block->start_offset = insn->offset;
+  cur_block->fall_through = new_block;
+  InsertGrowableList(cu, new_block->predecessors, reinterpret_cast<uintptr_t>(cur_block));
+  MIR* new_insn = static_cast<MIR*>(NewMem(cu, sizeof(MIR), true, kAllocMIR));
+  *new_insn = *insn;
+  insn->dalvikInsn.opcode =
+      static_cast<Instruction::Code>(kMirOpCheck);
+  // Associate the two halves
+  insn->meta.throw_insn = new_insn;
+  new_insn->meta.throw_insn = insn;
+  AppendMIR(new_block, new_insn);
+  return new_block;
+}
+
+void CompilerInit(CompilationUnit* cu, const Compiler& compiler) {
+  bool success = false;
+  switch (compiler.GetInstructionSet()) {
+    case kThumb2:
+      success = InitArmCodegen(cu);
+      break;
+    case kMips:
+      success = InitMipsCodegen(cu);
+      break;
+    case kX86:
+      success = InitX86Codegen(cu);
+      break;
+    default:;
+  }
+  if (!success) {
+    LOG(FATAL) << "Failed to initialize codegen for " << compiler.GetInstructionSet();
+  }
+  if (!HeapInit(cu)) {
+    LOG(FATAL) << "Failed to initialize oat heap";
+  }
+}
+
+static CompiledMethod* CompileMethod(Compiler& compiler,
+                                     const CompilerBackend compiler_backend,
+                                     const DexFile::CodeItem* code_item,
+                                     uint32_t access_flags, InvokeType invoke_type,
+                                     uint32_t class_def_idx, uint32_t method_idx,
+                                     jobject class_loader, const DexFile& dex_file,
+                                     LLVMInfo* llvm_info)
+{
+  VLOG(compiler) << "Compiling " << PrettyMethod(method_idx, dex_file) << "...";
+
+  const uint16_t* code_ptr = code_item->insns_;
+  const uint16_t* code_end = code_item->insns_ + code_item->insns_size_in_code_units_;
+  int num_blocks = 0;
+  unsigned int cur_offset = 0;
+
+  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
+  UniquePtr<CompilationUnit> cu(new CompilationUnit);
+
+  CompilerInit(cu.get(), compiler);
+
+  cu->compiler = &compiler;
+  cu->class_linker = class_linker;
+  cu->dex_file = &dex_file;
+  cu->class_def_idx = class_def_idx;
+  cu->method_idx = method_idx;
+  cu->code_item = code_item;
+  cu->access_flags = access_flags;
+  cu->invoke_type = invoke_type;
+  cu->shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
+  cu->instruction_set = compiler.GetInstructionSet();
+  cu->insns = code_item->insns_;
+  cu->insns_size = code_item->insns_size_in_code_units_;
+  cu->num_ins = code_item->ins_size_;
+  cu->num_regs = code_item->registers_size_ - cu->num_ins;
+  cu->num_outs = code_item->outs_size_;
+  DCHECK((cu->instruction_set == kThumb2) ||
+         (cu->instruction_set == kX86) ||
+         (cu->instruction_set == kMips));
+  if ((compiler_backend == kQuickGBC) || (compiler_backend == kPortable)) {
+    cu->gen_bitcode = true;
+  }
+  cu->llvm_info = llvm_info;
+  /* Adjust this value accordingly once inlining is performed */
+  cu->num_dalvik_registers = code_item->registers_size_;
+  // TODO: set this from command line
+  cu->compiler_flip_match = false;
+  bool use_match = !cu->compiler_method_match.empty();
+  bool match = use_match && (cu->compiler_flip_match ^
+      (PrettyMethod(method_idx, dex_file).find(cu->compiler_method_match) !=
+       std::string::npos));
+  if (!use_match || match) {
+    cu->disable_opt = kCompilerOptimizerDisableFlags;
+    cu->enable_debug = kCompilerDebugFlags;
+    cu->verbose = VLOG_IS_ON(compiler) ||
+        (cu->enable_debug & (1 << kDebugVerbose));
+  }
+#ifndef NDEBUG
+  if (cu->gen_bitcode) {
+    cu->enable_debug |= (1 << kDebugVerifyBitcode);
+  }
+#endif
+
+  if (cu->instruction_set == kMips) {
+    // Disable some optimizations for mips for now
+    cu->disable_opt |= (
+        (1 << kLoadStoreElimination) |
+        (1 << kLoadHoisting) |
+        (1 << kSuppressLoads) |
+        (1 << kNullCheckElimination) |
+        (1 << kPromoteRegs) |
+        (1 << kTrackLiveTemps) |
+        (1 << kSkipLargeMethodOptimization) |
+        (1 << kSafeOptimizations) |
+        (1 << kBBOpt) |
+        (1 << kMatch) |
+        (1 << kPromoteCompilerTemps));
+  }
+
+  /* Gathering opcode stats? */
+  if (kCompilerDebugFlags & (1 << kDebugCountOpcodes)) {
+    cu->opcode_count =
+        static_cast<int*>(NewMem(cu.get(), kNumPackedOpcodes * sizeof(int), true, kAllocMisc));
+  }
+
+  /* Assume non-throwing leaf */
+  cu->attrs = (METHOD_IS_LEAF | METHOD_IS_THROW_FREE);
+
+  /* Initialize the block list, estimate size based on insns_size */
+  CompilerInitGrowableList(cu.get(), &cu->block_list, cu->insns_size,
+                      kListBlockList);
+
+  /* Initialize the switch_tables list */
+  CompilerInitGrowableList(cu.get(), &cu->switch_tables, 4,
+                      kListSwitchTables);
+
+  /* Intialize the fill_array_data list */
+  CompilerInitGrowableList(cu.get(), &cu->fill_array_data, 4,
+                      kListFillArrayData);
+
+  /* Intialize the throw_launchpads list, estimate size based on insns_size */
+  CompilerInitGrowableList(cu.get(), &cu->throw_launchpads, cu->insns_size,
+                      kListThrowLaunchPads);
+
+  /* Intialize the instrinsic_launchpads list */
+  CompilerInitGrowableList(cu.get(), &cu->intrinsic_launchpads, 4,
+                      kListMisc);
+
+
+  /* Intialize the suspend_launchpads list */
+  CompilerInitGrowableList(cu.get(), &cu->suspend_launchpads, 2048,
+                      kListSuspendLaunchPads);
+
+  /* Allocate the bit-vector to track the beginning of basic blocks */
+  ArenaBitVector *try_block_addr = AllocBitVector(cu.get(),
+                                                   cu->insns_size,
+                                                   true /* expandable */);
+  cu->try_block_addr = try_block_addr;
+
+  /* Create the default entry and exit blocks and enter them to the list */
+  BasicBlock *entry_block = NewMemBB(cu.get(), kEntryBlock, num_blocks++);
+  BasicBlock *exit_block = NewMemBB(cu.get(), kExitBlock, num_blocks++);
+
+  cu->entry_block = entry_block;
+  cu->exit_block = exit_block;
+
+  InsertGrowableList(cu.get(), &cu->block_list, reinterpret_cast<uintptr_t>(entry_block));
+  InsertGrowableList(cu.get(), &cu->block_list, reinterpret_cast<uintptr_t>(exit_block));
+
+  /* Current block to record parsed instructions */
+  BasicBlock *cur_block = NewMemBB(cu.get(), kDalvikByteCode, num_blocks++);
+  cur_block->start_offset = 0;
+  InsertGrowableList(cu.get(), &cu->block_list, reinterpret_cast<uintptr_t>(cur_block));
+  /* Add first block to the fast lookup cache */
+  cu->block_map.Put(cur_block->start_offset, cur_block);
+  entry_block->fall_through = cur_block;
+  InsertGrowableList(cu.get(), cur_block->predecessors,
+                        reinterpret_cast<uintptr_t>(entry_block));
+
+  /*
+   * Store back the number of blocks since new blocks may be created of
+   * accessing cu.
+   */
+  cu->num_blocks = num_blocks;
+
+  /* Identify code range in try blocks and set up the empty catch blocks */
+  ProcessTryCatchBlocks(cu.get());
+
+  /* Set up for simple method detection */
+  int num_patterns = sizeof(special_patterns)/sizeof(special_patterns[0]);
+  bool live_pattern = (num_patterns > 0) && !(cu->disable_opt & (1 << kMatch));
+  bool* dead_pattern =
+      static_cast<bool*>(NewMem(cu.get(), sizeof(bool) * num_patterns, true, kAllocMisc));
+  SpecialCaseHandler special_case = kNoHandler;
+  int pattern_pos = 0;
+
+  /* Parse all instructions and put them into containing basic blocks */
+  while (code_ptr < code_end) {
+    MIR *insn = static_cast<MIR *>(NewMem(cu.get(), sizeof(MIR), true, kAllocMIR));
+    insn->offset = cur_offset;
+    int width = ParseInsn(cu.get(), code_ptr, &insn->dalvikInsn);
+    insn->width = width;
+    Instruction::Code opcode = insn->dalvikInsn.opcode;
+    if (cu->opcode_count != NULL) {
+      cu->opcode_count[static_cast<int>(opcode)]++;
+    }
+
+    /* Terminate when the data section is seen */
+    if (width == 0)
+      break;
+
+    /* Possible simple method? */
+    if (live_pattern) {
+      live_pattern = false;
+      special_case = kNoHandler;
+      for (int i = 0; i < num_patterns; i++) {
+        if (!dead_pattern[i]) {
+          if (special_patterns[i].opcodes[pattern_pos] == opcode) {
+            live_pattern = true;
+            special_case = special_patterns[i].handler_code;
+          } else {
+             dead_pattern[i] = true;
+          }
+        }
+      }
+    pattern_pos++;
+    }
+
+    AppendMIR(cur_block, insn);
+
+    code_ptr += width;
+    int flags = Instruction::FlagsOf(insn->dalvikInsn.opcode);
+
+    int df_flags = oat_data_flow_attributes[insn->dalvikInsn.opcode];
+
+    if (df_flags & DF_HAS_DEFS) {
+      cu->def_count += (df_flags & DF_A_WIDE) ? 2 : 1;
+    }
+
+    if (flags & Instruction::kBranch) {
+      cur_block = ProcessCanBranch(cu.get(), cur_block, insn, cur_offset,
+                                  width, flags, code_ptr, code_end);
+    } else if (flags & Instruction::kReturn) {
+      cur_block->terminated_by_return = true;
+      cur_block->fall_through = exit_block;
+      InsertGrowableList(cu.get(), exit_block->predecessors,
+                            reinterpret_cast<uintptr_t>(cur_block));
+      /*
+       * Terminate the current block if there are instructions
+       * afterwards.
+       */
+      if (code_ptr < code_end) {
+        /*
+         * Create a fallthrough block for real instructions
+         * (incl. NOP).
+         */
+        if (ContentIsInsn(code_ptr)) {
+            FindBlock(cu.get(), cur_offset + width,
+                      /* split */
+                      false,
+                      /* create */
+                      true,
+                      /* immed_pred_block_p */
+                      NULL);
+        }
+      }
+    } else if (flags & Instruction::kThrow) {
+      cur_block = ProcessCanThrow(cu.get(), cur_block, insn, cur_offset,
+                                 width, flags, try_block_addr, code_ptr, code_end);
+    } else if (flags & Instruction::kSwitch) {
+      ProcessCanSwitch(cu.get(), cur_block, insn, cur_offset, width, flags);
+    }
+    cur_offset += width;
+    BasicBlock *next_block = FindBlock(cu.get(), cur_offset,
+                                      /* split */
+                                      false,
+                                      /* create */
+                                      false,
+                                      /* immed_pred_block_p */
+                                      NULL);
+    if (next_block) {
+      /*
+       * The next instruction could be the target of a previously parsed
+       * forward branch so a block is already created. If the current
+       * instruction is not an unconditional branch, connect them through
+       * the fall-through link.
+       */
+      DCHECK(cur_block->fall_through == NULL ||
+             cur_block->fall_through == next_block ||
+             cur_block->fall_through == exit_block);
+
+      if ((cur_block->fall_through == NULL) && (flags & Instruction::kContinue)) {
+        cur_block->fall_through = next_block;
+        InsertGrowableList(cu.get(), next_block->predecessors,
+                              reinterpret_cast<uintptr_t>(cur_block));
+      }
+      cur_block = next_block;
+    }
+  }
+
+  if (cu->enable_debug & (1 << kDebugDumpCFG)) {
+    DumpCFG(cu.get(), "/sdcard/1_post_parse_cfg/", true);
+  }
+
+  if (!(cu->disable_opt & (1 << kSkipLargeMethodOptimization))) {
+    if ((cu->num_blocks > MANY_BLOCKS) ||
+        ((cu->num_blocks > MANY_BLOCKS_INITIALIZER) &&
+      PrettyMethod(method_idx, dex_file, false).find("init>") !=
+          std::string::npos)) {
+        cu->qd_mode = true;
+    }
+  }
+
+  if (cu->qd_mode) {
+    // Bitcode generation requires full dataflow analysis
+    cu->disable_dataflow = !cu->gen_bitcode;
+    // Disable optimization which require dataflow/ssa
+    cu->disable_opt |= (1 << kBBOpt) | (1 << kPromoteRegs) | (1 << kNullCheckElimination);
+    if (cu->verbose) {
+        LOG(INFO) << "QD mode enabled: "
+                  << PrettyMethod(method_idx, dex_file)
+                  << " num blocks: " << cu->num_blocks;
+    }
+  }
+
+  if (cu->verbose) {
+    DumpCompilationUnit(cu.get());
+  }
+
+  /* Do a code layout pass */
+  CodeLayout(cu.get());
+
+  if (cu->enable_debug & (1 << kDebugDumpCFG)) {
+    DumpCFG(cu.get(), "/sdcard/2_post_layout_cfg/", true);
+  }
+
+  if (cu->enable_debug & (1 << kDebugVerifyDataflow)) {
+    /* Verify if all blocks are connected as claimed */
+    DataFlowAnalysisDispatcher(cu.get(), VerifyPredInfo, kAllNodes,
+                                  false /* is_iterative */);
+  }
+
+  /* Perform SSA transformation for the whole method */
+  SSATransformation(cu.get());
+
+  if (cu->enable_debug & (1 << kDebugDumpCFG)) {
+    DumpCFG(cu.get(), "/sdcard/3_post_ssa_cfg/", false);
+  }
+
+  /* Do constant propagation */
+  cu->is_constant_v = AllocBitVector(cu.get(), cu->num_ssa_regs, false  /* not expandable */);
+  cu->must_flush_constant_v = AllocBitVector(cu.get(), cu->num_ssa_regs,
+                                             false  /* not expandable */);
+  cu->constant_values =
+      static_cast<int*>(NewMem(cu.get(), sizeof(int) * cu->num_ssa_regs, true, kAllocDFInfo));
+  DataFlowAnalysisDispatcher(cu.get(), DoConstantPropogation,
+                                kAllNodes,
+                                false /* is_iterative */);
+
+  /* Detect loops */
+  LoopDetection(cu.get());
+
+  /* Count uses */
+  MethodUseCount(cu.get());
+
+  /* Perform null check elimination */
+  NullCheckElimination(cu.get());
+
+  if (cu->enable_debug & (1 << kDebugDumpCFG)) {
+    DumpCFG(cu.get(), "/sdcard/4_post_nce_cfg/", false);
+  }
+
+  /* Combine basic blocks where possible */
+  BasicBlockCombine(cu.get());
+
+  if (cu->enable_debug & (1 << kDebugDumpCFG)) {
+    DumpCFG(cu.get(), "/sdcard/5_post_bbcombine_cfg/", false);
+  }
+
+  /* Do some basic block optimizations */
+  BasicBlockOptimization(cu.get());
+
+  // Debugging only
+  if (cu->enable_debug & (1 << kDebugDumpCFG)) {
+    DumpCFG(cu.get(), "/sdcard/6_post_bbo_cfg/", false);
+  }
+
+  if (cu->enable_debug & (1 << kDebugDumpCheckStats)) {
+    DumpCheckStats(cu.get());
+  }
+
+  cu.get()->cg->CompilerInitializeRegAlloc(cu.get());  // Needs to happen after SSA naming
+
+  /* Allocate Registers using simple local allocation scheme */
+  SimpleRegAlloc(cu.get());
+
+  if (cu->enable_debug & (1 << kDebugDumpCFG)) {
+    DumpCFG(cu.get(), "/sdcard/7_post_ralloc_cfg/", true);
+  }
+
+
+  /* Go the LLVM path? */
+  if (cu->gen_bitcode) {
+    // MIR->Bitcode
+    MethodMIR2Bitcode(cu.get());
+    if (compiler_backend == kPortable) {
+      // all done
+      ArenaReset(cu.get());
+      return NULL;
+    }
+    // Bitcode->LIR
+    MethodBitcode2LIR(cu.get());
+  } else {
+    if (special_case != kNoHandler) {
+      /*
+       * Custom codegen for special cases.  If for any reason the
+       * special codegen doesn't succeed, cu->first_lir_insn will
+       * set to NULL;
+       */
+      SpecialMIR2LIR(cu.get(), special_case);
+    }
+
+    /* Convert MIR to LIR, etc. */
+    if (cu->first_lir_insn == NULL) {
+      MethodMIR2LIR(cu.get());
+    }
+  }
+
+  /* Method is not empty */
+  if (cu->first_lir_insn) {
+
+    // mark the targets of switch statement case labels
+    ProcessSwitchTables(cu.get());
+
+    /* Convert LIR into machine code. */
+    AssembleLIR(cu.get());
+
+    if (cu->verbose) {
+      CodegenDump(cu.get());
+    }
+
+    if (cu->opcode_count != NULL) {
+      LOG(INFO) << "Opcode Count";
+      for (int i = 0; i < kNumPackedOpcodes; i++) {
+        if (cu->opcode_count[i] != 0) {
+          LOG(INFO) << "-C- "
+                    << Instruction::Name(static_cast<Instruction::Code>(i))
+                    << " " << cu->opcode_count[i];
+        }
+      }
+    }
+  }
+
+  // Combine vmap tables - core regs, then fp regs - into vmap_table
+  std::vector<uint16_t> vmap_table;
+  // Core regs may have been inserted out of order - sort first
+  std::sort(cu->core_vmap_table.begin(), cu->core_vmap_table.end());
+  for (size_t i = 0 ; i < cu->core_vmap_table.size(); i++) {
+    // Copy, stripping out the phys register sort key
+    vmap_table.push_back(~(-1 << VREG_NUM_WIDTH) & cu->core_vmap_table[i]);
+  }
+  // If we have a frame, push a marker to take place of lr
+  if (cu->frame_size > 0) {
+    vmap_table.push_back(INVALID_VREG);
+  } else {
+    DCHECK_EQ(__builtin_popcount(cu->core_spill_mask), 0);
+    DCHECK_EQ(__builtin_popcount(cu->fp_spill_mask), 0);
+  }
+  // Combine vmap tables - core regs, then fp regs. fp regs already sorted
+  for (uint32_t i = 0; i < cu->fp_vmap_table.size(); i++) {
+    vmap_table.push_back(cu->fp_vmap_table[i]);
+  }
+  CompiledMethod* result =
+      new CompiledMethod(cu->instruction_set, cu->code_buffer,
+                         cu->frame_size, cu->core_spill_mask, cu->fp_spill_mask,
+                         cu->combined_mapping_table, vmap_table, cu->native_gc_map);
+
+  VLOG(compiler) << "Compiled " << PrettyMethod(method_idx, dex_file)
+     << " (" << (cu->code_buffer.size() * sizeof(cu->code_buffer[0]))
+     << " bytes)";
+
+#ifdef WITH_MEMSTATS
+  if (cu->enable_debug & (1 << kDebugShowMemoryUsage)) {
+    DumpMemStats(cu.get());
+  }
+#endif
+
+  ArenaReset(cu.get());
+
+  return result;
+}
+
+CompiledMethod* CompileOneMethod(Compiler& compiler,
+                                 const CompilerBackend backend,
+                                 const DexFile::CodeItem* code_item,
+                                 uint32_t access_flags, InvokeType invoke_type,
+                                 uint32_t class_def_idx, uint32_t method_idx, jobject class_loader,
+                                 const DexFile& dex_file,
+                                 LLVMInfo* llvm_info)
+{
+  return CompileMethod(compiler, backend, code_item, access_flags, invoke_type, class_def_idx,
+                       method_idx, class_loader, dex_file, llvm_info);
+}
+
+}  // namespace art
+
+extern "C" art::CompiledMethod*
+    ArtQuickCompileMethod(art::Compiler& compiler,
+                          const art::DexFile::CodeItem* code_item,
+                          uint32_t access_flags, art::InvokeType invoke_type,
+                          uint32_t class_def_idx, uint32_t method_idx, jobject class_loader,
+                          const art::DexFile& dex_file)
+{
+  // TODO: check method fingerprint here to determine appropriate backend type.  Until then, use build default
+  art::CompilerBackend backend = compiler.GetCompilerBackend();
+  return art::CompileOneMethod(compiler, backend, code_item, access_flags, invoke_type,
+                               class_def_idx, method_idx, class_loader, dex_file,
+                               NULL /* use thread llvm_info */);
+}
diff --git a/src/compiler/dex/frontend.h b/src/compiler/dex/frontend.h
new file mode 100644
index 0000000..b261c65
--- /dev/null
+++ b/src/compiler/dex/frontend.h
@@ -0,0 +1,153 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_COMPILER_H_
+#define ART_SRC_COMPILER_DEX_COMPILER_H_
+
+#include "dex_file.h"
+#include "dex_instruction.h"
+
+namespace llvm {
+  class Module;
+  class LLVMContext;
+}
+
+namespace art {
+namespace greenland {
+  class IntrinsicHelper;
+  class IRBuilder;
+}
+
+#define COMPILER_TRACED(X)
+#define COMPILER_TRACEE(X)
+
+/*
+ * Special offsets to denote method entry/exit for debugger update.
+ * NOTE: bit pattern must be loadable using 1 instruction and must
+ * not be a valid Dalvik offset.
+ */
+#define DEBUGGER_METHOD_ENTRY -1
+#define DEBUGGER_METHOD_EXIT -2
+
+/*
+ * Assembly is an iterative process, and usually terminates within
+ * two or three passes.  This should be high enough to handle bizarre
+ * cases, but detect an infinite loop bug.
+ */
+#define MAX_ASSEMBLER_RETRIES 50
+
+// Suppress optimization if corresponding bit set.
+enum opt_control_vector {
+  kLoadStoreElimination = 0,
+  kLoadHoisting,
+  kSuppressLoads,
+  kNullCheckElimination,
+  kPromoteRegs,
+  kTrackLiveTemps,
+  kSkipLargeMethodOptimization,
+  kSafeOptimizations,
+  kBBOpt,
+  kMatch,
+  kPromoteCompilerTemps,
+};
+
+// Force code generation paths for testing.
+enum debugControlVector {
+  kDebugDisplayMissingTargets,
+  kDebugVerbose,
+  kDebugDumpCFG,
+  kDebugSlowFieldPath,
+  kDebugSlowInvokePath,
+  kDebugSlowStringPath,
+  kDebugSlowTypePath,
+  kDebugSlowestFieldPath,
+  kDebugSlowestStringPath,
+  kDebugExerciseResolveMethod,
+  kDebugVerifyDataflow,
+  kDebugShowMemoryUsage,
+  kDebugShowNops,
+  kDebugCountOpcodes,
+  kDebugDumpCheckStats,
+  kDebugDumpBitcodeFile,
+  kDebugVerifyBitcode,
+};
+
+enum OatMethodAttributes {
+  kIsCallee = 0,      // Code is part of a callee (invoked by a hot trace).
+  kIsHot,             // Code is part of a hot trace.
+  kIsLeaf,            // Method is leaf.
+  kIsEmpty,           // Method is empty.
+  kIsThrowFree,       // Method doesn't throw.
+  kIsGetter,          // Method fits the getter pattern.
+  kIsSetter,          // Method fits the setter pattern.
+  kCannotCompile,     // Method cannot be compiled.
+};
+
+#define METHOD_IS_CALLEE        (1 << kIsCallee)
+#define METHOD_IS_HOT           (1 << kIsHot)
+#define METHOD_IS_LEAF          (1 << kIsLeaf)
+#define METHOD_IS_EMPTY         (1 << kIsEmpty)
+#define METHOD_IS_THROW_FREE    (1 << kIsThrowFree)
+#define METHOD_IS_GETTER        (1 << kIsGetter)
+#define METHOD_IS_SETTER        (1 << kIsSetter)
+#define METHOD_CANNOT_COMPILE   (1 << kCannotCompile)
+
+class LLVMInfo {
+  public:
+    LLVMInfo();
+    ~LLVMInfo();
+
+    llvm::LLVMContext* GetLLVMContext() {
+      return llvm_context_.get();
+    }
+
+    llvm::Module* GetLLVMModule() {
+      return llvm_module_;
+    }
+
+    art::greenland::IntrinsicHelper* GetIntrinsicHelper() {
+      return intrinsic_helper_.get();
+    }
+
+    art::greenland::IRBuilder* GetIRBuilder() {
+      return ir_builder_.get();
+    }
+
+  private:
+    UniquePtr<llvm::LLVMContext> llvm_context_;
+    llvm::Module* llvm_module_; // Managed by context_.
+    UniquePtr<art::greenland::IntrinsicHelper> intrinsic_helper_;
+    UniquePtr<art::greenland::IRBuilder> ir_builder_;
+};
+
+struct CompilationUnit;
+struct BasicBlock;
+
+BasicBlock* FindBlock(CompilationUnit* cu, unsigned int code_offset);
+void ReplaceSpecialChars(std::string& str);
+
+}  // namespace art
+
+extern "C" art::CompiledMethod* ArtCompileMethod(art::Compiler& compiler,
+                                                 const art::DexFile::CodeItem* code_item,
+                                                 uint32_t access_flags,
+                                                 art::InvokeType invoke_type,
+                                                 uint32_t class_dex_idx,
+                                                 uint32_t method_idx,
+                                                 jobject class_loader,
+                                                 const art::DexFile& dex_file);
+
+#endif // ART_SRC_COMPILER_DEX_COMPILER_H_
diff --git a/src/compiler/dex/portable/mir_to_gbc.cc b/src/compiler/dex/portable/mir_to_gbc.cc
new file mode 100644
index 0000000..31fa96a
--- /dev/null
+++ b/src/compiler/dex/portable/mir_to_gbc.cc
@@ -0,0 +1,3550 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "object_utils.h"
+
+#include <llvm/Support/ToolOutputFile.h>
+#include <llvm/Bitcode/ReaderWriter.h>
+#include <llvm/Analysis/Verifier.h>
+#include <llvm/Metadata.h>
+#include <llvm/ADT/DepthFirstIterator.h>
+#include <llvm/Instruction.h>
+#include <llvm/Type.h>
+#include <llvm/Instructions.h>
+#include <llvm/Support/Casting.h>
+#include <llvm/Support/InstIterator.h>
+
+#include "compiler/dex/compiler_internals.h"
+
+//TODO: move gbc_to_lir code into quick directory (if necessary).
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/local_optimizations.h"
+#include "compiler/dex/quick/ralloc_util.h"
+
+static const char* kLabelFormat = "%c0x%x_%d";
+static const char kInvalidBlock = 0xff;
+static const char kNormalBlock = 'L';
+static const char kCatchBlock = 'C';
+
+namespace art {
+static RegLocation GetLoc(CompilationUnit* cu, llvm::Value* val);
+
+static llvm::BasicBlock* GetLLVMBlock(CompilationUnit* cu, int id)
+{
+  return cu->id_to_block_map.Get(id);
+}
+
+static llvm::Value* GetLLVMValue(CompilationUnit* cu, int s_reg)
+{
+  return reinterpret_cast<llvm::Value*>(GrowableListGetElement(&cu->llvm_values, s_reg));
+}
+
+static void SetVregOnValue(CompilationUnit* cu, llvm::Value* val, int s_reg)
+{
+  // Set vreg for debugging
+  greenland::IntrinsicHelper::IntrinsicId id =
+      greenland::IntrinsicHelper::SetVReg;
+  llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  int v_reg = SRegToVReg(cu, s_reg);
+  llvm::Value* table_slot = cu->irb->getInt32(v_reg);
+  llvm::Value* args[] = { table_slot, val };
+  cu->irb->CreateCall(func, args);
+}
+
+// Replace the placeholder value with the real definition
+static void DefineValueOnly(CompilationUnit* cu, llvm::Value* val, int s_reg)
+{
+  llvm::Value* placeholder = GetLLVMValue(cu, s_reg);
+  if (placeholder == NULL) {
+    // This can happen on instruction rewrite on verification failure
+    LOG(WARNING) << "Null placeholder";
+    return;
+  }
+  placeholder->replaceAllUsesWith(val);
+  val->takeName(placeholder);
+  cu->llvm_values.elem_list[s_reg] = reinterpret_cast<uintptr_t>(val);
+  llvm::Instruction* inst = llvm::dyn_cast<llvm::Instruction>(placeholder);
+  DCHECK(inst != NULL);
+  inst->eraseFromParent();
+
+}
+
+static void DefineValue(CompilationUnit* cu, llvm::Value* val, int s_reg)
+{
+  DefineValueOnly(cu, val, s_reg);
+  SetVregOnValue(cu, val, s_reg);
+}
+
+static llvm::Type* LlvmTypeFromLocRec(CompilationUnit* cu, RegLocation loc)
+{
+  llvm::Type* res = NULL;
+  if (loc.wide) {
+    if (loc.fp)
+        res = cu->irb->getDoubleTy();
+    else
+        res = cu->irb->getInt64Ty();
+  } else {
+    if (loc.fp) {
+      res = cu->irb->getFloatTy();
+    } else {
+      if (loc.ref)
+        res = cu->irb->GetJObjectTy();
+      else
+        res = cu->irb->getInt32Ty();
+    }
+  }
+  return res;
+}
+
+/* Create an in-memory RegLocation from an llvm Value. */
+static void CreateLocFromValue(CompilationUnit* cu, llvm::Value* val)
+{
+  // NOTE: llvm takes shortcuts with c_str() - get to std::string firstt
+  std::string s(val->getName().str());
+  const char* val_name = s.c_str();
+  SafeMap<llvm::Value*, RegLocation>::iterator it = cu->loc_map.find(val);
+  DCHECK(it == cu->loc_map.end()) << " - already defined: " << val_name;
+  int base_sreg = INVALID_SREG;
+  int subscript = -1;
+  sscanf(val_name, "v%d_%d", &base_sreg, &subscript);
+  if ((base_sreg == INVALID_SREG) && (!strcmp(val_name, "method"))) {
+    base_sreg = SSA_METHOD_BASEREG;
+    subscript = 0;
+  }
+  DCHECK_NE(base_sreg, INVALID_SREG);
+  DCHECK_NE(subscript, -1);
+  // TODO: redo during C++'ification
+  RegLocation loc =  {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, INVALID_REG,
+                      INVALID_REG, INVALID_SREG, INVALID_SREG};
+  llvm::Type* ty = val->getType();
+  loc.wide = ((ty == cu->irb->getInt64Ty()) ||
+              (ty == cu->irb->getDoubleTy()));
+  loc.defined = true;
+  loc.home = false;  // May change during promotion
+  loc.s_reg_low = base_sreg;
+  loc.orig_sreg = cu->loc_map.size();
+  PromotionMap p_map = cu->promotion_map[base_sreg];
+  if (ty == cu->irb->getFloatTy()) {
+    loc.fp = true;
+    if (p_map.fp_location == kLocPhysReg) {
+      loc.low_reg = p_map.FpReg;
+      loc.location = kLocPhysReg;
+      loc.home = true;
+    }
+  } else if (ty == cu->irb->getDoubleTy()) {
+    loc.fp = true;
+    PromotionMap p_map_high = cu->promotion_map[base_sreg + 1];
+    if ((p_map.fp_location == kLocPhysReg) &&
+        (p_map_high.fp_location == kLocPhysReg) &&
+        ((p_map.FpReg & 0x1) == 0) &&
+        (p_map.FpReg + 1 == p_map_high.FpReg)) {
+      loc.low_reg = p_map.FpReg;
+      loc.high_reg = p_map_high.FpReg;
+      loc.location = kLocPhysReg;
+      loc.home = true;
+    }
+  } else if (ty == cu->irb->GetJObjectTy()) {
+    loc.ref = true;
+    if (p_map.core_location == kLocPhysReg) {
+      loc.low_reg = p_map.core_reg;
+      loc.location = kLocPhysReg;
+      loc.home = true;
+    }
+  } else if (ty == cu->irb->getInt64Ty()) {
+    loc.core = true;
+    PromotionMap p_map_high = cu->promotion_map[base_sreg + 1];
+    if ((p_map.core_location == kLocPhysReg) &&
+        (p_map_high.core_location == kLocPhysReg)) {
+      loc.low_reg = p_map.core_reg;
+      loc.high_reg = p_map_high.core_reg;
+      loc.location = kLocPhysReg;
+      loc.home = true;
+    }
+  } else {
+    loc.core = true;
+    if (p_map.core_location == kLocPhysReg) {
+      loc.low_reg = p_map.core_reg;
+      loc.location = kLocPhysReg;
+      loc.home = true;
+    }
+  }
+
+  if (cu->verbose && loc.home) {
+    if (loc.wide) {
+      LOG(INFO) << "Promoted wide " << s << " to regs " << loc.low_reg << "/" << loc.high_reg;
+    } else {
+      LOG(INFO) << "Promoted " << s << " to reg " << loc.low_reg;
+    }
+  }
+  cu->loc_map.Put(val, loc);
+}
+
+static void InitIR(CompilationUnit* cu)
+{
+  LLVMInfo* llvm_info = cu->llvm_info;
+  if (llvm_info == NULL) {
+    CompilerTls* tls = cu->compiler->GetTls();
+    CHECK(tls != NULL);
+    llvm_info = static_cast<LLVMInfo*>(tls->GetLLVMInfo());
+    if (llvm_info == NULL) {
+      llvm_info = new LLVMInfo();
+      tls->SetLLVMInfo(llvm_info);
+    }
+  }
+  cu->context = llvm_info->GetLLVMContext();
+  cu->module = llvm_info->GetLLVMModule();
+  cu->intrinsic_helper = llvm_info->GetIntrinsicHelper();
+  cu->irb = llvm_info->GetIRBuilder();
+}
+
+static const char* LlvmSSAName(CompilationUnit* cu, int ssa_reg) {
+  return GET_ELEM_N(cu->ssa_strings, char*, ssa_reg);
+}
+
+llvm::BasicBlock* FindCaseTarget(CompilationUnit* cu, uint32_t vaddr)
+{
+  BasicBlock* bb = FindBlock(cu, vaddr);
+  DCHECK(bb != NULL);
+  return GetLLVMBlock(cu, bb->id);
+}
+
+static void ConvertPackedSwitch(CompilationUnit* cu, BasicBlock* bb,
+                                int32_t table_offset, RegLocation rl_src)
+{
+  const Instruction::PackedSwitchPayload* payload =
+      reinterpret_cast<const Instruction::PackedSwitchPayload*>(
+      cu->insns + cu->current_dalvik_offset + table_offset);
+
+  llvm::Value* value = GetLLVMValue(cu, rl_src.orig_sreg);
+
+  llvm::SwitchInst* sw =
+    cu->irb->CreateSwitch(value, GetLLVMBlock(cu, bb->fall_through->id),
+                             payload->case_count);
+
+  for (uint16_t i = 0; i < payload->case_count; ++i) {
+    llvm::BasicBlock* llvm_bb =
+        FindCaseTarget(cu, cu->current_dalvik_offset + payload->targets[i]);
+    sw->addCase(cu->irb->getInt32(payload->first_key + i), llvm_bb);
+  }
+  llvm::MDNode* switch_node =
+      llvm::MDNode::get(*cu->context, cu->irb->getInt32(table_offset));
+  sw->setMetadata("SwitchTable", switch_node);
+  bb->taken = NULL;
+  bb->fall_through = NULL;
+}
+
+static void ConvertSparseSwitch(CompilationUnit* cu, BasicBlock* bb,
+                                int32_t table_offset, RegLocation rl_src)
+{
+  const Instruction::SparseSwitchPayload* payload =
+      reinterpret_cast<const Instruction::SparseSwitchPayload*>(
+      cu->insns + cu->current_dalvik_offset + table_offset);
+
+  const int32_t* keys = payload->GetKeys();
+  const int32_t* targets = payload->GetTargets();
+
+  llvm::Value* value = GetLLVMValue(cu, rl_src.orig_sreg);
+
+  llvm::SwitchInst* sw =
+    cu->irb->CreateSwitch(value, GetLLVMBlock(cu, bb->fall_through->id),
+                             payload->case_count);
+
+  for (size_t i = 0; i < payload->case_count; ++i) {
+    llvm::BasicBlock* llvm_bb =
+        FindCaseTarget(cu, cu->current_dalvik_offset + targets[i]);
+    sw->addCase(cu->irb->getInt32(keys[i]), llvm_bb);
+  }
+  llvm::MDNode* switch_node =
+      llvm::MDNode::get(*cu->context, cu->irb->getInt32(table_offset));
+  sw->setMetadata("SwitchTable", switch_node);
+  bb->taken = NULL;
+  bb->fall_through = NULL;
+}
+
+static void ConvertSget(CompilationUnit* cu, int32_t field_index,
+                        greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest)
+{
+  llvm::Constant* field_idx = cu->irb->getInt32(field_index);
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::Value* res = cu->irb->CreateCall(intr, field_idx);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertSput(CompilationUnit* cu, int32_t field_index,
+                        greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_src)
+{
+  llvm::SmallVector<llvm::Value*, 2> args;
+  args.push_back(cu->irb->getInt32(field_index));
+  args.push_back(GetLLVMValue(cu, rl_src.orig_sreg));
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  cu->irb->CreateCall(intr, args);
+}
+
+static void ConvertFillArrayData(CompilationUnit* cu, int32_t offset, RegLocation rl_array)
+{
+  greenland::IntrinsicHelper::IntrinsicId id;
+  id = greenland::IntrinsicHelper::HLFillArrayData;
+  llvm::SmallVector<llvm::Value*, 2> args;
+  args.push_back(cu->irb->getInt32(offset));
+  args.push_back(GetLLVMValue(cu, rl_array.orig_sreg));
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  cu->irb->CreateCall(intr, args);
+}
+
+static llvm::Value* EmitConst(CompilationUnit* cu, llvm::ArrayRef<llvm::Value*> src,
+                              RegLocation loc)
+{
+  greenland::IntrinsicHelper::IntrinsicId id;
+  if (loc.wide) {
+    if (loc.fp) {
+      id = greenland::IntrinsicHelper::ConstDouble;
+    } else {
+      id = greenland::IntrinsicHelper::ConstLong;
+    }
+  } else {
+    if (loc.fp) {
+      id = greenland::IntrinsicHelper::ConstFloat;
+    } else if (loc.ref) {
+      id = greenland::IntrinsicHelper::ConstObj;
+    } else {
+      id = greenland::IntrinsicHelper::ConstInt;
+    }
+  }
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  return cu->irb->CreateCall(intr, src);
+}
+
+static void EmitPopShadowFrame(CompilationUnit* cu)
+{
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(
+      greenland::IntrinsicHelper::PopShadowFrame);
+  cu->irb->CreateCall(intr);
+}
+
+static llvm::Value* EmitCopy(CompilationUnit* cu, llvm::ArrayRef<llvm::Value*> src,
+                             RegLocation loc)
+{
+  greenland::IntrinsicHelper::IntrinsicId id;
+  if (loc.wide) {
+    if (loc.fp) {
+      id = greenland::IntrinsicHelper::CopyDouble;
+    } else {
+      id = greenland::IntrinsicHelper::CopyLong;
+    }
+  } else {
+    if (loc.fp) {
+      id = greenland::IntrinsicHelper::CopyFloat;
+    } else if (loc.ref) {
+      id = greenland::IntrinsicHelper::CopyObj;
+    } else {
+      id = greenland::IntrinsicHelper::CopyInt;
+    }
+  }
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  return cu->irb->CreateCall(intr, src);
+}
+
+static void ConvertMoveException(CompilationUnit* cu, RegLocation rl_dest)
+{
+  llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(
+      greenland::IntrinsicHelper::GetException);
+  llvm::Value* res = cu->irb->CreateCall(func);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertThrow(CompilationUnit* cu, RegLocation rl_src)
+{
+  llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg);
+  llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(
+      greenland::IntrinsicHelper::HLThrowException);
+  cu->irb->CreateCall(func, src);
+}
+
+static void ConvertMonitorEnterExit(CompilationUnit* cu, int opt_flags,
+                                    greenland::IntrinsicHelper::IntrinsicId id,
+                                    RegLocation rl_src)
+{
+  llvm::SmallVector<llvm::Value*, 2> args;
+  args.push_back(cu->irb->getInt32(opt_flags));
+  args.push_back(GetLLVMValue(cu, rl_src.orig_sreg));
+  llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  cu->irb->CreateCall(func, args);
+}
+
+static void ConvertArrayLength(CompilationUnit* cu, int opt_flags,
+                               RegLocation rl_dest, RegLocation rl_src)
+{
+  llvm::SmallVector<llvm::Value*, 2> args;
+  args.push_back(cu->irb->getInt32(opt_flags));
+  args.push_back(GetLLVMValue(cu, rl_src.orig_sreg));
+  llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(
+      greenland::IntrinsicHelper::OptArrayLength);
+  llvm::Value* res = cu->irb->CreateCall(func, args);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void EmitSuspendCheck(CompilationUnit* cu)
+{
+  greenland::IntrinsicHelper::IntrinsicId id =
+      greenland::IntrinsicHelper::CheckSuspend;
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  cu->irb->CreateCall(intr);
+}
+
+static llvm::Value* ConvertCompare(CompilationUnit* cu, ConditionCode cc,
+                                   llvm::Value* src1, llvm::Value* src2)
+{
+  llvm::Value* res = NULL;
+  DCHECK_EQ(src1->getType(), src2->getType());
+  switch(cc) {
+    case kCondEq: res = cu->irb->CreateICmpEQ(src1, src2); break;
+    case kCondNe: res = cu->irb->CreateICmpNE(src1, src2); break;
+    case kCondLt: res = cu->irb->CreateICmpSLT(src1, src2); break;
+    case kCondGe: res = cu->irb->CreateICmpSGE(src1, src2); break;
+    case kCondGt: res = cu->irb->CreateICmpSGT(src1, src2); break;
+    case kCondLe: res = cu->irb->CreateICmpSLE(src1, src2); break;
+    default: LOG(FATAL) << "Unexpected cc value " << cc;
+  }
+  return res;
+}
+
+static void ConvertCompareAndBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                                    ConditionCode cc, RegLocation rl_src1, RegLocation rl_src2)
+{
+  if (bb->taken->start_offset <= mir->offset) {
+    EmitSuspendCheck(cu);
+  }
+  llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg);
+  llvm::Value* src2 = GetLLVMValue(cu, rl_src2.orig_sreg);
+  llvm::Value* cond_value = ConvertCompare(cu, cc, src1, src2);
+  cond_value->setName(StringPrintf("t%d", cu->temp_name++));
+  cu->irb->CreateCondBr(cond_value, GetLLVMBlock(cu, bb->taken->id),
+                           GetLLVMBlock(cu, bb->fall_through->id));
+  // Don't redo the fallthrough branch in the BB driver
+  bb->fall_through = NULL;
+}
+
+static void ConvertCompareZeroAndBranch(CompilationUnit* cu, BasicBlock* bb,
+                                        MIR* mir, ConditionCode cc, RegLocation rl_src1)
+{
+  if (bb->taken->start_offset <= mir->offset) {
+    EmitSuspendCheck(cu);
+  }
+  llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg);
+  llvm::Value* src2;
+  if (rl_src1.ref) {
+    src2 = cu->irb->GetJNull();
+  } else {
+    src2 = cu->irb->getInt32(0);
+  }
+  llvm::Value* cond_value = ConvertCompare(cu, cc, src1, src2);
+  cu->irb->CreateCondBr(cond_value, GetLLVMBlock(cu, bb->taken->id),
+                           GetLLVMBlock(cu, bb->fall_through->id));
+  // Don't redo the fallthrough branch in the BB driver
+  bb->fall_through = NULL;
+}
+
+static llvm::Value* GenDivModOp(CompilationUnit* cu, bool is_div, bool is_long,
+                                llvm::Value* src1, llvm::Value* src2)
+{
+  greenland::IntrinsicHelper::IntrinsicId id;
+  if (is_long) {
+    if (is_div) {
+      id = greenland::IntrinsicHelper::DivLong;
+    } else {
+      id = greenland::IntrinsicHelper::RemLong;
+    }
+  } else {
+    if (is_div) {
+      id = greenland::IntrinsicHelper::DivInt;
+    } else {
+      id = greenland::IntrinsicHelper::RemInt;
+    }
+  }
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::SmallVector<llvm::Value*, 2>args;
+  args.push_back(src1);
+  args.push_back(src2);
+  return cu->irb->CreateCall(intr, args);
+}
+
+static llvm::Value* GenArithOp(CompilationUnit* cu, OpKind op, bool is_long,
+                               llvm::Value* src1, llvm::Value* src2)
+{
+  llvm::Value* res = NULL;
+  switch(op) {
+    case kOpAdd: res = cu->irb->CreateAdd(src1, src2); break;
+    case kOpSub: res = cu->irb->CreateSub(src1, src2); break;
+    case kOpRsub: res = cu->irb->CreateSub(src2, src1); break;
+    case kOpMul: res = cu->irb->CreateMul(src1, src2); break;
+    case kOpOr: res = cu->irb->CreateOr(src1, src2); break;
+    case kOpAnd: res = cu->irb->CreateAnd(src1, src2); break;
+    case kOpXor: res = cu->irb->CreateXor(src1, src2); break;
+    case kOpDiv: res = GenDivModOp(cu, true, is_long, src1, src2); break;
+    case kOpRem: res = GenDivModOp(cu, false, is_long, src1, src2); break;
+    case kOpLsl: res = cu->irb->CreateShl(src1, src2); break;
+    case kOpLsr: res = cu->irb->CreateLShr(src1, src2); break;
+    case kOpAsr: res = cu->irb->CreateAShr(src1, src2); break;
+    default:
+      LOG(FATAL) << "Invalid op " << op;
+  }
+  return res;
+}
+
+static void ConvertFPArithOp(CompilationUnit* cu, OpKind op, RegLocation rl_dest,
+                             RegLocation rl_src1, RegLocation rl_src2)
+{
+  llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg);
+  llvm::Value* src2 = GetLLVMValue(cu, rl_src2.orig_sreg);
+  llvm::Value* res = NULL;
+  switch(op) {
+    case kOpAdd: res = cu->irb->CreateFAdd(src1, src2); break;
+    case kOpSub: res = cu->irb->CreateFSub(src1, src2); break;
+    case kOpMul: res = cu->irb->CreateFMul(src1, src2); break;
+    case kOpDiv: res = cu->irb->CreateFDiv(src1, src2); break;
+    case kOpRem: res = cu->irb->CreateFRem(src1, src2); break;
+    default:
+      LOG(FATAL) << "Invalid op " << op;
+  }
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertShift(CompilationUnit* cu, greenland::IntrinsicHelper::IntrinsicId id,
+                         RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
+{
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::SmallVector<llvm::Value*, 2>args;
+  args.push_back(GetLLVMValue(cu, rl_src1.orig_sreg));
+  args.push_back(GetLLVMValue(cu, rl_src2.orig_sreg));
+  llvm::Value* res = cu->irb->CreateCall(intr, args);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertShiftLit(CompilationUnit* cu, greenland::IntrinsicHelper::IntrinsicId id,
+                            RegLocation rl_dest, RegLocation rl_src, int shift_amount)
+{
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::SmallVector<llvm::Value*, 2>args;
+  args.push_back(GetLLVMValue(cu, rl_src.orig_sreg));
+  args.push_back(cu->irb->getInt32(shift_amount));
+  llvm::Value* res = cu->irb->CreateCall(intr, args);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertArithOp(CompilationUnit* cu, OpKind op, RegLocation rl_dest,
+                           RegLocation rl_src1, RegLocation rl_src2)
+{
+  llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg);
+  llvm::Value* src2 = GetLLVMValue(cu, rl_src2.orig_sreg);
+  DCHECK_EQ(src1->getType(), src2->getType());
+  llvm::Value* res = GenArithOp(cu, op, rl_dest.wide, src1, src2);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertArithOpLit(CompilationUnit* cu, OpKind op, RegLocation rl_dest,
+                              RegLocation rl_src1, int32_t imm)
+{
+  llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg);
+  llvm::Value* src2 = cu->irb->getInt32(imm);
+  llvm::Value* res = GenArithOp(cu, op, rl_dest.wide, src1, src2);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+/*
+ * Process arguments for invoke.  Note: this code is also used to
+ * collect and process arguments for NEW_FILLED_ARRAY and NEW_FILLED_ARRAY_RANGE.
+ * The requirements are similar.
+ */
+static void ConvertInvoke(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                          InvokeType invoke_type, bool is_range, bool is_filled_new_array)
+{
+  Codegen* cg = cu->cg.get();
+  CallInfo* info = cg->NewMemCallInfo(cu, bb, mir, invoke_type, is_range);
+  llvm::SmallVector<llvm::Value*, 10> args;
+  // Insert the invoke_type
+  args.push_back(cu->irb->getInt32(static_cast<int>(invoke_type)));
+  // Insert the method_idx
+  args.push_back(cu->irb->getInt32(info->index));
+  // Insert the optimization flags
+  args.push_back(cu->irb->getInt32(info->opt_flags));
+  // Now, insert the actual arguments
+  for (int i = 0; i < info->num_arg_words;) {
+    llvm::Value* val = GetLLVMValue(cu, info->args[i].orig_sreg);
+    args.push_back(val);
+    i += info->args[i].wide ? 2 : 1;
+  }
+  /*
+   * Choose the invoke return type based on actual usage.  Note: may
+   * be different than shorty.  For example, if a function return value
+   * is not used, we'll treat this as a void invoke.
+   */
+  greenland::IntrinsicHelper::IntrinsicId id;
+  if (is_filled_new_array) {
+    id = greenland::IntrinsicHelper::HLFilledNewArray;
+  } else if (info->result.location == kLocInvalid) {
+    id = greenland::IntrinsicHelper::HLInvokeVoid;
+  } else {
+    if (info->result.wide) {
+      if (info->result.fp) {
+        id = greenland::IntrinsicHelper::HLInvokeDouble;
+      } else {
+        id = greenland::IntrinsicHelper::HLInvokeLong;
+      }
+    } else if (info->result.ref) {
+        id = greenland::IntrinsicHelper::HLInvokeObj;
+    } else if (info->result.fp) {
+        id = greenland::IntrinsicHelper::HLInvokeFloat;
+    } else {
+        id = greenland::IntrinsicHelper::HLInvokeInt;
+    }
+  }
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::Value* res = cu->irb->CreateCall(intr, args);
+  if (info->result.location != kLocInvalid) {
+    DefineValue(cu, res, info->result.orig_sreg);
+  }
+}
+
+static void ConvertConstObject(CompilationUnit* cu, uint32_t idx,
+                               greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest)
+{
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::Value* index = cu->irb->getInt32(idx);
+  llvm::Value* res = cu->irb->CreateCall(intr, index);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertCheckCast(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_src)
+{
+  greenland::IntrinsicHelper::IntrinsicId id;
+  id = greenland::IntrinsicHelper::HLCheckCast;
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::SmallVector<llvm::Value*, 2> args;
+  args.push_back(cu->irb->getInt32(type_idx));
+  args.push_back(GetLLVMValue(cu, rl_src.orig_sreg));
+  cu->irb->CreateCall(intr, args);
+}
+
+static void ConvertNewInstance(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest)
+{
+  greenland::IntrinsicHelper::IntrinsicId id;
+  id = greenland::IntrinsicHelper::NewInstance;
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::Value* index = cu->irb->getInt32(type_idx);
+  llvm::Value* res = cu->irb->CreateCall(intr, index);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertNewArray(CompilationUnit* cu, uint32_t type_idx,
+                            RegLocation rl_dest, RegLocation rl_src)
+{
+  greenland::IntrinsicHelper::IntrinsicId id;
+  id = greenland::IntrinsicHelper::NewArray;
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::SmallVector<llvm::Value*, 2> args;
+  args.push_back(cu->irb->getInt32(type_idx));
+  args.push_back(GetLLVMValue(cu, rl_src.orig_sreg));
+  llvm::Value* res = cu->irb->CreateCall(intr, args);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertAget(CompilationUnit* cu, int opt_flags,
+                        greenland::IntrinsicHelper::IntrinsicId id,
+                        RegLocation rl_dest, RegLocation rl_array, RegLocation rl_index)
+{
+  llvm::SmallVector<llvm::Value*, 3> args;
+  args.push_back(cu->irb->getInt32(opt_flags));
+  args.push_back(GetLLVMValue(cu, rl_array.orig_sreg));
+  args.push_back(GetLLVMValue(cu, rl_index.orig_sreg));
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::Value* res = cu->irb->CreateCall(intr, args);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertAput(CompilationUnit* cu, int opt_flags,
+                        greenland::IntrinsicHelper::IntrinsicId id,
+                        RegLocation rl_src, RegLocation rl_array, RegLocation rl_index)
+{
+  llvm::SmallVector<llvm::Value*, 4> args;
+  args.push_back(cu->irb->getInt32(opt_flags));
+  args.push_back(GetLLVMValue(cu, rl_src.orig_sreg));
+  args.push_back(GetLLVMValue(cu, rl_array.orig_sreg));
+  args.push_back(GetLLVMValue(cu, rl_index.orig_sreg));
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  cu->irb->CreateCall(intr, args);
+}
+
+static void ConvertIget(CompilationUnit* cu, int opt_flags,
+                        greenland::IntrinsicHelper::IntrinsicId id,
+                        RegLocation rl_dest, RegLocation rl_obj, int field_index)
+{
+  llvm::SmallVector<llvm::Value*, 3> args;
+  args.push_back(cu->irb->getInt32(opt_flags));
+  args.push_back(GetLLVMValue(cu, rl_obj.orig_sreg));
+  args.push_back(cu->irb->getInt32(field_index));
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::Value* res = cu->irb->CreateCall(intr, args);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertIput(CompilationUnit* cu, int opt_flags,
+                        greenland::IntrinsicHelper::IntrinsicId id,
+                        RegLocation rl_src, RegLocation rl_obj, int field_index)
+{
+  llvm::SmallVector<llvm::Value*, 4> args;
+  args.push_back(cu->irb->getInt32(opt_flags));
+  args.push_back(GetLLVMValue(cu, rl_src.orig_sreg));
+  args.push_back(GetLLVMValue(cu, rl_obj.orig_sreg));
+  args.push_back(cu->irb->getInt32(field_index));
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  cu->irb->CreateCall(intr, args);
+}
+
+static void ConvertInstanceOf(CompilationUnit* cu, uint32_t type_idx,
+                              RegLocation rl_dest, RegLocation rl_src)
+{
+  greenland::IntrinsicHelper::IntrinsicId id;
+  id = greenland::IntrinsicHelper::InstanceOf;
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::SmallVector<llvm::Value*, 2> args;
+  args.push_back(cu->irb->getInt32(type_idx));
+  args.push_back(GetLLVMValue(cu, rl_src.orig_sreg));
+  llvm::Value* res = cu->irb->CreateCall(intr, args);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertIntToLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  llvm::Value* res = cu->irb->CreateSExt(GetLLVMValue(cu, rl_src.orig_sreg),
+                                            cu->irb->getInt64Ty());
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertLongToInt(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg);
+  llvm::Value* res = cu->irb->CreateTrunc(src, cu->irb->getInt32Ty());
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertFloatToDouble(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg);
+  llvm::Value* res = cu->irb->CreateFPExt(src, cu->irb->getDoubleTy());
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertDoubleToFloat(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg);
+  llvm::Value* res = cu->irb->CreateFPTrunc(src, cu->irb->getFloatTy());
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertWideComparison(CompilationUnit* cu,
+                                  greenland::IntrinsicHelper::IntrinsicId id,
+                                  RegLocation rl_dest, RegLocation rl_src1,
+                           RegLocation rl_src2)
+{
+  DCHECK_EQ(rl_src1.fp, rl_src2.fp);
+  DCHECK_EQ(rl_src1.wide, rl_src2.wide);
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::SmallVector<llvm::Value*, 2> args;
+  args.push_back(GetLLVMValue(cu, rl_src1.orig_sreg));
+  args.push_back(GetLLVMValue(cu, rl_src2.orig_sreg));
+  llvm::Value* res = cu->irb->CreateCall(intr, args);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertIntNarrowing(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src,
+                                greenland::IntrinsicHelper::IntrinsicId id)
+{
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::Value* res =
+      cu->irb->CreateCall(intr, GetLLVMValue(cu, rl_src.orig_sreg));
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertNeg(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  llvm::Value* res = cu->irb->CreateNeg(GetLLVMValue(cu, rl_src.orig_sreg));
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertIntToFP(CompilationUnit* cu, llvm::Type* ty, RegLocation rl_dest,
+                           RegLocation rl_src)
+{
+  llvm::Value* res =
+      cu->irb->CreateSIToFP(GetLLVMValue(cu, rl_src.orig_sreg), ty);
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertFPToInt(CompilationUnit* cu, greenland::IntrinsicHelper::IntrinsicId id,
+                           RegLocation rl_dest,
+                    RegLocation rl_src)
+{
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::Value* res = cu->irb->CreateCall(intr, GetLLVMValue(cu, rl_src.orig_sreg));
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+
+static void ConvertNegFP(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  llvm::Value* res =
+      cu->irb->CreateFNeg(GetLLVMValue(cu, rl_src.orig_sreg));
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+static void ConvertNot(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg);
+  llvm::Value* res = cu->irb->CreateXor(src, static_cast<uint64_t>(-1));
+  DefineValue(cu, res, rl_dest.orig_sreg);
+}
+
+/*
+ * Target-independent code generation.  Use only high-level
+ * load/store utilities here, or target-dependent genXX() handlers
+ * when necessary.
+ */
+static bool ConvertMIRNode(CompilationUnit* cu, MIR* mir, BasicBlock* bb,
+                           llvm::BasicBlock* llvm_bb, LIR* label_list)
+{
+  bool res = false;   // Assume success
+  RegLocation rl_src[3];
+  RegLocation rl_dest = GetBadLoc();
+  Instruction::Code opcode = mir->dalvikInsn.opcode;
+  int op_val = opcode;
+  uint32_t vB = mir->dalvikInsn.vB;
+  uint32_t vC = mir->dalvikInsn.vC;
+  int opt_flags = mir->optimization_flags;
+
+  if (cu->verbose) {
+    if (op_val < kMirOpFirst) {
+      LOG(INFO) << ".. " << Instruction::Name(opcode) << " 0x" << std::hex << op_val;
+    } else {
+      LOG(INFO) << extended_mir_op_names[op_val - kMirOpFirst] << " 0x" << std::hex << op_val;
+    }
+  }
+
+  /* Prep Src and Dest locations */
+  int next_sreg = 0;
+  int next_loc = 0;
+  int attrs = oat_data_flow_attributes[opcode];
+  rl_src[0] = rl_src[1] = rl_src[2] = GetBadLoc();
+  if (attrs & DF_UA) {
+    if (attrs & DF_A_WIDE) {
+      rl_src[next_loc++] = GetSrcWide(cu, mir, next_sreg);
+      next_sreg+= 2;
+    } else {
+      rl_src[next_loc++] = GetSrc(cu, mir, next_sreg);
+      next_sreg++;
+    }
+  }
+  if (attrs & DF_UB) {
+    if (attrs & DF_B_WIDE) {
+      rl_src[next_loc++] = GetSrcWide(cu, mir, next_sreg);
+      next_sreg+= 2;
+    } else {
+      rl_src[next_loc++] = GetSrc(cu, mir, next_sreg);
+      next_sreg++;
+    }
+  }
+  if (attrs & DF_UC) {
+    if (attrs & DF_C_WIDE) {
+      rl_src[next_loc++] = GetSrcWide(cu, mir, next_sreg);
+    } else {
+      rl_src[next_loc++] = GetSrc(cu, mir, next_sreg);
+    }
+  }
+  if (attrs & DF_DA) {
+    if (attrs & DF_A_WIDE) {
+      rl_dest = GetDestWide(cu, mir);
+    } else {
+      rl_dest = GetDest(cu, mir);
+    }
+  }
+
+  switch (opcode) {
+    case Instruction::NOP:
+      break;
+
+    case Instruction::MOVE:
+    case Instruction::MOVE_OBJECT:
+    case Instruction::MOVE_16:
+    case Instruction::MOVE_OBJECT_16:
+    case Instruction::MOVE_OBJECT_FROM16:
+    case Instruction::MOVE_FROM16:
+    case Instruction::MOVE_WIDE:
+    case Instruction::MOVE_WIDE_16:
+    case Instruction::MOVE_WIDE_FROM16: {
+        /*
+         * Moves/copies are meaningless in pure SSA register form,
+         * but we need to preserve them for the conversion back into
+         * MIR (at least until we stop using the Dalvik register maps).
+         * Insert a dummy intrinsic copy call, which will be recognized
+         * by the quick path and removed by the portable path.
+         */
+        llvm::Value* src = GetLLVMValue(cu, rl_src[0].orig_sreg);
+        llvm::Value* res = EmitCopy(cu, src, rl_dest);
+        DefineValue(cu, res, rl_dest.orig_sreg);
+      }
+      break;
+
+    case Instruction::CONST:
+    case Instruction::CONST_4:
+    case Instruction::CONST_16: {
+        llvm::Constant* imm_value = cu->irb->GetJInt(vB);
+        llvm::Value* res = EmitConst(cu, imm_value, rl_dest);
+        DefineValue(cu, res, rl_dest.orig_sreg);
+      }
+      break;
+
+    case Instruction::CONST_WIDE_16:
+    case Instruction::CONST_WIDE_32: {
+        // Sign extend to 64 bits
+        int64_t imm = static_cast<int32_t>(vB);
+        llvm::Constant* imm_value = cu->irb->GetJLong(imm);
+        llvm::Value* res = EmitConst(cu, imm_value, rl_dest);
+        DefineValue(cu, res, rl_dest.orig_sreg);
+      }
+      break;
+
+    case Instruction::CONST_HIGH16: {
+        llvm::Constant* imm_value = cu->irb->GetJInt(vB << 16);
+        llvm::Value* res = EmitConst(cu, imm_value, rl_dest);
+        DefineValue(cu, res, rl_dest.orig_sreg);
+      }
+      break;
+
+    case Instruction::CONST_WIDE: {
+        llvm::Constant* imm_value =
+            cu->irb->GetJLong(mir->dalvikInsn.vB_wide);
+        llvm::Value* res = EmitConst(cu, imm_value, rl_dest);
+        DefineValue(cu, res, rl_dest.orig_sreg);
+      }
+      break;
+    case Instruction::CONST_WIDE_HIGH16: {
+        int64_t imm = static_cast<int64_t>(vB) << 48;
+        llvm::Constant* imm_value = cu->irb->GetJLong(imm);
+        llvm::Value* res = EmitConst(cu, imm_value, rl_dest);
+        DefineValue(cu, res, rl_dest.orig_sreg);
+      }
+      break;
+
+    case Instruction::SPUT_OBJECT:
+      ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputObject,
+                  rl_src[0]);
+      break;
+    case Instruction::SPUT:
+      if (rl_src[0].fp) {
+        ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputFloat,
+                    rl_src[0]);
+      } else {
+        ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSput, rl_src[0]);
+      }
+      break;
+    case Instruction::SPUT_BOOLEAN:
+      ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputBoolean,
+                  rl_src[0]);
+      break;
+    case Instruction::SPUT_BYTE:
+      ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputByte, rl_src[0]);
+      break;
+    case Instruction::SPUT_CHAR:
+      ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputChar, rl_src[0]);
+      break;
+    case Instruction::SPUT_SHORT:
+      ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputShort, rl_src[0]);
+      break;
+    case Instruction::SPUT_WIDE:
+      if (rl_src[0].fp) {
+        ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputDouble,
+                    rl_src[0]);
+      } else {
+        ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputWide,
+                    rl_src[0]);
+      }
+      break;
+
+    case Instruction::SGET_OBJECT:
+      ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetObject, rl_dest);
+      break;
+    case Instruction::SGET:
+      if (rl_dest.fp) {
+        ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetFloat, rl_dest);
+      } else {
+        ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSget, rl_dest);
+      }
+      break;
+    case Instruction::SGET_BOOLEAN:
+      ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetBoolean, rl_dest);
+      break;
+    case Instruction::SGET_BYTE:
+      ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetByte, rl_dest);
+      break;
+    case Instruction::SGET_CHAR:
+      ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetChar, rl_dest);
+      break;
+    case Instruction::SGET_SHORT:
+      ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetShort, rl_dest);
+      break;
+    case Instruction::SGET_WIDE:
+      if (rl_dest.fp) {
+        ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetDouble,
+                    rl_dest);
+      } else {
+        ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetWide, rl_dest);
+      }
+      break;
+
+    case Instruction::RETURN_WIDE:
+    case Instruction::RETURN:
+    case Instruction::RETURN_OBJECT: {
+        if (!(cu->attrs & METHOD_IS_LEAF)) {
+          EmitSuspendCheck(cu);
+        }
+        EmitPopShadowFrame(cu);
+        cu->irb->CreateRet(GetLLVMValue(cu, rl_src[0].orig_sreg));
+        DCHECK(bb->terminated_by_return);
+      }
+      break;
+
+    case Instruction::RETURN_VOID: {
+        if (!(cu->attrs & METHOD_IS_LEAF)) {
+          EmitSuspendCheck(cu);
+        }
+        EmitPopShadowFrame(cu);
+        cu->irb->CreateRetVoid();
+        DCHECK(bb->terminated_by_return);
+      }
+      break;
+
+    case Instruction::IF_EQ:
+      ConvertCompareAndBranch(cu, bb, mir, kCondEq, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::IF_NE:
+      ConvertCompareAndBranch(cu, bb, mir, kCondNe, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::IF_LT:
+      ConvertCompareAndBranch(cu, bb, mir, kCondLt, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::IF_GE:
+      ConvertCompareAndBranch(cu, bb, mir, kCondGe, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::IF_GT:
+      ConvertCompareAndBranch(cu, bb, mir, kCondGt, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::IF_LE:
+      ConvertCompareAndBranch(cu, bb, mir, kCondLe, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::IF_EQZ:
+      ConvertCompareZeroAndBranch(cu, bb, mir, kCondEq, rl_src[0]);
+      break;
+    case Instruction::IF_NEZ:
+      ConvertCompareZeroAndBranch(cu, bb, mir, kCondNe, rl_src[0]);
+      break;
+    case Instruction::IF_LTZ:
+      ConvertCompareZeroAndBranch(cu, bb, mir, kCondLt, rl_src[0]);
+      break;
+    case Instruction::IF_GEZ:
+      ConvertCompareZeroAndBranch(cu, bb, mir, kCondGe, rl_src[0]);
+      break;
+    case Instruction::IF_GTZ:
+      ConvertCompareZeroAndBranch(cu, bb, mir, kCondGt, rl_src[0]);
+      break;
+    case Instruction::IF_LEZ:
+      ConvertCompareZeroAndBranch(cu, bb, mir, kCondLe, rl_src[0]);
+      break;
+
+    case Instruction::GOTO:
+    case Instruction::GOTO_16:
+    case Instruction::GOTO_32: {
+        if (bb->taken->start_offset <= bb->start_offset) {
+          EmitSuspendCheck(cu);
+        }
+        cu->irb->CreateBr(GetLLVMBlock(cu, bb->taken->id));
+      }
+      break;
+
+    case Instruction::ADD_LONG:
+    case Instruction::ADD_LONG_2ADDR:
+    case Instruction::ADD_INT:
+    case Instruction::ADD_INT_2ADDR:
+      ConvertArithOp(cu, kOpAdd, rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::SUB_LONG:
+    case Instruction::SUB_LONG_2ADDR:
+    case Instruction::SUB_INT:
+    case Instruction::SUB_INT_2ADDR:
+      ConvertArithOp(cu, kOpSub, rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::MUL_LONG:
+    case Instruction::MUL_LONG_2ADDR:
+    case Instruction::MUL_INT:
+    case Instruction::MUL_INT_2ADDR:
+      ConvertArithOp(cu, kOpMul, rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::DIV_LONG:
+    case Instruction::DIV_LONG_2ADDR:
+    case Instruction::DIV_INT:
+    case Instruction::DIV_INT_2ADDR:
+      ConvertArithOp(cu, kOpDiv, rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::REM_LONG:
+    case Instruction::REM_LONG_2ADDR:
+    case Instruction::REM_INT:
+    case Instruction::REM_INT_2ADDR:
+      ConvertArithOp(cu, kOpRem, rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::AND_LONG:
+    case Instruction::AND_LONG_2ADDR:
+    case Instruction::AND_INT:
+    case Instruction::AND_INT_2ADDR:
+      ConvertArithOp(cu, kOpAnd, rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::OR_LONG:
+    case Instruction::OR_LONG_2ADDR:
+    case Instruction::OR_INT:
+    case Instruction::OR_INT_2ADDR:
+      ConvertArithOp(cu, kOpOr, rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::XOR_LONG:
+    case Instruction::XOR_LONG_2ADDR:
+    case Instruction::XOR_INT:
+    case Instruction::XOR_INT_2ADDR:
+      ConvertArithOp(cu, kOpXor, rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::SHL_LONG:
+    case Instruction::SHL_LONG_2ADDR:
+      ConvertShift(cu, greenland::IntrinsicHelper::SHLLong,
+                    rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::SHL_INT:
+    case Instruction::SHL_INT_2ADDR:
+      ConvertShift(cu, greenland::IntrinsicHelper::SHLInt,
+                   rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::SHR_LONG:
+    case Instruction::SHR_LONG_2ADDR:
+      ConvertShift(cu, greenland::IntrinsicHelper::SHRLong,
+                   rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::SHR_INT:
+    case Instruction::SHR_INT_2ADDR:
+      ConvertShift(cu, greenland::IntrinsicHelper::SHRInt,
+                   rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::USHR_LONG:
+    case Instruction::USHR_LONG_2ADDR:
+      ConvertShift(cu, greenland::IntrinsicHelper::USHRLong,
+                   rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::USHR_INT:
+    case Instruction::USHR_INT_2ADDR:
+      ConvertShift(cu, greenland::IntrinsicHelper::USHRInt,
+                   rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::ADD_INT_LIT16:
+    case Instruction::ADD_INT_LIT8:
+      ConvertArithOpLit(cu, kOpAdd, rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::RSUB_INT:
+    case Instruction::RSUB_INT_LIT8:
+      ConvertArithOpLit(cu, kOpRsub, rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::MUL_INT_LIT16:
+    case Instruction::MUL_INT_LIT8:
+      ConvertArithOpLit(cu, kOpMul, rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::DIV_INT_LIT16:
+    case Instruction::DIV_INT_LIT8:
+      ConvertArithOpLit(cu, kOpDiv, rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::REM_INT_LIT16:
+    case Instruction::REM_INT_LIT8:
+      ConvertArithOpLit(cu, kOpRem, rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::AND_INT_LIT16:
+    case Instruction::AND_INT_LIT8:
+      ConvertArithOpLit(cu, kOpAnd, rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::OR_INT_LIT16:
+    case Instruction::OR_INT_LIT8:
+      ConvertArithOpLit(cu, kOpOr, rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::XOR_INT_LIT16:
+    case Instruction::XOR_INT_LIT8:
+      ConvertArithOpLit(cu, kOpXor, rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::SHL_INT_LIT8:
+      ConvertShiftLit(cu, greenland::IntrinsicHelper::SHLInt,
+                      rl_dest, rl_src[0], vC & 0x1f);
+      break;
+    case Instruction::SHR_INT_LIT8:
+      ConvertShiftLit(cu, greenland::IntrinsicHelper::SHRInt,
+                      rl_dest, rl_src[0], vC & 0x1f);
+      break;
+    case Instruction::USHR_INT_LIT8:
+      ConvertShiftLit(cu, greenland::IntrinsicHelper::USHRInt,
+                      rl_dest, rl_src[0], vC & 0x1f);
+      break;
+
+    case Instruction::ADD_FLOAT:
+    case Instruction::ADD_FLOAT_2ADDR:
+    case Instruction::ADD_DOUBLE:
+    case Instruction::ADD_DOUBLE_2ADDR:
+      ConvertFPArithOp(cu, kOpAdd, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::SUB_FLOAT:
+    case Instruction::SUB_FLOAT_2ADDR:
+    case Instruction::SUB_DOUBLE:
+    case Instruction::SUB_DOUBLE_2ADDR:
+      ConvertFPArithOp(cu, kOpSub, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::MUL_FLOAT:
+    case Instruction::MUL_FLOAT_2ADDR:
+    case Instruction::MUL_DOUBLE:
+    case Instruction::MUL_DOUBLE_2ADDR:
+      ConvertFPArithOp(cu, kOpMul, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::DIV_FLOAT:
+    case Instruction::DIV_FLOAT_2ADDR:
+    case Instruction::DIV_DOUBLE:
+    case Instruction::DIV_DOUBLE_2ADDR:
+      ConvertFPArithOp(cu, kOpDiv, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::REM_FLOAT:
+    case Instruction::REM_FLOAT_2ADDR:
+    case Instruction::REM_DOUBLE:
+    case Instruction::REM_DOUBLE_2ADDR:
+      ConvertFPArithOp(cu, kOpRem, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::INVOKE_STATIC:
+      ConvertInvoke(cu, bb, mir, kStatic, false /*range*/,
+                    false /* NewFilledArray */);
+      break;
+    case Instruction::INVOKE_STATIC_RANGE:
+      ConvertInvoke(cu, bb, mir, kStatic, true /*range*/,
+                    false /* NewFilledArray */);
+      break;
+
+    case Instruction::INVOKE_DIRECT:
+      ConvertInvoke(cu, bb,  mir, kDirect, false /*range*/,
+                    false /* NewFilledArray */);
+      break;
+    case Instruction::INVOKE_DIRECT_RANGE:
+      ConvertInvoke(cu, bb, mir, kDirect, true /*range*/,
+                    false /* NewFilledArray */);
+      break;
+
+    case Instruction::INVOKE_VIRTUAL:
+      ConvertInvoke(cu, bb, mir, kVirtual, false /*range*/,
+                    false /* NewFilledArray */);
+      break;
+    case Instruction::INVOKE_VIRTUAL_RANGE:
+      ConvertInvoke(cu, bb, mir, kVirtual, true /*range*/,
+                    false /* NewFilledArray */);
+      break;
+
+    case Instruction::INVOKE_SUPER:
+      ConvertInvoke(cu, bb, mir, kSuper, false /*range*/,
+                    false /* NewFilledArray */);
+      break;
+    case Instruction::INVOKE_SUPER_RANGE:
+      ConvertInvoke(cu, bb, mir, kSuper, true /*range*/,
+                    false /* NewFilledArray */);
+      break;
+
+    case Instruction::INVOKE_INTERFACE:
+      ConvertInvoke(cu, bb, mir, kInterface, false /*range*/,
+                    false /* NewFilledArray */);
+      break;
+    case Instruction::INVOKE_INTERFACE_RANGE:
+      ConvertInvoke(cu, bb, mir, kInterface, true /*range*/,
+                    false /* NewFilledArray */);
+      break;
+    case Instruction::FILLED_NEW_ARRAY:
+      ConvertInvoke(cu, bb, mir, kInterface, false /*range*/,
+                    true /* NewFilledArray */);
+      break;
+    case Instruction::FILLED_NEW_ARRAY_RANGE:
+      ConvertInvoke(cu, bb, mir, kInterface, true /*range*/,
+                    true /* NewFilledArray */);
+      break;
+
+    case Instruction::CONST_STRING:
+    case Instruction::CONST_STRING_JUMBO:
+      ConvertConstObject(cu, vB, greenland::IntrinsicHelper::ConstString,
+                         rl_dest);
+      break;
+
+    case Instruction::CONST_CLASS:
+      ConvertConstObject(cu, vB, greenland::IntrinsicHelper::ConstClass,
+                         rl_dest);
+      break;
+
+    case Instruction::CHECK_CAST:
+      ConvertCheckCast(cu, vB, rl_src[0]);
+      break;
+
+    case Instruction::NEW_INSTANCE:
+      ConvertNewInstance(cu, vB, rl_dest);
+      break;
+
+   case Instruction::MOVE_EXCEPTION:
+      ConvertMoveException(cu, rl_dest);
+      break;
+
+   case Instruction::THROW:
+      ConvertThrow(cu, rl_src[0]);
+      /*
+       * If this throw is standalone, terminate.
+       * If it might rethrow, force termination
+       * of the following block.
+       */
+      if (bb->fall_through == NULL) {
+        cu->irb->CreateUnreachable();
+      } else {
+        bb->fall_through->fall_through = NULL;
+        bb->fall_through->taken = NULL;
+      }
+      break;
+
+    case Instruction::MOVE_RESULT_WIDE:
+    case Instruction::MOVE_RESULT:
+    case Instruction::MOVE_RESULT_OBJECT:
+      /*
+       * All move_results should have been folded into the preceeding invoke.
+       */
+      LOG(FATAL) << "Unexpected move_result";
+      break;
+
+    case Instruction::MONITOR_ENTER:
+      ConvertMonitorEnterExit(cu, opt_flags,
+                              greenland::IntrinsicHelper::MonitorEnter,
+                              rl_src[0]);
+      break;
+
+    case Instruction::MONITOR_EXIT:
+      ConvertMonitorEnterExit(cu, opt_flags,
+                              greenland::IntrinsicHelper::MonitorExit,
+                              rl_src[0]);
+      break;
+
+    case Instruction::ARRAY_LENGTH:
+      ConvertArrayLength(cu, opt_flags, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::NEW_ARRAY:
+      ConvertNewArray(cu, vC, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::INSTANCE_OF:
+      ConvertInstanceOf(cu, vC, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::AGET:
+      if (rl_dest.fp) {
+        ConvertAget(cu, opt_flags,
+                    greenland::IntrinsicHelper::HLArrayGetFloat,
+                    rl_dest, rl_src[0], rl_src[1]);
+      } else {
+        ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGet,
+                    rl_dest, rl_src[0], rl_src[1]);
+      }
+      break;
+    case Instruction::AGET_OBJECT:
+      ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetObject,
+                  rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::AGET_BOOLEAN:
+      ConvertAget(cu, opt_flags,
+                  greenland::IntrinsicHelper::HLArrayGetBoolean,
+                  rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::AGET_BYTE:
+      ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetByte,
+                  rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::AGET_CHAR:
+      ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetChar,
+                  rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::AGET_SHORT:
+      ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetShort,
+                  rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::AGET_WIDE:
+      if (rl_dest.fp) {
+        ConvertAget(cu, opt_flags,
+                    greenland::IntrinsicHelper::HLArrayGetDouble,
+                    rl_dest, rl_src[0], rl_src[1]);
+      } else {
+        ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetWide,
+                    rl_dest, rl_src[0], rl_src[1]);
+      }
+      break;
+
+    case Instruction::APUT:
+      if (rl_src[0].fp) {
+        ConvertAput(cu, opt_flags,
+                    greenland::IntrinsicHelper::HLArrayPutFloat,
+                    rl_src[0], rl_src[1], rl_src[2]);
+      } else {
+        ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPut,
+                    rl_src[0], rl_src[1], rl_src[2]);
+      }
+      break;
+    case Instruction::APUT_OBJECT:
+      ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutObject,
+                    rl_src[0], rl_src[1], rl_src[2]);
+      break;
+    case Instruction::APUT_BOOLEAN:
+      ConvertAput(cu, opt_flags,
+                  greenland::IntrinsicHelper::HLArrayPutBoolean,
+                    rl_src[0], rl_src[1], rl_src[2]);
+      break;
+    case Instruction::APUT_BYTE:
+      ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutByte,
+                    rl_src[0], rl_src[1], rl_src[2]);
+      break;
+    case Instruction::APUT_CHAR:
+      ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutChar,
+                    rl_src[0], rl_src[1], rl_src[2]);
+      break;
+    case Instruction::APUT_SHORT:
+      ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutShort,
+                    rl_src[0], rl_src[1], rl_src[2]);
+      break;
+    case Instruction::APUT_WIDE:
+      if (rl_src[0].fp) {
+        ConvertAput(cu, opt_flags,
+                    greenland::IntrinsicHelper::HLArrayPutDouble,
+                    rl_src[0], rl_src[1], rl_src[2]);
+      } else {
+        ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutWide,
+                    rl_src[0], rl_src[1], rl_src[2]);
+      }
+      break;
+
+    case Instruction::IGET:
+      if (rl_dest.fp) {
+        ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetFloat,
+                    rl_dest, rl_src[0], vC);
+      } else {
+        ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGet,
+                    rl_dest, rl_src[0], vC);
+      }
+      break;
+    case Instruction::IGET_OBJECT:
+      ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetObject,
+                  rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::IGET_BOOLEAN:
+      ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetBoolean,
+                  rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::IGET_BYTE:
+      ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetByte,
+                  rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::IGET_CHAR:
+      ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetChar,
+                  rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::IGET_SHORT:
+      ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetShort,
+                  rl_dest, rl_src[0], vC);
+      break;
+    case Instruction::IGET_WIDE:
+      if (rl_dest.fp) {
+        ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetDouble,
+                    rl_dest, rl_src[0], vC);
+      } else {
+        ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetWide,
+                    rl_dest, rl_src[0], vC);
+      }
+      break;
+    case Instruction::IPUT:
+      if (rl_src[0].fp) {
+        ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutFloat,
+                    rl_src[0], rl_src[1], vC);
+      } else {
+        ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPut,
+                    rl_src[0], rl_src[1], vC);
+      }
+      break;
+    case Instruction::IPUT_OBJECT:
+      ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutObject,
+                  rl_src[0], rl_src[1], vC);
+      break;
+    case Instruction::IPUT_BOOLEAN:
+      ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutBoolean,
+                  rl_src[0], rl_src[1], vC);
+      break;
+    case Instruction::IPUT_BYTE:
+      ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutByte,
+                  rl_src[0], rl_src[1], vC);
+      break;
+    case Instruction::IPUT_CHAR:
+      ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutChar,
+                  rl_src[0], rl_src[1], vC);
+      break;
+    case Instruction::IPUT_SHORT:
+      ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutShort,
+                  rl_src[0], rl_src[1], vC);
+      break;
+    case Instruction::IPUT_WIDE:
+      if (rl_src[0].fp) {
+        ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutDouble,
+                    rl_src[0], rl_src[1], vC);
+      } else {
+        ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutWide,
+                    rl_src[0], rl_src[1], vC);
+      }
+      break;
+
+    case Instruction::FILL_ARRAY_DATA:
+      ConvertFillArrayData(cu, vB, rl_src[0]);
+      break;
+
+    case Instruction::LONG_TO_INT:
+      ConvertLongToInt(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::INT_TO_LONG:
+      ConvertIntToLong(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::INT_TO_CHAR:
+      ConvertIntNarrowing(cu, rl_dest, rl_src[0],
+                          greenland::IntrinsicHelper::IntToChar);
+      break;
+    case Instruction::INT_TO_BYTE:
+      ConvertIntNarrowing(cu, rl_dest, rl_src[0],
+                          greenland::IntrinsicHelper::IntToByte);
+      break;
+    case Instruction::INT_TO_SHORT:
+      ConvertIntNarrowing(cu, rl_dest, rl_src[0],
+                          greenland::IntrinsicHelper::IntToShort);
+      break;
+
+    case Instruction::INT_TO_FLOAT:
+    case Instruction::LONG_TO_FLOAT:
+      ConvertIntToFP(cu, cu->irb->getFloatTy(), rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::INT_TO_DOUBLE:
+    case Instruction::LONG_TO_DOUBLE:
+      ConvertIntToFP(cu, cu->irb->getDoubleTy(), rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::FLOAT_TO_DOUBLE:
+      ConvertFloatToDouble(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::DOUBLE_TO_FLOAT:
+      ConvertDoubleToFloat(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::NEG_LONG:
+    case Instruction::NEG_INT:
+      ConvertNeg(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::NEG_FLOAT:
+    case Instruction::NEG_DOUBLE:
+      ConvertNegFP(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::NOT_LONG:
+    case Instruction::NOT_INT:
+      ConvertNot(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::FLOAT_TO_INT:
+      ConvertFPToInt(cu, greenland::IntrinsicHelper::F2I, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::DOUBLE_TO_INT:
+      ConvertFPToInt(cu, greenland::IntrinsicHelper::D2I, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::FLOAT_TO_LONG:
+      ConvertFPToInt(cu, greenland::IntrinsicHelper::F2L, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::DOUBLE_TO_LONG:
+      ConvertFPToInt(cu, greenland::IntrinsicHelper::D2L, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::CMPL_FLOAT:
+      ConvertWideComparison(cu, greenland::IntrinsicHelper::CmplFloat,
+                            rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::CMPG_FLOAT:
+      ConvertWideComparison(cu, greenland::IntrinsicHelper::CmpgFloat,
+                            rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::CMPL_DOUBLE:
+      ConvertWideComparison(cu, greenland::IntrinsicHelper::CmplDouble,
+                            rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::CMPG_DOUBLE:
+      ConvertWideComparison(cu, greenland::IntrinsicHelper::CmpgDouble,
+                            rl_dest, rl_src[0], rl_src[1]);
+      break;
+    case Instruction::CMP_LONG:
+      ConvertWideComparison(cu, greenland::IntrinsicHelper::CmpLong,
+                            rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::PACKED_SWITCH:
+      ConvertPackedSwitch(cu, bb, vB, rl_src[0]);
+      break;
+
+    case Instruction::SPARSE_SWITCH:
+      ConvertSparseSwitch(cu, bb, vB, rl_src[0]);
+      break;
+
+    default:
+      UNIMPLEMENTED(FATAL) << "Unsupported Dex opcode 0x" << std::hex << opcode;
+      res = true;
+  }
+  return res;
+}
+
+static void SetDexOffset(CompilationUnit* cu, int32_t offset)
+{
+  cu->current_dalvik_offset = offset;
+  llvm::SmallVector<llvm::Value*, 1> array_ref;
+  array_ref.push_back(cu->irb->getInt32(offset));
+  llvm::MDNode* node = llvm::MDNode::get(*cu->context, array_ref);
+  cu->irb->SetDexOffset(node);
+}
+
+// Attach method info as metadata to special intrinsic
+static void SetMethodInfo(CompilationUnit* cu)
+{
+  // We don't want dex offset on this
+  cu->irb->SetDexOffset(NULL);
+  greenland::IntrinsicHelper::IntrinsicId id;
+  id = greenland::IntrinsicHelper::MethodInfo;
+  llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id);
+  llvm::Instruction* inst = cu->irb->CreateCall(intr);
+  llvm::SmallVector<llvm::Value*, 2> reg_info;
+  reg_info.push_back(cu->irb->getInt32(cu->num_ins));
+  reg_info.push_back(cu->irb->getInt32(cu->num_regs));
+  reg_info.push_back(cu->irb->getInt32(cu->num_outs));
+  reg_info.push_back(cu->irb->getInt32(cu->num_compiler_temps));
+  reg_info.push_back(cu->irb->getInt32(cu->num_ssa_regs));
+  llvm::MDNode* reg_info_node = llvm::MDNode::get(*cu->context, reg_info);
+  inst->setMetadata("RegInfo", reg_info_node);
+  int promo_size = cu->num_dalvik_registers + cu->num_compiler_temps + 1;
+  llvm::SmallVector<llvm::Value*, 50> pmap;
+  for (int i = 0; i < promo_size; i++) {
+    PromotionMap* p = &cu->promotion_map[i];
+    int32_t map_data = ((p->first_in_pair & 0xff) << 24) |
+                      ((p->FpReg & 0xff) << 16) |
+                      ((p->core_reg & 0xff) << 8) |
+                      ((p->fp_location & 0xf) << 4) |
+                      (p->core_location & 0xf);
+    pmap.push_back(cu->irb->getInt32(map_data));
+  }
+  llvm::MDNode* map_node = llvm::MDNode::get(*cu->context, pmap);
+  inst->setMetadata("PromotionMap", map_node);
+  SetDexOffset(cu, cu->current_dalvik_offset);
+}
+
+static void HandlePhiNodes(CompilationUnit* cu, BasicBlock* bb, llvm::BasicBlock* llvm_bb)
+{
+  SetDexOffset(cu, bb->start_offset);
+  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    int opcode = mir->dalvikInsn.opcode;
+    if (opcode < kMirOpFirst) {
+      // Stop after first non-pseudo MIR op.
+      continue;
+    }
+    if (opcode != kMirOpPhi) {
+      // Skip other mir Pseudos.
+      continue;
+    }
+    RegLocation rl_dest = cu->reg_location[mir->ssa_rep->defs[0]];
+    /*
+     * The Art compiler's Phi nodes only handle 32-bit operands,
+     * representing wide values using a matched set of Phi nodes
+     * for the lower and upper halves.  In the llvm world, we only
+     * want a single Phi for wides.  Here we will simply discard
+     * the Phi node representing the high word.
+     */
+    if (rl_dest.high_word) {
+      continue;  // No Phi node - handled via low word
+    }
+    int* incoming = reinterpret_cast<int*>(mir->dalvikInsn.vB);
+    llvm::Type* phi_type =
+        LlvmTypeFromLocRec(cu, rl_dest);
+    llvm::PHINode* phi = cu->irb->CreatePHI(phi_type, mir->ssa_rep->num_uses);
+    for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
+      RegLocation loc;
+      // Don't check width here.
+      loc = GetRawSrc(cu, mir, i);
+      DCHECK_EQ(rl_dest.wide, loc.wide);
+      DCHECK_EQ(rl_dest.wide & rl_dest.high_word, loc.wide & loc.high_word);
+      DCHECK_EQ(rl_dest.fp, loc.fp);
+      DCHECK_EQ(rl_dest.core, loc.core);
+      DCHECK_EQ(rl_dest.ref, loc.ref);
+      SafeMap<unsigned int, unsigned int>::iterator it;
+      it = cu->block_id_map.find(incoming[i]);
+      DCHECK(it != cu->block_id_map.end());
+      DCHECK(GetLLVMValue(cu, loc.orig_sreg) != NULL);
+      DCHECK(GetLLVMBlock(cu, it->second) != NULL);
+      phi->addIncoming(GetLLVMValue(cu, loc.orig_sreg),
+                       GetLLVMBlock(cu, it->second));
+    }
+    DefineValueOnly(cu, phi, rl_dest.orig_sreg);
+  }
+}
+
+/* Extended MIR instructions like PHI */
+static void ConvertExtendedMIR(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                               llvm::BasicBlock* llvm_bb)
+{
+
+  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
+    case kMirOpPhi: {
+      // The llvm Phi node already emitted - just DefineValue() here.
+      RegLocation rl_dest = cu->reg_location[mir->ssa_rep->defs[0]];
+      if (!rl_dest.high_word) {
+        // Only consider low word of pairs.
+        DCHECK(GetLLVMValue(cu, rl_dest.orig_sreg) != NULL);
+        llvm::Value* phi = GetLLVMValue(cu, rl_dest.orig_sreg);
+        if (1) SetVregOnValue(cu, phi, rl_dest.orig_sreg);
+      }
+      break;
+    }
+    case kMirOpCopy: {
+      UNIMPLEMENTED(WARNING) << "unimp kMirOpPhi";
+      break;
+    }
+    case kMirOpNop:
+      if ((mir == bb->last_mir_insn) && (bb->taken == NULL) &&
+          (bb->fall_through == NULL)) {
+        cu->irb->CreateUnreachable();
+      }
+      break;
+
+    // TODO: need GBC intrinsic to take advantage of fused operations
+    case kMirOpFusedCmplFloat:
+      UNIMPLEMENTED(FATAL) << "kMirOpFusedCmpFloat unsupported";
+      break;
+    case kMirOpFusedCmpgFloat:
+      UNIMPLEMENTED(FATAL) << "kMirOpFusedCmgFloat unsupported";
+      break;
+    case kMirOpFusedCmplDouble:
+      UNIMPLEMENTED(FATAL) << "kMirOpFusedCmplDouble unsupported";
+      break;
+    case kMirOpFusedCmpgDouble:
+      UNIMPLEMENTED(FATAL) << "kMirOpFusedCmpgDouble unsupported";
+      break;
+    case kMirOpFusedCmpLong:
+      UNIMPLEMENTED(FATAL) << "kMirOpLongCmpBranch unsupported";
+      break;
+    default:
+      break;
+  }
+}
+
+/* Handle the content in each basic block */
+static bool BlockBitcodeConversion(CompilationUnit* cu, BasicBlock* bb)
+{
+  if (bb->block_type == kDead) return false;
+  llvm::BasicBlock* llvm_bb = GetLLVMBlock(cu, bb->id);
+  if (llvm_bb == NULL) {
+    CHECK(bb->block_type == kExitBlock);
+  } else {
+    cu->irb->SetInsertPoint(llvm_bb);
+    SetDexOffset(cu, bb->start_offset);
+  }
+
+  if (cu->verbose) {
+    LOG(INFO) << "................................";
+    LOG(INFO) << "Block id " << bb->id;
+    if (llvm_bb != NULL) {
+      LOG(INFO) << "label " << llvm_bb->getName().str().c_str();
+    } else {
+      LOG(INFO) << "llvm_bb is NULL";
+    }
+  }
+
+  if (bb->block_type == kEntryBlock) {
+    SetMethodInfo(cu);
+
+    { // Allocate shadowframe.
+      greenland::IntrinsicHelper::IntrinsicId id =
+              greenland::IntrinsicHelper::AllocaShadowFrame;
+      llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(id);
+      llvm::Value* entries = cu->irb->getInt32(cu->num_dalvik_registers);
+      cu->irb->CreateCall(func, entries);
+    }
+
+    { // Store arguments to vregs.
+      uint16_t arg_reg = cu->num_regs;
+
+      llvm::Function::arg_iterator arg_iter(cu->func->arg_begin());
+      llvm::Function::arg_iterator arg_end(cu->func->arg_end());
+
+      const char* shorty = cu->shorty;
+      uint32_t shorty_size = strlen(shorty);
+      CHECK_GE(shorty_size, 1u);
+
+      ++arg_iter; // skip method object
+
+      if ((cu->access_flags & kAccStatic) == 0) {
+        SetVregOnValue(cu, arg_iter, arg_reg);
+        ++arg_iter;
+        ++arg_reg;
+      }
+
+      for (uint32_t i = 1; i < shorty_size; ++i, ++arg_iter) {
+        SetVregOnValue(cu, arg_iter, arg_reg);
+
+        ++arg_reg;
+        if (shorty[i] == 'J' || shorty[i] == 'D') {
+          // Wide types, such as long and double, are using a pair of registers
+          // to store the value, so we have to increase arg_reg again.
+          ++arg_reg;
+        }
+      }
+    }
+  } else if (bb->block_type == kExitBlock) {
+    /*
+     * Because of the differences between how MIR/LIR and llvm handle exit
+     * blocks, we won't explicitly covert them.  On the llvm-to-lir
+     * path, it will need to be regenereated.
+     */
+    return false;
+  } else if (bb->block_type == kExceptionHandling) {
+    /*
+     * Because we're deferring null checking, delete the associated empty
+     * exception block.
+     */
+    llvm_bb->eraseFromParent();
+    return false;
+  }
+
+  HandlePhiNodes(cu, bb, llvm_bb);
+
+  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+
+    SetDexOffset(cu, mir->offset);
+
+    int opcode = mir->dalvikInsn.opcode;
+    Instruction::Format dalvik_format =
+        Instruction::FormatOf(mir->dalvikInsn.opcode);
+
+    if (opcode == kMirOpCheck) {
+      // Combine check and work halves of throwing instruction.
+      MIR* work_half = mir->meta.throw_insn;
+      mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode;
+      opcode = mir->dalvikInsn.opcode;
+      SSARepresentation* ssa_rep = work_half->ssa_rep;
+      work_half->ssa_rep = mir->ssa_rep;
+      mir->ssa_rep = ssa_rep;
+      work_half->meta.original_opcode = work_half->dalvikInsn.opcode;
+      work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
+      if (bb->successor_block_list.block_list_type == kCatch) {
+        llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(
+            greenland::IntrinsicHelper::CatchTargets);
+        llvm::Value* switch_key =
+            cu->irb->CreateCall(intr, cu->irb->getInt32(mir->offset));
+        GrowableListIterator iter;
+        GrowableListIteratorInit(&bb->successor_block_list.blocks, &iter);
+        // New basic block to use for work half
+        llvm::BasicBlock* work_bb =
+            llvm::BasicBlock::Create(*cu->context, "", cu->func);
+        llvm::SwitchInst* sw =
+            cu->irb->CreateSwitch(switch_key, work_bb,
+                                     bb->successor_block_list.blocks.num_used);
+        while (true) {
+          SuccessorBlockInfo *successor_block_info =
+              reinterpret_cast<SuccessorBlockInfo*>(GrowableListIteratorNext(&iter));
+          if (successor_block_info == NULL) break;
+          llvm::BasicBlock *target =
+              GetLLVMBlock(cu, successor_block_info->block->id);
+          int type_index = successor_block_info->key;
+          sw->addCase(cu->irb->getInt32(type_index), target);
+        }
+        llvm_bb = work_bb;
+        cu->irb->SetInsertPoint(llvm_bb);
+      }
+    }
+
+    if (opcode >= kMirOpFirst) {
+      ConvertExtendedMIR(cu, bb, mir, llvm_bb);
+      continue;
+    }
+
+    bool not_handled = ConvertMIRNode(cu, mir, bb, llvm_bb,
+                                     NULL /* label_list */);
+    if (not_handled) {
+      Instruction::Code dalvik_opcode = static_cast<Instruction::Code>(opcode);
+      LOG(WARNING) << StringPrintf("%#06x: Op %#x (%s) / Fmt %d not handled",
+                                   mir->offset, opcode,
+                                   Instruction::Name(dalvik_opcode),
+                                   dalvik_format);
+    }
+  }
+
+  if (bb->block_type == kEntryBlock) {
+    cu->entryTarget_bb = GetLLVMBlock(cu, bb->fall_through->id);
+  } else if ((bb->fall_through != NULL) && !bb->terminated_by_return) {
+    cu->irb->CreateBr(GetLLVMBlock(cu, bb->fall_through->id));
+  }
+
+  return false;
+}
+
+char RemapShorty(char shorty_type) {
+  /*
+   * TODO: might want to revisit this.  Dalvik registers are 32-bits wide,
+   * and longs/doubles are represented as a pair of registers.  When sub-word
+   * arguments (and method results) are passed, they are extended to Dalvik
+   * virtual register containers.  Because llvm is picky about type consistency,
+   * we must either cast the "real" type to 32-bit container multiple Dalvik
+   * register types, or always use the expanded values.
+   * Here, we're doing the latter.  We map the shorty signature to container
+   * types (which is valid so long as we always do a real expansion of passed
+   * arguments and field loads).
+   */
+  switch(shorty_type) {
+    case 'Z' : shorty_type = 'I'; break;
+    case 'B' : shorty_type = 'I'; break;
+    case 'S' : shorty_type = 'I'; break;
+    case 'C' : shorty_type = 'I'; break;
+    default: break;
+  }
+  return shorty_type;
+}
+
+static llvm::FunctionType* GetFunctionType(CompilationUnit* cu) {
+
+  // Get return type
+  llvm::Type* ret_type = cu->irb->GetJType(RemapShorty(cu->shorty[0]),
+                                              greenland::kAccurate);
+
+  // Get argument type
+  std::vector<llvm::Type*> args_type;
+
+  // method object
+  args_type.push_back(cu->irb->GetJMethodTy());
+
+  // Do we have  a "this"?
+  if ((cu->access_flags & kAccStatic) == 0) {
+    args_type.push_back(cu->irb->GetJObjectTy());
+  }
+
+  for (uint32_t i = 1; i < strlen(cu->shorty); ++i) {
+    args_type.push_back(cu->irb->GetJType(RemapShorty(cu->shorty[i]),
+                                             greenland::kAccurate));
+  }
+
+  return llvm::FunctionType::get(ret_type, args_type, false);
+}
+
+static bool CreateFunction(CompilationUnit* cu) {
+  std::string func_name(PrettyMethod(cu->method_idx, *cu->dex_file,
+                                     /* with_signature */ false));
+  llvm::FunctionType* func_type = GetFunctionType(cu);
+
+  if (func_type == NULL) {
+    return false;
+  }
+
+  cu->func = llvm::Function::Create(func_type,
+                                       llvm::Function::ExternalLinkage,
+                                       func_name, cu->module);
+
+  llvm::Function::arg_iterator arg_iter(cu->func->arg_begin());
+  llvm::Function::arg_iterator arg_end(cu->func->arg_end());
+
+  arg_iter->setName("method");
+  ++arg_iter;
+
+  int start_sreg = cu->num_regs;
+
+  for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) {
+    arg_iter->setName(StringPrintf("v%i_0", start_sreg));
+    start_sreg += cu->reg_location[start_sreg].wide ? 2 : 1;
+  }
+
+  return true;
+}
+
+static bool CreateLLVMBasicBlock(CompilationUnit* cu, BasicBlock* bb)
+{
+  // Skip the exit block
+  if ((bb->block_type == kDead) ||(bb->block_type == kExitBlock)) {
+    cu->id_to_block_map.Put(bb->id, NULL);
+  } else {
+    int offset = bb->start_offset;
+    bool entry_block = (bb->block_type == kEntryBlock);
+    llvm::BasicBlock* llvm_bb =
+        llvm::BasicBlock::Create(*cu->context, entry_block ? "entry" :
+                                 StringPrintf(kLabelFormat, bb->catch_entry ? kCatchBlock :
+                                              kNormalBlock, offset, bb->id), cu->func);
+    if (entry_block) {
+        cu->entry_bb = llvm_bb;
+        cu->placeholder_bb =
+            llvm::BasicBlock::Create(*cu->context, "placeholder",
+                                     cu->func);
+    }
+    cu->id_to_block_map.Put(bb->id, llvm_bb);
+  }
+  return false;
+}
+
+
+/*
+ * Convert MIR to LLVM_IR
+ *  o For each ssa name, create LLVM named value.  Type these
+ *    appropriately, and ignore high half of wide and double operands.
+ *  o For each MIR basic block, create an LLVM basic block.
+ *  o Iterate through the MIR a basic block at a time, setting arguments
+ *    to recovered ssa name.
+ */
+void MethodMIR2Bitcode(CompilationUnit* cu)
+{
+  InitIR(cu);
+  CompilerInitGrowableList(cu, &cu->llvm_values, cu->num_ssa_regs);
+
+  // Create the function
+  CreateFunction(cu);
+
+  // Create an LLVM basic block for each MIR block in dfs preorder
+  DataFlowAnalysisDispatcher(cu, CreateLLVMBasicBlock,
+                                kPreOrderDFSTraversal, false /* is_iterative */);
+  /*
+   * Create an llvm named value for each MIR SSA name.  Note: we'll use
+   * placeholders for all non-argument values (because we haven't seen
+   * the definition yet).
+   */
+  cu->irb->SetInsertPoint(cu->placeholder_bb);
+  llvm::Function::arg_iterator arg_iter(cu->func->arg_begin());
+  arg_iter++;  /* Skip path method */
+  for (int i = 0; i < cu->num_ssa_regs; i++) {
+    llvm::Value* val;
+    RegLocation rl_temp = cu->reg_location[i];
+    if ((SRegToVReg(cu, i) < 0) || rl_temp.high_word) {
+      InsertGrowableList(cu, &cu->llvm_values, 0);
+    } else if ((i < cu->num_regs) ||
+               (i >= (cu->num_regs + cu->num_ins))) {
+      llvm::Constant* imm_value = cu->reg_location[i].wide ?
+         cu->irb->GetJLong(0) : cu->irb->GetJInt(0);
+      val = EmitConst(cu, imm_value, cu->reg_location[i]);
+      val->setName(LlvmSSAName(cu, i));
+      InsertGrowableList(cu, &cu->llvm_values, reinterpret_cast<uintptr_t>(val));
+    } else {
+      // Recover previously-created argument values
+      llvm::Value* arg_val = arg_iter++;
+      InsertGrowableList(cu, &cu->llvm_values, reinterpret_cast<uintptr_t>(arg_val));
+    }
+  }
+
+  DataFlowAnalysisDispatcher(cu, BlockBitcodeConversion,
+                                kPreOrderDFSTraversal, false /* Iterative */);
+
+  /*
+   * In a few rare cases of verification failure, the verifier will
+   * replace one or more Dalvik opcodes with the special
+   * throw-verification-failure opcode.  This can leave the SSA graph
+   * in an invalid state, as definitions may be lost, while uses retained.
+   * To work around this problem, we insert placeholder definitions for
+   * all Dalvik SSA regs in the "placeholder" block.  Here, after
+   * bitcode conversion is complete, we examine those placeholder definitions
+   * and delete any with no references (which normally is all of them).
+   *
+   * If any definitions remain, we link the placeholder block into the
+   * CFG.  Otherwise, it is deleted.
+   */
+  for (llvm::BasicBlock::iterator it = cu->placeholder_bb->begin(),
+       it_end = cu->placeholder_bb->end(); it != it_end;) {
+    llvm::Instruction* inst = llvm::dyn_cast<llvm::Instruction>(it++);
+    DCHECK(inst != NULL);
+    llvm::Value* val = llvm::dyn_cast<llvm::Value>(inst);
+    DCHECK(val != NULL);
+    if (val->getNumUses() == 0) {
+      inst->eraseFromParent();
+    }
+  }
+  SetDexOffset(cu, 0);
+  if (cu->placeholder_bb->empty()) {
+    cu->placeholder_bb->eraseFromParent();
+  } else {
+    cu->irb->SetInsertPoint(cu->placeholder_bb);
+    cu->irb->CreateBr(cu->entryTarget_bb);
+    cu->entryTarget_bb = cu->placeholder_bb;
+  }
+  cu->irb->SetInsertPoint(cu->entry_bb);
+  cu->irb->CreateBr(cu->entryTarget_bb);
+
+  if (cu->enable_debug & (1 << kDebugVerifyBitcode)) {
+     if (llvm::verifyFunction(*cu->func, llvm::PrintMessageAction)) {
+       LOG(INFO) << "Bitcode verification FAILED for "
+                 << PrettyMethod(cu->method_idx, *cu->dex_file)
+                 << " of size " << cu->insns_size;
+       cu->enable_debug |= (1 << kDebugDumpBitcodeFile);
+     }
+  }
+
+  if (cu->enable_debug & (1 << kDebugDumpBitcodeFile)) {
+    // Write bitcode to file
+    std::string errmsg;
+    std::string fname(PrettyMethod(cu->method_idx, *cu->dex_file));
+    ReplaceSpecialChars(fname);
+    // TODO: make configurable change naming mechanism to avoid fname length issues.
+    fname = StringPrintf("/sdcard/Bitcode/%s.bc", fname.c_str());
+
+    if (fname.size() > 240) {
+      LOG(INFO) << "Warning: bitcode filename too long. Truncated.";
+      fname.resize(240);
+    }
+
+    llvm::OwningPtr<llvm::tool_output_file> out_file(
+        new llvm::tool_output_file(fname.c_str(), errmsg,
+                                   llvm::raw_fd_ostream::F_Binary));
+
+    if (!errmsg.empty()) {
+      LOG(ERROR) << "Failed to create bitcode output file: " << errmsg;
+    }
+
+    llvm::WriteBitcodeToFile(cu->module, out_file->os());
+    out_file->keep();
+  }
+}
+
+static RegLocation GetLoc(CompilationUnit* cu, llvm::Value* val) {
+  RegLocation res;
+  DCHECK(val != NULL);
+  SafeMap<llvm::Value*, RegLocation>::iterator it = cu->loc_map.find(val);
+  if (it == cu->loc_map.end()) {
+    std::string val_name = val->getName().str();
+    if (val_name.empty()) {
+      // FIXME: need to be more robust, handle FP and be in a position to
+      // manage unnamed temps whose lifetimes span basic block boundaries
+      UNIMPLEMENTED(WARNING) << "Need to handle unnamed llvm temps";
+      memset(&res, 0, sizeof(res));
+      res.location = kLocPhysReg;
+      res.low_reg = AllocTemp(cu);
+      res.home = true;
+      res.s_reg_low = INVALID_SREG;
+      res.orig_sreg = INVALID_SREG;
+      llvm::Type* ty = val->getType();
+      res.wide = ((ty == cu->irb->getInt64Ty()) ||
+                  (ty == cu->irb->getDoubleTy()));
+      if (res.wide) {
+        res.high_reg = AllocTemp(cu);
+      }
+      cu->loc_map.Put(val, res);
+    } else {
+      DCHECK_EQ(val_name[0], 'v');
+      int base_sreg = INVALID_SREG;
+      sscanf(val_name.c_str(), "v%d_", &base_sreg);
+      res = cu->reg_location[base_sreg];
+      cu->loc_map.Put(val, res);
+    }
+  } else {
+    res = it->second;
+  }
+  return res;
+}
+
+static Instruction::Code GetDalvikOpcode(OpKind op, bool is_const, bool is_wide)
+{
+  Instruction::Code res = Instruction::NOP;
+  if (is_wide) {
+    switch(op) {
+      case kOpAdd: res = Instruction::ADD_LONG; break;
+      case kOpSub: res = Instruction::SUB_LONG; break;
+      case kOpMul: res = Instruction::MUL_LONG; break;
+      case kOpDiv: res = Instruction::DIV_LONG; break;
+      case kOpRem: res = Instruction::REM_LONG; break;
+      case kOpAnd: res = Instruction::AND_LONG; break;
+      case kOpOr: res = Instruction::OR_LONG; break;
+      case kOpXor: res = Instruction::XOR_LONG; break;
+      case kOpLsl: res = Instruction::SHL_LONG; break;
+      case kOpLsr: res = Instruction::USHR_LONG; break;
+      case kOpAsr: res = Instruction::SHR_LONG; break;
+      default: LOG(FATAL) << "Unexpected OpKind " << op;
+    }
+  } else if (is_const){
+    switch(op) {
+      case kOpAdd: res = Instruction::ADD_INT_LIT16; break;
+      case kOpSub: res = Instruction::RSUB_INT_LIT8; break;
+      case kOpMul: res = Instruction::MUL_INT_LIT16; break;
+      case kOpDiv: res = Instruction::DIV_INT_LIT16; break;
+      case kOpRem: res = Instruction::REM_INT_LIT16; break;
+      case kOpAnd: res = Instruction::AND_INT_LIT16; break;
+      case kOpOr: res = Instruction::OR_INT_LIT16; break;
+      case kOpXor: res = Instruction::XOR_INT_LIT16; break;
+      case kOpLsl: res = Instruction::SHL_INT_LIT8; break;
+      case kOpLsr: res = Instruction::USHR_INT_LIT8; break;
+      case kOpAsr: res = Instruction::SHR_INT_LIT8; break;
+      default: LOG(FATAL) << "Unexpected OpKind " << op;
+    }
+  } else {
+    switch(op) {
+      case kOpAdd: res = Instruction::ADD_INT; break;
+      case kOpSub: res = Instruction::SUB_INT; break;
+      case kOpMul: res = Instruction::MUL_INT; break;
+      case kOpDiv: res = Instruction::DIV_INT; break;
+      case kOpRem: res = Instruction::REM_INT; break;
+      case kOpAnd: res = Instruction::AND_INT; break;
+      case kOpOr: res = Instruction::OR_INT; break;
+      case kOpXor: res = Instruction::XOR_INT; break;
+      case kOpLsl: res = Instruction::SHL_INT; break;
+      case kOpLsr: res = Instruction::USHR_INT; break;
+      case kOpAsr: res = Instruction::SHR_INT; break;
+      default: LOG(FATAL) << "Unexpected OpKind " << op;
+    }
+  }
+  return res;
+}
+
+static Instruction::Code GetDalvikFPOpcode(OpKind op, bool is_const, bool is_wide)
+{
+  Instruction::Code res = Instruction::NOP;
+  if (is_wide) {
+    switch(op) {
+      case kOpAdd: res = Instruction::ADD_DOUBLE; break;
+      case kOpSub: res = Instruction::SUB_DOUBLE; break;
+      case kOpMul: res = Instruction::MUL_DOUBLE; break;
+      case kOpDiv: res = Instruction::DIV_DOUBLE; break;
+      case kOpRem: res = Instruction::REM_DOUBLE; break;
+      default: LOG(FATAL) << "Unexpected OpKind " << op;
+    }
+  } else {
+    switch(op) {
+      case kOpAdd: res = Instruction::ADD_FLOAT; break;
+      case kOpSub: res = Instruction::SUB_FLOAT; break;
+      case kOpMul: res = Instruction::MUL_FLOAT; break;
+      case kOpDiv: res = Instruction::DIV_FLOAT; break;
+      case kOpRem: res = Instruction::REM_FLOAT; break;
+      default: LOG(FATAL) << "Unexpected OpKind " << op;
+    }
+  }
+  return res;
+}
+
+static void CvtBinFPOp(CompilationUnit* cu, OpKind op, llvm::Instruction* inst)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_dest = GetLoc(cu, inst);
+  /*
+   * Normally, we won't ever generate an FP operation with an immediate
+   * operand (not supported in Dex instruction set).  However, the IR builder
+   * may insert them - in particular for create_neg_fp.  Recognize this case
+   * and deal with it.
+   */
+  llvm::ConstantFP* op1C = llvm::dyn_cast<llvm::ConstantFP>(inst->getOperand(0));
+  llvm::ConstantFP* op2C = llvm::dyn_cast<llvm::ConstantFP>(inst->getOperand(1));
+  DCHECK(op2C == NULL);
+  if ((op1C != NULL) && (op == kOpSub)) {
+    RegLocation rl_src = GetLoc(cu, inst->getOperand(1));
+    if (rl_dest.wide) {
+      cg->GenArithOpDouble(cu, Instruction::NEG_DOUBLE, rl_dest, rl_src, rl_src);
+    } else {
+      cg->GenArithOpFloat(cu, Instruction::NEG_FLOAT, rl_dest, rl_src, rl_src);
+    }
+  } else {
+    DCHECK(op1C == NULL);
+    RegLocation rl_src1 = GetLoc(cu, inst->getOperand(0));
+    RegLocation rl_src2 = GetLoc(cu, inst->getOperand(1));
+    Instruction::Code dalvik_op = GetDalvikFPOpcode(op, false, rl_dest.wide);
+    if (rl_dest.wide) {
+      cg->GenArithOpDouble(cu, dalvik_op, rl_dest, rl_src1, rl_src2);
+    } else {
+      cg->GenArithOpFloat(cu, dalvik_op, rl_dest, rl_src1, rl_src2);
+    }
+  }
+}
+
+static void CvtIntNarrowing(CompilationUnit* cu, llvm::Instruction* inst,
+                     Instruction::Code opcode)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_dest = GetLoc(cu, inst);
+  RegLocation rl_src = GetLoc(cu, inst->getOperand(0));
+  cg->GenIntNarrowing(cu, opcode, rl_dest, rl_src);
+}
+
+static void CvtIntToFP(CompilationUnit* cu, llvm::Instruction* inst)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_dest = GetLoc(cu, inst);
+  RegLocation rl_src = GetLoc(cu, inst->getOperand(0));
+  Instruction::Code opcode;
+  if (rl_dest.wide) {
+    if (rl_src.wide) {
+      opcode = Instruction::LONG_TO_DOUBLE;
+    } else {
+      opcode = Instruction::INT_TO_DOUBLE;
+    }
+  } else {
+    if (rl_src.wide) {
+      opcode = Instruction::LONG_TO_FLOAT;
+    } else {
+      opcode = Instruction::INT_TO_FLOAT;
+    }
+  }
+  cg->GenConversion(cu, opcode, rl_dest, rl_src);
+}
+
+static void CvtFPToInt(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  RegLocation rl_src = GetLoc(cu, call_inst->getOperand(0));
+  Instruction::Code opcode;
+  if (rl_dest.wide) {
+    if (rl_src.wide) {
+      opcode = Instruction::DOUBLE_TO_LONG;
+    } else {
+      opcode = Instruction::FLOAT_TO_LONG;
+    }
+  } else {
+    if (rl_src.wide) {
+      opcode = Instruction::DOUBLE_TO_INT;
+    } else {
+      opcode = Instruction::FLOAT_TO_INT;
+    }
+  }
+  cg->GenConversion(cu, opcode, rl_dest, rl_src);
+}
+
+static void CvtFloatToDouble(CompilationUnit* cu, llvm::Instruction* inst)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_dest = GetLoc(cu, inst);
+  RegLocation rl_src = GetLoc(cu, inst->getOperand(0));
+  cg->GenConversion(cu, Instruction::FLOAT_TO_DOUBLE, rl_dest, rl_src);
+}
+
+static void CvtTrunc(CompilationUnit* cu, llvm::Instruction* inst)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_dest = GetLoc(cu, inst);
+  RegLocation rl_src = GetLoc(cu, inst->getOperand(0));
+  rl_src = UpdateLocWide(cu, rl_src);
+  rl_src = WideToNarrow(cu, rl_src);
+  cg->StoreValue(cu, rl_dest, rl_src);
+}
+
+static void CvtDoubleToFloat(CompilationUnit* cu, llvm::Instruction* inst)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_dest = GetLoc(cu, inst);
+  RegLocation rl_src = GetLoc(cu, inst->getOperand(0));
+  cg->GenConversion(cu, Instruction::DOUBLE_TO_FLOAT, rl_dest, rl_src);
+}
+
+
+static void CvtIntExt(CompilationUnit* cu, llvm::Instruction* inst, bool is_signed)
+{
+  Codegen* cg = cu->cg.get();
+  // TODO: evaluate src/tgt types and add general support for more than int to long
+  RegLocation rl_dest = GetLoc(cu, inst);
+  RegLocation rl_src = GetLoc(cu, inst->getOperand(0));
+  DCHECK(rl_dest.wide);
+  DCHECK(!rl_src.wide);
+  DCHECK(!rl_dest.fp);
+  DCHECK(!rl_src.fp);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (rl_src.location == kLocPhysReg) {
+    cg->OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg);
+  } else {
+    cg->LoadValueDirect(cu, rl_src, rl_result.low_reg);
+  }
+  if (is_signed) {
+    cg->OpRegRegImm(cu, kOpAsr, rl_result.high_reg, rl_result.low_reg, 31);
+  } else {
+    cg->LoadConstant(cu, rl_result.high_reg, 0);
+  }
+  cg->StoreValueWide(cu, rl_dest, rl_result);
+}
+
+static void CvtBinOp(CompilationUnit* cu, OpKind op, llvm::Instruction* inst)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_dest = GetLoc(cu, inst);
+  llvm::Value* lhs = inst->getOperand(0);
+  // Special-case RSUB/NEG
+  llvm::ConstantInt* lhs_imm = llvm::dyn_cast<llvm::ConstantInt>(lhs);
+  if ((op == kOpSub) && (lhs_imm != NULL)) {
+    RegLocation rl_src1 = GetLoc(cu, inst->getOperand(1));
+    if (rl_src1.wide) {
+      DCHECK_EQ(lhs_imm->getSExtValue(), 0);
+      cg->GenArithOpLong(cu, Instruction::NEG_LONG, rl_dest, rl_src1, rl_src1);
+    } else {
+      cg->GenArithOpIntLit(cu, Instruction::RSUB_INT, rl_dest, rl_src1,
+                       lhs_imm->getSExtValue());
+    }
+    return;
+  }
+  DCHECK(lhs_imm == NULL);
+  RegLocation rl_src1 = GetLoc(cu, inst->getOperand(0));
+  llvm::Value* rhs = inst->getOperand(1);
+  llvm::ConstantInt* const_rhs = llvm::dyn_cast<llvm::ConstantInt>(rhs);
+  if (!rl_dest.wide && (const_rhs != NULL)) {
+    Instruction::Code dalvik_op = GetDalvikOpcode(op, true, false);
+    cg->GenArithOpIntLit(cu, dalvik_op, rl_dest, rl_src1, const_rhs->getSExtValue());
+  } else {
+    Instruction::Code dalvik_op = GetDalvikOpcode(op, false, rl_dest.wide);
+    RegLocation rl_src2;
+    if (const_rhs != NULL) {
+      // ir_builder converts NOT_LONG to xor src, -1.  Restore
+      DCHECK_EQ(dalvik_op, Instruction::XOR_LONG);
+      DCHECK_EQ(-1L, const_rhs->getSExtValue());
+      dalvik_op = Instruction::NOT_LONG;
+      rl_src2 = rl_src1;
+    } else {
+      rl_src2 = GetLoc(cu, rhs);
+    }
+    if (rl_dest.wide) {
+      cg->GenArithOpLong(cu, dalvik_op, rl_dest, rl_src1, rl_src2);
+    } else {
+      cg->GenArithOpInt(cu, dalvik_op, rl_dest, rl_src1, rl_src2);
+    }
+  }
+}
+
+static void CvtShiftOp(CompilationUnit* cu, Instruction::Code opcode, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 2U);
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(0));
+  llvm::Value* rhs = call_inst->getArgOperand(1);
+  if (llvm::ConstantInt* src2 = llvm::dyn_cast<llvm::ConstantInt>(rhs)) {
+    DCHECK(!rl_dest.wide);
+    cg->GenArithOpIntLit(cu, opcode, rl_dest, rl_src, src2->getSExtValue());
+  } else {
+    RegLocation rl_shift = GetLoc(cu, rhs);
+    if (call_inst->getType() == cu->irb->getInt64Ty()) {
+      cg->GenShiftOpLong(cu, opcode, rl_dest, rl_src, rl_shift);
+    } else {
+      cg->GenArithOpInt(cu, opcode, rl_dest, rl_src, rl_shift);
+    }
+  }
+}
+
+static void CvtBr(CompilationUnit* cu, llvm::Instruction* inst)
+{
+  Codegen* cg = cu->cg.get();
+  llvm::BranchInst* br_inst = llvm::dyn_cast<llvm::BranchInst>(inst);
+  DCHECK(br_inst != NULL);
+  DCHECK(br_inst->isUnconditional());  // May change - but this is all we use now
+  llvm::BasicBlock* target_bb = br_inst->getSuccessor(0);
+  cg->OpUnconditionalBranch(cu, cu->block_to_label_map.Get(target_bb));
+}
+
+static void CvtPhi(CompilationUnit* cu, llvm::Instruction* inst)
+{
+  // Nop - these have already been processed
+}
+
+static void CvtRet(CompilationUnit* cu, llvm::Instruction* inst)
+{
+  Codegen* cg = cu->cg.get();
+  llvm::ReturnInst* ret_inst = llvm::dyn_cast<llvm::ReturnInst>(inst);
+  llvm::Value* ret_val = ret_inst->getReturnValue();
+  if (ret_val != NULL) {
+    RegLocation rl_src = GetLoc(cu, ret_val);
+    if (rl_src.wide) {
+      cg->StoreValueWide(cu, GetReturnWide(cu, rl_src.fp), rl_src);
+    } else {
+      cg->StoreValue(cu, GetReturn(cu, rl_src.fp), rl_src);
+    }
+  }
+  cg->GenExitSequence(cu);
+}
+
+static ConditionCode GetCond(llvm::ICmpInst::Predicate llvm_cond)
+{
+  ConditionCode res = kCondAl;
+  switch(llvm_cond) {
+    case llvm::ICmpInst::ICMP_EQ: res = kCondEq; break;
+    case llvm::ICmpInst::ICMP_NE: res = kCondNe; break;
+    case llvm::ICmpInst::ICMP_SLT: res = kCondLt; break;
+    case llvm::ICmpInst::ICMP_SGE: res = kCondGe; break;
+    case llvm::ICmpInst::ICMP_SGT: res = kCondGt; break;
+    case llvm::ICmpInst::ICMP_SLE: res = kCondLe; break;
+    default: LOG(FATAL) << "Unexpected llvm condition";
+  }
+  return res;
+}
+
+static void CvtICmp(CompilationUnit* cu, llvm::Instruction* inst)
+{
+  // cg->GenCmpLong(cu, rl_dest, rl_src1, rl_src2)
+  UNIMPLEMENTED(FATAL);
+}
+
+static void CvtICmpBr(CompilationUnit* cu, llvm::Instruction* inst,
+               llvm::BranchInst* br_inst)
+{
+  Codegen* cg = cu->cg.get();
+  // Get targets
+  llvm::BasicBlock* taken_bb = br_inst->getSuccessor(0);
+  LIR* taken = cu->block_to_label_map.Get(taken_bb);
+  llvm::BasicBlock* fallthrough_bb = br_inst->getSuccessor(1);
+  LIR* fall_through = cu->block_to_label_map.Get(fallthrough_bb);
+  // Get comparison operands
+  llvm::ICmpInst* i_cmp_inst = llvm::dyn_cast<llvm::ICmpInst>(inst);
+  ConditionCode cond = GetCond(i_cmp_inst->getPredicate());
+  llvm::Value* lhs = i_cmp_inst->getOperand(0);
+  // Not expecting a constant as 1st operand
+  DCHECK(llvm::dyn_cast<llvm::ConstantInt>(lhs) == NULL);
+  RegLocation rl_src1 = GetLoc(cu, inst->getOperand(0));
+  rl_src1 = cg->LoadValue(cu, rl_src1, kCoreReg);
+  llvm::Value* rhs = inst->getOperand(1);
+  if (cu->instruction_set == kMips) {
+    // Compare and branch in one shot
+    UNIMPLEMENTED(FATAL);
+  }
+  //Compare, then branch
+  // TODO: handle fused CMP_LONG/IF_xxZ case
+  if (llvm::ConstantInt* src2 = llvm::dyn_cast<llvm::ConstantInt>(rhs)) {
+    cg->OpRegImm(cu, kOpCmp, rl_src1.low_reg, src2->getSExtValue());
+  } else if (llvm::dyn_cast<llvm::ConstantPointerNull>(rhs) != NULL) {
+    cg->OpRegImm(cu, kOpCmp, rl_src1.low_reg, 0);
+  } else {
+    RegLocation rl_src2 = GetLoc(cu, rhs);
+    rl_src2 = cg->LoadValue(cu, rl_src2, kCoreReg);
+    cg->OpRegReg(cu, kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
+  }
+  cg->OpCondBranch(cu, cond, taken);
+  // Fallthrough
+  cg->OpUnconditionalBranch(cu, fall_through);
+}
+
+static void CvtCopy(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 1U);
+  RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(0));
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  DCHECK_EQ(rl_src.wide, rl_dest.wide);
+  DCHECK_EQ(rl_src.fp, rl_dest.fp);
+  if (rl_src.wide) {
+    cg->StoreValueWide(cu, rl_dest, rl_src);
+  } else {
+    cg->StoreValue(cu, rl_dest, rl_src);
+  }
+}
+
+// Note: Immediate arg is a ConstantInt regardless of result type
+static void CvtConst(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 1U);
+  llvm::ConstantInt* src =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  uint64_t immval = src->getZExtValue();
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kAnyReg, true);
+  if (rl_dest.wide) {
+    cg->LoadConstantWide(cu, rl_result.low_reg, rl_result.high_reg, immval);
+    cg->StoreValueWide(cu, rl_dest, rl_result);
+  } else {
+    int immediate = immval & 0xffffffff;
+    cg->LoadConstantNoClobber(cu, rl_result.low_reg, immediate);
+    cg->StoreValue(cu, rl_dest, rl_result);
+    if (immediate == 0) {
+      cg->Workaround7250540(cu, rl_dest, rl_result.low_reg);
+    }
+  }
+}
+
+static void CvtConstObject(CompilationUnit* cu, llvm::CallInst* call_inst, bool is_string)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 1U);
+  llvm::ConstantInt* idx_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  uint32_t index = idx_val->getZExtValue();
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  if (is_string) {
+    cg->GenConstString(cu, index, rl_dest);
+  } else {
+    cg->GenConstClass(cu, index, rl_dest);
+  }
+}
+
+static void CvtFillArrayData(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 2U);
+  llvm::ConstantInt* offset_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(1));
+  cg->GenFillArrayData(cu, offset_val->getSExtValue(), rl_src);
+}
+
+static void CvtNewInstance(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 1U);
+  llvm::ConstantInt* type_idx_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  uint32_t type_idx = type_idx_val->getZExtValue();
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  cg->GenNewInstance(cu, type_idx, rl_dest);
+}
+
+static void CvtNewArray(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 2U);
+  llvm::ConstantInt* type_idx_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  uint32_t type_idx = type_idx_val->getZExtValue();
+  llvm::Value* len = call_inst->getArgOperand(1);
+  RegLocation rl_len = GetLoc(cu, len);
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  cg->GenNewArray(cu, type_idx, rl_dest, rl_len);
+}
+
+static void CvtInstanceOf(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 2U);
+  llvm::ConstantInt* type_idx_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  uint32_t type_idx = type_idx_val->getZExtValue();
+  llvm::Value* src = call_inst->getArgOperand(1);
+  RegLocation rl_src = GetLoc(cu, src);
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  cg->GenInstanceof(cu, type_idx, rl_dest, rl_src);
+}
+
+static void CvtThrow(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 1U);
+  llvm::Value* src = call_inst->getArgOperand(0);
+  RegLocation rl_src = GetLoc(cu, src);
+  cg->GenThrow(cu, rl_src);
+}
+
+static void CvtMonitorEnterExit(CompilationUnit* cu, bool is_enter,
+                         llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 2U);
+  llvm::ConstantInt* opt_flags =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  llvm::Value* src = call_inst->getArgOperand(1);
+  RegLocation rl_src = GetLoc(cu, src);
+  if (is_enter) {
+    cg->GenMonitorEnter(cu, opt_flags->getZExtValue(), rl_src);
+  } else {
+    cg->GenMonitorExit(cu, opt_flags->getZExtValue(), rl_src);
+  }
+}
+
+static void CvtArrayLength(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 2U);
+  llvm::ConstantInt* opt_flags =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  llvm::Value* src = call_inst->getArgOperand(1);
+  RegLocation rl_src = GetLoc(cu, src);
+  rl_src = cg->LoadValue(cu, rl_src, kCoreReg);
+  cg->GenNullCheck(cu, rl_src.s_reg_low, rl_src.low_reg, opt_flags->getZExtValue());
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  cg->LoadWordDisp(cu, rl_src.low_reg, len_offset, rl_result.low_reg);
+  cg->StoreValue(cu, rl_dest, rl_result);
+}
+
+static void CvtMoveException(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  cg->GenMoveException(cu, rl_dest);
+}
+
+static void CvtSget(CompilationUnit* cu, llvm::CallInst* call_inst, bool is_wide, bool is_object)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 1U);
+  llvm::ConstantInt* type_idx_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  uint32_t type_idx = type_idx_val->getZExtValue();
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  cg->GenSget(cu, type_idx, rl_dest, is_wide, is_object);
+}
+
+static void CvtSput(CompilationUnit* cu, llvm::CallInst* call_inst, bool is_wide, bool is_object)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 2U);
+  llvm::ConstantInt* type_idx_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  uint32_t type_idx = type_idx_val->getZExtValue();
+  llvm::Value* src = call_inst->getArgOperand(1);
+  RegLocation rl_src = GetLoc(cu, src);
+  cg->GenSput(cu, type_idx, rl_src, is_wide, is_object);
+}
+
+static void CvtAget(CompilationUnit* cu, llvm::CallInst* call_inst, OpSize size, int scale)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 3U);
+  llvm::ConstantInt* opt_flags =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  RegLocation rl_array = GetLoc(cu, call_inst->getArgOperand(1));
+  RegLocation rl_index = GetLoc(cu, call_inst->getArgOperand(2));
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  cg->GenArrayGet(cu, opt_flags->getZExtValue(), size, rl_array, rl_index,
+              rl_dest, scale);
+}
+
+static void CvtAput(CompilationUnit* cu, llvm::CallInst* call_inst, OpSize size,
+                    int scale, bool is_object)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 4U);
+  llvm::ConstantInt* opt_flags =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(1));
+  RegLocation rl_array = GetLoc(cu, call_inst->getArgOperand(2));
+  RegLocation rl_index = GetLoc(cu, call_inst->getArgOperand(3));
+  if (is_object) {
+    cg->GenArrayObjPut(cu, opt_flags->getZExtValue(), rl_array, rl_index,
+                   rl_src, scale);
+  } else {
+    cg->GenArrayPut(cu, opt_flags->getZExtValue(), size, rl_array, rl_index,
+                rl_src, scale);
+  }
+}
+
+static void CvtAputObj(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  CvtAput(cu, call_inst, kWord, 2, true /* is_object */);
+}
+
+static void CvtAputPrimitive(CompilationUnit* cu, llvm::CallInst* call_inst,
+                      OpSize size, int scale)
+{
+  CvtAput(cu, call_inst, size, scale, false /* is_object */);
+}
+
+static void CvtIget(CompilationUnit* cu, llvm::CallInst* call_inst, OpSize size,
+                    bool is_wide, bool is_obj)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 3U);
+  llvm::ConstantInt* opt_flags =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  RegLocation rl_obj = GetLoc(cu, call_inst->getArgOperand(1));
+  llvm::ConstantInt* field_idx =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(2));
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  cg->GenIGet(cu, field_idx->getZExtValue(), opt_flags->getZExtValue(),
+          size, rl_dest, rl_obj, is_wide, is_obj);
+}
+
+static void CvtIput(CompilationUnit* cu, llvm::CallInst* call_inst, OpSize size,
+                    bool is_wide, bool is_obj)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 4U);
+  llvm::ConstantInt* opt_flags =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(1));
+  RegLocation rl_obj = GetLoc(cu, call_inst->getArgOperand(2));
+  llvm::ConstantInt* field_idx =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(3));
+  cg->GenIPut(cu, field_idx->getZExtValue(), opt_flags->getZExtValue(),
+          size, rl_src, rl_obj, is_wide, is_obj);
+}
+
+static void CvtCheckCast(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK_EQ(call_inst->getNumArgOperands(), 2U);
+  llvm::ConstantInt* type_idx =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(1));
+  cg->GenCheckCast(cu, type_idx->getZExtValue(), rl_src);
+}
+
+static void CvtFPCompare(CompilationUnit* cu, llvm::CallInst* call_inst,
+                         Instruction::Code opcode)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_src1 = GetLoc(cu, call_inst->getArgOperand(0));
+  RegLocation rl_src2 = GetLoc(cu, call_inst->getArgOperand(1));
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  cg->GenCmpFP(cu, opcode, rl_dest, rl_src1, rl_src2);
+}
+
+static void CvtLongCompare(CompilationUnit* cu, llvm::CallInst* call_inst)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_src1 = GetLoc(cu, call_inst->getArgOperand(0));
+  RegLocation rl_src2 = GetLoc(cu, call_inst->getArgOperand(1));
+  RegLocation rl_dest = GetLoc(cu, call_inst);
+  cg->GenCmpLong(cu, rl_dest, rl_src1, rl_src2);
+}
+
+static void CvtSwitch(CompilationUnit* cu, llvm::Instruction* inst)
+{
+  Codegen* cg = cu->cg.get();
+  llvm::SwitchInst* sw_inst = llvm::dyn_cast<llvm::SwitchInst>(inst);
+  DCHECK(sw_inst != NULL);
+  llvm::Value* test_val = sw_inst->getCondition();
+  llvm::MDNode* table_offset_node = sw_inst->getMetadata("SwitchTable");
+  DCHECK(table_offset_node != NULL);
+  llvm::ConstantInt* table_offset_value =
+          static_cast<llvm::ConstantInt*>(table_offset_node->getOperand(0));
+  int32_t table_offset = table_offset_value->getSExtValue();
+  RegLocation rl_src = GetLoc(cu, test_val);
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  uint16_t table_magic = *table;
+  if (table_magic == 0x100) {
+    cg->GenPackedSwitch(cu, table_offset, rl_src);
+  } else {
+    DCHECK_EQ(table_magic, 0x200);
+    cg->GenSparseSwitch(cu, table_offset, rl_src);
+  }
+}
+
+static void CvtInvoke(CompilationUnit* cu, llvm::CallInst* call_inst, bool is_void,
+                      bool is_filled_new_array)
+{
+  Codegen* cg = cu->cg.get();
+  CallInfo* info = static_cast<CallInfo*>(NewMem(cu, sizeof(CallInfo), true, kAllocMisc));
+  if (is_void) {
+    info->result.location = kLocInvalid;
+  } else {
+    info->result = GetLoc(cu, call_inst);
+  }
+  llvm::ConstantInt* invoke_type_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(0));
+  llvm::ConstantInt* method_index_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(1));
+  llvm::ConstantInt* opt_flags_val =
+      llvm::dyn_cast<llvm::ConstantInt>(call_inst->getArgOperand(2));
+  info->type = static_cast<InvokeType>(invoke_type_val->getZExtValue());
+  info->index = method_index_val->getZExtValue();
+  info->opt_flags = opt_flags_val->getZExtValue();
+  info->offset = cu->current_dalvik_offset;
+
+  // Count the argument words, and then build argument array.
+  info->num_arg_words = 0;
+  for (unsigned int i = 3; i < call_inst->getNumArgOperands(); i++) {
+    RegLocation t_loc = GetLoc(cu, call_inst->getArgOperand(i));
+    info->num_arg_words += t_loc.wide ? 2 : 1;
+  }
+  info->args = (info->num_arg_words == 0) ? NULL : static_cast<RegLocation*>
+      (NewMem(cu, sizeof(RegLocation) * info->num_arg_words, false, kAllocMisc));
+  // Now, fill in the location records, synthesizing high loc of wide vals
+  for (int i = 3, next = 0; next < info->num_arg_words;) {
+    info->args[next] = GetLoc(cu, call_inst->getArgOperand(i++));
+    if (info->args[next].wide) {
+      next++;
+      // TODO: Might make sense to mark this as an invalid loc
+      info->args[next].orig_sreg = info->args[next-1].orig_sreg+1;
+      info->args[next].s_reg_low = info->args[next-1].s_reg_low+1;
+    }
+    next++;
+  }
+  // TODO - rework such that we no longer need is_range
+  info->is_range = (info->num_arg_words > 5);
+
+  if (is_filled_new_array) {
+    cg->GenFilledNewArray(cu, info);
+  } else {
+    cg->GenInvoke(cu, info);
+  }
+}
+
+/* Look up the RegLocation associated with a Value.  Must already be defined */
+static RegLocation ValToLoc(CompilationUnit* cu, llvm::Value* val)
+{
+  SafeMap<llvm::Value*, RegLocation>::iterator it = cu->loc_map.find(val);
+  DCHECK(it != cu->loc_map.end()) << "Missing definition";
+  return it->second;
+}
+
+static bool BitcodeBlockCodeGen(CompilationUnit* cu, llvm::BasicBlock* bb)
+{
+  Codegen* cg = cu->cg.get();
+  while (cu->llvm_blocks.find(bb) == cu->llvm_blocks.end()) {
+    llvm::BasicBlock* next_bb = NULL;
+    cu->llvm_blocks.insert(bb);
+    bool is_entry = (bb == &cu->func->getEntryBlock());
+    // Define the starting label
+    LIR* block_label = cu->block_to_label_map.Get(bb);
+    // Extract the type and starting offset from the block's name
+    char block_type = kInvalidBlock;
+    if (is_entry) {
+      block_type = kNormalBlock;
+      block_label->operands[0] = 0;
+    } else if (!bb->hasName()) {
+      block_type = kNormalBlock;
+      block_label->operands[0] = DexFile::kDexNoIndex;
+    } else {
+      std::string block_name = bb->getName().str();
+      int dummy;
+      sscanf(block_name.c_str(), kLabelFormat, &block_type, &block_label->operands[0], &dummy);
+      cu->current_dalvik_offset = block_label->operands[0];
+    }
+    DCHECK((block_type == kNormalBlock) || (block_type == kCatchBlock));
+    cu->current_dalvik_offset = block_label->operands[0];
+    // Set the label kind
+    block_label->opcode = kPseudoNormalBlockLabel;
+    // Insert the label
+    AppendLIR(cu, block_label);
+
+    LIR* head_lir = NULL;
+
+    if (block_type == kCatchBlock) {
+      head_lir = NewLIR0(cu, kPseudoExportedPC);
+    }
+
+    // Free temp registers and reset redundant store tracking */
+    ResetRegPool(cu);
+    ResetDefTracking(cu);
+
+    //TODO: restore oat incoming liveness optimization
+    ClobberAllRegs(cu);
+
+    if (is_entry) {
+      RegLocation* ArgLocs = static_cast<RegLocation*>
+          (NewMem(cu, sizeof(RegLocation) * cu->num_ins, true, kAllocMisc));
+      llvm::Function::arg_iterator it(cu->func->arg_begin());
+      llvm::Function::arg_iterator it_end(cu->func->arg_end());
+      // Skip past Method*
+      it++;
+      for (unsigned i = 0; it != it_end; ++it) {
+        llvm::Value* val = it;
+        ArgLocs[i++] = ValToLoc(cu, val);
+        llvm::Type* ty = val->getType();
+        if ((ty == cu->irb->getInt64Ty()) || (ty == cu->irb->getDoubleTy())) {
+          ArgLocs[i] = ArgLocs[i-1];
+          ArgLocs[i].low_reg = ArgLocs[i].high_reg;
+          ArgLocs[i].orig_sreg++;
+          ArgLocs[i].s_reg_low = INVALID_SREG;
+          ArgLocs[i].high_word = true;
+          i++;
+        }
+      }
+      cg->GenEntrySequence(cu, ArgLocs, cu->method_loc);
+    }
+
+    // Visit all of the instructions in the block
+    for (llvm::BasicBlock::iterator it = bb->begin(), e = bb->end(); it != e;) {
+      llvm::Instruction* inst = it;
+      llvm::BasicBlock::iterator next_it = ++it;
+      // Extract the Dalvik offset from the instruction
+      uint32_t opcode = inst->getOpcode();
+      llvm::MDNode* dex_offset_node = inst->getMetadata("DexOff");
+      if (dex_offset_node != NULL) {
+        llvm::ConstantInt* dex_offset_value =
+            static_cast<llvm::ConstantInt*>(dex_offset_node->getOperand(0));
+        cu->current_dalvik_offset = dex_offset_value->getZExtValue();
+      }
+
+      ResetRegPool(cu);
+      if (cu->disable_opt & (1 << kTrackLiveTemps)) {
+        ClobberAllRegs(cu);
+      }
+
+      if (cu->disable_opt & (1 << kSuppressLoads)) {
+        ResetDefTracking(cu);
+      }
+
+  #ifndef NDEBUG
+      /* Reset temp tracking sanity check */
+      cu->live_sreg = INVALID_SREG;
+  #endif
+
+      // TODO: use llvm opcode name here instead of "boundary" if verbose
+      LIR* boundary_lir = MarkBoundary(cu, cu->current_dalvik_offset, "boundary");
+
+      /* Remember the first LIR for thisl block*/
+      if (head_lir == NULL) {
+        head_lir = boundary_lir;
+        head_lir->def_mask = ENCODE_ALL;
+      }
+
+      switch(opcode) {
+
+        case llvm::Instruction::ICmp: {
+            llvm::Instruction* next_inst = next_it;
+            llvm::BranchInst* br_inst = llvm::dyn_cast<llvm::BranchInst>(next_inst);
+            if (br_inst != NULL /* and... */) {
+              CvtICmpBr(cu, inst, br_inst);
+              ++it;
+            } else {
+              CvtICmp(cu, inst);
+            }
+          }
+          break;
+
+        case llvm::Instruction::Call: {
+            llvm::CallInst* call_inst = llvm::dyn_cast<llvm::CallInst>(inst);
+            llvm::Function* callee = call_inst->getCalledFunction();
+            greenland::IntrinsicHelper::IntrinsicId id =
+                cu->intrinsic_helper->GetIntrinsicId(callee);
+            switch (id) {
+              case greenland::IntrinsicHelper::AllocaShadowFrame:
+              case greenland::IntrinsicHelper::PopShadowFrame:
+              case greenland::IntrinsicHelper::SetVReg:
+                // Ignore shadow frame stuff for quick compiler
+                break;
+              case greenland::IntrinsicHelper::CopyInt:
+              case greenland::IntrinsicHelper::CopyObj:
+              case greenland::IntrinsicHelper::CopyFloat:
+              case greenland::IntrinsicHelper::CopyLong:
+              case greenland::IntrinsicHelper::CopyDouble:
+                CvtCopy(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::ConstInt:
+              case greenland::IntrinsicHelper::ConstObj:
+              case greenland::IntrinsicHelper::ConstLong:
+              case greenland::IntrinsicHelper::ConstFloat:
+              case greenland::IntrinsicHelper::ConstDouble:
+                CvtConst(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::DivInt:
+              case greenland::IntrinsicHelper::DivLong:
+                CvtBinOp(cu, kOpDiv, inst);
+                break;
+              case greenland::IntrinsicHelper::RemInt:
+              case greenland::IntrinsicHelper::RemLong:
+                CvtBinOp(cu, kOpRem, inst);
+                break;
+              case greenland::IntrinsicHelper::MethodInfo:
+                // Already dealt with - just ignore it here.
+                break;
+              case greenland::IntrinsicHelper::CheckSuspend:
+                cg->GenSuspendTest(cu, 0 /* opt_flags already applied */);
+                break;
+              case greenland::IntrinsicHelper::HLInvokeObj:
+              case greenland::IntrinsicHelper::HLInvokeFloat:
+              case greenland::IntrinsicHelper::HLInvokeDouble:
+              case greenland::IntrinsicHelper::HLInvokeLong:
+              case greenland::IntrinsicHelper::HLInvokeInt:
+                CvtInvoke(cu, call_inst, false /* is_void */, false /* new_array */);
+                break;
+              case greenland::IntrinsicHelper::HLInvokeVoid:
+                CvtInvoke(cu, call_inst, true /* is_void */, false /* new_array */);
+                break;
+              case greenland::IntrinsicHelper::HLFilledNewArray:
+                CvtInvoke(cu, call_inst, false /* is_void */, true /* new_array */);
+                break;
+              case greenland::IntrinsicHelper::HLFillArrayData:
+                CvtFillArrayData(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::ConstString:
+                CvtConstObject(cu, call_inst, true /* is_string */);
+                break;
+              case greenland::IntrinsicHelper::ConstClass:
+                CvtConstObject(cu, call_inst, false /* is_string */);
+                break;
+              case greenland::IntrinsicHelper::HLCheckCast:
+                CvtCheckCast(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::NewInstance:
+                CvtNewInstance(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::HLSgetObject:
+                CvtSget(cu, call_inst, false /* wide */, true /* Object */);
+                break;
+              case greenland::IntrinsicHelper::HLSget:
+              case greenland::IntrinsicHelper::HLSgetFloat:
+              case greenland::IntrinsicHelper::HLSgetBoolean:
+              case greenland::IntrinsicHelper::HLSgetByte:
+              case greenland::IntrinsicHelper::HLSgetChar:
+              case greenland::IntrinsicHelper::HLSgetShort:
+                CvtSget(cu, call_inst, false /* wide */, false /* Object */);
+                break;
+              case greenland::IntrinsicHelper::HLSgetWide:
+              case greenland::IntrinsicHelper::HLSgetDouble:
+                CvtSget(cu, call_inst, true /* wide */, false /* Object */);
+                break;
+              case greenland::IntrinsicHelper::HLSput:
+              case greenland::IntrinsicHelper::HLSputFloat:
+              case greenland::IntrinsicHelper::HLSputBoolean:
+              case greenland::IntrinsicHelper::HLSputByte:
+              case greenland::IntrinsicHelper::HLSputChar:
+              case greenland::IntrinsicHelper::HLSputShort:
+                CvtSput(cu, call_inst, false /* wide */, false /* Object */);
+                break;
+              case greenland::IntrinsicHelper::HLSputWide:
+              case greenland::IntrinsicHelper::HLSputDouble:
+                CvtSput(cu, call_inst, true /* wide */, false /* Object */);
+                break;
+              case greenland::IntrinsicHelper::HLSputObject:
+                CvtSput(cu, call_inst, false /* wide */, true /* Object */);
+                break;
+              case greenland::IntrinsicHelper::GetException:
+                CvtMoveException(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::HLThrowException:
+                CvtThrow(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::MonitorEnter:
+                CvtMonitorEnterExit(cu, true /* is_enter */, call_inst);
+                break;
+              case greenland::IntrinsicHelper::MonitorExit:
+                CvtMonitorEnterExit(cu, false /* is_enter */, call_inst);
+                break;
+              case greenland::IntrinsicHelper::OptArrayLength:
+                CvtArrayLength(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::NewArray:
+                CvtNewArray(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::InstanceOf:
+                CvtInstanceOf(cu, call_inst);
+                break;
+
+              case greenland::IntrinsicHelper::HLArrayGet:
+              case greenland::IntrinsicHelper::HLArrayGetObject:
+              case greenland::IntrinsicHelper::HLArrayGetFloat:
+                CvtAget(cu, call_inst, kWord, 2);
+                break;
+              case greenland::IntrinsicHelper::HLArrayGetWide:
+              case greenland::IntrinsicHelper::HLArrayGetDouble:
+                CvtAget(cu, call_inst, kLong, 3);
+                break;
+              case greenland::IntrinsicHelper::HLArrayGetBoolean:
+                CvtAget(cu, call_inst, kUnsignedByte, 0);
+                break;
+              case greenland::IntrinsicHelper::HLArrayGetByte:
+                CvtAget(cu, call_inst, kSignedByte, 0);
+                break;
+              case greenland::IntrinsicHelper::HLArrayGetChar:
+                CvtAget(cu, call_inst, kUnsignedHalf, 1);
+                break;
+              case greenland::IntrinsicHelper::HLArrayGetShort:
+                CvtAget(cu, call_inst, kSignedHalf, 1);
+                break;
+
+              case greenland::IntrinsicHelper::HLArrayPut:
+              case greenland::IntrinsicHelper::HLArrayPutFloat:
+                CvtAputPrimitive(cu, call_inst, kWord, 2);
+                break;
+              case greenland::IntrinsicHelper::HLArrayPutObject:
+                CvtAputObj(cu, call_inst);
+                break;
+              case greenland::IntrinsicHelper::HLArrayPutWide:
+              case greenland::IntrinsicHelper::HLArrayPutDouble:
+                CvtAputPrimitive(cu, call_inst, kLong, 3);
+                break;
+              case greenland::IntrinsicHelper::HLArrayPutBoolean:
+                CvtAputPrimitive(cu, call_inst, kUnsignedByte, 0);
+                break;
+              case greenland::IntrinsicHelper::HLArrayPutByte:
+                CvtAputPrimitive(cu, call_inst, kSignedByte, 0);
+                break;
+              case greenland::IntrinsicHelper::HLArrayPutChar:
+                CvtAputPrimitive(cu, call_inst, kUnsignedHalf, 1);
+                break;
+              case greenland::IntrinsicHelper::HLArrayPutShort:
+                CvtAputPrimitive(cu, call_inst, kSignedHalf, 1);
+                break;
+
+              case greenland::IntrinsicHelper::HLIGet:
+              case greenland::IntrinsicHelper::HLIGetFloat:
+                CvtIget(cu, call_inst, kWord, false /* is_wide */, false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIGetObject:
+                CvtIget(cu, call_inst, kWord, false /* is_wide */, true /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIGetWide:
+              case greenland::IntrinsicHelper::HLIGetDouble:
+                CvtIget(cu, call_inst, kLong, true /* is_wide */, false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIGetBoolean:
+                CvtIget(cu, call_inst, kUnsignedByte, false /* is_wide */,
+                        false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIGetByte:
+                CvtIget(cu, call_inst, kSignedByte, false /* is_wide */,
+                        false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIGetChar:
+                CvtIget(cu, call_inst, kUnsignedHalf, false /* is_wide */,
+                        false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIGetShort:
+                CvtIget(cu, call_inst, kSignedHalf, false /* is_wide */,
+                        false /* obj */);
+                break;
+
+              case greenland::IntrinsicHelper::HLIPut:
+              case greenland::IntrinsicHelper::HLIPutFloat:
+                CvtIput(cu, call_inst, kWord, false /* is_wide */, false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIPutObject:
+                CvtIput(cu, call_inst, kWord, false /* is_wide */, true /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIPutWide:
+              case greenland::IntrinsicHelper::HLIPutDouble:
+                CvtIput(cu, call_inst, kLong, true /* is_wide */, false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIPutBoolean:
+                CvtIput(cu, call_inst, kUnsignedByte, false /* is_wide */,
+                        false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIPutByte:
+                CvtIput(cu, call_inst, kSignedByte, false /* is_wide */,
+                        false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIPutChar:
+                CvtIput(cu, call_inst, kUnsignedHalf, false /* is_wide */,
+                        false /* obj */);
+                break;
+              case greenland::IntrinsicHelper::HLIPutShort:
+                CvtIput(cu, call_inst, kSignedHalf, false /* is_wide */,
+                        false /* obj */);
+                break;
+
+              case greenland::IntrinsicHelper::IntToChar:
+                CvtIntNarrowing(cu, call_inst, Instruction::INT_TO_CHAR);
+                break;
+              case greenland::IntrinsicHelper::IntToShort:
+                CvtIntNarrowing(cu, call_inst, Instruction::INT_TO_SHORT);
+                break;
+              case greenland::IntrinsicHelper::IntToByte:
+                CvtIntNarrowing(cu, call_inst, Instruction::INT_TO_BYTE);
+                break;
+
+              case greenland::IntrinsicHelper::F2I:
+              case greenland::IntrinsicHelper::D2I:
+              case greenland::IntrinsicHelper::F2L:
+              case greenland::IntrinsicHelper::D2L:
+                CvtFPToInt(cu, call_inst);
+                break;
+
+              case greenland::IntrinsicHelper::CmplFloat:
+                CvtFPCompare(cu, call_inst, Instruction::CMPL_FLOAT);
+                break;
+              case greenland::IntrinsicHelper::CmpgFloat:
+                CvtFPCompare(cu, call_inst, Instruction::CMPG_FLOAT);
+                break;
+              case greenland::IntrinsicHelper::CmplDouble:
+                CvtFPCompare(cu, call_inst, Instruction::CMPL_DOUBLE);
+                break;
+              case greenland::IntrinsicHelper::CmpgDouble:
+                CvtFPCompare(cu, call_inst, Instruction::CMPG_DOUBLE);
+                break;
+
+              case greenland::IntrinsicHelper::CmpLong:
+                CvtLongCompare(cu, call_inst);
+                break;
+
+              case greenland::IntrinsicHelper::SHLLong:
+                CvtShiftOp(cu, Instruction::SHL_LONG, call_inst);
+                break;
+              case greenland::IntrinsicHelper::SHRLong:
+                CvtShiftOp(cu, Instruction::SHR_LONG, call_inst);
+                break;
+              case greenland::IntrinsicHelper::USHRLong:
+                CvtShiftOp(cu, Instruction::USHR_LONG, call_inst);
+                break;
+              case greenland::IntrinsicHelper::SHLInt:
+                CvtShiftOp(cu, Instruction::SHL_INT, call_inst);
+                break;
+              case greenland::IntrinsicHelper::SHRInt:
+                CvtShiftOp(cu, Instruction::SHR_INT, call_inst);
+                break;
+              case greenland::IntrinsicHelper::USHRInt:
+                CvtShiftOp(cu, Instruction::USHR_INT, call_inst);
+                break;
+
+              case greenland::IntrinsicHelper::CatchTargets: {
+                  llvm::SwitchInst* sw_inst =
+                      llvm::dyn_cast<llvm::SwitchInst>(next_it);
+                  DCHECK(sw_inst != NULL);
+                  /*
+                   * Discard the edges and the following conditional branch.
+                   * Do a direct branch to the default target (which is the
+                   * "work" portion of the pair.
+                   * TODO: awful code layout - rework
+                   */
+                   llvm::BasicBlock* target_bb = sw_inst->getDefaultDest();
+                   DCHECK(target_bb != NULL);
+                   cg->OpUnconditionalBranch(cu, cu->block_to_label_map.Get(target_bb));
+                   ++it;
+                   // Set next bb to default target - improves code layout
+                   next_bb = target_bb;
+                }
+                break;
+
+              default:
+                LOG(FATAL) << "Unexpected intrinsic " << cu->intrinsic_helper->GetName(id);
+            }
+          }
+          break;
+
+        case llvm::Instruction::Br: CvtBr(cu, inst); break;
+        case llvm::Instruction::Add: CvtBinOp(cu, kOpAdd, inst); break;
+        case llvm::Instruction::Sub: CvtBinOp(cu, kOpSub, inst); break;
+        case llvm::Instruction::Mul: CvtBinOp(cu, kOpMul, inst); break;
+        case llvm::Instruction::SDiv: CvtBinOp(cu, kOpDiv, inst); break;
+        case llvm::Instruction::SRem: CvtBinOp(cu, kOpRem, inst); break;
+        case llvm::Instruction::And: CvtBinOp(cu, kOpAnd, inst); break;
+        case llvm::Instruction::Or: CvtBinOp(cu, kOpOr, inst); break;
+        case llvm::Instruction::Xor: CvtBinOp(cu, kOpXor, inst); break;
+        case llvm::Instruction::PHI: CvtPhi(cu, inst); break;
+        case llvm::Instruction::Ret: CvtRet(cu, inst); break;
+        case llvm::Instruction::FAdd: CvtBinFPOp(cu, kOpAdd, inst); break;
+        case llvm::Instruction::FSub: CvtBinFPOp(cu, kOpSub, inst); break;
+        case llvm::Instruction::FMul: CvtBinFPOp(cu, kOpMul, inst); break;
+        case llvm::Instruction::FDiv: CvtBinFPOp(cu, kOpDiv, inst); break;
+        case llvm::Instruction::FRem: CvtBinFPOp(cu, kOpRem, inst); break;
+        case llvm::Instruction::SIToFP: CvtIntToFP(cu, inst); break;
+        case llvm::Instruction::FPTrunc: CvtDoubleToFloat(cu, inst); break;
+        case llvm::Instruction::FPExt: CvtFloatToDouble(cu, inst); break;
+        case llvm::Instruction::Trunc: CvtTrunc(cu, inst); break;
+
+        case llvm::Instruction::ZExt: CvtIntExt(cu, inst, false /* signed */);
+          break;
+        case llvm::Instruction::SExt: CvtIntExt(cu, inst, true /* signed */);
+          break;
+
+        case llvm::Instruction::Switch: CvtSwitch(cu, inst); break;
+
+        case llvm::Instruction::Unreachable:
+          break;  // FIXME: can we really ignore these?
+
+        case llvm::Instruction::Shl:
+        case llvm::Instruction::LShr:
+        case llvm::Instruction::AShr:
+        case llvm::Instruction::Invoke:
+        case llvm::Instruction::FPToUI:
+        case llvm::Instruction::FPToSI:
+        case llvm::Instruction::UIToFP:
+        case llvm::Instruction::PtrToInt:
+        case llvm::Instruction::IntToPtr:
+        case llvm::Instruction::FCmp:
+        case llvm::Instruction::URem:
+        case llvm::Instruction::UDiv:
+        case llvm::Instruction::Resume:
+        case llvm::Instruction::Alloca:
+        case llvm::Instruction::GetElementPtr:
+        case llvm::Instruction::Fence:
+        case llvm::Instruction::AtomicCmpXchg:
+        case llvm::Instruction::AtomicRMW:
+        case llvm::Instruction::BitCast:
+        case llvm::Instruction::VAArg:
+        case llvm::Instruction::Select:
+        case llvm::Instruction::UserOp1:
+        case llvm::Instruction::UserOp2:
+        case llvm::Instruction::ExtractElement:
+        case llvm::Instruction::InsertElement:
+        case llvm::Instruction::ShuffleVector:
+        case llvm::Instruction::ExtractValue:
+        case llvm::Instruction::InsertValue:
+        case llvm::Instruction::LandingPad:
+        case llvm::Instruction::IndirectBr:
+        case llvm::Instruction::Load:
+        case llvm::Instruction::Store:
+          LOG(FATAL) << "Unexpected llvm opcode: " << opcode; break;
+
+        default:
+          LOG(FATAL) << "Unknown llvm opcode: " << inst->getOpcodeName();
+          break;
+      }
+    }
+
+    if (head_lir != NULL) {
+      ApplyLocalOptimizations(cu, head_lir, cu->last_lir_insn);
+    }
+    if (next_bb != NULL) {
+      bb = next_bb;
+      next_bb = NULL;
+    }
+  }
+  return false;
+}
+
+/*
+ * Convert LLVM_IR to MIR:
+ *   o Iterate through the LLVM_IR and construct a graph using
+ *     standard MIR building blocks.
+ *   o Perform a basic-block optimization pass to remove unnecessary
+ *     store/load sequences.
+ *   o Convert the LLVM Value operands into RegLocations where applicable.
+ *   o Create ssa_rep def/use operand arrays for each converted LLVM opcode
+ *   o Perform register promotion
+ *   o Iterate through the graph a basic block at a time, generating
+ *     LIR.
+ *   o Assemble LIR as usual.
+ *   o Profit.
+ */
+void MethodBitcode2LIR(CompilationUnit* cu)
+{
+  Codegen* cg = cu->cg.get();
+  llvm::Function* func = cu->func;
+  int num_basic_blocks = func->getBasicBlockList().size();
+  // Allocate a list for LIR basic block labels
+  cu->block_label_list =
+    static_cast<LIR*>(NewMem(cu, sizeof(LIR) * num_basic_blocks, true, kAllocLIR));
+  LIR* label_list = cu->block_label_list;
+  int next_label = 0;
+  for (llvm::Function::iterator i = func->begin(), e = func->end(); i != e; ++i) {
+    cu->block_to_label_map.Put(static_cast<llvm::BasicBlock*>(i),
+                               &label_list[next_label++]);
+  }
+
+  /*
+   * Keep honest - clear reg_locations, Value => RegLocation,
+   * promotion map and VmapTables.
+   */
+  cu->loc_map.clear();  // Start fresh
+  cu->reg_location = NULL;
+  for (int i = 0; i < cu->num_dalvik_registers + cu->num_compiler_temps + 1; i++) {
+    cu->promotion_map[i].core_location = kLocDalvikFrame;
+    cu->promotion_map[i].fp_location = kLocDalvikFrame;
+  }
+  cu->core_spill_mask = 0;
+  cu->num_core_spills = 0;
+  cu->fp_spill_mask = 0;
+  cu->num_fp_spills = 0;
+  cu->core_vmap_table.clear();
+  cu->fp_vmap_table.clear();
+
+  /*
+   * At this point, we've lost all knowledge of register promotion.
+   * Rebuild that info from the MethodInfo intrinsic (if it
+   * exists - not required for correctness).  Normally, this will
+   * be the first instruction we encounter, so we won't have to iterate
+   * through everything.
+   */
+  for (llvm::inst_iterator i = llvm::inst_begin(func), e = llvm::inst_end(func); i != e; ++i) {
+    llvm::CallInst* call_inst = llvm::dyn_cast<llvm::CallInst>(&*i);
+    if (call_inst != NULL) {
+      llvm::Function* callee = call_inst->getCalledFunction();
+      greenland::IntrinsicHelper::IntrinsicId id =
+          cu->intrinsic_helper->GetIntrinsicId(callee);
+      if (id == greenland::IntrinsicHelper::MethodInfo) {
+        if (cu->verbose) {
+          LOG(INFO) << "Found MethodInfo";
+        }
+        llvm::MDNode* reg_info_node = call_inst->getMetadata("RegInfo");
+        if (reg_info_node != NULL) {
+          llvm::ConstantInt* num_ins_value =
+            static_cast<llvm::ConstantInt*>(reg_info_node->getOperand(0));
+          llvm::ConstantInt* num_regs_value =
+            static_cast<llvm::ConstantInt*>(reg_info_node->getOperand(1));
+          llvm::ConstantInt* num_outs_value =
+            static_cast<llvm::ConstantInt*>(reg_info_node->getOperand(2));
+          llvm::ConstantInt* num_compiler_temps_value =
+            static_cast<llvm::ConstantInt*>(reg_info_node->getOperand(3));
+          llvm::ConstantInt* num_ssa_regs_value =
+            static_cast<llvm::ConstantInt*>(reg_info_node->getOperand(4));
+          if (cu->verbose) {
+             LOG(INFO) << "RegInfo - Ins:" << num_ins_value->getZExtValue()
+                       << ", Regs:" << num_regs_value->getZExtValue()
+                       << ", Outs:" << num_outs_value->getZExtValue()
+                       << ", CTemps:" << num_compiler_temps_value->getZExtValue()
+                       << ", SSARegs:" << num_ssa_regs_value->getZExtValue();
+            }
+          }
+        llvm::MDNode* pmap_info_node = call_inst->getMetadata("PromotionMap");
+        if (pmap_info_node != NULL) {
+          int elems = pmap_info_node->getNumOperands();
+          if (cu->verbose) {
+            LOG(INFO) << "PMap size: " << elems;
+          }
+          for (int i = 0; i < elems; i++) {
+            llvm::ConstantInt* raw_map_data =
+                static_cast<llvm::ConstantInt*>(pmap_info_node->getOperand(i));
+            uint32_t map_data = raw_map_data->getZExtValue();
+            PromotionMap* p = &cu->promotion_map[i];
+            p->first_in_pair = (map_data >> 24) & 0xff;
+            p->FpReg = (map_data >> 16) & 0xff;
+            p->core_reg = (map_data >> 8) & 0xff;
+            p->fp_location = static_cast<RegLocationType>((map_data >> 4) & 0xf);
+            if (p->fp_location == kLocPhysReg) {
+              RecordFpPromotion(cu, p->FpReg, i);
+            }
+            p->core_location = static_cast<RegLocationType>(map_data & 0xf);
+            if (p->core_location == kLocPhysReg) {
+              RecordCorePromotion(cu, p->core_reg, i);
+            }
+          }
+          if (cu->verbose) {
+            DumpPromotionMap(cu);
+          }
+        }
+        break;
+      }
+    }
+  }
+  cg->AdjustSpillMask(cu);
+  cu->frame_size = ComputeFrameSize(cu);
+
+  // Create RegLocations for arguments
+  llvm::Function::arg_iterator it(cu->func->arg_begin());
+  llvm::Function::arg_iterator it_end(cu->func->arg_end());
+  for (; it != it_end; ++it) {
+    llvm::Value* val = it;
+    CreateLocFromValue(cu, val);
+  }
+  // Create RegLocations for all non-argument defintions
+  for (llvm::inst_iterator i = llvm::inst_begin(func), e = llvm::inst_end(func); i != e; ++i) {
+    llvm::Value* val = &*i;
+    if (val->hasName() && (val->getName().str().c_str()[0] == 'v')) {
+      CreateLocFromValue(cu, val);
+    }
+  }
+
+  // Walk the blocks, generating code.
+  for (llvm::Function::iterator i = cu->func->begin(), e = cu->func->end(); i != e; ++i) {
+    BitcodeBlockCodeGen(cu, static_cast<llvm::BasicBlock*>(i));
+  }
+
+  cg->HandleSuspendLaunchPads(cu);
+
+  cg->HandleThrowLaunchPads(cu);
+
+  cg->HandleIntrinsicLaunchPads(cu);
+
+  cu->func->eraseFromParent();
+  cu->func = NULL;
+}
+
+
+}  // namespace art
diff --git a/src/compiler/dex/portable/mir_to_gbc.h b/src/compiler/dex/portable/mir_to_gbc.h
new file mode 100644
index 0000000..a3b5b31
--- /dev/null
+++ b/src/compiler/dex/portable/mir_to_gbc.h
@@ -0,0 +1,27 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_PORTABLE_MIRTOGBC_H_
+#define ART_SRC_COMPILER_DEX_PORTABLE_MIRTOGBC_H_
+
+namespace art {
+
+void MethodMIR2Bitcode(CompilationUnit* cu);
+void MethodBitcode2LIR(CompilationUnit* cu);
+
+}  // namespace art
+
+#endif // ART_SRC_COMPILER_DEX_PORTABLE_MIRTOGBC_H_
diff --git a/src/compiler/dex/quick/arm/arm_lir.h b/src/compiler/dex/quick/arm/arm_lir.h
new file mode 100644
index 0000000..abcaacc
--- /dev/null
+++ b/src/compiler/dex/quick/arm/arm_lir.h
@@ -0,0 +1,499 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_ARM_ARMLIR_H_
+#define ART_SRC_COMPILER_DEX_QUICK_ARM_ARMLIR_H_
+
+#include "compiler/dex/compiler_internals.h"
+
+namespace art {
+
+/*
+ * Runtime register usage conventions.
+ *
+ * r0-r3: Argument registers in both Dalvik and C/C++ conventions.
+ *        However, for Dalvik->Dalvik calls we'll pass the target's Method*
+ *        pointer in r0 as a hidden arg0. Otherwise used as codegen scratch
+ *        registers.
+ * r0-r1: As in C/C++ r0 is 32-bit return register and r0/r1 is 64-bit
+ * r4   : (rARM_SUSPEND) is reserved (suspend check/debugger assist)
+ * r5   : Callee save (promotion target)
+ * r6   : Callee save (promotion target)
+ * r7   : Callee save (promotion target)
+ * r8   : Callee save (promotion target)
+ * r9   : (rARM_SELF) is reserved (pointer to thread-local storage)
+ * r10  : Callee save (promotion target)
+ * r11  : Callee save (promotion target)
+ * r12  : Scratch, may be trashed by linkage stubs
+ * r13  : (sp) is reserved
+ * r14  : (lr) is reserved
+ * r15  : (pc) is reserved
+ *
+ * 5 core temps that codegen can use (r0, r1, r2, r3, r12)
+ * 7 core registers that can be used for promotion
+ *
+ * Floating pointer registers
+ * s0-s31
+ * d0-d15, where d0={s0,s1}, d1={s2,s3}, ... , d15={s30,s31}
+ *
+ * s16-s31 (d8-d15) preserved across C calls
+ * s0-s15 (d0-d7) trashed across C calls
+ *
+ * s0-s15/d0-d7 used as codegen temp/scratch
+ * s16-s31/d8-d31 can be used for promotion.
+ *
+ * Calling convention
+ *     o On a call to a Dalvik method, pass target's Method* in r0
+ *     o r1-r3 will be used for up to the first 3 words of arguments
+ *     o Arguments past the first 3 words will be placed in appropriate
+ *       out slots by the caller.
+ *     o If a 64-bit argument would span the register/memory argument
+ *       boundary, it will instead be fully passed in the frame.
+ *     o Maintain a 16-byte stack alignment
+ *
+ *  Stack frame diagram (stack grows down, higher addresses at top):
+ *
+ * +------------------------+
+ * | IN[ins-1]              |  {Note: resides in caller's frame}
+ * |       .                |
+ * | IN[0]                  |
+ * | caller's Method*       |
+ * +========================+  {Note: start of callee's frame}
+ * | spill region           |  {variable sized - will include lr if non-leaf.}
+ * +------------------------+
+ * | ...filler word...      |  {Note: used as 2nd word of V[locals-1] if long]
+ * +------------------------+
+ * | V[locals-1]            |
+ * | V[locals-2]            |
+ * |      .                 |
+ * |      .                 |
+ * | V[1]                   |
+ * | V[0]                   |
+ * +------------------------+
+ * |  0 to 3 words padding  |
+ * +------------------------+
+ * | OUT[outs-1]            |
+ * | OUT[outs-2]            |
+ * |       .                |
+ * | OUT[0]                 |
+ * | cur_method*            | <<== sp w/ 16-byte alignment
+ * +========================+
+ */
+
+// Offset to distingish FP regs.
+#define ARM_FP_REG_OFFSET 32
+// Offset to distinguish DP FP regs.
+#define ARM_FP_DOUBLE 64
+// First FP callee save.
+#define ARM_FP_CALLEE_SAVE_BASE 16
+// Reg types.
+#define ARM_REGTYPE(x) (x & (ARM_FP_REG_OFFSET | ARM_FP_DOUBLE))
+#define ARM_FPREG(x) ((x & ARM_FP_REG_OFFSET) == ARM_FP_REG_OFFSET)
+#define ARM_LOWREG(x) ((x & 0x7) == x)
+#define ARM_DOUBLEREG(x) ((x & ARM_FP_DOUBLE) == ARM_FP_DOUBLE)
+#define ARM_SINGLEREG(x) (ARM_FPREG(x) && !ARM_DOUBLEREG(x))
+
+/*
+ * Note: the low register of a floating point pair is sufficient to
+ * create the name of a double, but require both names to be passed to
+ * allow for asserts to verify that the pair is consecutive if significant
+ * rework is done in this area.  Also, it is a good reminder in the calling
+ * code that reg locations always describe doubles as a pair of singles.
+ */
+#define ARM_S2D(x,y) ((x) | ARM_FP_DOUBLE)
+// Mask to strip off fp flags.
+#define ARM_FP_REG_MASK (ARM_FP_REG_OFFSET-1)
+
+// RegisterLocation templates return values (r0, or r0/r1).
+#define ARM_LOC_C_RETURN {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, r0, INVALID_REG,\
+                          INVALID_SREG, INVALID_SREG}
+#define ARM_LOC_C_RETURN_WIDE {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1, \
+                               INVALID_SREG, INVALID_SREG}
+#define ARM_LOC_C_RETURN_FLOAT  ARM_LOC_C_RETURN
+#define ARM_LOC_C_RETURN_DOUBLE  ARM_LOC_C_RETURN_WIDE
+
+enum ArmResourceEncodingPos {
+  kArmGPReg0   = 0,
+  kArmRegSP    = 13,
+  kArmRegLR    = 14,
+  kArmRegPC    = 15,
+  kArmFPReg0   = 16,
+  kArmFPReg16  = 32,
+  kArmRegEnd   = 48,
+};
+
+#define ENCODE_ARM_REG_LIST(N)      (static_cast<uint64_t>(N))
+#define ENCODE_ARM_REG_SP           (1ULL << kArmRegSP)
+#define ENCODE_ARM_REG_LR           (1ULL << kArmRegLR)
+#define ENCODE_ARM_REG_PC           (1ULL << kArmRegPC)
+#define ENCODE_ARM_REG_FPCS_LIST(N) (static_cast<uint64_t>(N) << kArmFPReg16)
+
+enum ArmNativeRegisterPool {
+  r0   = 0,
+  r1   = 1,
+  r2   = 2,
+  r3   = 3,
+  rARM_SUSPEND = 4,
+  r5   = 5,
+  r6   = 6,
+  r7   = 7,
+  r8   = 8,
+  rARM_SELF  = 9,
+  r10  = 10,
+  r11  = 11,
+  r12  = 12,
+  r13sp  = 13,
+  rARM_SP  = 13,
+  r14lr  = 14,
+  rARM_LR  = 14,
+  r15pc  = 15,
+  rARM_PC  = 15,
+  fr0  =  0 + ARM_FP_REG_OFFSET,
+  fr1  =  1 + ARM_FP_REG_OFFSET,
+  fr2  =  2 + ARM_FP_REG_OFFSET,
+  fr3  =  3 + ARM_FP_REG_OFFSET,
+  fr4  =  4 + ARM_FP_REG_OFFSET,
+  fr5  =  5 + ARM_FP_REG_OFFSET,
+  fr6  =  6 + ARM_FP_REG_OFFSET,
+  fr7  =  7 + ARM_FP_REG_OFFSET,
+  fr8  =  8 + ARM_FP_REG_OFFSET,
+  fr9  =  9 + ARM_FP_REG_OFFSET,
+  fr10 = 10 + ARM_FP_REG_OFFSET,
+  fr11 = 11 + ARM_FP_REG_OFFSET,
+  fr12 = 12 + ARM_FP_REG_OFFSET,
+  fr13 = 13 + ARM_FP_REG_OFFSET,
+  fr14 = 14 + ARM_FP_REG_OFFSET,
+  fr15 = 15 + ARM_FP_REG_OFFSET,
+  fr16 = 16 + ARM_FP_REG_OFFSET,
+  fr17 = 17 + ARM_FP_REG_OFFSET,
+  fr18 = 18 + ARM_FP_REG_OFFSET,
+  fr19 = 19 + ARM_FP_REG_OFFSET,
+  fr20 = 20 + ARM_FP_REG_OFFSET,
+  fr21 = 21 + ARM_FP_REG_OFFSET,
+  fr22 = 22 + ARM_FP_REG_OFFSET,
+  fr23 = 23 + ARM_FP_REG_OFFSET,
+  fr24 = 24 + ARM_FP_REG_OFFSET,
+  fr25 = 25 + ARM_FP_REG_OFFSET,
+  fr26 = 26 + ARM_FP_REG_OFFSET,
+  fr27 = 27 + ARM_FP_REG_OFFSET,
+  fr28 = 28 + ARM_FP_REG_OFFSET,
+  fr29 = 29 + ARM_FP_REG_OFFSET,
+  fr30 = 30 + ARM_FP_REG_OFFSET,
+  fr31 = 31 + ARM_FP_REG_OFFSET,
+  dr0 = fr0 + ARM_FP_DOUBLE,
+  dr1 = fr2 + ARM_FP_DOUBLE,
+  dr2 = fr4 + ARM_FP_DOUBLE,
+  dr3 = fr6 + ARM_FP_DOUBLE,
+  dr4 = fr8 + ARM_FP_DOUBLE,
+  dr5 = fr10 + ARM_FP_DOUBLE,
+  dr6 = fr12 + ARM_FP_DOUBLE,
+  dr7 = fr14 + ARM_FP_DOUBLE,
+  dr8 = fr16 + ARM_FP_DOUBLE,
+  dr9 = fr18 + ARM_FP_DOUBLE,
+  dr10 = fr20 + ARM_FP_DOUBLE,
+  dr11 = fr22 + ARM_FP_DOUBLE,
+  dr12 = fr24 + ARM_FP_DOUBLE,
+  dr13 = fr26 + ARM_FP_DOUBLE,
+  dr14 = fr28 + ARM_FP_DOUBLE,
+  dr15 = fr30 + ARM_FP_DOUBLE,
+};
+
+// Target-independent aliases.
+#define rARM_ARG0 r0
+#define rARM_ARG1 r1
+#define rARM_ARG2 r2
+#define rARM_ARG3 r3
+#define rARM_FARG0 r0
+#define rARM_FARG1 r1
+#define rARM_FARG2 r2
+#define rARM_FARG3 r3
+#define rARM_RET0 r0
+#define rARM_RET1 r1
+#define rARM_INVOKE_TGT rARM_LR
+#define rARM_COUNT INVALID_REG
+
+enum ArmShiftEncodings {
+  kArmLsl = 0x0,
+  kArmLsr = 0x1,
+  kArmAsr = 0x2,
+  kArmRor = 0x3
+};
+
+/*
+ * The following enum defines the list of supported Thumb instructions by the
+ * assembler. Their corresponding EncodingMap positions will be defined in
+ * Assemble.cc.
+ */
+enum ArmOpcode {
+  kArmFirst = 0,
+  kArm16BitData = kArmFirst, // DATA   [0] rd[15..0].
+  kThumbAdcRR,       // adc   [0100000101] rm[5..3] rd[2..0].
+  kThumbAddRRI3,     // add(1)  [0001110] imm_3[8..6] rn[5..3] rd[2..0]*/
+  kThumbAddRI8,      // add(2)  [00110] rd[10..8] imm_8[7..0].
+  kThumbAddRRR,      // add(3)  [0001100] rm[8..6] rn[5..3] rd[2..0].
+  kThumbAddRRLH,     // add(4)  [01000100] H12[01] rm[5..3] rd[2..0].
+  kThumbAddRRHL,     // add(4)  [01001000] H12[10] rm[5..3] rd[2..0].
+  kThumbAddRRHH,     // add(4)  [01001100] H12[11] rm[5..3] rd[2..0].
+  kThumbAddPcRel,    // add(5)  [10100] rd[10..8] imm_8[7..0].
+  kThumbAddSpRel,    // add(6)  [10101] rd[10..8] imm_8[7..0].
+  kThumbAddSpI7,     // add(7)  [101100000] imm_7[6..0].
+  kThumbAndRR,       // and   [0100000000] rm[5..3] rd[2..0].
+  kThumbAsrRRI5,     // asr(1)  [00010] imm_5[10..6] rm[5..3] rd[2..0].
+  kThumbAsrRR,       // asr(2)  [0100000100] rs[5..3] rd[2..0].
+  kThumbBCond,       // b(1)  [1101] cond[11..8] offset_8[7..0].
+  kThumbBUncond,     // b(2)  [11100] offset_11[10..0].
+  kThumbBicRR,       // bic   [0100001110] rm[5..3] rd[2..0].
+  kThumbBkpt,        // bkpt  [10111110] imm_8[7..0].
+  kThumbBlx1,        // blx(1)  [111] H[10] offset_11[10..0].
+  kThumbBlx2,        // blx(1)  [111] H[01] offset_11[10..0].
+  kThumbBl1,         // blx(1)  [111] H[10] offset_11[10..0].
+  kThumbBl2,         // blx(1)  [111] H[11] offset_11[10..0].
+  kThumbBlxR,        // blx(2)  [010001111] rm[6..3] [000].
+  kThumbBx,          // bx    [010001110] H2[6..6] rm[5..3] SBZ[000].
+  kThumbCmnRR,       // cmn   [0100001011] rm[5..3] rd[2..0].
+  kThumbCmpRI8,      // cmp(1)  [00101] rn[10..8] imm_8[7..0].
+  kThumbCmpRR,       // cmp(2)  [0100001010] rm[5..3] rd[2..0].
+  kThumbCmpLH,       // cmp(3)  [01000101] H12[01] rm[5..3] rd[2..0].
+  kThumbCmpHL,       // cmp(3)  [01000110] H12[10] rm[5..3] rd[2..0].
+  kThumbCmpHH,       // cmp(3)  [01000111] H12[11] rm[5..3] rd[2..0].
+  kThumbEorRR,       // eor   [0100000001] rm[5..3] rd[2..0].
+  kThumbLdmia,       // ldmia   [11001] rn[10..8] reglist [7..0].
+  kThumbLdrRRI5,     // ldr(1)  [01101] imm_5[10..6] rn[5..3] rd[2..0].
+  kThumbLdrRRR,      // ldr(2)  [0101100] rm[8..6] rn[5..3] rd[2..0].
+  kThumbLdrPcRel,    // ldr(3)  [01001] rd[10..8] imm_8[7..0].
+  kThumbLdrSpRel,    // ldr(4)  [10011] rd[10..8] imm_8[7..0].
+  kThumbLdrbRRI5,    // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0].
+  kThumbLdrbRRR,     // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0].
+  kThumbLdrhRRI5,    // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0].
+  kThumbLdrhRRR,     // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0].
+  kThumbLdrsbRRR,    // ldrsb   [0101011] rm[8..6] rn[5..3] rd[2..0].
+  kThumbLdrshRRR,    // ldrsh   [0101111] rm[8..6] rn[5..3] rd[2..0].
+  kThumbLslRRI5,     // lsl(1)  [00000] imm_5[10..6] rm[5..3] rd[2..0].
+  kThumbLslRR,       // lsl(2)  [0100000010] rs[5..3] rd[2..0].
+  kThumbLsrRRI5,     // lsr(1)  [00001] imm_5[10..6] rm[5..3] rd[2..0].
+  kThumbLsrRR,       // lsr(2)  [0100000011] rs[5..3] rd[2..0].
+  kThumbMovImm,      // mov(1)  [00100] rd[10..8] imm_8[7..0].
+  kThumbMovRR,       // mov(2)  [0001110000] rn[5..3] rd[2..0].
+  kThumbMovRR_H2H,   // mov(3)  [01000111] H12[11] rm[5..3] rd[2..0].
+  kThumbMovRR_H2L,   // mov(3)  [01000110] H12[01] rm[5..3] rd[2..0].
+  kThumbMovRR_L2H,   // mov(3)  [01000101] H12[10] rm[5..3] rd[2..0].
+  kThumbMul,         // mul   [0100001101] rm[5..3] rd[2..0].
+  kThumbMvn,         // mvn   [0100001111] rm[5..3] rd[2..0].
+  kThumbNeg,         // neg   [0100001001] rm[5..3] rd[2..0].
+  kThumbOrr,         // orr   [0100001100] rm[5..3] rd[2..0].
+  kThumbPop,         // pop   [1011110] r[8..8] rl[7..0].
+  kThumbPush,        // push  [1011010] r[8..8] rl[7..0].
+  kThumbRorRR,       // ror   [0100000111] rs[5..3] rd[2..0].
+  kThumbSbc,         // sbc   [0100000110] rm[5..3] rd[2..0].
+  kThumbStmia,       // stmia   [11000] rn[10..8] reglist [7.. 0].
+  kThumbStrRRI5,     // str(1)  [01100] imm_5[10..6] rn[5..3] rd[2..0].
+  kThumbStrRRR,      // str(2)  [0101000] rm[8..6] rn[5..3] rd[2..0].
+  kThumbStrSpRel,    // str(3)  [10010] rd[10..8] imm_8[7..0].
+  kThumbStrbRRI5,    // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0].
+  kThumbStrbRRR,     // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0].
+  kThumbStrhRRI5,    // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0].
+  kThumbStrhRRR,     // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0].
+  kThumbSubRRI3,     // sub(1)  [0001111] imm_3[8..6] rn[5..3] rd[2..0]*/
+  kThumbSubRI8,      // sub(2)  [00111] rd[10..8] imm_8[7..0].
+  kThumbSubRRR,      // sub(3)  [0001101] rm[8..6] rn[5..3] rd[2..0].
+  kThumbSubSpI7,     // sub(4)  [101100001] imm_7[6..0].
+  kThumbSwi,         // swi   [11011111] imm_8[7..0].
+  kThumbTst,         // tst   [0100001000] rm[5..3] rn[2..0].
+  kThumb2Vldrs,      // vldr low  sx [111011011001] rn[19..16] rd[15-12] [1010] imm_8[7..0].
+  kThumb2Vldrd,      // vldr low  dx [111011011001] rn[19..16] rd[15-12] [1011] imm_8[7..0].
+  kThumb2Vmuls,      // vmul vd, vn, vm [111011100010] rn[19..16] rd[15-12] [10100000] rm[3..0].
+  kThumb2Vmuld,      // vmul vd, vn, vm [111011100010] rn[19..16] rd[15-12] [10110000] rm[3..0].
+  kThumb2Vstrs,      // vstr low  sx [111011011000] rn[19..16] rd[15-12] [1010] imm_8[7..0].
+  kThumb2Vstrd,      // vstr low  dx [111011011000] rn[19..16] rd[15-12] [1011] imm_8[7..0].
+  kThumb2Vsubs,      // vsub vd, vn, vm [111011100011] rn[19..16] rd[15-12] [10100040] rm[3..0].
+  kThumb2Vsubd,      // vsub vd, vn, vm [111011100011] rn[19..16] rd[15-12] [10110040] rm[3..0].
+  kThumb2Vadds,      // vadd vd, vn, vm [111011100011] rn[19..16] rd[15-12] [10100000] rm[3..0].
+  kThumb2Vaddd,      // vadd vd, vn, vm [111011100011] rn[19..16] rd[15-12] [10110000] rm[3..0].
+  kThumb2Vdivs,      // vdiv vd, vn, vm [111011101000] rn[19..16] rd[15-12] [10100000] rm[3..0].
+  kThumb2Vdivd,      // vdiv vd, vn, vm [111011101000] rn[19..16] rd[15-12] [10110000] rm[3..0].
+  kThumb2VcvtIF,     // vcvt.F32 vd, vm [1110111010111000] vd[15..12] [10101100] vm[3..0].
+  kThumb2VcvtID,     // vcvt.F64 vd, vm [1110111010111000] vd[15..12] [10111100] vm[3..0].
+  kThumb2VcvtFI,     // vcvt.S32.F32 vd, vm [1110111010111101] vd[15..12] [10101100] vm[3..0].
+  kThumb2VcvtDI,     // vcvt.S32.F32 vd, vm [1110111010111101] vd[15..12] [10111100] vm[3..0].
+  kThumb2VcvtFd,     // vcvt.F64.F32 vd, vm [1110111010110111] vd[15..12] [10101100] vm[3..0].
+  kThumb2VcvtDF,     // vcvt.F32.F64 vd, vm [1110111010110111] vd[15..12] [10111100] vm[3..0].
+  kThumb2Vsqrts,     // vsqrt.f32 vd, vm [1110111010110001] vd[15..12] [10101100] vm[3..0].
+  kThumb2Vsqrtd,     // vsqrt.f64 vd, vm [1110111010110001] vd[15..12] [10111100] vm[3..0].
+  kThumb2MovImmShift,// mov(T2) rd, #<const> [11110] i [00001001111] imm3 rd[11..8] imm8.
+  kThumb2MovImm16,   // mov(T3) rd, #<const> [11110] i [0010100] imm4 [0] imm3 rd[11..8] imm8.
+  kThumb2StrRRI12,   // str(Imm,T3) rd,[rn,#imm12] [111110001100] rn[19..16] rt[15..12] imm12[11..0].
+  kThumb2LdrRRI12,   // str(Imm,T3) rd,[rn,#imm12] [111110001100] rn[19..16] rt[15..12] imm12[11..0].
+  kThumb2StrRRI8Predec, // str(Imm,T4) rd,[rn,#-imm8] [111110000100] rn[19..16] rt[15..12] [1100] imm[7..0]*/
+  kThumb2LdrRRI8Predec, // ldr(Imm,T4) rd,[rn,#-imm8] [111110000101] rn[19..16] rt[15..12] [1100] imm[7..0]*/
+  kThumb2Cbnz,       // cbnz rd,<label> [101110] i [1] imm5[7..3] rn[2..0].
+  kThumb2Cbz,        // cbn rd,<label> [101100] i [1] imm5[7..3] rn[2..0].
+  kThumb2AddRRI12,   // add rd, rn, #imm12 [11110] i [100000] rn[19..16] [0] imm3[14..12] rd[11..8] imm8[7..0].
+  kThumb2MovRR,      // mov rd, rm [11101010010011110000] rd[11..8] [0000] rm[3..0].
+  kThumb2Vmovs,      // vmov.f32 vd, vm [111011101] D [110000] vd[15..12] 101001] M [0] vm[3..0].
+  kThumb2Vmovd,      // vmov.f64 vd, vm [111011101] D [110000] vd[15..12] 101101] M [0] vm[3..0].
+  kThumb2Ldmia,      // ldmia  [111010001001[ rn[19..16] mask[15..0].
+  kThumb2Stmia,      // stmia  [111010001000[ rn[19..16] mask[15..0].
+  kThumb2AddRRR,     // add [111010110000] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2SubRRR,     // sub [111010111010] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2SbcRRR,     // sbc [111010110110] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2CmpRR,      // cmp [111010111011] rn[19..16] [0000] [1111] [0000] rm[3..0].
+  kThumb2SubRRI12,   // sub rd, rn, #imm12 [11110] i [01010] rn[19..16] [0] imm3[14..12] rd[11..8] imm8[7..0].
+  kThumb2MvnImm12,   // mov(T2) rd, #<const> [11110] i [00011011110] imm3 rd[11..8] imm8.
+  kThumb2Sel,        // sel rd, rn, rm [111110101010] rn[19-16] rd[11-8] rm[3-0].
+  kThumb2Ubfx,       // ubfx rd,rn,#lsb,#width [111100111100] rn[19..16] [0] imm3[14-12] rd[11-8] w[4-0].
+  kThumb2Sbfx,       // ubfx rd,rn,#lsb,#width [111100110100] rn[19..16] [0] imm3[14-12] rd[11-8] w[4-0].
+  kThumb2LdrRRR,     // ldr rt,[rn,rm,LSL #imm] [111110000101] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0].
+  kThumb2LdrhRRR,    // ldrh rt,[rn,rm,LSL #imm] [111110000101] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0].
+  kThumb2LdrshRRR,   // ldrsh rt,[rn,rm,LSL #imm] [111110000101] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0].
+  kThumb2LdrbRRR,    // ldrb rt,[rn,rm,LSL #imm] [111110000101] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0].
+  kThumb2LdrsbRRR,   // ldrsb rt,[rn,rm,LSL #imm] [111110000101] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0].
+  kThumb2StrRRR,     // str rt,[rn,rm,LSL #imm] [111110000100] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0].
+  kThumb2StrhRRR,    // str rt,[rn,rm,LSL #imm] [111110000010] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0].
+  kThumb2StrbRRR,    // str rt,[rn,rm,LSL #imm] [111110000000] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0].
+  kThumb2LdrhRRI12,  // ldrh rt,[rn,#imm12] [111110001011] rt[15..12] rn[19..16] imm12[11..0].
+  kThumb2LdrshRRI12, // ldrsh rt,[rn,#imm12] [111110011011] rt[15..12] rn[19..16] imm12[11..0].
+  kThumb2LdrbRRI12,  // ldrb rt,[rn,#imm12] [111110001001] rt[15..12] rn[19..16] imm12[11..0].
+  kThumb2LdrsbRRI12, // ldrsb rt,[rn,#imm12] [111110011001] rt[15..12] rn[19..16] imm12[11..0].
+  kThumb2StrhRRI12,  // strh rt,[rn,#imm12] [111110001010] rt[15..12] rn[19..16] imm12[11..0].
+  kThumb2StrbRRI12,  // strb rt,[rn,#imm12] [111110001000] rt[15..12] rn[19..16] imm12[11..0].
+  kThumb2Pop,        // pop   [1110100010111101] list[15-0]*/
+  kThumb2Push,       // push  [1110100100101101] list[15-0]*/
+  kThumb2CmpRI12,    // cmp rn, #<const> [11110] i [011011] rn[19-16] [0] imm3 [1111] imm8[7..0].
+  kThumb2AdcRRR,     // adc [111010110101] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2AndRRR,     // and [111010100000] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2BicRRR,     // bic [111010100010] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2CmnRR,      // cmn [111010110001] rn[19..16] [0000] [1111] [0000] rm[3..0].
+  kThumb2EorRRR,     // eor [111010101000] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2MulRRR,     // mul [111110110000] rn[19..16] [1111] rd[11..8] [0000] rm[3..0].
+  kThumb2MnvRR,      // mvn [11101010011011110] rd[11-8] [0000] rm[3..0].
+  kThumb2RsubRRI8,   // rsub [111100011100] rn[19..16] [0000] rd[11..8] imm8[7..0].
+  kThumb2NegRR,      // actually rsub rd, rn, #0.
+  kThumb2OrrRRR,     // orr [111010100100] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2TstRR,      // tst [111010100001] rn[19..16] [0000] [1111] [0000] rm[3..0].
+  kThumb2LslRRR,     // lsl [111110100000] rn[19..16] [1111] rd[11..8] [0000] rm[3..0].
+  kThumb2LsrRRR,     // lsr [111110100010] rn[19..16] [1111] rd[11..8] [0000] rm[3..0].
+  kThumb2AsrRRR,     // asr [111110100100] rn[19..16] [1111] rd[11..8] [0000] rm[3..0].
+  kThumb2RorRRR,     // ror [111110100110] rn[19..16] [1111] rd[11..8] [0000] rm[3..0].
+  kThumb2LslRRI5,    // lsl [11101010010011110] imm[14.12] rd[11..8] [00] rm[3..0].
+  kThumb2LsrRRI5,    // lsr [11101010010011110] imm[14.12] rd[11..8] [01] rm[3..0].
+  kThumb2AsrRRI5,    // asr [11101010010011110] imm[14.12] rd[11..8] [10] rm[3..0].
+  kThumb2RorRRI5,    // ror [11101010010011110] imm[14.12] rd[11..8] [11] rm[3..0].
+  kThumb2BicRRI8,    // bic [111100000010] rn[19..16] [0] imm3 rd[11..8] imm8.
+  kThumb2AndRRI8,    // bic [111100000000] rn[19..16] [0] imm3 rd[11..8] imm8.
+  kThumb2OrrRRI8,    // orr [111100000100] rn[19..16] [0] imm3 rd[11..8] imm8.
+  kThumb2EorRRI8,    // eor [111100001000] rn[19..16] [0] imm3 rd[11..8] imm8.
+  kThumb2AddRRI8,    // add [111100001000] rn[19..16] [0] imm3 rd[11..8] imm8.
+  kThumb2AdcRRI8,    // adc [111100010101] rn[19..16] [0] imm3 rd[11..8] imm8.
+  kThumb2SubRRI8,    // sub [111100011011] rn[19..16] [0] imm3 rd[11..8] imm8.
+  kThumb2SbcRRI8,    // sbc [111100010111] rn[19..16] [0] imm3 rd[11..8] imm8.
+  kThumb2It,         // it [10111111] firstcond[7-4] mask[3-0].
+  kThumb2Fmstat,     // fmstat [11101110111100011111101000010000].
+  kThumb2Vcmpd,      // vcmp [111011101] D [11011] rd[15-12] [1011] E [1] M [0] rm[3-0].
+  kThumb2Vcmps,      // vcmp [111011101] D [11010] rd[15-12] [1011] E [1] M [0] rm[3-0].
+  kThumb2LdrPcRel12, // ldr rd,[pc,#imm12] [1111100011011111] rt[15-12] imm12[11-0].
+  kThumb2BCond,      // b<c> [1110] S cond[25-22] imm6[21-16] [10] J1 [0] J2 imm11[10..0].
+  kThumb2Vmovd_RR,   // vmov [111011101] D [110000] vd[15-12 [101101] M [0] vm[3-0].
+  kThumb2Vmovs_RR,   // vmov [111011101] D [110000] vd[15-12 [101001] M [0] vm[3-0].
+  kThumb2Fmrs,       // vmov [111011100000] vn[19-16] rt[15-12] [1010] N [0010000].
+  kThumb2Fmsr,       // vmov [111011100001] vn[19-16] rt[15-12] [1010] N [0010000].
+  kThumb2Fmrrd,      // vmov [111011000100] rt2[19-16] rt[15-12] [101100] M [1] vm[3-0].
+  kThumb2Fmdrr,      // vmov [111011000101] rt2[19-16] rt[15-12] [101100] M [1] vm[3-0].
+  kThumb2Vabsd,      // vabs.f64 [111011101] D [110000] rd[15-12] [1011110] M [0] vm[3-0].
+  kThumb2Vabss,      // vabs.f32 [111011101] D [110000] rd[15-12] [1010110] M [0] vm[3-0].
+  kThumb2Vnegd,      // vneg.f64 [111011101] D [110000] rd[15-12] [1011110] M [0] vm[3-0].
+  kThumb2Vnegs,      // vneg.f32 [111011101] D [110000] rd[15-12] [1010110] M [0] vm[3-0].
+  kThumb2Vmovs_IMM8, // vmov.f32 [111011101] D [11] imm4h[19-16] vd[15-12] [10100000] imm4l[3-0].
+  kThumb2Vmovd_IMM8, // vmov.f64 [111011101] D [11] imm4h[19-16] vd[15-12] [10110000] imm4l[3-0].
+  kThumb2Mla,        // mla [111110110000] rn[19-16] ra[15-12] rd[7-4] [0000] rm[3-0].
+  kThumb2Umull,      // umull [111110111010] rn[19-16], rdlo[15-12] rdhi[11-8] [0000] rm[3-0].
+  kThumb2Ldrex,      // ldrex [111010000101] rn[19-16] rt[11-8] [1111] imm8[7-0].
+  kThumb2Strex,      // strex [111010000100] rn[19-16] rt[11-8] rd[11-8] imm8[7-0].
+  kThumb2Clrex,      // clrex [111100111011111110000111100101111].
+  kThumb2Bfi,        // bfi [111100110110] rn[19-16] [0] imm3[14-12] rd[11-8] imm2[7-6] [0] msb[4-0].
+  kThumb2Bfc,        // bfc [11110011011011110] [0] imm3[14-12] rd[11-8] imm2[7-6] [0] msb[4-0].
+  kThumb2Dmb,        // dmb [1111001110111111100011110101] option[3-0].
+  kThumb2LdrPcReln12,// ldr rd,[pc,-#imm12] [1111100011011111] rt[15-12] imm12[11-0].
+  kThumb2Stm,        // stm <list> [111010010000] rn[19-16] 000 rl[12-0].
+  kThumbUndefined,   // undefined [11011110xxxxxxxx].
+  kThumb2VPopCS,     // vpop <list of callee save fp singles (s16+).
+  kThumb2VPushCS,    // vpush <list callee save fp singles (s16+).
+  kThumb2Vldms,      // vldms rd, <list>.
+  kThumb2Vstms,      // vstms rd, <list>.
+  kThumb2BUncond,    // b <label>.
+  kThumb2MovImm16H,  // similar to kThumb2MovImm16, but target high hw.
+  kThumb2AddPCR,     // Thumb2 2-operand add with hard-coded PC target.
+  kThumb2Adr,        // Special purpose encoding of ADR for switch tables.
+  kThumb2MovImm16LST,// Special purpose version for switch table use.
+  kThumb2MovImm16HST,// Special purpose version for switch table use.
+  kThumb2LdmiaWB,    // ldmia  [111010011001[ rn[19..16] mask[15..0].
+  kThumb2SubsRRI12,  // setflags encoding.
+  kThumb2OrrRRRs,    // orrx [111010100101] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2Push1,      // t3 encoding of push.
+  kThumb2Pop1,       // t3 encoding of pop.
+  kThumb2RsubRRR,    // rsb [111010111101] rn[19..16] [0000] rd[11..8] [0000] rm[3..0].
+  kThumb2Smull,      // smull [111110111000] rn[19-16], rdlo[15-12] rdhi[11-8] [0000] rm[3-0].
+  kThumb2LdrdPcRel8, // ldrd rt, rt2, pc +-/1024.
+  kThumb2LdrdI8,     // ldrd rt, rt2, [rn +-/1024].
+  kThumb2StrdI8,     // strd rt, rt2, [rn +-/1024].
+  kArmLast,
+};
+
+enum ArmOpDmbOptions {
+  kSY = 0xf,
+  kST = 0xe,
+  kISH = 0xb,
+  kISHST = 0xa,
+  kNSH = 0x7,
+  kNSHST = 0x6
+};
+
+// Instruction assembly field_loc kind.
+enum ArmEncodingKind {
+  kFmtUnused,
+  kFmtBitBlt,    // Bit string using end/start.
+  kFmtDfp,       // Double FP reg.
+  kFmtSfp,       // Single FP reg.
+  kFmtModImm,    // Shifted 8-bit immed using [26,14..12,7..0].
+  kFmtImm16,     // Zero-extended immed using [26,19..16,14..12,7..0].
+  kFmtImm6,      // Encoded branch target using [9,7..3]0.
+  kFmtImm12,     // Zero-extended immediate using [26,14..12,7..0].
+  kFmtShift,     // Shift descriptor, [14..12,7..4].
+  kFmtLsb,       // least significant bit using [14..12][7..6].
+  kFmtBWidth,    // bit-field width, encoded as width-1.
+  kFmtShift5,    // Shift count, [14..12,7..6].
+  kFmtBrOffset,  // Signed extended [26,11,13,21-16,10-0]:0.
+  kFmtFPImm,     // Encoded floating point immediate.
+  kFmtOff24,     // 24-bit Thumb2 unconditional branch encoding.
+};
+
+// Struct used to define the snippet positions for each Thumb opcode.
+struct ArmEncodingMap {
+  uint32_t skeleton;
+  struct {
+    ArmEncodingKind kind;
+    int end;   // end for kFmtBitBlt, 1-bit slice end for FP regs.
+    int start; // start for kFmtBitBlt, 4-bit slice end for FP regs.
+  } field_loc[4];
+  ArmOpcode opcode;
+  uint64_t flags;
+  const char* name;
+  const char* fmt;
+  int size;   // Note: size is in bytes.
+};
+
+}  // namespace art
+
+#endif  // ART_SRC_COMPILER_DEX_QUICK_ARM_ARMLIR_H_
diff --git a/src/compiler/dex/quick/arm/assemble_arm.cc b/src/compiler/dex/quick/arm/assemble_arm.cc
new file mode 100644
index 0000000..32bb5df
--- /dev/null
+++ b/src/compiler/dex/quick/arm/assemble_arm.cc
@@ -0,0 +1,1393 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_lir.h"
+#include "codegen_arm.h"
+#include "compiler/dex/quick/codegen_util.h"
+
+namespace art {
+
+/*
+ * opcode: ArmOpcode enum
+ * skeleton: pre-designated bit-pattern for this opcode
+ * k0: key to applying ds/de
+ * ds: dest start bit position
+ * de: dest end bit position
+ * k1: key to applying s1s/s1e
+ * s1s: src1 start bit position
+ * s1e: src1 end bit position
+ * k2: key to applying s2s/s2e
+ * s2s: src2 start bit position
+ * s2e: src2 end bit position
+ * operands: number of operands (for sanity check purposes)
+ * name: mnemonic name
+ * fmt: for pretty-printing
+ */
+#define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \
+                     k3, k3s, k3e, flags, name, fmt, size) \
+        {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \
+                    {k3, k3s, k3e}}, opcode, flags, name, fmt, size}
+
+/* Instruction dump string format keys: !pf, where "!" is the start
+ * of the key, "p" is which numeric operand to use and "f" is the
+ * print format.
+ *
+ * [p]ositions:
+ *     0 -> operands[0] (dest)
+ *     1 -> operands[1] (src1)
+ *     2 -> operands[2] (src2)
+ *     3 -> operands[3] (extra)
+ *
+ * [f]ormats:
+ *     h -> 4-digit hex
+ *     d -> decimal
+ *     E -> decimal*4
+ *     F -> decimal*2
+ *     c -> branch condition (beq, bne, etc.)
+ *     t -> pc-relative target
+ *     u -> 1st half of bl[x] target
+ *     v -> 2nd half ob bl[x] target
+ *     R -> register list
+ *     s -> single precision floating point register
+ *     S -> double precision floating point register
+ *     m -> Thumb2 modified immediate
+ *     n -> complimented Thumb2 modified immediate
+ *     M -> Thumb2 16-bit zero-extended immediate
+ *     b -> 4-digit binary
+ *     B -> dmb option string (sy, st, ish, ishst, nsh, hshst)
+ *     H -> operand shift
+ *     C -> core register name
+ *     P -> fp cs register list (base of s16)
+ *     Q -> fp cs register list (base of s0)
+ *
+ *  [!] escape.  To insert "!", use "!!"
+ */
+/* NOTE: must be kept in sync with enum ArmOpcode from LIR.h */
+const ArmEncodingMap ArmCodegen::EncodingMap[kArmLast] = {
+    ENCODING_MAP(kArm16BitData,    0x0000,
+                 kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP, "data", "0x!0h(!0d)", 2),
+    ENCODING_MAP(kThumbAdcRR,        0x4140,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES | USES_CCODES,
+                 "adcs", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbAddRRI3,      0x1c00,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "adds", "!0C, !1C, #!2d", 2),
+    ENCODING_MAP(kThumbAddRI8,       0x3000,
+                 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES,
+                 "adds", "!0C, !0C, #!1d", 2),
+    ENCODING_MAP(kThumbAddRRR,       0x1800,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES,
+                 "adds", "!0C, !1C, !2C", 2),
+    ENCODING_MAP(kThumbAddRRLH,     0x4440,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
+                 "add", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbAddRRHL,     0x4480,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
+                 "add", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbAddRRHH,     0x44c0,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
+                 "add", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbAddPcRel,    0xa000,
+                 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | IS_BRANCH | NEEDS_FIXUP,
+                 "add", "!0C, pc, #!1E", 2),
+    ENCODING_MAP(kThumbAddSpRel,    0xa800,
+                 kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF_SP | REG_USE_SP,
+                 "add", "!0C, sp, #!2E", 2),
+    ENCODING_MAP(kThumbAddSpI7,      0xb000,
+                 kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | REG_DEF_SP | REG_USE_SP,
+                 "add", "sp, #!0d*4", 2),
+    ENCODING_MAP(kThumbAndRR,        0x4000,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
+                 "ands", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbAsrRRI5,      0x1000,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "asrs", "!0C, !1C, #!2d", 2),
+    ENCODING_MAP(kThumbAsrRR,        0x4100,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
+                 "asrs", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbBCond,        0xd000,
+                 kFmtBitBlt, 7, 0, kFmtBitBlt, 11, 8, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | USES_CCODES |
+                 NEEDS_FIXUP, "b!1c", "!0t", 2),
+    ENCODING_MAP(kThumbBUncond,      0xe000,
+                 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP,
+                 "b", "!0t", 2),
+    ENCODING_MAP(kThumbBicRR,        0x4380,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
+                 "bics", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbBkpt,          0xbe00,
+                 kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
+                 "bkpt", "!0d", 2),
+    ENCODING_MAP(kThumbBlx1,         0xf000,
+                 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR |
+                 NEEDS_FIXUP, "blx_1", "!0u", 2),
+    ENCODING_MAP(kThumbBlx2,         0xe800,
+                 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR |
+                 NEEDS_FIXUP, "blx_2", "!0v", 2),
+    ENCODING_MAP(kThumbBl1,          0xf000,
+                 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
+                 "bl_1", "!0u", 2),
+    ENCODING_MAP(kThumbBl2,          0xf800,
+                 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
+                 "bl_2", "!0v", 2),
+    ENCODING_MAP(kThumbBlxR,         0x4780,
+                 kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_USE0 | IS_BRANCH | REG_DEF_LR,
+                 "blx", "!0C", 2),
+    ENCODING_MAP(kThumbBx,            0x4700,
+                 kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
+                 "bx", "!0C", 2),
+    ENCODING_MAP(kThumbCmnRR,        0x42c0,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
+                 "cmn", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbCmpRI8,       0x2800,
+                 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | SETS_CCODES,
+                 "cmp", "!0C, #!1d", 2),
+    ENCODING_MAP(kThumbCmpRR,        0x4280,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
+                 "cmp", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbCmpLH,        0x4540,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
+                 "cmp", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbCmpHL,        0x4580,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
+                 "cmp", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbCmpHH,        0x45c0,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
+                 "cmp", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbEorRR,        0x4040,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
+                 "eors", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbLdmia,         0xc800,
+                 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD,
+                 "ldmia", "!0C!!, <!1R>", 2),
+    ENCODING_MAP(kThumbLdrRRI5,      0x6800,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldr", "!0C, [!1C, #!2E]", 2),
+    ENCODING_MAP(kThumbLdrRRR,       0x5800,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldr", "!0C, [!1C, !2C]", 2),
+    ENCODING_MAP(kThumbLdrPcRel,    0x4800,
+                 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC
+                 | IS_LOAD | NEEDS_FIXUP, "ldr", "!0C, [pc, #!1E]", 2),
+    ENCODING_MAP(kThumbLdrSpRel,    0x9800,
+                 kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_SP
+                 | IS_LOAD, "ldr", "!0C, [sp, #!2E]", 2),
+    ENCODING_MAP(kThumbLdrbRRI5,     0x7800,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldrb", "!0C, [!1C, #2d]", 2),
+    ENCODING_MAP(kThumbLdrbRRR,      0x5c00,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldrb", "!0C, [!1C, !2C]", 2),
+    ENCODING_MAP(kThumbLdrhRRI5,     0x8800,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldrh", "!0C, [!1C, #!2F]", 2),
+    ENCODING_MAP(kThumbLdrhRRR,      0x5a00,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldrh", "!0C, [!1C, !2C]", 2),
+    ENCODING_MAP(kThumbLdrsbRRR,     0x5600,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldrsb", "!0C, [!1C, !2C]", 2),
+    ENCODING_MAP(kThumbLdrshRRR,     0x5e00,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldrsh", "!0C, [!1C, !2C]", 2),
+    ENCODING_MAP(kThumbLslRRI5,      0x0000,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "lsls", "!0C, !1C, #!2d", 2),
+    ENCODING_MAP(kThumbLslRR,        0x4080,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
+                 "lsls", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbLsrRRI5,      0x0800,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "lsrs", "!0C, !1C, #!2d", 2),
+    ENCODING_MAP(kThumbLsrRR,        0x40c0,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
+                 "lsrs", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbMovImm,       0x2000,
+                 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0 | SETS_CCODES,
+                 "movs", "!0C, #!1d", 2),
+    ENCODING_MAP(kThumbMovRR,        0x1c00,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "movs", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbMovRR_H2H,    0x46c0,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "mov", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbMovRR_H2L,    0x4640,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "mov", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbMovRR_L2H,    0x4680,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "mov", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbMul,           0x4340,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
+                 "muls", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbMvn,           0x43c0,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "mvns", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbNeg,           0x4240,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "negs", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbOrr,           0x4300,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
+                 "orrs", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbPop,           0xbc00,
+                 kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0
+                 | IS_LOAD, "pop", "<!0R>", 2),
+    ENCODING_MAP(kThumbPush,          0xb400,
+                 kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0
+                 | IS_STORE, "push", "<!0R>", 2),
+    ENCODING_MAP(kThumbRorRR,        0x41c0,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
+                 "rors", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbSbc,           0x4180,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE01 | USES_CCODES | SETS_CCODES,
+                 "sbcs", "!0C, !1C", 2),
+    ENCODING_MAP(kThumbStmia,         0xc000,
+                 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0 | REG_USE0 | REG_USE_LIST1 | IS_STORE,
+                 "stmia", "!0C!!, <!1R>", 2),
+    ENCODING_MAP(kThumbStrRRI5,      0x6000,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
+                 "str", "!0C, [!1C, #!2E]", 2),
+    ENCODING_MAP(kThumbStrRRR,       0x5000,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
+                 "str", "!0C, [!1C, !2C]", 2),
+    ENCODING_MAP(kThumbStrSpRel,    0x9000,
+                 kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE0 | REG_USE_SP
+                 | IS_STORE, "str", "!0C, [sp, #!2E]", 2),
+    ENCODING_MAP(kThumbStrbRRI5,     0x7000,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
+                 "strb", "!0C, [!1C, #!2d]", 2),
+    ENCODING_MAP(kThumbStrbRRR,      0x5400,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
+                 "strb", "!0C, [!1C, !2C]", 2),
+    ENCODING_MAP(kThumbStrhRRI5,     0x8000,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
+                 "strh", "!0C, [!1C, #!2F]", 2),
+    ENCODING_MAP(kThumbStrhRRR,      0x5200,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
+                 "strh", "!0C, [!1C, !2C]", 2),
+    ENCODING_MAP(kThumbSubRRI3,      0x1e00,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "subs", "!0C, !1C, #!2d", 2),
+    ENCODING_MAP(kThumbSubRI8,       0x3800,
+                 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES,
+                 "subs", "!0C, #!1d", 2),
+    ENCODING_MAP(kThumbSubRRR,       0x1a00,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES,
+                 "subs", "!0C, !1C, !2C", 2),
+    ENCODING_MAP(kThumbSubSpI7,      0xb080,
+                 kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP,
+                 "sub", "sp, #!0d*4", 2),
+    ENCODING_MAP(kThumbSwi,           0xdf00,
+                 kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
+                 "swi", "!0d", 2),
+    ENCODING_MAP(kThumbTst,           0x4200,
+                 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | REG_USE01 | SETS_CCODES,
+                 "tst", "!0C, !1C", 2),
+    ENCODING_MAP(kThumb2Vldrs,       0xed900a00,
+                 kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD |
+                 REG_DEF_LR | NEEDS_FIXUP, "vldr", "!0s, [!1C, #!2E]", 4),
+    ENCODING_MAP(kThumb2Vldrd,       0xed900b00,
+                 kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD |
+                 REG_DEF_LR | NEEDS_FIXUP, "vldr", "!0S, [!1C, #!2E]", 4),
+    ENCODING_MAP(kThumb2Vmuls,        0xee200a00,
+                 kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "vmuls", "!0s, !1s, !2s", 4),
+    ENCODING_MAP(kThumb2Vmuld,        0xee200b00,
+                 kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "vmuld", "!0S, !1S, !2S", 4),
+    ENCODING_MAP(kThumb2Vstrs,       0xed800a00,
+                 kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
+                 "vstr", "!0s, [!1C, #!2E]", 4),
+    ENCODING_MAP(kThumb2Vstrd,       0xed800b00,
+                 kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
+                 "vstr", "!0S, [!1C, #!2E]", 4),
+    ENCODING_MAP(kThumb2Vsubs,        0xee300a40,
+                 kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "vsub", "!0s, !1s, !2s", 4),
+    ENCODING_MAP(kThumb2Vsubd,        0xee300b40,
+                 kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "vsub", "!0S, !1S, !2S", 4),
+    ENCODING_MAP(kThumb2Vadds,        0xee300a00,
+                 kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "vadd", "!0s, !1s, !2s", 4),
+    ENCODING_MAP(kThumb2Vaddd,        0xee300b00,
+                 kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "vadd", "!0S, !1S, !2S", 4),
+    ENCODING_MAP(kThumb2Vdivs,        0xee800a00,
+                 kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "vdivs", "!0s, !1s, !2s", 4),
+    ENCODING_MAP(kThumb2Vdivd,        0xee800b00,
+                 kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "vdivd", "!0S, !1S, !2S", 4),
+    ENCODING_MAP(kThumb2VcvtIF,       0xeeb80ac0,
+                 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vcvt.f32", "!0s, !1s", 4),
+    ENCODING_MAP(kThumb2VcvtID,       0xeeb80bc0,
+                 kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vcvt.f64", "!0S, !1s", 4),
+    ENCODING_MAP(kThumb2VcvtFI,       0xeebd0ac0,
+                 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vcvt.s32.f32 ", "!0s, !1s", 4),
+    ENCODING_MAP(kThumb2VcvtDI,       0xeebd0bc0,
+                 kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vcvt.s32.f64 ", "!0s, !1S", 4),
+    ENCODING_MAP(kThumb2VcvtFd,       0xeeb70ac0,
+                 kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vcvt.f64.f32 ", "!0S, !1s", 4),
+    ENCODING_MAP(kThumb2VcvtDF,       0xeeb70bc0,
+                 kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vcvt.f32.f64 ", "!0s, !1S", 4),
+    ENCODING_MAP(kThumb2Vsqrts,       0xeeb10ac0,
+                 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vsqrt.f32 ", "!0s, !1s", 4),
+    ENCODING_MAP(kThumb2Vsqrtd,       0xeeb10bc0,
+                 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vsqrt.f64 ", "!0S, !1S", 4),
+    ENCODING_MAP(kThumb2MovImmShift, 0xf04f0000, /* no setflags encoding */
+                 kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
+                 "mov", "!0C, #!1m", 4),
+    ENCODING_MAP(kThumb2MovImm16,       0xf2400000,
+                 kFmtBitBlt, 11, 8, kFmtImm16, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
+                 "mov", "!0C, #!1M", 4),
+    ENCODING_MAP(kThumb2StrRRI12,       0xf8c00000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
+                 "str", "!0C, [!1C, #!2d]", 4),
+    ENCODING_MAP(kThumb2LdrRRI12,       0xf8d00000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldr", "!0C, [!1C, #!2d]", 4),
+    ENCODING_MAP(kThumb2StrRRI8Predec,       0xf8400c00,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
+                 "str", "!0C, [!1C, #-!2d]", 4),
+    ENCODING_MAP(kThumb2LdrRRI8Predec,       0xf8500c00,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldr", "!0C, [!1C, #-!2d]", 4),
+    ENCODING_MAP(kThumb2Cbnz,       0xb900, /* Note: does not affect flags */
+                 kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH |
+                 NEEDS_FIXUP, "cbnz", "!0C,!1t", 2),
+    ENCODING_MAP(kThumb2Cbz,       0xb100, /* Note: does not affect flags */
+                 kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH |
+                 NEEDS_FIXUP, "cbz", "!0C,!1t", 2),
+    ENCODING_MAP(kThumb2AddRRI12,       0xf2000000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */
+                 "add", "!0C,!1C,#!2d", 4),
+    ENCODING_MAP(kThumb2MovRR,       0xea4f0000, /* no setflags encoding */
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "mov", "!0C, !1C", 4),
+    ENCODING_MAP(kThumb2Vmovs,       0xeeb00a40,
+                 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vmov.f32 ", " !0s, !1s", 4),
+    ENCODING_MAP(kThumb2Vmovd,       0xeeb00b40,
+                 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vmov.f64 ", " !0S, !1S", 4),
+    ENCODING_MAP(kThumb2Ldmia,         0xe8900000,
+                 kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD,
+                 "ldmia", "!0C!!, <!1R>", 4),
+    ENCODING_MAP(kThumb2Stmia,         0xe8800000,
+                 kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE0 | REG_USE_LIST1 | IS_STORE,
+                 "stmia", "!0C!!, <!1R>", 4),
+    ENCODING_MAP(kThumb2AddRRR,  0xeb100000, /* setflags encoding */
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1,
+                 IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
+                 "adds", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2SubRRR,       0xebb00000, /* setflags enconding */
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1,
+                 IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
+                 "subs", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2SbcRRR,       0xeb700000, /* setflags encoding */
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1,
+                 IS_QUAD_OP | REG_DEF0_USE12 | USES_CCODES | SETS_CCODES,
+                 "sbcs", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2CmpRR,       0xebb00f00,
+                 kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_USE01 | SETS_CCODES,
+                 "cmp", "!0C, !1C", 4),
+    ENCODING_MAP(kThumb2SubRRI12,       0xf2a00000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */
+                 "sub", "!0C,!1C,#!2d", 4),
+    ENCODING_MAP(kThumb2MvnImm12,  0xf06f0000, /* no setflags encoding */
+                 kFmtBitBlt, 11, 8, kFmtImm12, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
+                 "mvn", "!0C, #!1n", 4),
+    ENCODING_MAP(kThumb2Sel,       0xfaa0f080,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE12 | USES_CCODES,
+                 "sel", "!0C, !1C, !2C", 4),
+    ENCODING_MAP(kThumb2Ubfx,       0xf3c00000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1,
+                 kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
+                 "ubfx", "!0C, !1C, #!2d, #!3d", 4),
+    ENCODING_MAP(kThumb2Sbfx,       0xf3400000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1,
+                 kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
+                 "sbfx", "!0C, !1C, #!2d, #!3d", 4),
+    ENCODING_MAP(kThumb2LdrRRR,    0xf8500000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldr", "!0C, [!1C, !2C, LSL #!3d]", 4),
+    ENCODING_MAP(kThumb2LdrhRRR,    0xf8300000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldrh", "!0C, [!1C, !2C, LSL #!3d]", 4),
+    ENCODING_MAP(kThumb2LdrshRRR,    0xf9300000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldrsh", "!0C, [!1C, !2C, LSL #!3d]", 4),
+    ENCODING_MAP(kThumb2LdrbRRR,    0xf8100000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldrb", "!0C, [!1C, !2C, LSL #!3d]", 4),
+    ENCODING_MAP(kThumb2LdrsbRRR,    0xf9100000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
+                 "ldrsb", "!0C, [!1C, !2C, LSL #!3d]", 4),
+    ENCODING_MAP(kThumb2StrRRR,    0xf8400000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
+                 "str", "!0C, [!1C, !2C, LSL #!3d]", 4),
+    ENCODING_MAP(kThumb2StrhRRR,    0xf8200000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
+                 "strh", "!0C, [!1C, !2C, LSL #!3d]", 4),
+    ENCODING_MAP(kThumb2StrbRRR,    0xf8000000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
+                 "strb", "!0C, [!1C, !2C, LSL #!3d]", 4),
+    ENCODING_MAP(kThumb2LdrhRRI12,       0xf8b00000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldrh", "!0C, [!1C, #!2d]", 4),
+    ENCODING_MAP(kThumb2LdrshRRI12,       0xf9b00000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldrsh", "!0C, [!1C, #!2d]", 4),
+    ENCODING_MAP(kThumb2LdrbRRI12,       0xf8900000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldrb", "!0C, [!1C, #!2d]", 4),
+    ENCODING_MAP(kThumb2LdrsbRRI12,       0xf9900000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldrsb", "!0C, [!1C, #!2d]", 4),
+    ENCODING_MAP(kThumb2StrhRRI12,       0xf8a00000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
+                 "strh", "!0C, [!1C, #!2d]", 4),
+    ENCODING_MAP(kThumb2StrbRRI12,       0xf8800000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
+                 "strb", "!0C, [!1C, #!2d]", 4),
+    ENCODING_MAP(kThumb2Pop,           0xe8bd0000,
+                 kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0
+                 | IS_LOAD | NEEDS_FIXUP, "pop", "<!0R>", 4),
+    ENCODING_MAP(kThumb2Push,          0xe92d0000,
+                 kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0
+                 | IS_STORE | NEEDS_FIXUP, "push", "<!0R>", 4),
+    ENCODING_MAP(kThumb2CmpRI12, 0xf1b00f00,
+                 kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_USE0 | SETS_CCODES,
+                 "cmp", "!0C, #!1m", 4),
+    ENCODING_MAP(kThumb2AdcRRR,  0xeb500000, /* setflags encoding */
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1,
+                 IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
+                 "adcs", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2AndRRR,  0xea000000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
+                 "and", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2BicRRR,  0xea200000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
+                 "bic", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2CmnRR,  0xeb000000,
+                 kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "cmn", "!0C, !1C, shift !2d", 4),
+    ENCODING_MAP(kThumb2EorRRR,  0xea800000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
+                 "eor", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2MulRRR,  0xfb00f000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "mul", "!0C, !1C, !2C", 4),
+    ENCODING_MAP(kThumb2MnvRR,  0xea6f0000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "mvn", "!0C, !1C, shift !2d", 4),
+    ENCODING_MAP(kThumb2RsubRRI8,       0xf1d00000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "rsb", "!0C,!1C,#!2m", 4),
+    ENCODING_MAP(kThumb2NegRR,       0xf1d00000, /* instance of rsub */
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "neg", "!0C,!1C", 4),
+    ENCODING_MAP(kThumb2OrrRRR,  0xea400000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
+                 "orr", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2TstRR,       0xea100f00,
+                 kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_USE01 | SETS_CCODES,
+                 "tst", "!0C, !1C, shift !2d", 4),
+    ENCODING_MAP(kThumb2LslRRR,  0xfa00f000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "lsl", "!0C, !1C, !2C", 4),
+    ENCODING_MAP(kThumb2LsrRRR,  0xfa20f000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "lsr", "!0C, !1C, !2C", 4),
+    ENCODING_MAP(kThumb2AsrRRR,  0xfa40f000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "asr", "!0C, !1C, !2C", 4),
+    ENCODING_MAP(kThumb2RorRRR,  0xfa60f000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "ror", "!0C, !1C, !2C", 4),
+    ENCODING_MAP(kThumb2LslRRI5,  0xea4f0000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "lsl", "!0C, !1C, #!2d", 4),
+    ENCODING_MAP(kThumb2LsrRRI5,  0xea4f0010,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "lsr", "!0C, !1C, #!2d", 4),
+    ENCODING_MAP(kThumb2AsrRRI5,  0xea4f0020,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "asr", "!0C, !1C, #!2d", 4),
+    ENCODING_MAP(kThumb2RorRRI5,  0xea4f0030,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "ror", "!0C, !1C, #!2d", 4),
+    ENCODING_MAP(kThumb2BicRRI8,  0xf0200000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "bic", "!0C, !1C, #!2m", 4),
+    ENCODING_MAP(kThumb2AndRRI8,  0xf0000000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "and", "!0C, !1C, #!2m", 4),
+    ENCODING_MAP(kThumb2OrrRRI8,  0xf0400000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "orr", "!0C, !1C, #!2m", 4),
+    ENCODING_MAP(kThumb2EorRRI8,  0xf0800000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "eor", "!0C, !1C, #!2m", 4),
+    ENCODING_MAP(kThumb2AddRRI8,  0xf1100000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "adds", "!0C, !1C, #!2m", 4),
+    ENCODING_MAP(kThumb2AdcRRI8,  0xf1500000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES,
+                 "adcs", "!0C, !1C, #!2m", 4),
+    ENCODING_MAP(kThumb2SubRRI8,  0xf1b00000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "subs", "!0C, !1C, #!2m", 4),
+    ENCODING_MAP(kThumb2SbcRRI8,  0xf1700000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES,
+                 "sbcs", "!0C, !1C, #!2m", 4),
+    ENCODING_MAP(kThumb2It,  0xbf00,
+                 kFmtBitBlt, 7, 4, kFmtBitBlt, 3, 0, kFmtModImm, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | IS_IT | USES_CCODES,
+                 "it:!1b", "!0c", 2),
+    ENCODING_MAP(kThumb2Fmstat,  0xeef1fa10,
+                 kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, NO_OPERAND | SETS_CCODES,
+                 "fmstat", "", 4),
+    ENCODING_MAP(kThumb2Vcmpd,        0xeeb40b40,
+                 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01,
+                 "vcmp.f64", "!0S, !1S", 4),
+    ENCODING_MAP(kThumb2Vcmps,        0xeeb40a40,
+                 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01,
+                 "vcmp.f32", "!0s, !1s", 4),
+    ENCODING_MAP(kThumb2LdrPcRel12,       0xf8df0000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC | IS_LOAD | NEEDS_FIXUP,
+                 "ldr", "!0C, [r15pc, #!1d]", 4),
+    ENCODING_MAP(kThumb2BCond,        0xf0008000,
+                 kFmtBrOffset, -1, -1, kFmtBitBlt, 25, 22, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | IS_BRANCH | USES_CCODES | NEEDS_FIXUP,
+                 "b!1c", "!0t", 4),
+    ENCODING_MAP(kThumb2Vmovd_RR,       0xeeb00b40,
+                 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vmov.f64", "!0S, !1S", 4),
+    ENCODING_MAP(kThumb2Vmovs_RR,       0xeeb00a40,
+                 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vmov.f32", "!0s, !1s", 4),
+    ENCODING_MAP(kThumb2Fmrs,       0xee100a10,
+                 kFmtBitBlt, 15, 12, kFmtSfp, 7, 16, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "fmrs", "!0C, !1s", 4),
+    ENCODING_MAP(kThumb2Fmsr,       0xee000a10,
+                 kFmtSfp, 7, 16, kFmtBitBlt, 15, 12, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "fmsr", "!0s, !1C", 4),
+    ENCODING_MAP(kThumb2Fmrrd,       0xec500b10,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtDfp, 5, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF01_USE2,
+                 "fmrrd", "!0C, !1C, !2S", 4),
+    ENCODING_MAP(kThumb2Fmdrr,       0xec400b10,
+                 kFmtDfp, 5, 0, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "fmdrr", "!0S, !1C, !2C", 4),
+    ENCODING_MAP(kThumb2Vabsd,       0xeeb00bc0,
+                 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vabs.f64", "!0S, !1S", 4),
+    ENCODING_MAP(kThumb2Vabss,       0xeeb00ac0,
+                 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vabs.f32", "!0s, !1s", 4),
+    ENCODING_MAP(kThumb2Vnegd,       0xeeb10b40,
+                 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vneg.f64", "!0S, !1S", 4),
+    ENCODING_MAP(kThumb2Vnegs,       0xeeb10a40,
+                 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "vneg.f32", "!0s, !1s", 4),
+    ENCODING_MAP(kThumb2Vmovs_IMM8,       0xeeb00a00,
+                 kFmtSfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
+                 "vmov.f32", "!0s, #0x!1h", 4),
+    ENCODING_MAP(kThumb2Vmovd_IMM8,       0xeeb00b00,
+                 kFmtDfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
+                 "vmov.f64", "!0S, #0x!1h", 4),
+    ENCODING_MAP(kThumb2Mla,  0xfb000000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtBitBlt, 15, 12,
+                 IS_QUAD_OP | REG_DEF0 | REG_USE1 | REG_USE2 | REG_USE3,
+                 "mla", "!0C, !1C, !2C, !3C", 4),
+    ENCODING_MAP(kThumb2Umull,  0xfba00000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16,
+                 kFmtBitBlt, 3, 0,
+                 IS_QUAD_OP | REG_DEF0 | REG_DEF1 | REG_USE2 | REG_USE3,
+                 "umull", "!0C, !1C, !2C, !3C", 4),
+    ENCODING_MAP(kThumb2Ldrex,       0xe8500f00,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
+                 "ldrex", "!0C, [!1C, #!2E]", 4),
+    ENCODING_MAP(kThumb2Strex,       0xe8400000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16,
+                 kFmtBitBlt, 7, 0, IS_QUAD_OP | REG_DEF0_USE12 | IS_STORE,
+                 "strex", "!0C,!1C, [!2C, #!2E]", 4),
+    ENCODING_MAP(kThumb2Clrex,       0xf3bf8f2f,
+                 kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, NO_OPERAND,
+                 "clrex", "", 4),
+    ENCODING_MAP(kThumb2Bfi,         0xf3600000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtShift5, -1, -1,
+                 kFmtBitBlt, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
+                 "bfi", "!0C,!1C,#!2d,#!3d", 4),
+    ENCODING_MAP(kThumb2Bfc,         0xf36f0000,
+                 kFmtBitBlt, 11, 8, kFmtShift5, -1, -1, kFmtBitBlt, 4, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0,
+                 "bfc", "!0C,#!1d,#!2d", 4),
+    ENCODING_MAP(kThumb2Dmb,         0xf3bf8f50,
+                 kFmtBitBlt, 3, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP,
+                 "dmb","#!0B",4),
+    ENCODING_MAP(kThumb2LdrPcReln12,       0xf85f0000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0 | REG_USE_PC | IS_LOAD,
+                 "ldr", "!0C, [r15pc, -#!1d]", 4),
+    ENCODING_MAP(kThumb2Stm,          0xe9000000,
+                 kFmtBitBlt, 19, 16, kFmtBitBlt, 12, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_USE0 | REG_USE_LIST1 | IS_STORE,
+                 "stm", "!0C, <!1R>", 4),
+    ENCODING_MAP(kThumbUndefined,       0xde00,
+                 kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, NO_OPERAND,
+                 "undefined", "", 2),
+    // NOTE: vpop, vpush hard-encoded for s16+ reg list
+    ENCODING_MAP(kThumb2VPopCS,       0xecbd8a00,
+                 kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_FPCS_LIST0
+                 | IS_LOAD, "vpop", "<!0P>", 4),
+    ENCODING_MAP(kThumb2VPushCS,      0xed2d8a00,
+                 kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_FPCS_LIST0
+                 | IS_STORE, "vpush", "<!0P>", 4),
+    ENCODING_MAP(kThumb2Vldms,        0xec900a00,
+                 kFmtBitBlt, 19, 16, kFmtSfp, 22, 12, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_USE0 | REG_DEF_FPCS_LIST2
+                 | IS_LOAD, "vldms", "!0C, <!2Q>", 4),
+    ENCODING_MAP(kThumb2Vstms,        0xec800a00,
+                 kFmtBitBlt, 19, 16, kFmtSfp, 22, 12, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_USE0 | REG_USE_FPCS_LIST2
+                 | IS_STORE, "vstms", "!0C, <!2Q>", 4),
+    ENCODING_MAP(kThumb2BUncond,      0xf0009000,
+                 kFmtOff24, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH,
+                 "b", "!0t", 4),
+    ENCODING_MAP(kThumb2MovImm16H,       0xf2c00000,
+                 kFmtBitBlt, 11, 8, kFmtImm16, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0 | REG_USE0,
+                 "movt", "!0C, #!1M", 4),
+    ENCODING_MAP(kThumb2AddPCR,      0x4487,
+                 kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_USE0 | IS_BRANCH,
+                 "add", "rPC, !0C", 2),
+    ENCODING_MAP(kThumb2Adr,         0xf20f0000,
+                 kFmtBitBlt, 11, 8, kFmtImm12, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 /* Note: doesn't affect flags */
+                 IS_TERTIARY_OP | REG_DEF0 | NEEDS_FIXUP,
+                 "adr", "!0C,#!1d", 4),
+    ENCODING_MAP(kThumb2MovImm16LST,     0xf2400000,
+                 kFmtBitBlt, 11, 8, kFmtImm16, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0 | NEEDS_FIXUP,
+                 "mov", "!0C, #!1M", 4),
+    ENCODING_MAP(kThumb2MovImm16HST,     0xf2c00000,
+                 kFmtBitBlt, 11, 8, kFmtImm16, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0 | REG_USE0 | NEEDS_FIXUP,
+                 "movt", "!0C, #!1M", 4),
+    ENCODING_MAP(kThumb2LdmiaWB,         0xe8b00000,
+                 kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD,
+                 "ldmia", "!0C!!, <!1R>", 4),
+    ENCODING_MAP(kThumb2SubsRRI12,       0xf1b00000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
+                 "subs", "!0C,!1C,#!2d", 4),
+    ENCODING_MAP(kThumb2OrrRRRs,  0xea500000,
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
+                 "orrs", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2Push1,    0xf84d0d04,
+                 kFmtBitBlt, 15, 12, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE0
+                 | IS_STORE, "push1", "!0C", 4),
+    ENCODING_MAP(kThumb2Pop1,    0xf85d0b04,
+                 kFmtBitBlt, 15, 12, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1,
+                 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF0
+                 | IS_LOAD, "pop1", "!0C", 4),
+    ENCODING_MAP(kThumb2RsubRRR,  0xebd00000, /* setflags encoding */
+                 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
+                 kFmtShift, -1, -1,
+                 IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
+                 "rsbs", "!0C, !1C, !2C!3H", 4),
+    ENCODING_MAP(kThumb2Smull,  0xfb800000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16,
+                 kFmtBitBlt, 3, 0,
+                 IS_QUAD_OP | REG_DEF0 | REG_DEF1 | REG_USE2 | REG_USE3,
+                 "smull", "!0C, !1C, !2C, !3C", 4),
+    ENCODING_MAP(kThumb2LdrdPcRel8,  0xe9df0000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 7, 0,
+                 kFmtUnused, -1, -1,
+                 IS_TERTIARY_OP | REG_DEF0 | REG_DEF1 | REG_USE_PC | IS_LOAD | NEEDS_FIXUP,
+                 "ldrd", "!0C, !1C, [pc, #!2E]", 4),
+    ENCODING_MAP(kThumb2LdrdI8, 0xe9d00000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16,
+                 kFmtBitBlt, 7, 0,
+                 IS_QUAD_OP | REG_DEF0 | REG_DEF1 | REG_USE2 | IS_LOAD,
+                 "ldrd", "!0C, !1C, [!2C, #!3E]", 4),
+    ENCODING_MAP(kThumb2StrdI8, 0xe9c00000,
+                 kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16,
+                 kFmtBitBlt, 7, 0,
+                 IS_QUAD_OP | REG_USE0 | REG_USE1 | REG_USE2 | IS_STORE,
+                 "strd", "!0C, !1C, [!2C, #!3E]", 4),
+};
+
+/*
+ * The fake NOP of moving r0 to r0 actually will incur data stalls if r0 is
+ * not ready. Since r5FP is not updated often, it is less likely to
+ * generate unnecessary stall cycles.
+ * TUNING: No longer true - find new NOP pattern.
+ */
+#define PADDING_MOV_R5_R5               0x1C2D
+
+/*
+ * Assemble the LIR into binary instruction format.  Note that we may
+ * discover that pc-relative displacements may not fit the selected
+ * instruction.
+ */
+AssemblerStatus ArmCodegen::AssembleInstructions(CompilationUnit* cu, uintptr_t start_addr)
+{
+  LIR* lir;
+  AssemblerStatus res = kSuccess;  // Assume success
+
+  for (lir = cu->first_lir_insn; lir != NULL; lir = NEXT_LIR(lir)) {
+
+    if (lir->opcode < 0) {
+      /* 1 means padding is needed */
+      if ((lir->opcode == kPseudoPseudoAlign4) && (lir->operands[0] == 1)) {
+        cu->code_buffer.push_back(PADDING_MOV_R5_R5 & 0xFF);
+        cu->code_buffer.push_back((PADDING_MOV_R5_R5 >> 8) & 0xFF);
+      }
+      continue;
+    }
+
+    if (lir->flags.is_nop) {
+      continue;
+    }
+
+    /*
+     * For PC-relative displacements we won't know if the
+     * selected instruction will work until late (i.e. - now).
+     * If something doesn't fit, we must replace the short-form
+     * operation with a longer-form one.  Note, though, that this
+     * can change code we've already processed, so we'll need to
+     * re-calculate offsets and restart.  To limit the number of
+     * restarts, the entire list will be scanned and patched.
+     * Of course, the patching itself may cause new overflows so this
+     * is an iterative process.
+     */
+    if (lir->flags.pcRelFixup) {
+      if (lir->opcode == kThumbLdrPcRel ||
+          lir->opcode == kThumb2LdrPcRel12 ||
+          lir->opcode == kThumbAddPcRel ||
+          lir->opcode == kThumb2LdrdPcRel8 ||
+          ((lir->opcode == kThumb2Vldrd) && (lir->operands[1] == r15pc)) ||
+          ((lir->opcode == kThumb2Vldrs) && (lir->operands[1] == r15pc))) {
+        /*
+         * PC-relative loads are mostly used to load immediates
+         * that are too large to materialize directly in one shot.
+         * However, if the load displacement exceeds the limit,
+         * we revert to a multiple-instruction materialization sequence.
+         */
+        LIR *lir_target = lir->target;
+        uintptr_t pc = (lir->offset + 4) & ~3;
+        uintptr_t target = lir_target->offset;
+        int delta = target - pc;
+        if (delta & 0x3) {
+          LOG(FATAL) << "PC-rel offset not multiple of 4: " << delta;
+        }
+        // First, a sanity check for cases we shouldn't see now
+        if (((lir->opcode == kThumbAddPcRel) && (delta > 1020)) ||
+            ((lir->opcode == kThumbLdrPcRel) && (delta > 1020))) {
+          // Shouldn't happen in current codegen.
+          LOG(FATAL) << "Unexpected pc-rel offset " << delta;
+        }
+        // Now, check for the difficult cases
+        if (((lir->opcode == kThumb2LdrPcRel12) && (delta > 4091)) ||
+            ((lir->opcode == kThumb2LdrdPcRel8) && (delta > 1020)) ||
+            ((lir->opcode == kThumb2Vldrs) && (delta > 1020)) ||
+            ((lir->opcode == kThumb2Vldrd) && (delta > 1020))) {
+          /*
+           * Note: because rARM_LR may be used to fix up out-of-range
+           * vldrs/vldrd we include REG_DEF_LR in the resource
+           * masks for these instructions.
+           */
+          int base_reg = ((lir->opcode == kThumb2LdrdPcRel8) || (lir->opcode == kThumb2LdrPcRel12))
+              ?  lir->operands[0] : rARM_LR;
+
+          // Add new Adr to generate the address.
+          LIR* new_adr = RawLIR(cu, lir->dalvik_offset, kThumb2Adr,
+                     base_reg, 0, 0, 0, 0, lir->target);
+          InsertLIRBefore(lir, new_adr);
+
+          // Convert to normal load.
+          if (lir->opcode == kThumb2LdrPcRel12) {
+            lir->opcode = kThumb2LdrRRI12;
+          } else if (lir->opcode == kThumb2LdrdPcRel8) {
+            lir->opcode = kThumb2LdrdI8;
+          }
+          // Change the load to be relative to the new Adr base.
+          if (lir->opcode == kThumb2LdrdI8) {
+            lir->operands[3] = 0;
+            lir->operands[2] = base_reg;
+          } else {
+            lir->operands[2] = 0;
+            lir->operands[1] = base_reg;
+          }
+          SetupResourceMasks(cu, lir);
+          res = kRetryAll;
+        } else {
+          if ((lir->opcode == kThumb2Vldrs) ||
+              (lir->opcode == kThumb2Vldrd) ||
+              (lir->opcode == kThumb2LdrdPcRel8)) {
+            lir->operands[2] = delta >> 2;
+          } else {
+            lir->operands[1] = (lir->opcode == kThumb2LdrPcRel12) ?  delta :
+                delta >> 2;
+          }
+        }
+      } else if (lir->opcode == kThumb2Cbnz || lir->opcode == kThumb2Cbz) {
+        LIR *target_lir = lir->target;
+        uintptr_t pc = lir->offset + 4;
+        uintptr_t target = target_lir->offset;
+        int delta = target - pc;
+        if (delta > 126 || delta < 0) {
+          /*
+           * Convert to cmp rx,#0 / b[eq/ne] tgt pair
+           * Make new branch instruction and insert after
+           */
+          LIR* new_inst =
+            RawLIR(cu, lir->dalvik_offset, kThumbBCond, 0,
+                   (lir->opcode == kThumb2Cbz) ? kArmCondEq : kArmCondNe,
+                   0, 0, 0, lir->target);
+          InsertLIRAfter(lir, new_inst);
+          /* Convert the cb[n]z to a cmp rx, #0 ] */
+          lir->opcode = kThumbCmpRI8;
+          /* operand[0] is src1 in both cb[n]z & CmpRI8 */
+          lir->operands[1] = 0;
+          lir->target = 0;
+          SetupResourceMasks(cu, lir);
+          res = kRetryAll;
+        } else {
+          lir->operands[1] = delta >> 1;
+        }
+      } else if (lir->opcode == kThumb2Push || lir->opcode == kThumb2Pop) {
+        if (__builtin_popcount(lir->operands[0]) == 1) {
+          /*
+           * The standard push/pop multiple instruction
+           * requires at least two registers in the list.
+           * If we've got just one, switch to the single-reg
+           * encoding.
+           */
+          lir->opcode = (lir->opcode == kThumb2Push) ? kThumb2Push1 :
+              kThumb2Pop1;
+          int reg = 0;
+          while (lir->operands[0]) {
+            if (lir->operands[0] & 0x1) {
+              break;
+            } else {
+              reg++;
+              lir->operands[0] >>= 1;
+            }
+          }
+          lir->operands[0] = reg;
+          SetupResourceMasks(cu, lir);
+          res = kRetryAll;
+        }
+      } else if (lir->opcode == kThumbBCond || lir->opcode == kThumb2BCond) {
+        LIR *target_lir = lir->target;
+        int delta = 0;
+        DCHECK(target_lir);
+        uintptr_t pc = lir->offset + 4;
+        uintptr_t target = target_lir->offset;
+        delta = target - pc;
+        if ((lir->opcode == kThumbBCond) && (delta > 254 || delta < -256)) {
+          lir->opcode = kThumb2BCond;
+          SetupResourceMasks(cu, lir);
+          res = kRetryAll;
+        }
+        lir->operands[0] = delta >> 1;
+      } else if (lir->opcode == kThumb2BUncond) {
+        LIR *target_lir = lir->target;
+        uintptr_t pc = lir->offset + 4;
+        uintptr_t target = target_lir->offset;
+        int delta = target - pc;
+        lir->operands[0] = delta >> 1;
+        if (!(cu->disable_opt & (1 << kSafeOptimizations)) &&
+          lir->operands[0] == 0) {  // Useless branch
+          lir->flags.is_nop = true;
+          res = kRetryAll;
+        }
+      } else if (lir->opcode == kThumbBUncond) {
+        LIR *target_lir = lir->target;
+        uintptr_t pc = lir->offset + 4;
+        uintptr_t target = target_lir->offset;
+        int delta = target - pc;
+        if (delta > 2046 || delta < -2048) {
+          // Convert to Thumb2BCond w/ kArmCondAl
+          lir->opcode = kThumb2BUncond;
+          lir->operands[0] = 0;
+          SetupResourceMasks(cu, lir);
+          res = kRetryAll;
+        } else {
+          lir->operands[0] = delta >> 1;
+          if (!(cu->disable_opt & (1 << kSafeOptimizations)) &&
+            lir->operands[0] == -1) {  // Useless branch
+            lir->flags.is_nop = true;
+            res = kRetryAll;
+          }
+        }
+      } else if (lir->opcode == kThumbBlx1) {
+        DCHECK(NEXT_LIR(lir)->opcode == kThumbBlx2);
+        /* cur_pc is Thumb */
+        uintptr_t cur_pc = (start_addr + lir->offset + 4) & ~3;
+        uintptr_t target = lir->operands[1];
+
+        /* Match bit[1] in target with base */
+        if (cur_pc & 0x2) {
+          target |= 0x2;
+        }
+        int delta = target - cur_pc;
+        DCHECK((delta >= -(1<<22)) && (delta <= ((1<<22)-2)));
+
+        lir->operands[0] = (delta >> 12) & 0x7ff;
+        NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff;
+      } else if (lir->opcode == kThumbBl1) {
+        DCHECK(NEXT_LIR(lir)->opcode == kThumbBl2);
+        /* Both cur_pc and target are Thumb */
+        uintptr_t cur_pc = start_addr + lir->offset + 4;
+        uintptr_t target = lir->operands[1];
+
+        int delta = target - cur_pc;
+        DCHECK((delta >= -(1<<22)) && (delta <= ((1<<22)-2)));
+
+        lir->operands[0] = (delta >> 12) & 0x7ff;
+        NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff;
+      } else if (lir->opcode == kThumb2Adr) {
+        SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(lir->operands[2]);
+        LIR* target = lir->target;
+        int target_disp = tab_rec ? tab_rec->offset
+                    : target->offset;
+        int disp = target_disp - ((lir->offset + 4) & ~3);
+        if (disp < 4096) {
+          lir->operands[1] = disp;
+        } else {
+          // convert to ldimm16l, ldimm16h, add tgt, pc, operands[0]
+          LIR *new_mov16L =
+              RawLIR(cu, lir->dalvik_offset, kThumb2MovImm16LST,
+                     lir->operands[0], 0, reinterpret_cast<uintptr_t>(lir),
+                     reinterpret_cast<uintptr_t>(tab_rec), 0, lir->target);
+          InsertLIRBefore(lir, new_mov16L);
+          LIR *new_mov16H =
+              RawLIR(cu, lir->dalvik_offset, kThumb2MovImm16HST,
+                     lir->operands[0], 0, reinterpret_cast<uintptr_t>(lir),
+                     reinterpret_cast<uintptr_t>(tab_rec), 0, lir->target);
+          InsertLIRBefore(lir, new_mov16H);
+          lir->opcode = kThumb2AddRRR;
+          lir->operands[1] = rARM_PC;
+          lir->operands[2] = lir->operands[0];
+          SetupResourceMasks(cu, lir);
+          res = kRetryAll;
+        }
+      } else if (lir->opcode == kThumb2MovImm16LST) {
+        // operands[1] should hold disp, [2] has add, [3] has tab_rec
+        LIR *addPCInst = reinterpret_cast<LIR*>(lir->operands[2]);
+        SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(lir->operands[3]);
+        // If tab_rec is null, this is a literal load. Use target
+        LIR* target = lir->target;
+        int target_disp = tab_rec ? tab_rec->offset : target->offset;
+        lir->operands[1] = (target_disp - (addPCInst->offset + 4)) & 0xffff;
+      } else if (lir->opcode == kThumb2MovImm16HST) {
+        // operands[1] should hold disp, [2] has add, [3] has tab_rec
+        LIR *addPCInst = reinterpret_cast<LIR*>(lir->operands[2]);
+        SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(lir->operands[3]);
+        // If tab_rec is null, this is a literal load. Use target
+        LIR* target = lir->target;
+        int target_disp = tab_rec ? tab_rec->offset : target->offset;
+        lir->operands[1] =
+            ((target_disp - (addPCInst->offset + 4)) >> 16) & 0xffff;
+      }
+    }
+    /*
+     * If one of the pc-relative instructions expanded we'll have
+     * to make another pass.  Don't bother to fully assemble the
+     * instruction.
+     */
+    if (res != kSuccess) {
+      continue;
+    }
+    const ArmEncodingMap *encoder = &EncodingMap[lir->opcode];
+    uint32_t bits = encoder->skeleton;
+    int i;
+    for (i = 0; i < 4; i++) {
+      uint32_t operand;
+      uint32_t value;
+      operand = lir->operands[i];
+      switch (encoder->field_loc[i].kind) {
+        case kFmtUnused:
+          break;
+        case kFmtFPImm:
+          value = ((operand & 0xF0) >> 4) << encoder->field_loc[i].end;
+          value |= (operand & 0x0F) << encoder->field_loc[i].start;
+          bits |= value;
+          break;
+        case kFmtBrOffset:
+          value = ((operand  & 0x80000) >> 19) << 26;
+          value |= ((operand & 0x40000) >> 18) << 11;
+          value |= ((operand & 0x20000) >> 17) << 13;
+          value |= ((operand & 0x1f800) >> 11) << 16;
+          value |= (operand  & 0x007ff);
+          bits |= value;
+          break;
+        case kFmtShift5:
+          value = ((operand & 0x1c) >> 2) << 12;
+          value |= (operand & 0x03) << 6;
+          bits |= value;
+          break;
+        case kFmtShift:
+          value = ((operand & 0x70) >> 4) << 12;
+          value |= (operand & 0x0f) << 4;
+          bits |= value;
+          break;
+        case kFmtBWidth:
+          value = operand - 1;
+          bits |= value;
+          break;
+        case kFmtLsb:
+          value = ((operand & 0x1c) >> 2) << 12;
+          value |= (operand & 0x03) << 6;
+          bits |= value;
+          break;
+        case kFmtImm6:
+          value = ((operand & 0x20) >> 5) << 9;
+          value |= (operand & 0x1f) << 3;
+          bits |= value;
+          break;
+        case kFmtBitBlt:
+          value = (operand << encoder->field_loc[i].start) &
+              ((1 << (encoder->field_loc[i].end + 1)) - 1);
+          bits |= value;
+          break;
+        case kFmtDfp: {
+          DCHECK(ARM_DOUBLEREG(operand));
+          DCHECK_EQ((operand & 0x1), 0U);
+          int reg_name = (operand & ARM_FP_REG_MASK) >> 1;
+          /* Snag the 1-bit slice and position it */
+          value = ((reg_name & 0x10) >> 4) << encoder->field_loc[i].end;
+          /* Extract and position the 4-bit slice */
+          value |= (reg_name & 0x0f) << encoder->field_loc[i].start;
+          bits |= value;
+          break;
+        }
+        case kFmtSfp:
+          DCHECK(ARM_SINGLEREG(operand));
+          /* Snag the 1-bit slice and position it */
+          value = (operand & 0x1) << encoder->field_loc[i].end;
+          /* Extract and position the 4-bit slice */
+          value |= ((operand & 0x1e) >> 1) << encoder->field_loc[i].start;
+          bits |= value;
+          break;
+        case kFmtImm12:
+        case kFmtModImm:
+          value = ((operand & 0x800) >> 11) << 26;
+          value |= ((operand & 0x700) >> 8) << 12;
+          value |= operand & 0x0ff;
+          bits |= value;
+          break;
+        case kFmtImm16:
+          value = ((operand & 0x0800) >> 11) << 26;
+          value |= ((operand & 0xf000) >> 12) << 16;
+          value |= ((operand & 0x0700) >> 8) << 12;
+          value |= operand & 0x0ff;
+          bits |= value;
+          break;
+        case kFmtOff24: {
+          uint32_t signbit = (operand >> 31) & 0x1;
+          uint32_t i1 = (operand >> 22) & 0x1;
+          uint32_t i2 = (operand >> 21) & 0x1;
+          uint32_t imm10 = (operand >> 11) & 0x03ff;
+          uint32_t imm11 = operand & 0x07ff;
+          uint32_t j1 = (i1 ^ signbit) ? 0 : 1;
+          uint32_t j2 = (i2 ^ signbit) ? 0 : 1;
+          value = (signbit << 26) | (j1 << 13) | (j2 << 11) | (imm10 << 16) |
+              imm11;
+          bits |= value;
+          }
+          break;
+        default:
+          LOG(FATAL) << "Bad fmt:" << encoder->field_loc[i].kind;
+      }
+    }
+    if (encoder->size == 4) {
+      cu->code_buffer.push_back((bits >> 16) & 0xff);
+      cu->code_buffer.push_back((bits >> 24) & 0xff);
+    }
+    cu->code_buffer.push_back(bits & 0xff);
+    cu->code_buffer.push_back((bits >> 8) & 0xff);
+  }
+  return res;
+}
+
+int ArmCodegen::GetInsnSize(LIR* lir)
+{
+  return EncodingMap[lir->opcode].size;
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/arm/call_arm.cc b/src/compiler/dex/quick/arm/call_arm.cc
new file mode 100644
index 0000000..09e8f3f
--- /dev/null
+++ b/src/compiler/dex/quick/arm/call_arm.cc
@@ -0,0 +1,655 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This file contains codegen for the Thumb2 ISA. */
+
+#include "arm_lir.h"
+#include "codegen_arm.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+#include "oat_compilation_unit.h"
+
+namespace art {
+
+
+/* Return the position of an ssa name within the argument list */
+static int InPosition(CompilationUnit* cu, int s_reg)
+{
+  int v_reg = SRegToVReg(cu, s_reg);
+  return v_reg - cu->num_regs;
+}
+
+/*
+ * Describe an argument.  If it's already in an arg register, just leave it
+ * there.  NOTE: all live arg registers must be locked prior to this call
+ * to avoid having them allocated as a temp by downstream utilities.
+ */
+RegLocation ArmCodegen::ArgLoc(CompilationUnit* cu, RegLocation loc)
+{
+  int arg_num = InPosition(cu, loc.s_reg_low);
+  if (loc.wide) {
+    if (arg_num == 2) {
+      // Bad case - half in register, half in frame.  Just punt
+      loc.location = kLocInvalid;
+    } else if (arg_num < 2) {
+      loc.low_reg = rARM_ARG1 + arg_num;
+      loc.high_reg = loc.low_reg + 1;
+      loc.location = kLocPhysReg;
+    } else {
+      loc.location = kLocDalvikFrame;
+    }
+  } else {
+    if (arg_num < 3) {
+      loc.low_reg = rARM_ARG1 + arg_num;
+      loc.location = kLocPhysReg;
+    } else {
+      loc.location = kLocDalvikFrame;
+    }
+  }
+  return loc;
+}
+
+/*
+ * Load an argument.  If already in a register, just return.  If in
+ * the frame, we can't use the normal LoadValue() because it assumed
+ * a proper frame - and we're frameless.
+ */
+static RegLocation LoadArg(CompilationUnit* cu, RegLocation loc)
+{
+  Codegen* cg = cu->cg.get();
+  if (loc.location == kLocDalvikFrame) {
+    int start = (InPosition(cu, loc.s_reg_low) + 1) * sizeof(uint32_t);
+    loc.low_reg = AllocTemp(cu);
+    cg->LoadWordDisp(cu, rARM_SP, start, loc.low_reg);
+    if (loc.wide) {
+      loc.high_reg = AllocTemp(cu);
+      cg->LoadWordDisp(cu, rARM_SP, start + sizeof(uint32_t), loc.high_reg);
+    }
+    loc.location = kLocPhysReg;
+  }
+  return loc;
+}
+
+/* Lock any referenced arguments that arrive in registers */
+static void LockLiveArgs(CompilationUnit* cu, MIR* mir)
+{
+  int first_in = cu->num_regs;
+  const int num_arg_regs = 3;  // TODO: generalize & move to RegUtil.cc
+  for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
+    int v_reg = SRegToVReg(cu, mir->ssa_rep->uses[i]);
+    int InPosition = v_reg - first_in;
+    if (InPosition < num_arg_regs) {
+      LockTemp(cu, rARM_ARG1 + InPosition);
+    }
+  }
+}
+
+/* Find the next MIR, which may be in a following basic block */
+static MIR* GetNextMir(CompilationUnit* cu, BasicBlock** p_bb, MIR* mir)
+{
+  BasicBlock* bb = *p_bb;
+  MIR* orig_mir = mir;
+  while (bb != NULL) {
+    if (mir != NULL) {
+      mir = mir->next;
+    }
+    if (mir != NULL) {
+      return mir;
+    } else {
+      bb = bb->fall_through;
+      *p_bb = bb;
+      if (bb) {
+         mir = bb->first_mir_insn;
+         if (mir != NULL) {
+           return mir;
+         }
+      }
+    }
+  }
+  return orig_mir;
+}
+
+/* Used for the "verbose" listing */
+//TODO:  move to common code
+void ArmCodegen::GenPrintLabel(CompilationUnit *cu, MIR* mir)
+{
+  /* Mark the beginning of a Dalvik instruction for line tracking */
+  char* inst_str = cu->verbose ?
+     GetDalvikDisassembly(cu, mir) : NULL;
+  MarkBoundary(cu, mir->offset, inst_str);
+}
+
+static MIR* SpecialIGet(CompilationUnit* cu, BasicBlock** bb, MIR* mir,
+                        OpSize size, bool long_or_double, bool is_object)
+{
+  Codegen* cg = cu->cg.get();
+  int field_offset;
+  bool is_volatile;
+  uint32_t field_idx = mir->dalvikInsn.vC;
+  bool fast_path = FastInstance(cu, field_idx, field_offset, is_volatile, false);
+  if (!fast_path || !(mir->optimization_flags & MIR_IGNORE_NULL_CHECK)) {
+    return NULL;
+  }
+  RegLocation rl_obj = GetSrc(cu, mir, 0);
+  LockLiveArgs(cu, mir);
+  rl_obj = ArmCodegen::ArgLoc(cu, rl_obj);
+  RegLocation rl_dest;
+  if (long_or_double) {
+    rl_dest = GetReturnWide(cu, false);
+  } else {
+    rl_dest = GetReturn(cu, false);
+  }
+  // Point of no return - no aborts after this
+  ArmCodegen::GenPrintLabel(cu, mir);
+  rl_obj = LoadArg(cu, rl_obj);
+  cg->GenIGet(cu, field_idx, mir->optimization_flags, size, rl_dest, rl_obj,
+              long_or_double, is_object);
+  return GetNextMir(cu, bb, mir);
+}
+
+static MIR* SpecialIPut(CompilationUnit* cu, BasicBlock** bb, MIR* mir,
+                        OpSize size, bool long_or_double, bool is_object)
+{
+  Codegen* cg = cu->cg.get();
+  int field_offset;
+  bool is_volatile;
+  uint32_t field_idx = mir->dalvikInsn.vC;
+  bool fast_path = FastInstance(cu, field_idx, field_offset, is_volatile, false);
+  if (!fast_path || !(mir->optimization_flags & MIR_IGNORE_NULL_CHECK)) {
+    return NULL;
+  }
+  RegLocation rl_src;
+  RegLocation rl_obj;
+  LockLiveArgs(cu, mir);
+  if (long_or_double) {
+    rl_src = GetSrcWide(cu, mir, 0);
+    rl_obj = GetSrc(cu, mir, 2);
+  } else {
+    rl_src = GetSrc(cu, mir, 0);
+    rl_obj = GetSrc(cu, mir, 1);
+  }
+  rl_src = ArmCodegen::ArgLoc(cu, rl_src);
+  rl_obj = ArmCodegen::ArgLoc(cu, rl_obj);
+  // Reject if source is split across registers & frame
+  if (rl_obj.location == kLocInvalid) {
+    ResetRegPool(cu);
+    return NULL;
+  }
+  // Point of no return - no aborts after this
+  ArmCodegen::GenPrintLabel(cu, mir);
+  rl_obj = LoadArg(cu, rl_obj);
+  rl_src = LoadArg(cu, rl_src);
+  cg->GenIPut(cu, field_idx, mir->optimization_flags, size, rl_src, rl_obj,
+              long_or_double, is_object);
+  return GetNextMir(cu, bb, mir);
+}
+
+static MIR* SpecialIdentity(CompilationUnit* cu, MIR* mir)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_src;
+  RegLocation rl_dest;
+  bool wide = (mir->ssa_rep->num_uses == 2);
+  if (wide) {
+    rl_src = GetSrcWide(cu, mir, 0);
+    rl_dest = GetReturnWide(cu, false);
+  } else {
+    rl_src = GetSrc(cu, mir, 0);
+    rl_dest = GetReturn(cu, false);
+  }
+  LockLiveArgs(cu, mir);
+  rl_src = ArmCodegen::ArgLoc(cu, rl_src);
+  if (rl_src.location == kLocInvalid) {
+    ResetRegPool(cu);
+    return NULL;
+  }
+  // Point of no return - no aborts after this
+  ArmCodegen::GenPrintLabel(cu, mir);
+  rl_src = LoadArg(cu, rl_src);
+  if (wide) {
+    cg->StoreValueWide(cu, rl_dest, rl_src);
+  } else {
+    cg->StoreValue(cu, rl_dest, rl_src);
+  }
+  return mir;
+}
+
+/*
+ * Special-case code genration for simple non-throwing leaf methods.
+ */
+void ArmCodegen::GenSpecialCase(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                                SpecialCaseHandler special_case)
+{
+   cu->current_dalvik_offset = mir->offset;
+   MIR* next_mir = NULL;
+   switch (special_case) {
+     case kNullMethod:
+       DCHECK(mir->dalvikInsn.opcode == Instruction::RETURN_VOID);
+       next_mir = mir;
+       break;
+     case kConstFunction:
+       ArmCodegen::GenPrintLabel(cu, mir);
+       LoadConstant(cu, rARM_RET0, mir->dalvikInsn.vB);
+       next_mir = GetNextMir(cu, &bb, mir);
+       break;
+     case kIGet:
+       next_mir = SpecialIGet(cu, &bb, mir, kWord, false, false);
+       break;
+     case kIGetBoolean:
+     case kIGetByte:
+       next_mir = SpecialIGet(cu, &bb, mir, kUnsignedByte, false, false);
+       break;
+     case kIGetObject:
+       next_mir = SpecialIGet(cu, &bb, mir, kWord, false, true);
+       break;
+     case kIGetChar:
+       next_mir = SpecialIGet(cu, &bb, mir, kUnsignedHalf, false, false);
+       break;
+     case kIGetShort:
+       next_mir = SpecialIGet(cu, &bb, mir, kSignedHalf, false, false);
+       break;
+     case kIGetWide:
+       next_mir = SpecialIGet(cu, &bb, mir, kLong, true, false);
+       break;
+     case kIPut:
+       next_mir = SpecialIPut(cu, &bb, mir, kWord, false, false);
+       break;
+     case kIPutBoolean:
+     case kIPutByte:
+       next_mir = SpecialIPut(cu, &bb, mir, kUnsignedByte, false, false);
+       break;
+     case kIPutObject:
+       next_mir = SpecialIPut(cu, &bb, mir, kWord, false, true);
+       break;
+     case kIPutChar:
+       next_mir = SpecialIPut(cu, &bb, mir, kUnsignedHalf, false, false);
+       break;
+     case kIPutShort:
+       next_mir = SpecialIPut(cu, &bb, mir, kSignedHalf, false, false);
+       break;
+     case kIPutWide:
+       next_mir = SpecialIPut(cu, &bb, mir, kLong, true, false);
+       break;
+     case kIdentity:
+       next_mir = SpecialIdentity(cu, mir);
+       break;
+     default:
+       return;
+   }
+   if (next_mir != NULL) {
+    cu->current_dalvik_offset = next_mir->offset;
+    if (special_case != kIdentity) {
+      ArmCodegen::GenPrintLabel(cu, next_mir);
+    }
+    NewLIR1(cu, kThumbBx, rARM_LR);
+    cu->core_spill_mask = 0;
+    cu->num_core_spills = 0;
+    cu->fp_spill_mask = 0;
+    cu->num_fp_spills = 0;
+    cu->frame_size = 0;
+    cu->core_vmap_table.clear();
+    cu->fp_vmap_table.clear();
+  }
+}
+
+/*
+ * The sparse table in the literal pool is an array of <key,displacement>
+ * pairs.  For each set, we'll load them as a pair using ldmia.
+ * This means that the register number of the temp we use for the key
+ * must be lower than the reg for the displacement.
+ *
+ * The test loop will look something like:
+ *
+ *   adr   rBase, <table>
+ *   ldr   r_val, [rARM_SP, v_reg_off]
+ *   mov   r_idx, #table_size
+ * lp:
+ *   ldmia rBase!, {r_key, r_disp}
+ *   sub   r_idx, #1
+ *   cmp   r_val, r_key
+ *   ifeq
+ *   add   rARM_PC, r_disp   ; This is the branch from which we compute displacement
+ *   cbnz  r_idx, lp
+ */
+void ArmCodegen::GenSparseSwitch(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
+{
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  if (cu->verbose) {
+    DumpSparseSwitchTable(table);
+  }
+  // Add the table to the list - we'll process it later
+  SwitchTable *tab_rec =
+      static_cast<SwitchTable*>(NewMem(cu, sizeof(SwitchTable), true, kAllocData));
+  tab_rec->table = table;
+  tab_rec->vaddr = cu->current_dalvik_offset;
+  int size = table[1];
+  tab_rec->targets = static_cast<LIR**>(NewMem(cu, size * sizeof(LIR*), true, kAllocLIR));
+  InsertGrowableList(cu, &cu->switch_tables, reinterpret_cast<uintptr_t>(tab_rec));
+
+  // Get the switch value
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  int rBase = AllocTemp(cu);
+  /* Allocate key and disp temps */
+  int r_key = AllocTemp(cu);
+  int r_disp = AllocTemp(cu);
+  // Make sure r_key's register number is less than r_disp's number for ldmia
+  if (r_key > r_disp) {
+    int tmp = r_disp;
+    r_disp = r_key;
+    r_key = tmp;
+  }
+  // Materialize a pointer to the switch table
+  NewLIR3(cu, kThumb2Adr, rBase, 0, reinterpret_cast<uintptr_t>(tab_rec));
+  // Set up r_idx
+  int r_idx = AllocTemp(cu);
+  LoadConstant(cu, r_idx, size);
+  // Establish loop branch target
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  // Load next key/disp
+  NewLIR2(cu, kThumb2LdmiaWB, rBase, (1 << r_key) | (1 << r_disp));
+  OpRegReg(cu, kOpCmp, r_key, rl_src.low_reg);
+  // Go if match. NOTE: No instruction set switch here - must stay Thumb2
+  OpIT(cu, kCondEq, "");
+  LIR* switch_branch = NewLIR1(cu, kThumb2AddPCR, r_disp);
+  tab_rec->anchor = switch_branch;
+  // Needs to use setflags encoding here
+  NewLIR3(cu, kThumb2SubsRRI12, r_idx, r_idx, 1);
+  OpCondBranch(cu, kCondNe, target);
+}
+
+
+void ArmCodegen::GenPackedSwitch(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
+{
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  if (cu->verbose) {
+    DumpPackedSwitchTable(table);
+  }
+  // Add the table to the list - we'll process it later
+  SwitchTable *tab_rec =
+      static_cast<SwitchTable*>(NewMem(cu, sizeof(SwitchTable), true, kAllocData));
+  tab_rec->table = table;
+  tab_rec->vaddr = cu->current_dalvik_offset;
+  int size = table[1];
+  tab_rec->targets = static_cast<LIR**>(NewMem(cu, size * sizeof(LIR*), true, kAllocLIR));
+  InsertGrowableList(cu, &cu->switch_tables, reinterpret_cast<uintptr_t>(tab_rec));
+
+  // Get the switch value
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  int table_base = AllocTemp(cu);
+  // Materialize a pointer to the switch table
+  NewLIR3(cu, kThumb2Adr, table_base, 0, reinterpret_cast<uintptr_t>(tab_rec));
+  int low_key = s4FromSwitchData(&table[2]);
+  int keyReg;
+  // Remove the bias, if necessary
+  if (low_key == 0) {
+    keyReg = rl_src.low_reg;
+  } else {
+    keyReg = AllocTemp(cu);
+    OpRegRegImm(cu, kOpSub, keyReg, rl_src.low_reg, low_key);
+  }
+  // Bounds check - if < 0 or >= size continue following switch
+  OpRegImm(cu, kOpCmp, keyReg, size-1);
+  LIR* branch_over = OpCondBranch(cu, kCondHi, NULL);
+
+  // Load the displacement from the switch table
+  int disp_reg = AllocTemp(cu);
+  LoadBaseIndexed(cu, table_base, keyReg, disp_reg, 2, kWord);
+
+  // ..and go! NOTE: No instruction set switch here - must stay Thumb2
+  LIR* switch_branch = NewLIR1(cu, kThumb2AddPCR, disp_reg);
+  tab_rec->anchor = switch_branch;
+
+  /* branch_over target here */
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch_over->target = target;
+}
+
+/*
+ * Array data table format:
+ *  ushort ident = 0x0300   magic value
+ *  ushort width            width of each element in the table
+ *  uint   size             number of elements in the table
+ *  ubyte  data[size*width] table of data values (may contain a single-byte
+ *                          padding at the end)
+ *
+ * Total size is 4+(width * size + 1)/2 16-bit code units.
+ */
+void ArmCodegen::GenFillArrayData(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
+{
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  // Add the table to the list - we'll process it later
+  FillArrayData *tab_rec =
+      static_cast<FillArrayData*>(NewMem(cu, sizeof(FillArrayData), true, kAllocData));
+  tab_rec->table = table;
+  tab_rec->vaddr = cu->current_dalvik_offset;
+  uint16_t width = tab_rec->table[1];
+  uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
+  tab_rec->size = (size * width) + 8;
+
+  InsertGrowableList(cu, &cu->fill_array_data, reinterpret_cast<uintptr_t>(tab_rec));
+
+  // Making a call - use explicit registers
+  FlushAllRegs(cu);   /* Everything to home location */
+  LoadValueDirectFixed(cu, rl_src, r0);
+  LoadWordDisp(cu, rARM_SELF, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode),
+               rARM_LR);
+  // Materialize a pointer to the fill data image
+  NewLIR3(cu, kThumb2Adr, r1, 0, reinterpret_cast<uintptr_t>(tab_rec));
+  ClobberCalleeSave(cu);
+  LIR* call_inst = OpReg(cu, kOpBlx, rARM_LR);
+  MarkSafepointPC(cu, call_inst);
+}
+
+/*
+ * Handle simple case (thin lock) inline.  If it's complicated, bail
+ * out to the heavyweight lock/unlock routines.  We'll use dedicated
+ * registers here in order to be in the right position in case we
+ * to bail to oat[Lock/Unlock]Object(self, object)
+ *
+ * r0 -> self pointer [arg0 for oat[Lock/Unlock]Object
+ * r1 -> object [arg1 for oat[Lock/Unlock]Object
+ * r2 -> intial contents of object->lock, later result of strex
+ * r3 -> self->thread_id
+ * r12 -> allow to be used by utilities as general temp
+ *
+ * The result of the strex is 0 if we acquire the lock.
+ *
+ * See comments in monitor.cc for the layout of the lock word.
+ * Of particular interest to this code is the test for the
+ * simple case - which we handle inline.  For monitor enter, the
+ * simple case is thin lock, held by no-one.  For monitor exit,
+ * the simple case is thin lock, held by the unlocking thread with
+ * a recurse count of 0.
+ *
+ * A minor complication is that there is a field in the lock word
+ * unrelated to locking: the hash state.  This field must be ignored, but
+ * preserved.
+ *
+ */
+void ArmCodegen::GenMonitorEnter(CompilationUnit* cu, int opt_flags, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  DCHECK_EQ(LW_SHAPE_THIN, 0);
+  LoadValueDirectFixed(cu, rl_src, r0);  // Get obj
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  GenNullCheck(cu, rl_src.s_reg_low, r0, opt_flags);
+  LoadWordDisp(cu, rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2);
+  NewLIR3(cu, kThumb2Ldrex, r1, r0,
+          mirror::Object::MonitorOffset().Int32Value() >> 2); // Get object->lock
+  // Align owner
+  OpRegImm(cu, kOpLsl, r2, LW_LOCK_OWNER_SHIFT);
+  // Is lock unheld on lock or held by us (==thread_id) on unlock?
+  NewLIR4(cu, kThumb2Bfi, r2, r1, 0, LW_LOCK_OWNER_SHIFT - 1);
+  NewLIR3(cu, kThumb2Bfc, r1, LW_HASH_STATE_SHIFT, LW_LOCK_OWNER_SHIFT - 1);
+  OpRegImm(cu, kOpCmp, r1, 0);
+  OpIT(cu, kCondEq, "");
+  NewLIR4(cu, kThumb2Strex, r1, r2, r0,
+          mirror::Object::MonitorOffset().Int32Value() >> 2);
+  OpRegImm(cu, kOpCmp, r1, 0);
+  OpIT(cu, kCondNe, "T");
+  // Go expensive route - artLockObjectFromCode(self, obj);
+  LoadWordDisp(cu, rARM_SELF, ENTRYPOINT_OFFSET(pLockObjectFromCode), rARM_LR);
+  ClobberCalleeSave(cu);
+  LIR* call_inst = OpReg(cu, kOpBlx, rARM_LR);
+  MarkSafepointPC(cu, call_inst);
+  GenMemBarrier(cu, kLoadLoad);
+}
+
+/*
+ * For monitor unlock, we don't have to use ldrex/strex.  Once
+ * we've determined that the lock is thin and that we own it with
+ * a zero recursion count, it's safe to punch it back to the
+ * initial, unlock thin state with a store word.
+ */
+void ArmCodegen::GenMonitorExit(CompilationUnit* cu, int opt_flags, RegLocation rl_src)
+{
+  DCHECK_EQ(LW_SHAPE_THIN, 0);
+  FlushAllRegs(cu);
+  LoadValueDirectFixed(cu, rl_src, r0);  // Get obj
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  GenNullCheck(cu, rl_src.s_reg_low, r0, opt_flags);
+  LoadWordDisp(cu, r0, mirror::Object::MonitorOffset().Int32Value(), r1); // Get lock
+  LoadWordDisp(cu, rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2);
+  // Is lock unheld on lock or held by us (==thread_id) on unlock?
+  OpRegRegImm(cu, kOpAnd, r3, r1,
+              (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
+  // Align owner
+  OpRegImm(cu, kOpLsl, r2, LW_LOCK_OWNER_SHIFT);
+  NewLIR3(cu, kThumb2Bfc, r1, LW_HASH_STATE_SHIFT, LW_LOCK_OWNER_SHIFT - 1);
+  OpRegReg(cu, kOpSub, r1, r2);
+  OpIT(cu, kCondEq, "EE");
+  StoreWordDisp(cu, r0, mirror::Object::MonitorOffset().Int32Value(), r3);
+  // Go expensive route - UnlockObjectFromCode(obj);
+  LoadWordDisp(cu, rARM_SELF, ENTRYPOINT_OFFSET(pUnlockObjectFromCode), rARM_LR);
+  ClobberCalleeSave(cu);
+  LIR* call_inst = OpReg(cu, kOpBlx, rARM_LR);
+  MarkSafepointPC(cu, call_inst);
+  GenMemBarrier(cu, kStoreLoad);
+}
+
+void ArmCodegen::GenMoveException(CompilationUnit* cu, RegLocation rl_dest)
+{
+  int ex_offset = Thread::ExceptionOffset().Int32Value();
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  int reset_reg = AllocTemp(cu);
+  LoadWordDisp(cu, rARM_SELF, ex_offset, rl_result.low_reg);
+  LoadConstant(cu, reset_reg, 0);
+  StoreWordDisp(cu, rARM_SELF, ex_offset, reset_reg);
+  FreeTemp(cu, reset_reg);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+/*
+ * Mark garbage collection card. Skip if the value we're storing is null.
+ */
+void ArmCodegen::MarkGCCard(CompilationUnit* cu, int val_reg, int tgt_addr_reg)
+{
+  int reg_card_base = AllocTemp(cu);
+  int reg_card_no = AllocTemp(cu);
+  LIR* branch_over = OpCmpImmBranch(cu, kCondEq, val_reg, 0, NULL);
+  LoadWordDisp(cu, rARM_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base);
+  OpRegRegImm(cu, kOpLsr, reg_card_no, tgt_addr_reg, CardTable::kCardShift);
+  StoreBaseIndexed(cu, reg_card_base, reg_card_no, reg_card_base, 0,
+                   kUnsignedByte);
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch_over->target = target;
+  FreeTemp(cu, reg_card_base);
+  FreeTemp(cu, reg_card_no);
+}
+
+void ArmCodegen::GenEntrySequence(CompilationUnit* cu, RegLocation* ArgLocs, RegLocation rl_method)
+{
+  int spill_count = cu->num_core_spills + cu->num_fp_spills;
+  /*
+   * On entry, r0, r1, r2 & r3 are live.  Let the register allocation
+   * mechanism know so it doesn't try to use any of them when
+   * expanding the frame or flushing.  This leaves the utility
+   * code with a single temp: r12.  This should be enough.
+   */
+  LockTemp(cu, r0);
+  LockTemp(cu, r1);
+  LockTemp(cu, r2);
+  LockTemp(cu, r3);
+
+  /*
+   * We can safely skip the stack overflow check if we're
+   * a leaf *and* our frame size < fudge factor.
+   */
+  bool skip_overflow_check = ((cu->attrs & METHOD_IS_LEAF) &&
+                            (static_cast<size_t>(cu->frame_size) <
+                            Thread::kStackOverflowReservedBytes));
+  NewLIR0(cu, kPseudoMethodEntry);
+  if (!skip_overflow_check) {
+    /* Load stack limit */
+    LoadWordDisp(cu, rARM_SELF, Thread::StackEndOffset().Int32Value(), r12);
+  }
+  /* Spill core callee saves */
+  NewLIR1(cu, kThumb2Push, cu->core_spill_mask);
+  /* Need to spill any FP regs? */
+  if (cu->num_fp_spills) {
+    /*
+     * NOTE: fp spills are a little different from core spills in that
+     * they are pushed as a contiguous block.  When promoting from
+     * the fp set, we must allocate all singles from s16..highest-promoted
+     */
+    NewLIR1(cu, kThumb2VPushCS, cu->num_fp_spills);
+  }
+  if (!skip_overflow_check) {
+    OpRegRegImm(cu, kOpSub, rARM_LR, rARM_SP, cu->frame_size - (spill_count * 4));
+    GenRegRegCheck(cu, kCondCc, rARM_LR, r12, kThrowStackOverflow);
+    OpRegCopy(cu, rARM_SP, rARM_LR);     // Establish stack
+  } else {
+    OpRegImm(cu, kOpSub, rARM_SP, cu->frame_size - (spill_count * 4));
+  }
+
+  FlushIns(cu, ArgLocs, rl_method);
+
+  FreeTemp(cu, r0);
+  FreeTemp(cu, r1);
+  FreeTemp(cu, r2);
+  FreeTemp(cu, r3);
+}
+
+void ArmCodegen::GenExitSequence(CompilationUnit* cu)
+{
+  int spill_count = cu->num_core_spills + cu->num_fp_spills;
+  /*
+   * In the exit path, r0/r1 are live - make sure they aren't
+   * allocated by the register utilities as temps.
+   */
+  LockTemp(cu, r0);
+  LockTemp(cu, r1);
+
+  NewLIR0(cu, kPseudoMethodExit);
+  OpRegImm(cu, kOpAdd, rARM_SP, cu->frame_size - (spill_count * 4));
+  /* Need to restore any FP callee saves? */
+  if (cu->num_fp_spills) {
+    NewLIR1(cu, kThumb2VPopCS, cu->num_fp_spills);
+  }
+  if (cu->core_spill_mask & (1 << rARM_LR)) {
+    /* Unspill rARM_LR to rARM_PC */
+    cu->core_spill_mask &= ~(1 << rARM_LR);
+    cu->core_spill_mask |= (1 << rARM_PC);
+  }
+  NewLIR1(cu, kThumb2Pop, cu->core_spill_mask);
+  if (!(cu->core_spill_mask & (1 << rARM_PC))) {
+    /* We didn't pop to rARM_PC, so must do a bv rARM_LR */
+    NewLIR1(cu, kThumbBx, rARM_LR);
+  }
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/arm/codegen_arm.h b/src/compiler/dex/quick/arm/codegen_arm.h
new file mode 100644
index 0000000..e77394c
--- /dev/null
+++ b/src/compiler/dex/quick/arm/codegen_arm.h
@@ -0,0 +1,218 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_ARM_CODEGENARM_H_
+#define ART_SRC_COMPILER_DEX_QUICK_ARM_CODEGENARM_H_
+
+#include "compiler/dex/compiler_internals.h"
+
+namespace art {
+
+class ArmCodegen : public Codegen {
+  public:
+    // Required for target - codegen helpers.
+    virtual bool SmallLiteralDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
+                                    RegLocation rl_src, RegLocation rl_dest, int lit);
+    virtual int LoadHelper(CompilationUnit* cu, int offset);
+    virtual LIR* LoadBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_dest,
+                              OpSize size, int s_reg);
+    virtual LIR* LoadBaseDispWide(CompilationUnit* cu, int rBase, int displacement, int r_dest_lo,
+                                  int r_dest_hi, int s_reg);
+    virtual LIR* LoadBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_dest, int scale,
+                                 OpSize size);
+    virtual LIR* LoadBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                     int displacement, int r_dest, int r_dest_hi, OpSize size,
+                                     int s_reg);
+    virtual LIR* LoadConstantNoClobber(CompilationUnit* cu, int r_dest, int value);
+    virtual LIR* LoadConstantWide(CompilationUnit* cu, int r_dest_lo, int r_dest_hi, int64_t value);
+    virtual LIR* StoreBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_src,
+                               OpSize size);
+    virtual LIR* StoreBaseDispWide(CompilationUnit* cu, int rBase, int displacement, int r_src_lo,
+                                   int r_src_hi);
+    virtual LIR* StoreBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_src, int scale,
+                                 OpSize size);
+    virtual LIR* StoreBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                      int displacement, int r_src, int r_src_hi, OpSize size,
+                                      int s_reg);
+    virtual void MarkGCCard(CompilationUnit* cu, int val_reg, int tgt_addr_reg);
+
+    // Required for target - register utilities.
+    virtual bool IsFpReg(int reg);
+    virtual bool SameRegType(int reg1, int reg2);
+    virtual int AllocTypedTemp(CompilationUnit* cu, bool fp_hint, int reg_class);
+    virtual int AllocTypedTempPair(CompilationUnit* cu, bool fp_hint, int reg_class);
+    virtual int S2d(int low_reg, int high_reg);
+    virtual int TargetReg(SpecialTargetRegister reg);
+    virtual RegisterInfo* GetRegInfo(CompilationUnit* cu, int reg);
+    virtual RegLocation GetReturnAlt(CompilationUnit* cu);
+    virtual RegLocation GetReturnWideAlt(CompilationUnit* cu);
+    virtual RegLocation LocCReturn();
+    virtual RegLocation LocCReturnDouble();
+    virtual RegLocation LocCReturnFloat();
+    virtual RegLocation LocCReturnWide();
+    virtual uint32_t FpRegMask();
+    virtual uint64_t GetRegMaskCommon(CompilationUnit* cu, int reg);
+    virtual void AdjustSpillMask(CompilationUnit* cu);
+    virtual void ClobberCalleeSave(CompilationUnit *cu);
+    virtual void FlushReg(CompilationUnit* cu, int reg);
+    virtual void FlushRegWide(CompilationUnit* cu, int reg1, int reg2);
+    virtual void FreeCallTemps(CompilationUnit* cu);
+    virtual void FreeRegLocTemps(CompilationUnit* cu, RegLocation rl_keep, RegLocation rl_free);
+    virtual void LockCallTemps(CompilationUnit* cu);
+    virtual void MarkPreservedSingle(CompilationUnit* cu, int v_reg, int reg);
+    virtual void CompilerInitializeRegAlloc(CompilationUnit* cu);
+
+    // Required for target - miscellaneous.
+    virtual AssemblerStatus AssembleInstructions(CompilationUnit* cu, uintptr_t start_addr);
+    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix);
+    virtual void SetupTargetResourceMasks(CompilationUnit* cu, LIR* lir);
+    virtual const char* GetTargetInstFmt(int opcode);
+    virtual const char* GetTargetInstName(int opcode);
+    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
+    virtual uint64_t GetPCUseDefEncoding();
+    virtual uint64_t GetTargetInstFlags(int opcode);
+    virtual int GetInsnSize(LIR* lir);
+    virtual bool IsUnconditionalBranch(LIR* lir);
+
+    // Required for target - Dalvik-level generators.
+    virtual void GenArithImmOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                                   RegLocation rl_src1, RegLocation rl_src2);
+    virtual void GenArrayObjPut(CompilationUnit* cu, int opt_flags, RegLocation rl_array,
+                                RegLocation rl_index, RegLocation rl_src, int scale);
+    virtual void GenArrayGet(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_dest, int scale);
+    virtual void GenArrayPut(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_src, int scale);
+    virtual void GenShiftImmOpLong(CompilationUnit* cu, Instruction::Code opcode,
+                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_shift);
+    virtual void GenMulLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenAddLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenAndLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenArithOpDouble(CompilationUnit* cu, Instruction::Code opcode,
+                                  RegLocation rl_dest, RegLocation rl_src1,
+                                  RegLocation rl_src2);
+    virtual void GenArithOpFloat(CompilationUnit *cu, Instruction::Code opcode, RegLocation rl_dest,
+                                 RegLocation rl_src1, RegLocation rl_src2);
+    virtual void GenCmpFP(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                          RegLocation rl_src1, RegLocation rl_src2);
+    virtual void GenConversion(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                               RegLocation rl_src);
+    virtual bool GenInlinedCas32(CompilationUnit* cu, CallInfo* info, bool need_write_barrier);
+    virtual bool GenInlinedMinMaxInt(CompilationUnit *cu, CallInfo* info, bool is_min);
+    virtual bool GenInlinedSqrt(CompilationUnit* cu, CallInfo* info);
+    virtual void GenNegLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    virtual void GenOrLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                           RegLocation rl_src2);
+    virtual void GenSubLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenXorLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual LIR* GenRegMemCheck(CompilationUnit* cu, ConditionCode c_code, int reg1, int base,
+                                int offset, ThrowKind kind);
+    virtual RegLocation GenDivRem(CompilationUnit* cu, RegLocation rl_dest, int reg_lo, int reg_hi,
+                                  bool is_div);
+    virtual RegLocation GenDivRemLit(CompilationUnit* cu, RegLocation rl_dest, int reg_lo, int lit,
+                                     bool is_div);
+    virtual void GenCmpLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenDivZeroCheck(CompilationUnit* cu, int reg_lo, int reg_hi);
+    virtual void GenEntrySequence(CompilationUnit* cu, RegLocation* ArgLocs,
+                                  RegLocation rl_method);
+    virtual void GenExitSequence(CompilationUnit* cu);
+    virtual void GenFillArrayData(CompilationUnit* cu, uint32_t table_offset,
+                                  RegLocation rl_src);
+    virtual void GenFusedFPCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir, bool gt_bias,
+                                     bool is_double);
+    virtual void GenFusedLongCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir);
+    virtual void GenSelect(CompilationUnit* cu, BasicBlock* bb, MIR* mir);
+    virtual void GenMemBarrier(CompilationUnit* cu, MemBarrierKind barrier_kind);
+    virtual void GenMonitorEnter(CompilationUnit* cu, int opt_flags, RegLocation rl_src);
+    virtual void GenMonitorExit(CompilationUnit* cu, int opt_flags, RegLocation rl_src);
+    virtual void GenMoveException(CompilationUnit* cu, RegLocation rl_dest);
+    virtual void GenMultiplyByTwoBitMultiplier(CompilationUnit* cu, RegLocation rl_src,
+                                               RegLocation rl_result, int lit, int first_bit,
+                                               int second_bit);
+    virtual void GenNegDouble(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    virtual void GenNegFloat(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    virtual void GenPackedSwitch(CompilationUnit* cu, uint32_t table_offset,
+                                 RegLocation rl_src);
+    virtual void GenSparseSwitch(CompilationUnit* cu, uint32_t table_offset,
+                                 RegLocation rl_src);
+    virtual void GenSpecialCase(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                                SpecialCaseHandler special_case);
+
+    // Required for target - single operation generators.
+    virtual LIR* OpUnconditionalBranch(CompilationUnit* cu, LIR* target);
+    virtual LIR* OpCmpBranch(CompilationUnit* cu, ConditionCode cond, int src1, int src2,
+                             LIR* target);
+    virtual LIR* OpCmpImmBranch(CompilationUnit* cu, ConditionCode cond, int reg, int check_value,
+                                LIR* target);
+    virtual LIR* OpCondBranch(CompilationUnit* cu, ConditionCode cc, LIR* target);
+    virtual LIR* OpDecAndBranch(CompilationUnit* cu, ConditionCode c_code, int reg,
+                                LIR* target);
+    virtual LIR* OpFpRegCopy(CompilationUnit* cu, int r_dest, int r_src);
+    virtual LIR* OpIT(CompilationUnit* cu, ConditionCode cond, const char* guide);
+    virtual LIR* OpMem(CompilationUnit* cu, OpKind op, int rBase, int disp);
+    virtual LIR* OpPcRelLoad(CompilationUnit* cu, int reg, LIR* target);
+    virtual LIR* OpReg(CompilationUnit* cu, OpKind op, int r_dest_src);
+    virtual LIR* OpRegCopy(CompilationUnit* cu, int r_dest, int r_src);
+    virtual LIR* OpRegCopyNoInsert(CompilationUnit* cu, int r_dest, int r_src);
+    virtual LIR* OpRegImm(CompilationUnit* cu, OpKind op, int r_dest_src1, int value);
+    virtual LIR* OpRegMem(CompilationUnit* cu, OpKind op, int r_dest, int rBase, int offset);
+    virtual LIR* OpRegReg(CompilationUnit* cu, OpKind op, int r_dest_src1, int r_src2);
+    virtual LIR* OpRegRegImm(CompilationUnit* cu, OpKind op, int r_dest, int r_src1, int value);
+    virtual LIR* OpRegRegReg(CompilationUnit* cu, OpKind op, int r_dest, int r_src1,
+                             int r_src2);
+    virtual LIR* OpTestSuspend(CompilationUnit* cu, LIR* target);
+    virtual LIR* OpThreadMem(CompilationUnit* cu, OpKind op, int thread_offset);
+    virtual LIR* OpVldm(CompilationUnit* cu, int rBase, int count);
+    virtual LIR* OpVstm(CompilationUnit* cu, int rBase, int count);
+    virtual void OpLea(CompilationUnit* cu, int rBase, int reg1, int reg2, int scale,
+                       int offset);
+    virtual void OpRegCopyWide(CompilationUnit* cu, int dest_lo, int dest_hi, int src_lo,
+                               int src_hi);
+    virtual void OpTlsCmp(CompilationUnit* cu, int offset, int val);
+
+    static RegLocation ArgLoc(CompilationUnit* cu, RegLocation loc);
+    LIR* LoadBaseDispBody(CompilationUnit* cu, int rBase, int displacement, int r_dest,
+                          int r_dest_hi, OpSize size, int s_reg);
+    LIR* StoreBaseDispBody(CompilationUnit* cu, int rBase, int displacement, int r_src,
+                           int r_src_hi, OpSize size);
+    static void GenPrintLabel(CompilationUnit *cu, MIR* mir);
+    static LIR* OpRegRegRegShift(CompilationUnit* cu, OpKind op, int r_dest, int r_src1,
+                                 int r_src2, int shift);
+    static LIR* OpRegRegShift(CompilationUnit* cu, OpKind op, int r_dest_src1, int r_src2,
+                              int shift);
+    static const ArmEncodingMap EncodingMap[kArmLast];
+    static int EncodeShift(int code, int amount);
+    static int ModifiedImmediate(uint32_t value);
+    static ArmConditionCode ArmConditionEncoding(ConditionCode code);
+    bool InexpensiveConstantInt(int32_t value);
+    bool InexpensiveConstantFloat(int32_t value);
+    bool InexpensiveConstantLong(int64_t value);
+    bool InexpensiveConstantDouble(int64_t value);
+
+  private:
+    void GenFusedLongCmpImmBranch(CompilationUnit* cu, BasicBlock* bb, RegLocation rl_src1,
+                                  int64_t val, ConditionCode ccode);
+};
+
+}  // namespace art
+
+#endif  // ART_SRC_COMPILER_DEX_QUICK_ARM_CODEGENARM_H_
diff --git a/src/compiler/dex/quick/arm/fp_arm.cc b/src/compiler/dex/quick/arm/fp_arm.cc
new file mode 100644
index 0000000..cc65217
--- /dev/null
+++ b/src/compiler/dex/quick/arm/fp_arm.cc
@@ -0,0 +1,337 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_lir.h"
+#include "codegen_arm.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+
+namespace art {
+
+void ArmCodegen::GenArithOpFloat(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                                 RegLocation rl_src1, RegLocation rl_src2)
+{
+  int op = kThumbBkpt;
+  RegLocation rl_result;
+
+  /*
+   * Don't attempt to optimize register usage since these opcodes call out to
+   * the handlers.
+   */
+  switch (opcode) {
+    case Instruction::ADD_FLOAT_2ADDR:
+    case Instruction::ADD_FLOAT:
+      op = kThumb2Vadds;
+      break;
+    case Instruction::SUB_FLOAT_2ADDR:
+    case Instruction::SUB_FLOAT:
+      op = kThumb2Vsubs;
+      break;
+    case Instruction::DIV_FLOAT_2ADDR:
+    case Instruction::DIV_FLOAT:
+      op = kThumb2Vdivs;
+      break;
+    case Instruction::MUL_FLOAT_2ADDR:
+    case Instruction::MUL_FLOAT:
+      op = kThumb2Vmuls;
+      break;
+    case Instruction::REM_FLOAT_2ADDR:
+    case Instruction::REM_FLOAT:
+      FlushAllRegs(cu);   // Send everything to home location
+      CallRuntimeHelperRegLocationRegLocation(cu, ENTRYPOINT_OFFSET(pFmodf), rl_src1, rl_src2, false);
+      rl_result = GetReturn(cu, true);
+      StoreValue(cu, rl_dest, rl_result);
+      return;
+    case Instruction::NEG_FLOAT:
+      GenNegFloat(cu, rl_dest, rl_src1);
+      return;
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+  rl_src1 = LoadValue(cu, rl_src1, kFPReg);
+  rl_src2 = LoadValue(cu, rl_src2, kFPReg);
+  rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+  NewLIR3(cu, op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void ArmCodegen::GenArithOpDouble(CompilationUnit* cu, Instruction::Code opcode,
+                                  RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
+{
+  int op = kThumbBkpt;
+  RegLocation rl_result;
+
+  switch (opcode) {
+    case Instruction::ADD_DOUBLE_2ADDR:
+    case Instruction::ADD_DOUBLE:
+      op = kThumb2Vaddd;
+      break;
+    case Instruction::SUB_DOUBLE_2ADDR:
+    case Instruction::SUB_DOUBLE:
+      op = kThumb2Vsubd;
+      break;
+    case Instruction::DIV_DOUBLE_2ADDR:
+    case Instruction::DIV_DOUBLE:
+      op = kThumb2Vdivd;
+      break;
+    case Instruction::MUL_DOUBLE_2ADDR:
+    case Instruction::MUL_DOUBLE:
+      op = kThumb2Vmuld;
+      break;
+    case Instruction::REM_DOUBLE_2ADDR:
+    case Instruction::REM_DOUBLE:
+      FlushAllRegs(cu);   // Send everything to home location
+      CallRuntimeHelperRegLocationRegLocation(cu, ENTRYPOINT_OFFSET(pFmod), rl_src1, rl_src2, false);
+      rl_result = GetReturnWide(cu, true);
+      StoreValueWide(cu, rl_dest, rl_result);
+      return;
+    case Instruction::NEG_DOUBLE:
+      GenNegDouble(cu, rl_dest, rl_src1);
+      return;
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+
+  rl_src1 = LoadValueWide(cu, rl_src1, kFPReg);
+  DCHECK(rl_src1.wide);
+  rl_src2 = LoadValueWide(cu, rl_src2, kFPReg);
+  DCHECK(rl_src2.wide);
+  rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+  DCHECK(rl_dest.wide);
+  DCHECK(rl_result.wide);
+  NewLIR3(cu, op, S2d(rl_result.low_reg, rl_result.high_reg), S2d(rl_src1.low_reg, rl_src1.high_reg),
+          S2d(rl_src2.low_reg, rl_src2.high_reg));
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void ArmCodegen::GenConversion(CompilationUnit* cu, Instruction::Code opcode,
+                               RegLocation rl_dest, RegLocation rl_src)
+{
+  int op = kThumbBkpt;
+  int src_reg;
+  RegLocation rl_result;
+
+  switch (opcode) {
+    case Instruction::INT_TO_FLOAT:
+      op = kThumb2VcvtIF;
+      break;
+    case Instruction::FLOAT_TO_INT:
+      op = kThumb2VcvtFI;
+      break;
+    case Instruction::DOUBLE_TO_FLOAT:
+      op = kThumb2VcvtDF;
+      break;
+    case Instruction::FLOAT_TO_DOUBLE:
+      op = kThumb2VcvtFd;
+      break;
+    case Instruction::INT_TO_DOUBLE:
+      op = kThumb2VcvtID;
+      break;
+    case Instruction::DOUBLE_TO_INT:
+      op = kThumb2VcvtDI;
+      break;
+    case Instruction::LONG_TO_DOUBLE:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pL2d), rl_dest, rl_src);
+      return;
+    case Instruction::FLOAT_TO_LONG:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pF2l), rl_dest, rl_src);
+      return;
+    case Instruction::LONG_TO_FLOAT:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pL2f), rl_dest, rl_src);
+      return;
+    case Instruction::DOUBLE_TO_LONG:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pD2l), rl_dest, rl_src);
+      return;
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+  if (rl_src.wide) {
+    rl_src = LoadValueWide(cu, rl_src, kFPReg);
+    src_reg = S2d(rl_src.low_reg, rl_src.high_reg);
+  } else {
+    rl_src = LoadValue(cu, rl_src, kFPReg);
+    src_reg = rl_src.low_reg;
+  }
+  if (rl_dest.wide) {
+    rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+    NewLIR2(cu, op, S2d(rl_result.low_reg, rl_result.high_reg), src_reg);
+    StoreValueWide(cu, rl_dest, rl_result);
+  } else {
+    rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+    NewLIR2(cu, op, rl_result.low_reg, src_reg);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+void ArmCodegen::GenFusedFPCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir, bool gt_bias,
+                                     bool is_double)
+{
+  LIR* label_list = cu->block_label_list;
+  LIR* target = &label_list[bb->taken->id];
+  RegLocation rl_src1;
+  RegLocation rl_src2;
+  if (is_double) {
+    rl_src1 = GetSrcWide(cu, mir, 0);
+    rl_src2 = GetSrcWide(cu, mir, 2);
+    rl_src1 = LoadValueWide(cu, rl_src1, kFPReg);
+    rl_src2 = LoadValueWide(cu, rl_src2, kFPReg);
+    NewLIR2(cu, kThumb2Vcmpd, S2d(rl_src1.low_reg, rl_src2.high_reg),
+            S2d(rl_src2.low_reg, rl_src2.high_reg));
+  } else {
+    rl_src1 = GetSrc(cu, mir, 0);
+    rl_src2 = GetSrc(cu, mir, 1);
+    rl_src1 = LoadValue(cu, rl_src1, kFPReg);
+    rl_src2 = LoadValue(cu, rl_src2, kFPReg);
+    NewLIR2(cu, kThumb2Vcmps, rl_src1.low_reg, rl_src2.low_reg);
+  }
+  NewLIR0(cu, kThumb2Fmstat);
+  ConditionCode ccode = static_cast<ConditionCode>(mir->dalvikInsn.arg[0]);
+  switch(ccode) {
+    case kCondEq:
+    case kCondNe:
+      break;
+    case kCondLt:
+      if (gt_bias) {
+        ccode = kCondMi;
+      }
+      break;
+    case kCondLe:
+      if (gt_bias) {
+        ccode = kCondLs;
+      }
+      break;
+    case kCondGt:
+      if (gt_bias) {
+        ccode = kCondHi;
+      }
+      break;
+    case kCondGe:
+      if (gt_bias) {
+        ccode = kCondCs;
+      }
+      break;
+    default:
+      LOG(FATAL) << "Unexpected ccode: " << ccode;
+  }
+  OpCondBranch(cu, ccode, target);
+}
+
+
+void ArmCodegen::GenCmpFP(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                          RegLocation rl_src1, RegLocation rl_src2)
+{
+  bool is_double = false;
+  int default_result = -1;
+  RegLocation rl_result;
+
+  switch (opcode) {
+    case Instruction::CMPL_FLOAT:
+      is_double = false;
+      default_result = -1;
+      break;
+    case Instruction::CMPG_FLOAT:
+      is_double = false;
+      default_result = 1;
+      break;
+    case Instruction::CMPL_DOUBLE:
+      is_double = true;
+      default_result = -1;
+      break;
+    case Instruction::CMPG_DOUBLE:
+      is_double = true;
+      default_result = 1;
+      break;
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+  if (is_double) {
+    rl_src1 = LoadValueWide(cu, rl_src1, kFPReg);
+    rl_src2 = LoadValueWide(cu, rl_src2, kFPReg);
+    // In case result vreg is also a src vreg, break association to avoid useless copy by EvalLoc()
+    ClobberSReg(cu, rl_dest.s_reg_low);
+    rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+    LoadConstant(cu, rl_result.low_reg, default_result);
+    NewLIR2(cu, kThumb2Vcmpd, S2d(rl_src1.low_reg, rl_src2.high_reg),
+            S2d(rl_src2.low_reg, rl_src2.high_reg));
+  } else {
+    rl_src1 = LoadValue(cu, rl_src1, kFPReg);
+    rl_src2 = LoadValue(cu, rl_src2, kFPReg);
+    // In case result vreg is also a srcvreg, break association to avoid useless copy by EvalLoc()
+    ClobberSReg(cu, rl_dest.s_reg_low);
+    rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+    LoadConstant(cu, rl_result.low_reg, default_result);
+    NewLIR2(cu, kThumb2Vcmps, rl_src1.low_reg, rl_src2.low_reg);
+  }
+  DCHECK(!ARM_FPREG(rl_result.low_reg));
+  NewLIR0(cu, kThumb2Fmstat);
+
+  OpIT(cu, (default_result == -1) ? kCondGt : kCondMi, "");
+  NewLIR2(cu, kThumb2MovImmShift, rl_result.low_reg,
+          ModifiedImmediate(-default_result)); // Must not alter ccodes
+  GenBarrier(cu);
+
+  OpIT(cu, kCondEq, "");
+  LoadConstant(cu, rl_result.low_reg, 0);
+  GenBarrier(cu);
+
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void ArmCodegen::GenNegFloat(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  RegLocation rl_result;
+  rl_src = LoadValue(cu, rl_src, kFPReg);
+  rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+  NewLIR2(cu, kThumb2Vnegs, rl_result.low_reg, rl_src.low_reg);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void ArmCodegen::GenNegDouble(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  RegLocation rl_result;
+  rl_src = LoadValueWide(cu, rl_src, kFPReg);
+  rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+  NewLIR2(cu, kThumb2Vnegd, S2d(rl_result.low_reg, rl_result.high_reg),
+          S2d(rl_src.low_reg, rl_src.high_reg));
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+bool ArmCodegen::GenInlinedSqrt(CompilationUnit* cu, CallInfo* info) {
+  DCHECK_EQ(cu->instruction_set, kThumb2);
+  LIR *branch;
+  RegLocation rl_src = info->args[0];
+  RegLocation rl_dest = InlineTargetWide(cu, info);  // double place for result
+  rl_src = LoadValueWide(cu, rl_src, kFPReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+  NewLIR2(cu, kThumb2Vsqrtd, S2d(rl_result.low_reg, rl_result.high_reg),
+          S2d(rl_src.low_reg, rl_src.high_reg));
+  NewLIR2(cu, kThumb2Vcmpd, S2d(rl_result.low_reg, rl_result.high_reg),
+          S2d(rl_result.low_reg, rl_result.high_reg));
+  NewLIR0(cu, kThumb2Fmstat);
+  branch = NewLIR2(cu, kThumbBCond, 0, kArmCondEq);
+  ClobberCalleeSave(cu);
+  LockCallTemps(cu);  // Using fixed registers
+  int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pSqrt));
+  NewLIR3(cu, kThumb2Fmrrd, r0, r1, S2d(rl_src.low_reg, rl_src.high_reg));
+  NewLIR1(cu, kThumbBlxR, r_tgt);
+  NewLIR3(cu, kThumb2Fmdrr, S2d(rl_result.low_reg, rl_result.high_reg), r0, r1);
+  branch->target = NewLIR0(cu, kPseudoTargetLabel);
+  StoreValueWide(cu, rl_dest, rl_result);
+  return true;
+}
+
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/arm/int_arm.cc b/src/compiler/dex/quick/arm/int_arm.cc
new file mode 100644
index 0000000..0018d44
--- /dev/null
+++ b/src/compiler/dex/quick/arm/int_arm.cc
@@ -0,0 +1,1190 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This file contains codegen for the Thumb2 ISA. */
+
+#include "arm_lir.h"
+#include "codegen_arm.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+#include "oat_compilation_unit.h"
+
+namespace art {
+
+LIR* ArmCodegen::OpCmpBranch(CompilationUnit* cu, ConditionCode cond, int src1,
+         int src2, LIR* target)
+{
+  OpRegReg(cu, kOpCmp, src1, src2);
+  return OpCondBranch(cu, cond, target);
+}
+
+/*
+ * Generate a Thumb2 IT instruction, which can nullify up to
+ * four subsequent instructions based on a condition and its
+ * inverse.  The condition applies to the first instruction, which
+ * is executed if the condition is met.  The string "guide" consists
+ * of 0 to 3 chars, and applies to the 2nd through 4th instruction.
+ * A "T" means the instruction is executed if the condition is
+ * met, and an "E" means the instruction is executed if the condition
+ * is not met.
+ */
+LIR* ArmCodegen::OpIT(CompilationUnit* cu, ConditionCode ccode, const char* guide)
+{
+  int mask;
+  int mask3 = 0;
+  int mask2 = 0;
+  int mask1 = 0;
+  ArmConditionCode code = ArmConditionEncoding(ccode);
+  int cond_bit = code & 1;
+  int alt_bit = cond_bit ^ 1;
+
+  //Note: case fallthroughs intentional
+  switch (strlen(guide)) {
+    case 3:
+      mask1 = (guide[2] == 'T') ? cond_bit : alt_bit;
+    case 2:
+      mask2 = (guide[1] == 'T') ? cond_bit : alt_bit;
+    case 1:
+      mask3 = (guide[0] == 'T') ? cond_bit : alt_bit;
+      break;
+    case 0:
+      break;
+    default:
+      LOG(FATAL) << "OAT: bad case in OpIT";
+  }
+  mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
+       (1 << (3 - strlen(guide)));
+  return NewLIR2(cu, kThumb2It, code, mask);
+}
+
+/*
+ * 64-bit 3way compare function.
+ *     mov   rX, #-1
+ *     cmp   op1hi, op2hi
+ *     blt   done
+ *     bgt   flip
+ *     sub   rX, op1lo, op2lo (treat as unsigned)
+ *     beq   done
+ *     ite   hi
+ *     mov(hi)   rX, #-1
+ *     mov(!hi)  rX, #1
+ * flip:
+ *     neg   rX
+ * done:
+ */
+void ArmCodegen::GenCmpLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  LIR* target1;
+  LIR* target2;
+  rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+  rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+  int t_reg = AllocTemp(cu);
+  LoadConstant(cu, t_reg, -1);
+  OpRegReg(cu, kOpCmp, rl_src1.high_reg, rl_src2.high_reg);
+  LIR* branch1 = OpCondBranch(cu, kCondLt, NULL);
+  LIR* branch2 = OpCondBranch(cu, kCondGt, NULL);
+  OpRegRegReg(cu, kOpSub, t_reg, rl_src1.low_reg, rl_src2.low_reg);
+  LIR* branch3 = OpCondBranch(cu, kCondEq, NULL);
+
+  OpIT(cu, kCondHi, "E");
+  NewLIR2(cu, kThumb2MovImmShift, t_reg, ModifiedImmediate(-1));
+  LoadConstant(cu, t_reg, 1);
+  GenBarrier(cu);
+
+  target2 = NewLIR0(cu, kPseudoTargetLabel);
+  OpRegReg(cu, kOpNeg, t_reg, t_reg);
+
+  target1 = NewLIR0(cu, kPseudoTargetLabel);
+
+  RegLocation rl_temp = LocCReturn(); // Just using as template, will change
+  rl_temp.low_reg = t_reg;
+  StoreValue(cu, rl_dest, rl_temp);
+  FreeTemp(cu, t_reg);
+
+  branch1->target = target1;
+  branch2->target = target2;
+  branch3->target = branch1->target;
+}
+
+void ArmCodegen::GenFusedLongCmpImmBranch(CompilationUnit* cu, BasicBlock* bb, RegLocation rl_src1,
+                                          int64_t val, ConditionCode ccode)
+{
+  int32_t val_lo = Low32Bits(val);
+  int32_t val_hi = High32Bits(val);
+  DCHECK(ModifiedImmediate(val_lo) >= 0);
+  DCHECK(ModifiedImmediate(val_hi) >= 0);
+  LIR* label_list = cu->block_label_list;
+  LIR* taken = &label_list[bb->taken->id];
+  LIR* not_taken = &label_list[bb->fall_through->id];
+  rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+  int32_t low_reg = rl_src1.low_reg;
+  int32_t high_reg = rl_src1.high_reg;
+
+  switch(ccode) {
+    case kCondEq:
+    case kCondNe:
+      LIR* target;
+      ConditionCode condition;
+      if (ccode == kCondEq) {
+        target = not_taken;
+        condition = kCondEq;
+      } else {
+        target = taken;
+        condition = kCondNe;
+      }
+      if (val == 0) {
+        int t_reg = AllocTemp(cu);
+        NewLIR4(cu, kThumb2OrrRRRs, t_reg, low_reg, high_reg, 0);
+        FreeTemp(cu, t_reg);
+        OpCondBranch(cu, condition, taken);
+        return;
+      }
+      OpCmpImmBranch(cu, kCondNe, high_reg, val_hi, target);
+      break;
+    case kCondLt:
+      OpCmpImmBranch(cu, kCondLt, high_reg, val_hi, taken);
+      OpCmpImmBranch(cu, kCondGt, high_reg, val_hi, not_taken);
+      ccode = kCondCc;
+      break;
+    case kCondLe:
+      OpCmpImmBranch(cu, kCondLt, high_reg, val_hi, taken);
+      OpCmpImmBranch(cu, kCondGt, high_reg, val_hi, not_taken);
+      ccode = kCondLs;
+      break;
+    case kCondGt:
+      OpCmpImmBranch(cu, kCondGt, high_reg, val_hi, taken);
+      OpCmpImmBranch(cu, kCondLt, high_reg, val_hi, not_taken);
+      ccode = kCondHi;
+      break;
+    case kCondGe:
+      OpCmpImmBranch(cu, kCondGt, high_reg, val_hi, taken);
+      OpCmpImmBranch(cu, kCondLt, high_reg, val_hi, not_taken);
+      ccode = kCondCs;
+      break;
+    default:
+      LOG(FATAL) << "Unexpected ccode: " << ccode;
+  }
+  OpCmpImmBranch(cu, ccode, low_reg, val_lo, taken);
+}
+
+void ArmCodegen::GenSelect(CompilationUnit* cu, BasicBlock* bb, MIR* mir)
+{
+  RegLocation rl_result;
+  RegLocation rl_src = GetSrc(cu, mir, 0);
+  // Temporary debugging code
+  int dest_sreg = mir->ssa_rep->defs[0];
+  if ((dest_sreg < 0) || (dest_sreg >= cu->num_ssa_regs)) {
+    LOG(INFO) << "Bad target sreg: " << dest_sreg << ", in "
+              << PrettyMethod(cu->method_idx,*cu->dex_file);
+    LOG(INFO) << "at dex offset 0x" << std::hex << mir->offset;
+    LOG(INFO) << "vreg = " << SRegToVReg(cu, dest_sreg);
+    LOG(INFO) << "num uses = " << mir->ssa_rep->num_uses;
+    if (mir->ssa_rep->num_uses == 1) {
+      LOG(INFO) << "CONST case, vals = " << mir->dalvikInsn.vB << ", " << mir->dalvikInsn.vC;
+    } else {
+      LOG(INFO) << "MOVE case, operands = " << mir->ssa_rep->uses[1] << ", "
+                << mir->ssa_rep->uses[2];
+    }
+    CHECK(false) << "Invalid target sreg on Select.";
+  }
+  // End temporary debugging code
+  RegLocation rl_dest = GetDest(cu, mir);
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  if (mir->ssa_rep->num_uses == 1) {
+    // CONST case
+    int true_val = mir->dalvikInsn.vB;
+    int false_val = mir->dalvikInsn.vC;
+    rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+    if ((true_val == 1) && (false_val == 0)) {
+      OpRegRegImm(cu, kOpRsub, rl_result.low_reg, rl_src.low_reg, 1);
+      OpIT(cu, kCondCc, "");
+      LoadConstant(cu, rl_result.low_reg, 0);
+      GenBarrier(cu); // Add a scheduling barrier to keep the IT shadow intact
+    } else if (InexpensiveConstantInt(true_val) && InexpensiveConstantInt(false_val)) {
+      OpRegImm(cu, kOpCmp, rl_src.low_reg, 0);
+      OpIT(cu, kCondEq, "E");
+      LoadConstant(cu, rl_result.low_reg, true_val);
+      LoadConstant(cu, rl_result.low_reg, false_val);
+      GenBarrier(cu); // Add a scheduling barrier to keep the IT shadow intact
+    } else {
+      // Unlikely case - could be tuned.
+      int t_reg1 = AllocTemp(cu);
+      int t_reg2 = AllocTemp(cu);
+      LoadConstant(cu, t_reg1, true_val);
+      LoadConstant(cu, t_reg2, false_val);
+      OpRegImm(cu, kOpCmp, rl_src.low_reg, 0);
+      OpIT(cu, kCondEq, "E");
+      OpRegCopy(cu, rl_result.low_reg, t_reg1);
+      OpRegCopy(cu, rl_result.low_reg, t_reg2);
+      GenBarrier(cu); // Add a scheduling barrier to keep the IT shadow intact
+    }
+  } else {
+    // MOVE case
+    RegLocation rl_true = cu->reg_location[mir->ssa_rep->uses[1]];
+    RegLocation rl_false = cu->reg_location[mir->ssa_rep->uses[2]];
+    rl_true = LoadValue(cu, rl_true, kCoreReg);
+    rl_false = LoadValue(cu, rl_false, kCoreReg);
+    rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+    OpRegImm(cu, kOpCmp, rl_src.low_reg, 0);
+    OpIT(cu, kCondEq, "E");
+    LIR* l1 = OpRegCopy(cu, rl_result.low_reg, rl_true.low_reg);
+    l1->flags.is_nop = false;  // Make sure this instruction isn't optimized away
+    LIR* l2 = OpRegCopy(cu, rl_result.low_reg, rl_false.low_reg);
+    l2->flags.is_nop = false;  // Make sure this instruction isn't optimized away
+    GenBarrier(cu); // Add a scheduling barrier to keep the IT shadow intact
+  }
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void ArmCodegen::GenFusedLongCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir)
+{
+  RegLocation rl_src1 = GetSrcWide(cu, mir, 0);
+  RegLocation rl_src2 = GetSrcWide(cu, mir, 2);
+  // Normalize such that if either operand is constant, src2 will be constant.
+  ConditionCode ccode = static_cast<ConditionCode>(mir->dalvikInsn.arg[0]);
+  if (rl_src1.is_const) {
+    RegLocation rl_temp = rl_src1;
+    rl_src1 = rl_src2;
+    rl_src2 = rl_temp;
+    ccode = FlipComparisonOrder(ccode);
+  }
+  if (rl_src2.is_const) {
+    RegLocation rl_temp = UpdateLocWide(cu, rl_src2);
+    // Do special compare/branch against simple const operand if not already in registers.
+    int64_t val = ConstantValueWide(cu, rl_src2);
+    if ((rl_temp.location != kLocPhysReg) &&
+        ((ModifiedImmediate(Low32Bits(val)) >= 0) && (ModifiedImmediate(High32Bits(val)) >= 0))) {
+      GenFusedLongCmpImmBranch(cu, bb, rl_src1, val, ccode);
+      return;
+    }
+  }
+  LIR* label_list = cu->block_label_list;
+  LIR* taken = &label_list[bb->taken->id];
+  LIR* not_taken = &label_list[bb->fall_through->id];
+  rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+  rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+  OpRegReg(cu, kOpCmp, rl_src1.high_reg, rl_src2.high_reg);
+  switch(ccode) {
+    case kCondEq:
+      OpCondBranch(cu, kCondNe, not_taken);
+      break;
+    case kCondNe:
+      OpCondBranch(cu, kCondNe, taken);
+      break;
+    case kCondLt:
+      OpCondBranch(cu, kCondLt, taken);
+      OpCondBranch(cu, kCondGt, not_taken);
+      ccode = kCondCc;
+      break;
+    case kCondLe:
+      OpCondBranch(cu, kCondLt, taken);
+      OpCondBranch(cu, kCondGt, not_taken);
+      ccode = kCondLs;
+      break;
+    case kCondGt:
+      OpCondBranch(cu, kCondGt, taken);
+      OpCondBranch(cu, kCondLt, not_taken);
+      ccode = kCondHi;
+      break;
+    case kCondGe:
+      OpCondBranch(cu, kCondGt, taken);
+      OpCondBranch(cu, kCondLt, not_taken);
+      ccode = kCondCs;
+      break;
+    default:
+      LOG(FATAL) << "Unexpected ccode: " << ccode;
+  }
+  OpRegReg(cu, kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
+  OpCondBranch(cu, ccode, taken);
+}
+
+/*
+ * Generate a register comparison to an immediate and branch.  Caller
+ * is responsible for setting branch target field.
+ */
+LIR* ArmCodegen::OpCmpImmBranch(CompilationUnit* cu, ConditionCode cond, int reg, int check_value,
+                                LIR* target)
+{
+  LIR* branch;
+  int mod_imm;
+  ArmConditionCode arm_cond = ArmConditionEncoding(cond);
+  if ((ARM_LOWREG(reg)) && (check_value == 0) &&
+     ((arm_cond == kArmCondEq) || (arm_cond == kArmCondNe))) {
+    branch = NewLIR2(cu, (arm_cond == kArmCondEq) ? kThumb2Cbz : kThumb2Cbnz,
+                     reg, 0);
+  } else {
+    mod_imm = ModifiedImmediate(check_value);
+    if (ARM_LOWREG(reg) && ((check_value & 0xff) == check_value)) {
+      NewLIR2(cu, kThumbCmpRI8, reg, check_value);
+    } else if (mod_imm >= 0) {
+      NewLIR2(cu, kThumb2CmpRI12, reg, mod_imm);
+    } else {
+      int t_reg = AllocTemp(cu);
+      LoadConstant(cu, t_reg, check_value);
+      OpRegReg(cu, kOpCmp, reg, t_reg);
+    }
+    branch = NewLIR2(cu, kThumbBCond, 0, arm_cond);
+  }
+  branch->target = target;
+  return branch;
+}
+
+LIR* ArmCodegen::OpRegCopyNoInsert(CompilationUnit* cu, int r_dest, int r_src)
+{
+  LIR* res;
+  int opcode;
+  if (ARM_FPREG(r_dest) || ARM_FPREG(r_src))
+    return OpFpRegCopy(cu, r_dest, r_src);
+  if (ARM_LOWREG(r_dest) && ARM_LOWREG(r_src))
+    opcode = kThumbMovRR;
+  else if (!ARM_LOWREG(r_dest) && !ARM_LOWREG(r_src))
+     opcode = kThumbMovRR_H2H;
+  else if (ARM_LOWREG(r_dest))
+     opcode = kThumbMovRR_H2L;
+  else
+     opcode = kThumbMovRR_L2H;
+  res = RawLIR(cu, cu->current_dalvik_offset, opcode, r_dest, r_src);
+  if (!(cu->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
+    res->flags.is_nop = true;
+  }
+  return res;
+}
+
+LIR* ArmCodegen::OpRegCopy(CompilationUnit* cu, int r_dest, int r_src)
+{
+  LIR* res = OpRegCopyNoInsert(cu, r_dest, r_src);
+  AppendLIR(cu, res);
+  return res;
+}
+
+void ArmCodegen::OpRegCopyWide(CompilationUnit* cu, int dest_lo, int dest_hi, int src_lo,
+                               int src_hi)
+{
+  bool dest_fp = ARM_FPREG(dest_lo) && ARM_FPREG(dest_hi);
+  bool src_fp = ARM_FPREG(src_lo) && ARM_FPREG(src_hi);
+  DCHECK_EQ(ARM_FPREG(src_lo), ARM_FPREG(src_hi));
+  DCHECK_EQ(ARM_FPREG(dest_lo), ARM_FPREG(dest_hi));
+  if (dest_fp) {
+    if (src_fp) {
+      OpRegCopy(cu, S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
+    } else {
+      NewLIR3(cu, kThumb2Fmdrr, S2d(dest_lo, dest_hi), src_lo, src_hi);
+    }
+  } else {
+    if (src_fp) {
+      NewLIR3(cu, kThumb2Fmrrd, dest_lo, dest_hi, S2d(src_lo, src_hi));
+    } else {
+      // Handle overlap
+      if (src_hi == dest_lo) {
+        OpRegCopy(cu, dest_hi, src_hi);
+        OpRegCopy(cu, dest_lo, src_lo);
+      } else {
+        OpRegCopy(cu, dest_lo, src_lo);
+        OpRegCopy(cu, dest_hi, src_hi);
+      }
+    }
+  }
+}
+
+// Table of magic divisors
+struct MagicTable {
+  uint32_t magic;
+  uint32_t shift;
+  DividePattern pattern;
+};
+
+static const MagicTable magic_table[] = {
+  {0, 0, DivideNone},        // 0
+  {0, 0, DivideNone},        // 1
+  {0, 0, DivideNone},        // 2
+  {0x55555556, 0, Divide3},  // 3
+  {0, 0, DivideNone},        // 4
+  {0x66666667, 1, Divide5},  // 5
+  {0x2AAAAAAB, 0, Divide3},  // 6
+  {0x92492493, 2, Divide7},  // 7
+  {0, 0, DivideNone},        // 8
+  {0x38E38E39, 1, Divide5},  // 9
+  {0x66666667, 2, Divide5},  // 10
+  {0x2E8BA2E9, 1, Divide5},  // 11
+  {0x2AAAAAAB, 1, Divide5},  // 12
+  {0x4EC4EC4F, 2, Divide5},  // 13
+  {0x92492493, 3, Divide7},  // 14
+  {0x88888889, 3, Divide7},  // 15
+};
+
+// Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4)
+bool ArmCodegen::SmallLiteralDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
+                                    RegLocation rl_src, RegLocation rl_dest, int lit)
+{
+  if ((lit < 0) || (lit >= static_cast<int>(sizeof(magic_table)/sizeof(magic_table[0])))) {
+    return false;
+  }
+  DividePattern pattern = magic_table[lit].pattern;
+  if (pattern == DivideNone) {
+    return false;
+  }
+  // Tuning: add rem patterns
+  if (dalvik_opcode != Instruction::DIV_INT_LIT8) {
+    return false;
+  }
+
+  int r_magic = AllocTemp(cu);
+  LoadConstant(cu, r_magic, magic_table[lit].magic);
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  int r_hi = AllocTemp(cu);
+  int r_lo = AllocTemp(cu);
+  NewLIR4(cu, kThumb2Smull, r_lo, r_hi, r_magic, rl_src.low_reg);
+  switch(pattern) {
+    case Divide3:
+      OpRegRegRegShift(cu, kOpSub, rl_result.low_reg, r_hi,
+               rl_src.low_reg, EncodeShift(kArmAsr, 31));
+      break;
+    case Divide5:
+      OpRegRegImm(cu, kOpAsr, r_lo, rl_src.low_reg, 31);
+      OpRegRegRegShift(cu, kOpRsub, rl_result.low_reg, r_lo, r_hi,
+               EncodeShift(kArmAsr, magic_table[lit].shift));
+      break;
+    case Divide7:
+      OpRegReg(cu, kOpAdd, r_hi, rl_src.low_reg);
+      OpRegRegImm(cu, kOpAsr, r_lo, rl_src.low_reg, 31);
+      OpRegRegRegShift(cu, kOpRsub, rl_result.low_reg, r_lo, r_hi,
+               EncodeShift(kArmAsr, magic_table[lit].shift));
+      break;
+    default:
+      LOG(FATAL) << "Unexpected pattern: " << pattern;
+  }
+  StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+LIR* ArmCodegen::GenRegMemCheck(CompilationUnit* cu, ConditionCode c_code,
+                    int reg1, int base, int offset, ThrowKind kind)
+{
+  LOG(FATAL) << "Unexpected use of GenRegMemCheck for Arm";
+  return NULL;
+}
+
+RegLocation ArmCodegen::GenDivRemLit(CompilationUnit* cu, RegLocation rl_dest, int reg1, int lit,
+                                     bool is_div)
+{
+  LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm";
+  return rl_dest;
+}
+
+RegLocation ArmCodegen::GenDivRem(CompilationUnit* cu, RegLocation rl_dest, int reg1, int reg2,
+                                  bool is_div)
+{
+  LOG(FATAL) << "Unexpected use of GenDivRem for Arm";
+  return rl_dest;
+}
+
+bool ArmCodegen::GenInlinedMinMaxInt(CompilationUnit *cu, CallInfo* info, bool is_min)
+{
+  DCHECK_EQ(cu->instruction_set, kThumb2);
+  RegLocation rl_src1 = info->args[0];
+  RegLocation rl_src2 = info->args[1];
+  rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+  rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+  RegLocation rl_dest = InlineTarget(cu, info);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  OpRegReg(cu, kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
+  OpIT(cu, (is_min) ? kCondGt : kCondLt, "E");
+  OpRegReg(cu, kOpMov, rl_result.low_reg, rl_src2.low_reg);
+  OpRegReg(cu, kOpMov, rl_result.low_reg, rl_src1.low_reg);
+  GenBarrier(cu);
+  StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+void ArmCodegen::OpLea(CompilationUnit* cu, int rBase, int reg1, int reg2, int scale, int offset)
+{
+  LOG(FATAL) << "Unexpected use of OpLea for Arm";
+}
+
+void ArmCodegen::OpTlsCmp(CompilationUnit* cu, int offset, int val)
+{
+  LOG(FATAL) << "Unexpected use of OpTlsCmp for Arm";
+}
+
+bool ArmCodegen::GenInlinedCas32(CompilationUnit* cu, CallInfo* info, bool need_write_barrier) {
+  DCHECK_EQ(cu->instruction_set, kThumb2);
+  // Unused - RegLocation rl_src_unsafe = info->args[0];
+  RegLocation rl_src_obj= info->args[1];  // Object - known non-null
+  RegLocation rl_src_offset= info->args[2];  // long low
+  rl_src_offset.wide = 0;  // ignore high half in info->args[3]
+  RegLocation rl_src_expected= info->args[4];  // int or Object
+  RegLocation rl_src_new_value= info->args[5];  // int or Object
+  RegLocation rl_dest = InlineTarget(cu, info);  // boolean place for result
+
+
+  // Release store semantics, get the barrier out of the way.  TODO: revisit
+  GenMemBarrier(cu, kStoreLoad);
+
+  RegLocation rl_object = LoadValue(cu, rl_src_obj, kCoreReg);
+  RegLocation rl_new_value = LoadValue(cu, rl_src_new_value, kCoreReg);
+
+  if (need_write_barrier && !IsConstantNullRef(cu, rl_new_value)) {
+    // Mark card for object assuming new value is stored.
+    MarkGCCard(cu, rl_new_value.low_reg, rl_object.low_reg);
+  }
+
+  RegLocation rl_offset = LoadValue(cu, rl_src_offset, kCoreReg);
+
+  int r_ptr = AllocTemp(cu);
+  OpRegRegReg(cu, kOpAdd, r_ptr, rl_object.low_reg, rl_offset.low_reg);
+
+  // Free now unneeded rl_object and rl_offset to give more temps.
+  ClobberSReg(cu, rl_object.s_reg_low);
+  FreeTemp(cu, rl_object.low_reg);
+  ClobberSReg(cu, rl_offset.s_reg_low);
+  FreeTemp(cu, rl_offset.low_reg);
+
+  int r_old_value = AllocTemp(cu);
+  NewLIR3(cu, kThumb2Ldrex, r_old_value, r_ptr, 0);  // r_old_value := [r_ptr]
+
+  RegLocation rl_expected = LoadValue(cu, rl_src_expected, kCoreReg);
+
+  // if (r_old_value == rExpected) {
+  //   [r_ptr] <- r_new_value && r_result := success ? 0 : 1
+  //   r_result ^= 1
+  // } else {
+  //   r_result := 0
+  // }
+  OpRegReg(cu, kOpCmp, r_old_value, rl_expected.low_reg);
+  FreeTemp(cu, r_old_value);  // Now unneeded.
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  OpIT(cu, kCondEq, "TE");
+  NewLIR4(cu, kThumb2Strex, rl_result.low_reg, rl_new_value.low_reg, r_ptr, 0);
+  FreeTemp(cu, r_ptr);  // Now unneeded.
+  OpRegImm(cu, kOpXor, rl_result.low_reg, 1);
+  OpRegReg(cu, kOpXor, rl_result.low_reg, rl_result.low_reg);
+
+  StoreValue(cu, rl_dest, rl_result);
+
+  return true;
+}
+
+LIR* ArmCodegen::OpPcRelLoad(CompilationUnit* cu, int reg, LIR* target)
+{
+  return RawLIR(cu, cu->current_dalvik_offset, kThumb2LdrPcRel12, reg, 0, 0, 0, 0, target);
+}
+
+LIR* ArmCodegen::OpVldm(CompilationUnit* cu, int rBase, int count)
+{
+  return NewLIR3(cu, kThumb2Vldms, rBase, fr0, count);
+}
+
+LIR* ArmCodegen::OpVstm(CompilationUnit* cu, int rBase, int count)
+{
+  return NewLIR3(cu, kThumb2Vstms, rBase, fr0, count);
+}
+
+void ArmCodegen::GenMultiplyByTwoBitMultiplier(CompilationUnit* cu, RegLocation rl_src,
+                                               RegLocation rl_result, int lit,
+                                               int first_bit, int second_bit)
+{
+  OpRegRegRegShift(cu, kOpAdd, rl_result.low_reg, rl_src.low_reg, rl_src.low_reg,
+                   EncodeShift(kArmLsl, second_bit - first_bit));
+  if (first_bit != 0) {
+    OpRegRegImm(cu, kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
+  }
+}
+
+void ArmCodegen::GenDivZeroCheck(CompilationUnit* cu, int reg_lo, int reg_hi)
+{
+  int t_reg = AllocTemp(cu);
+  NewLIR4(cu, kThumb2OrrRRRs, t_reg, reg_lo, reg_hi, 0);
+  FreeTemp(cu, t_reg);
+  GenCheck(cu, kCondEq, kThrowDivZero);
+}
+
+// Test suspend flag, return target of taken suspend branch
+LIR* ArmCodegen::OpTestSuspend(CompilationUnit* cu, LIR* target)
+{
+  NewLIR2(cu, kThumbSubRI8, rARM_SUSPEND, 1);
+  return OpCondBranch(cu, (target == NULL) ? kCondEq : kCondNe, target);
+}
+
+// Decrement register and branch on condition
+LIR* ArmCodegen::OpDecAndBranch(CompilationUnit* cu, ConditionCode c_code, int reg, LIR* target)
+{
+  // Combine sub & test using sub setflags encoding here
+  NewLIR3(cu, kThumb2SubsRRI12, reg, reg, 1);
+  return OpCondBranch(cu, c_code, target);
+}
+
+void ArmCodegen::GenMemBarrier(CompilationUnit* cu, MemBarrierKind barrier_kind)
+{
+#if ANDROID_SMP != 0
+  int dmb_flavor;
+  // TODO: revisit Arm barrier kinds
+  switch (barrier_kind) {
+    case kLoadStore: dmb_flavor = kSY; break;
+    case kLoadLoad: dmb_flavor = kSY; break;
+    case kStoreStore: dmb_flavor = kST; break;
+    case kStoreLoad: dmb_flavor = kSY; break;
+    default:
+      LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind;
+      dmb_flavor = kSY;  // quiet gcc.
+      break;
+  }
+  LIR* dmb = NewLIR1(cu, kThumb2Dmb, dmb_flavor);
+  dmb->def_mask = ENCODE_ALL;
+#endif
+}
+
+void ArmCodegen::GenNegLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  rl_src = LoadValueWide(cu, rl_src, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  int z_reg = AllocTemp(cu);
+  LoadConstantNoClobber(cu, z_reg, 0);
+  // Check for destructive overlap
+  if (rl_result.low_reg == rl_src.high_reg) {
+    int t_reg = AllocTemp(cu);
+    OpRegRegReg(cu, kOpSub, rl_result.low_reg, z_reg, rl_src.low_reg);
+    OpRegRegReg(cu, kOpSbc, rl_result.high_reg, z_reg, t_reg);
+    FreeTemp(cu, t_reg);
+  } else {
+    OpRegRegReg(cu, kOpSub, rl_result.low_reg, z_reg, rl_src.low_reg);
+    OpRegRegReg(cu, kOpSbc, rl_result.high_reg, z_reg, rl_src.high_reg);
+  }
+  FreeTemp(cu, z_reg);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+
+ /*
+  * Check to see if a result pair has a misaligned overlap with an operand pair.  This
+  * is not usual for dx to generate, but it is legal (for now).  In a future rev of
+  * dex, we'll want to make this case illegal.
+  */
+static bool BadOverlap(CompilationUnit* cu, RegLocation rl_src, RegLocation rl_dest)
+{
+  DCHECK(rl_src.wide);
+  DCHECK(rl_dest.wide);
+  return (abs(SRegToVReg(cu, rl_src.s_reg_low) - SRegToVReg(cu, rl_dest.s_reg_low)) == 1);
+}
+
+void ArmCodegen::GenMulLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+    /*
+     * To pull off inline multiply, we have a worst-case requirement of 8 temporary
+     * registers.  Normally for Arm, we get 5.  We can get to 6 by including
+     * lr in the temp set.  The only problematic case is all operands and result are
+     * distinct, and none have been promoted.  In that case, we can succeed by aggressively
+     * freeing operand temp registers after they are no longer needed.  All other cases
+     * can proceed normally.  We'll just punt on the case of the result having a misaligned
+     * overlap with either operand and send that case to a runtime handler.
+     */
+    RegLocation rl_result;
+    if (BadOverlap(cu, rl_src1, rl_dest) || (BadOverlap(cu, rl_src2, rl_dest))) {
+      int func_offset = ENTRYPOINT_OFFSET(pLmul);
+      FlushAllRegs(cu);
+      CallRuntimeHelperRegLocationRegLocation(cu, func_offset, rl_src1, rl_src2, false);
+      rl_result = GetReturnWide(cu, false);
+      StoreValueWide(cu, rl_dest, rl_result);
+      return;
+    }
+    // Temporarily add LR to the temp pool, and assign it to tmp1
+    MarkTemp(cu, rARM_LR);
+    FreeTemp(cu, rARM_LR);
+    int tmp1 = rARM_LR;
+    LockTemp(cu, rARM_LR);
+
+    rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+    rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+
+    bool special_case = true;
+    // If operands are the same, or any pair has been promoted we're not the special case.
+    if ((rl_src1.s_reg_low == rl_src2.s_reg_low) ||
+        (!IsTemp(cu, rl_src1.low_reg) && !IsTemp(cu, rl_src1.high_reg)) ||
+        (!IsTemp(cu, rl_src2.low_reg) && !IsTemp(cu, rl_src2.high_reg))) {
+      special_case = false;
+    }
+    // Tuning: if rl_dest has been promoted and is *not* either operand, could use directly.
+    int res_lo = AllocTemp(cu);
+    int res_hi;
+    if (rl_src1.low_reg == rl_src2.low_reg) {
+      res_hi = AllocTemp(cu);
+      NewLIR3(cu, kThumb2MulRRR, tmp1, rl_src1.low_reg, rl_src1.high_reg);
+      NewLIR4(cu, kThumb2Umull, res_lo, res_hi, rl_src1.low_reg, rl_src1.low_reg);
+      OpRegRegRegShift(cu, kOpAdd, res_hi, res_hi, tmp1, EncodeShift(kArmLsl, 1));
+    } else {
+      // In the special case, all temps are now allocated
+      NewLIR3(cu, kThumb2MulRRR, tmp1, rl_src2.low_reg, rl_src1.high_reg);
+      if (special_case) {
+        DCHECK_NE(rl_src1.low_reg, rl_src2.low_reg);
+        DCHECK_NE(rl_src1.high_reg, rl_src2.high_reg);
+        FreeTemp(cu, rl_src1.high_reg);
+      }
+      res_hi = AllocTemp(cu);
+
+      NewLIR4(cu, kThumb2Umull, res_lo, res_hi, rl_src2.low_reg, rl_src1.low_reg);
+      NewLIR4(cu, kThumb2Mla, tmp1, rl_src1.low_reg, rl_src2.high_reg, tmp1);
+      NewLIR4(cu, kThumb2AddRRR, res_hi, tmp1, res_hi, 0);
+      if (special_case) {
+        FreeTemp(cu, rl_src1.low_reg);
+        Clobber(cu, rl_src1.low_reg);
+        Clobber(cu, rl_src1.high_reg);
+      }
+    }
+    FreeTemp(cu, tmp1);
+    rl_result = GetReturnWide(cu, false); // Just using as a template.
+    rl_result.low_reg = res_lo;
+    rl_result.high_reg = res_hi;
+    StoreValueWide(cu, rl_dest, rl_result);
+    // Now, restore lr to its non-temp status.
+    Clobber(cu, rARM_LR);
+    UnmarkTemp(cu, rARM_LR);
+}
+
+void ArmCodegen::GenAddLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of GenAddLong for Arm";
+}
+
+void ArmCodegen::GenSubLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of GenSubLong for Arm";
+}
+
+void ArmCodegen::GenAndLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of GenAndLong for Arm";
+}
+
+void ArmCodegen::GenOrLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                           RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of GenOrLong for Arm";
+}
+
+void ArmCodegen::GenXorLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of genXoLong for Arm";
+}
+
+/*
+ * Generate array load
+ */
+void ArmCodegen::GenArrayGet(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                          RegLocation rl_index, RegLocation rl_dest, int scale)
+{
+  RegisterClass reg_class = oat_reg_class_by_size(size);
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  int data_offset;
+  RegLocation rl_result;
+  bool constant_index = rl_index.is_const;
+  rl_array = LoadValue(cu, rl_array, kCoreReg);
+  if (!constant_index) {
+    rl_index = LoadValue(cu, rl_index, kCoreReg);
+  }
+
+  if (rl_dest.wide) {
+    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
+  } else {
+    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
+  }
+
+  // If index is constant, just fold it into the data offset
+  if (constant_index) {
+    data_offset += ConstantValue(cu, rl_index) << scale;
+  }
+
+  /* null object? */
+  GenNullCheck(cu, rl_array.s_reg_low, rl_array.low_reg, opt_flags);
+
+  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
+  int reg_len = INVALID_REG;
+  if (needs_range_check) {
+    reg_len = AllocTemp(cu);
+    /* Get len */
+    LoadWordDisp(cu, rl_array.low_reg, len_offset, reg_len);
+  }
+  if (rl_dest.wide || rl_dest.fp || constant_index) {
+    int reg_ptr;
+    if (constant_index) {
+      reg_ptr = rl_array.low_reg;  // NOTE: must not alter reg_ptr in constant case.
+    } else {
+      // No special indexed operation, lea + load w/ displacement
+      reg_ptr = AllocTemp(cu);
+      OpRegRegRegShift(cu, kOpAdd, reg_ptr, rl_array.low_reg, rl_index.low_reg,
+                       EncodeShift(kArmLsl, scale));
+      FreeTemp(cu, rl_index.low_reg);
+    }
+    rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+
+    if (needs_range_check) {
+      if (constant_index) {
+        GenImmedCheck(cu, kCondLs, reg_len, ConstantValue(cu, rl_index), kThrowConstantArrayBounds);
+      } else {
+        GenRegRegCheck(cu, kCondLs, reg_len, rl_index.low_reg, kThrowArrayBounds);
+      }
+      FreeTemp(cu, reg_len);
+    }
+    if (rl_dest.wide) {
+      LoadBaseDispWide(cu, reg_ptr, data_offset, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
+      if (!constant_index) {
+        FreeTemp(cu, reg_ptr);
+      }
+      StoreValueWide(cu, rl_dest, rl_result);
+    } else {
+      LoadBaseDisp(cu, reg_ptr, data_offset, rl_result.low_reg, size, INVALID_SREG);
+      if (!constant_index) {
+        FreeTemp(cu, reg_ptr);
+      }
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  } else {
+    // Offset base, then use indexed load
+    int reg_ptr = AllocTemp(cu);
+    OpRegRegImm(cu, kOpAdd, reg_ptr, rl_array.low_reg, data_offset);
+    FreeTemp(cu, rl_array.low_reg);
+    rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+
+    if (needs_range_check) {
+      // TODO: change kCondCS to a more meaningful name, is the sense of
+      // carry-set/clear flipped?
+      GenRegRegCheck(cu, kCondCs, rl_index.low_reg, reg_len, kThrowArrayBounds);
+      FreeTemp(cu, reg_len);
+    }
+    LoadBaseIndexed(cu, reg_ptr, rl_index.low_reg, rl_result.low_reg, scale, size);
+    FreeTemp(cu, reg_ptr);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+/*
+ * Generate array store
+ *
+ */
+void ArmCodegen::GenArrayPut(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                          RegLocation rl_index, RegLocation rl_src, int scale)
+{
+  RegisterClass reg_class = oat_reg_class_by_size(size);
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  int data_offset;
+  bool constant_index = rl_index.is_const;
+
+  if (rl_src.wide) {
+    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
+  } else {
+    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
+  }
+
+  // If index is constant, just fold it into the data offset.
+  if (constant_index) {
+    data_offset += ConstantValue(cu, rl_index) << scale;
+  }
+
+  rl_array = LoadValue(cu, rl_array, kCoreReg);
+  if (!constant_index) {
+    rl_index = LoadValue(cu, rl_index, kCoreReg);
+  }
+
+  int reg_ptr;
+  if (constant_index) {
+    reg_ptr = rl_array.low_reg;
+  } else if (IsTemp(cu, rl_array.low_reg)) {
+    Clobber(cu, rl_array.low_reg);
+    reg_ptr = rl_array.low_reg;
+  } else {
+    reg_ptr = AllocTemp(cu);
+  }
+
+  /* null object? */
+  GenNullCheck(cu, rl_array.s_reg_low, rl_array.low_reg, opt_flags);
+
+  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
+  int reg_len = INVALID_REG;
+  if (needs_range_check) {
+    reg_len = AllocTemp(cu);
+    //NOTE: max live temps(4) here.
+    /* Get len */
+    LoadWordDisp(cu, rl_array.low_reg, len_offset, reg_len);
+  }
+  /* at this point, reg_ptr points to array, 2 live temps */
+  if (rl_src.wide || rl_src.fp || constant_index) {
+    if (rl_src.wide) {
+      rl_src = LoadValueWide(cu, rl_src, reg_class);
+    } else {
+      rl_src = LoadValue(cu, rl_src, reg_class);
+    }
+    if (!constant_index) {
+      OpRegRegRegShift(cu, kOpAdd, reg_ptr, rl_array.low_reg, rl_index.low_reg,
+                       EncodeShift(kArmLsl, scale));
+    }
+    if (needs_range_check) {
+      if (constant_index) {
+        GenImmedCheck(cu, kCondLs, reg_len, ConstantValue(cu, rl_index), kThrowConstantArrayBounds);
+      } else {
+        GenRegRegCheck(cu, kCondLs, reg_len, rl_index.low_reg, kThrowArrayBounds);
+      }
+      FreeTemp(cu, reg_len);
+    }
+
+    if (rl_src.wide) {
+      StoreBaseDispWide(cu, reg_ptr, data_offset, rl_src.low_reg, rl_src.high_reg);
+    } else {
+      StoreBaseDisp(cu, reg_ptr, data_offset, rl_src.low_reg, size);
+    }
+  } else {
+    /* reg_ptr -> array data */
+    OpRegRegImm(cu, kOpAdd, reg_ptr, rl_array.low_reg, data_offset);
+    rl_src = LoadValue(cu, rl_src, reg_class);
+    if (needs_range_check) {
+      GenRegRegCheck(cu, kCondCs, rl_index.low_reg, reg_len, kThrowArrayBounds);
+      FreeTemp(cu, reg_len);
+    }
+    StoreBaseIndexed(cu, reg_ptr, rl_index.low_reg, rl_src.low_reg,
+                     scale, size);
+  }
+  if (!constant_index) {
+    FreeTemp(cu, reg_ptr);
+  }
+}
+
+/*
+ * Generate array store
+ *
+ */
+void ArmCodegen::GenArrayObjPut(CompilationUnit* cu, int opt_flags, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_src, int scale)
+{
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  int data_offset = mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value();
+
+  FlushAllRegs(cu);  // Use explicit registers
+  LockCallTemps(cu);
+
+  int r_value = TargetReg(kArg0);  // Register holding value
+  int r_array_class = TargetReg(kArg1);  // Register holding array's Class
+  int r_array = TargetReg(kArg2);  // Register holding array
+  int r_index = TargetReg(kArg3);  // Register holding index into array
+
+  LoadValueDirectFixed(cu, rl_array, r_array);  // Grab array
+  LoadValueDirectFixed(cu, rl_src, r_value);  // Grab value
+  LoadValueDirectFixed(cu, rl_index, r_index);  // Grab index
+
+  GenNullCheck(cu, rl_array.s_reg_low, r_array, opt_flags);  // NPE?
+
+  // Store of null?
+  LIR* null_value_check = OpCmpImmBranch(cu, kCondEq, r_value, 0, NULL);
+
+  // Get the array's class.
+  LoadWordDisp(cu, r_array, mirror::Object::ClassOffset().Int32Value(), r_array_class);
+  CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pCanPutArrayElementFromCode), r_value,
+                          r_array_class, true);
+  // Redo LoadValues in case they didn't survive the call.
+  LoadValueDirectFixed(cu, rl_array, r_array);  // Reload array
+  LoadValueDirectFixed(cu, rl_index, r_index);  // Reload index
+  LoadValueDirectFixed(cu, rl_src, r_value);  // Reload value
+  r_array_class = INVALID_REG;
+
+  // Branch here if value to be stored == null
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  null_value_check->target = target;
+
+  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
+  int reg_len = INVALID_REG;
+  if (needs_range_check) {
+    reg_len = TargetReg(kArg1);
+    LoadWordDisp(cu, r_array, len_offset, reg_len);  // Get len
+  }
+  /* r_ptr -> array data */
+  int r_ptr = AllocTemp(cu);
+  OpRegRegImm(cu, kOpAdd, r_ptr, r_array, data_offset);
+  if (needs_range_check) {
+    GenRegRegCheck(cu, kCondCs, r_index, reg_len, kThrowArrayBounds);
+  }
+  StoreBaseIndexed(cu, r_ptr, r_index, r_value, scale, kWord);
+  FreeTemp(cu, r_ptr);
+  FreeTemp(cu, r_index);
+  if (!IsConstantNullRef(cu, rl_src)) {
+    MarkGCCard(cu, r_value, r_array);
+  }
+}
+
+void ArmCodegen::GenShiftImmOpLong(CompilationUnit* cu, Instruction::Code opcode,
+                                   RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift)
+{
+  rl_src = LoadValueWide(cu, rl_src, kCoreReg);
+  // Per spec, we only care about low 6 bits of shift amount.
+  int shift_amount = ConstantValue(cu, rl_shift) & 0x3f;
+  if (shift_amount == 0) {
+    StoreValueWide(cu, rl_dest, rl_src);
+    return;
+  }
+  if (BadOverlap(cu, rl_src, rl_dest)) {
+    GenShiftOpLong(cu, opcode, rl_dest, rl_src, rl_shift);
+    return;
+  }
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  switch(opcode) {
+    case Instruction::SHL_LONG:
+    case Instruction::SHL_LONG_2ADDR:
+      if (shift_amount == 1) {
+        OpRegRegReg(cu, kOpAdd, rl_result.low_reg, rl_src.low_reg, rl_src.low_reg);
+        OpRegRegReg(cu, kOpAdc, rl_result.high_reg, rl_src.high_reg, rl_src.high_reg);
+      } else if (shift_amount == 32) {
+        OpRegCopy(cu, rl_result.high_reg, rl_src.low_reg);
+        LoadConstant(cu, rl_result.low_reg, 0);
+      } else if (shift_amount > 31) {
+        OpRegRegImm(cu, kOpLsl, rl_result.high_reg, rl_src.low_reg, shift_amount - 32);
+        LoadConstant(cu, rl_result.low_reg, 0);
+      } else {
+        OpRegRegImm(cu, kOpLsl, rl_result.high_reg, rl_src.high_reg, shift_amount);
+        OpRegRegRegShift(cu, kOpOr, rl_result.high_reg, rl_result.high_reg, rl_src.low_reg,
+                         EncodeShift(kArmLsr, 32 - shift_amount));
+        OpRegRegImm(cu, kOpLsl, rl_result.low_reg, rl_src.low_reg, shift_amount);
+      }
+      break;
+    case Instruction::SHR_LONG:
+    case Instruction::SHR_LONG_2ADDR:
+      if (shift_amount == 32) {
+        OpRegCopy(cu, rl_result.low_reg, rl_src.high_reg);
+        OpRegRegImm(cu, kOpAsr, rl_result.high_reg, rl_src.high_reg, 31);
+      } else if (shift_amount > 31) {
+        OpRegRegImm(cu, kOpAsr, rl_result.low_reg, rl_src.high_reg, shift_amount - 32);
+        OpRegRegImm(cu, kOpAsr, rl_result.high_reg, rl_src.high_reg, 31);
+      } else {
+        int t_reg = AllocTemp(cu);
+        OpRegRegImm(cu, kOpLsr, t_reg, rl_src.low_reg, shift_amount);
+        OpRegRegRegShift(cu, kOpOr, rl_result.low_reg, t_reg, rl_src.high_reg,
+                         EncodeShift(kArmLsl, 32 - shift_amount));
+        FreeTemp(cu, t_reg);
+        OpRegRegImm(cu, kOpAsr, rl_result.high_reg, rl_src.high_reg, shift_amount);
+      }
+      break;
+    case Instruction::USHR_LONG:
+    case Instruction::USHR_LONG_2ADDR:
+      if (shift_amount == 32) {
+        OpRegCopy(cu, rl_result.low_reg, rl_src.high_reg);
+        LoadConstant(cu, rl_result.high_reg, 0);
+      } else if (shift_amount > 31) {
+        OpRegRegImm(cu, kOpLsr, rl_result.low_reg, rl_src.high_reg, shift_amount - 32);
+        LoadConstant(cu, rl_result.high_reg, 0);
+      } else {
+        int t_reg = AllocTemp(cu);
+        OpRegRegImm(cu, kOpLsr, t_reg, rl_src.low_reg, shift_amount);
+        OpRegRegRegShift(cu, kOpOr, rl_result.low_reg, t_reg, rl_src.high_reg,
+                         EncodeShift(kArmLsl, 32 - shift_amount));
+        FreeTemp(cu, t_reg);
+        OpRegRegImm(cu, kOpLsr, rl_result.high_reg, rl_src.high_reg, shift_amount);
+      }
+      break;
+    default:
+      LOG(FATAL) << "Unexpected case";
+  }
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void ArmCodegen::GenArithImmOpLong(CompilationUnit* cu, Instruction::Code opcode,
+                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
+{
+  if ((opcode == Instruction::SUB_LONG_2ADDR) || (opcode == Instruction::SUB_LONG)) {
+    if (!rl_src2.is_const) {
+      // Don't bother with special handling for subtract from immediate.
+      GenArithOpLong(cu, opcode, rl_dest, rl_src1, rl_src2);
+      return;
+    }
+  } else {
+    // Normalize
+    if (!rl_src2.is_const) {
+      DCHECK(rl_src1.is_const);
+      RegLocation rl_temp = rl_src1;
+      rl_src1 = rl_src2;
+      rl_src2 = rl_temp;
+    }
+  }
+  if (BadOverlap(cu, rl_src1, rl_dest)) {
+    GenArithOpLong(cu, opcode, rl_dest, rl_src1, rl_src2);
+    return;
+  }
+  DCHECK(rl_src2.is_const);
+  int64_t val = ConstantValueWide(cu, rl_src2);
+  uint32_t val_lo = Low32Bits(val);
+  uint32_t val_hi = High32Bits(val);
+  int32_t mod_imm_lo = ModifiedImmediate(val_lo);
+  int32_t mod_imm_hi = ModifiedImmediate(val_hi);
+
+  // Only a subset of add/sub immediate instructions set carry - so bail if we don't fit
+  switch(opcode) {
+    case Instruction::ADD_LONG:
+    case Instruction::ADD_LONG_2ADDR:
+    case Instruction::SUB_LONG:
+    case Instruction::SUB_LONG_2ADDR:
+      if ((mod_imm_lo < 0) || (mod_imm_hi < 0)) {
+        GenArithOpLong(cu, opcode, rl_dest, rl_src1, rl_src2);
+        return;
+      }
+      break;
+    default:
+      break;
+  }
+  rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  // NOTE: once we've done the EvalLoc on dest, we can no longer bail.
+  switch (opcode) {
+    case Instruction::ADD_LONG:
+    case Instruction::ADD_LONG_2ADDR:
+      NewLIR3(cu, kThumb2AddRRI8, rl_result.low_reg, rl_src1.low_reg, mod_imm_lo);
+      NewLIR3(cu, kThumb2AdcRRI8, rl_result.high_reg, rl_src1.high_reg, mod_imm_hi);
+      break;
+    case Instruction::OR_LONG:
+    case Instruction::OR_LONG_2ADDR:
+      if ((val_lo != 0) || (rl_result.low_reg != rl_src1.low_reg)) {
+        OpRegRegImm(cu, kOpOr, rl_result.low_reg, rl_src1.low_reg, val_lo);
+      }
+      if ((val_hi != 0) || (rl_result.high_reg != rl_src1.high_reg)) {
+        OpRegRegImm(cu, kOpOr, rl_result.high_reg, rl_src1.high_reg, val_hi);
+      }
+      break;
+    case Instruction::XOR_LONG:
+    case Instruction::XOR_LONG_2ADDR:
+      OpRegRegImm(cu, kOpXor, rl_result.low_reg, rl_src1.low_reg, val_lo);
+      OpRegRegImm(cu, kOpXor, rl_result.high_reg, rl_src1.high_reg, val_hi);
+      break;
+    case Instruction::AND_LONG:
+    case Instruction::AND_LONG_2ADDR:
+      if ((val_lo != 0xffffffff) || (rl_result.low_reg != rl_src1.low_reg)) {
+        OpRegRegImm(cu, kOpAnd, rl_result.low_reg, rl_src1.low_reg, val_lo);
+      }
+      if ((val_hi != 0xffffffff) || (rl_result.high_reg != rl_src1.high_reg)) {
+        OpRegRegImm(cu, kOpAnd, rl_result.high_reg, rl_src1.high_reg, val_hi);
+      }
+      break;
+    case Instruction::SUB_LONG_2ADDR:
+    case Instruction::SUB_LONG:
+      NewLIR3(cu, kThumb2SubRRI8, rl_result.low_reg, rl_src1.low_reg, mod_imm_lo);
+      NewLIR3(cu, kThumb2SbcRRI8, rl_result.high_reg, rl_src1.high_reg, mod_imm_hi);
+      break;
+    default:
+      LOG(FATAL) << "Unexpected opcode " << opcode;
+  }
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/arm/target_arm.cc b/src/compiler/dex/quick/arm/target_arm.cc
new file mode 100644
index 0000000..f03e07c
--- /dev/null
+++ b/src/compiler/dex/quick/arm/target_arm.cc
@@ -0,0 +1,765 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <string>
+
+#include "arm_lir.h"
+#include "codegen_arm.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/compiler_internals.h"
+#include "compiler/dex/quick/ralloc_util.h"
+
+namespace art {
+
+static int core_regs[] = {r0, r1, r2, r3, rARM_SUSPEND, r5, r6, r7, r8, rARM_SELF, r10,
+                         r11, r12, rARM_SP, rARM_LR, rARM_PC};
+static int ReservedRegs[] = {rARM_SUSPEND, rARM_SELF, rARM_SP, rARM_LR, rARM_PC};
+static int FpRegs[] = {fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
+                       fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
+                       fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
+                       fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31};
+static int core_temps[] = {r0, r1, r2, r3, r12};
+static int fp_temps[] = {fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
+                        fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15};
+
+RegLocation ArmCodegen::LocCReturn()
+{
+  RegLocation res = ARM_LOC_C_RETURN;
+  return res;
+}
+
+RegLocation ArmCodegen::LocCReturnWide()
+{
+  RegLocation res = ARM_LOC_C_RETURN_WIDE;
+  return res;
+}
+
+RegLocation ArmCodegen::LocCReturnFloat()
+{
+  RegLocation res = ARM_LOC_C_RETURN_FLOAT;
+  return res;
+}
+
+RegLocation ArmCodegen::LocCReturnDouble()
+{
+  RegLocation res = ARM_LOC_C_RETURN_DOUBLE;
+  return res;
+}
+
+// Return a target-dependent special register.
+int ArmCodegen::TargetReg(SpecialTargetRegister reg) {
+  int res = INVALID_REG;
+  switch (reg) {
+    case kSelf: res = rARM_SELF; break;
+    case kSuspend: res =  rARM_SUSPEND; break;
+    case kLr: res =  rARM_LR; break;
+    case kPc: res =  rARM_PC; break;
+    case kSp: res =  rARM_SP; break;
+    case kArg0: res = rARM_ARG0; break;
+    case kArg1: res = rARM_ARG1; break;
+    case kArg2: res = rARM_ARG2; break;
+    case kArg3: res = rARM_ARG3; break;
+    case kFArg0: res = rARM_FARG0; break;
+    case kFArg1: res = rARM_FARG1; break;
+    case kFArg2: res = rARM_FARG2; break;
+    case kFArg3: res = rARM_FARG3; break;
+    case kRet0: res = rARM_RET0; break;
+    case kRet1: res = rARM_RET1; break;
+    case kInvokeTgt: res = rARM_INVOKE_TGT; break;
+    case kCount: res = rARM_COUNT; break;
+  }
+  return res;
+}
+
+
+// Create a double from a pair of singles.
+int ArmCodegen::S2d(int low_reg, int high_reg)
+{
+  return ARM_S2D(low_reg, high_reg);
+}
+
+// Return mask to strip off fp reg flags and bias.
+uint32_t ArmCodegen::FpRegMask()
+{
+  return ARM_FP_REG_MASK;
+}
+
+// True if both regs single, both core or both double.
+bool ArmCodegen::SameRegType(int reg1, int reg2)
+{
+  return (ARM_REGTYPE(reg1) == ARM_REGTYPE(reg2));
+}
+
+/*
+ * Decode the register id.
+ */
+uint64_t ArmCodegen::GetRegMaskCommon(CompilationUnit* cu, int reg)
+{
+  uint64_t seed;
+  int shift;
+  int reg_id;
+
+
+  reg_id = reg & 0x1f;
+  /* Each double register is equal to a pair of single-precision FP registers */
+  seed = ARM_DOUBLEREG(reg) ? 3 : 1;
+  /* FP register starts at bit position 16 */
+  shift = ARM_FPREG(reg) ? kArmFPReg0 : 0;
+  /* Expand the double register id into single offset */
+  shift += reg_id;
+  return (seed << shift);
+}
+
+uint64_t ArmCodegen::GetPCUseDefEncoding()
+{
+  return ENCODE_ARM_REG_PC;
+}
+
+void ArmCodegen::SetupTargetResourceMasks(CompilationUnit* cu, LIR* lir)
+{
+  DCHECK_EQ(cu->instruction_set, kThumb2);
+
+  // Thumb2 specific setup
+  uint64_t flags = ArmCodegen::EncodingMap[lir->opcode].flags;
+  int opcode = lir->opcode;
+
+  if (flags & REG_DEF_SP) {
+    lir->def_mask |= ENCODE_ARM_REG_SP;
+  }
+
+  if (flags & REG_USE_SP) {
+    lir->use_mask |= ENCODE_ARM_REG_SP;
+  }
+
+  if (flags & REG_DEF_LIST0) {
+    lir->def_mask |= ENCODE_ARM_REG_LIST(lir->operands[0]);
+  }
+
+  if (flags & REG_DEF_LIST1) {
+    lir->def_mask |= ENCODE_ARM_REG_LIST(lir->operands[1]);
+  }
+
+  if (flags & REG_DEF_FPCS_LIST0) {
+    lir->def_mask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]);
+  }
+
+  if (flags & REG_DEF_FPCS_LIST2) {
+    for (int i = 0; i < lir->operands[2]; i++) {
+      SetupRegMask(cu, &lir->def_mask, lir->operands[1] + i);
+    }
+  }
+
+  if (flags & REG_USE_PC) {
+    lir->use_mask |= ENCODE_ARM_REG_PC;
+  }
+
+  /* Conservatively treat the IT block */
+  if (flags & IS_IT) {
+    lir->def_mask = ENCODE_ALL;
+  }
+
+  if (flags & REG_USE_LIST0) {
+    lir->use_mask |= ENCODE_ARM_REG_LIST(lir->operands[0]);
+  }
+
+  if (flags & REG_USE_LIST1) {
+    lir->use_mask |= ENCODE_ARM_REG_LIST(lir->operands[1]);
+  }
+
+  if (flags & REG_USE_FPCS_LIST0) {
+    lir->use_mask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]);
+  }
+
+  if (flags & REG_USE_FPCS_LIST2) {
+    for (int i = 0; i < lir->operands[2]; i++) {
+      SetupRegMask(cu, &lir->use_mask, lir->operands[1] + i);
+    }
+  }
+  /* Fixup for kThumbPush/lr and kThumbPop/pc */
+  if (opcode == kThumbPush || opcode == kThumbPop) {
+    uint64_t r8Mask = GetRegMaskCommon(cu, r8);
+    if ((opcode == kThumbPush) && (lir->use_mask & r8Mask)) {
+      lir->use_mask &= ~r8Mask;
+      lir->use_mask |= ENCODE_ARM_REG_LR;
+    } else if ((opcode == kThumbPop) && (lir->def_mask & r8Mask)) {
+      lir->def_mask &= ~r8Mask;
+      lir->def_mask |= ENCODE_ARM_REG_PC;
+    }
+  }
+  if (flags & REG_DEF_LR) {
+    lir->def_mask |= ENCODE_ARM_REG_LR;
+  }
+}
+
+ArmConditionCode ArmCodegen::ArmConditionEncoding(ConditionCode ccode)
+{
+  ArmConditionCode res;
+  switch (ccode) {
+    case kCondEq: res = kArmCondEq; break;
+    case kCondNe: res = kArmCondNe; break;
+    case kCondCs: res = kArmCondCs; break;
+    case kCondCc: res = kArmCondCc; break;
+    case kCondMi: res = kArmCondMi; break;
+    case kCondPl: res = kArmCondPl; break;
+    case kCondVs: res = kArmCondVs; break;
+    case kCondVc: res = kArmCondVc; break;
+    case kCondHi: res = kArmCondHi; break;
+    case kCondLs: res = kArmCondLs; break;
+    case kCondGe: res = kArmCondGe; break;
+    case kCondLt: res = kArmCondLt; break;
+    case kCondGt: res = kArmCondGt; break;
+    case kCondLe: res = kArmCondLe; break;
+    case kCondAl: res = kArmCondAl; break;
+    case kCondNv: res = kArmCondNv; break;
+    default:
+      LOG(FATAL) << "Bad condition code " << ccode;
+      res = static_cast<ArmConditionCode>(0);  // Quiet gcc
+  }
+  return res;
+}
+
+static const char* core_reg_names[16] = {
+  "r0",
+  "r1",
+  "r2",
+  "r3",
+  "r4",
+  "r5",
+  "r6",
+  "r7",
+  "r8",
+  "rSELF",
+  "r10",
+  "r11",
+  "r12",
+  "sp",
+  "lr",
+  "pc",
+};
+
+
+static const char* shift_names[4] = {
+  "lsl",
+  "lsr",
+  "asr",
+  "ror"};
+
+/* Decode and print a ARM register name */
+static char* DecodeRegList(int opcode, int vector, char* buf)
+{
+  int i;
+  bool printed = false;
+  buf[0] = 0;
+  for (i = 0; i < 16; i++, vector >>= 1) {
+    if (vector & 0x1) {
+      int reg_id = i;
+      if (opcode == kThumbPush && i == 8) {
+        reg_id = r14lr;
+      } else if (opcode == kThumbPop && i == 8) {
+        reg_id = r15pc;
+      }
+      if (printed) {
+        sprintf(buf + strlen(buf), ", r%d", reg_id);
+      } else {
+        printed = true;
+        sprintf(buf, "r%d", reg_id);
+      }
+    }
+  }
+  return buf;
+}
+
+static char*  DecodeFPCSRegList(int count, int base, char* buf)
+{
+  sprintf(buf, "s%d", base);
+  for (int i = 1; i < count; i++) {
+    sprintf(buf + strlen(buf), ", s%d",base + i);
+  }
+  return buf;
+}
+
+static int ExpandImmediate(int value)
+{
+  int mode = (value & 0xf00) >> 8;
+  uint32_t bits = value & 0xff;
+  switch (mode) {
+    case 0:
+      return bits;
+     case 1:
+      return (bits << 16) | bits;
+     case 2:
+      return (bits << 24) | (bits << 8);
+     case 3:
+      return (bits << 24) | (bits << 16) | (bits << 8) | bits;
+    default:
+      break;
+  }
+  bits = (bits | 0x80) << 24;
+  return bits >> (((value & 0xf80) >> 7) - 8);
+}
+
+const char* cc_names[] = {"eq","ne","cs","cc","mi","pl","vs","vc",
+                         "hi","ls","ge","lt","gt","le","al","nv"};
+/*
+ * Interpret a format string and build a string no longer than size
+ * See format key in Assemble.c.
+ */
+std::string ArmCodegen::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr)
+{
+  std::string buf;
+  int i;
+  const char* fmt_end = &fmt[strlen(fmt)];
+  char tbuf[256];
+  const char* name;
+  char nc;
+  while (fmt < fmt_end) {
+    int operand;
+    if (*fmt == '!') {
+      fmt++;
+      DCHECK_LT(fmt, fmt_end);
+      nc = *fmt++;
+      if (nc=='!') {
+        strcpy(tbuf, "!");
+      } else {
+         DCHECK_LT(fmt, fmt_end);
+         DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
+         operand = lir->operands[nc-'0'];
+         switch (*fmt++) {
+           case 'H':
+             if (operand != 0) {
+               sprintf(tbuf, ", %s %d",shift_names[operand & 0x3], operand >> 2);
+             } else {
+               strcpy(tbuf,"");
+             }
+             break;
+           case 'B':
+             switch (operand) {
+               case kSY:
+                 name = "sy";
+                 break;
+               case kST:
+                 name = "st";
+                 break;
+               case kISH:
+                 name = "ish";
+                 break;
+               case kISHST:
+                 name = "ishst";
+                 break;
+               case kNSH:
+                 name = "nsh";
+                 break;
+               case kNSHST:
+                 name = "shst";
+                 break;
+               default:
+                 name = "DecodeError2";
+                 break;
+             }
+             strcpy(tbuf, name);
+             break;
+           case 'b':
+             strcpy(tbuf,"0000");
+             for (i=3; i>= 0; i--) {
+               tbuf[i] += operand & 1;
+               operand >>= 1;
+             }
+             break;
+           case 'n':
+             operand = ~ExpandImmediate(operand);
+             sprintf(tbuf,"%d [%#x]", operand, operand);
+             break;
+           case 'm':
+             operand = ExpandImmediate(operand);
+             sprintf(tbuf,"%d [%#x]", operand, operand);
+             break;
+           case 's':
+             sprintf(tbuf,"s%d",operand & ARM_FP_REG_MASK);
+             break;
+           case 'S':
+             sprintf(tbuf,"d%d",(operand & ARM_FP_REG_MASK) >> 1);
+             break;
+           case 'h':
+             sprintf(tbuf,"%04x", operand);
+             break;
+           case 'M':
+           case 'd':
+             sprintf(tbuf,"%d", operand);
+             break;
+           case 'C':
+             DCHECK_LT(operand, static_cast<int>(
+                 sizeof(core_reg_names)/sizeof(core_reg_names[0])));
+             sprintf(tbuf,"%s",core_reg_names[operand]);
+             break;
+           case 'E':
+             sprintf(tbuf,"%d", operand*4);
+             break;
+           case 'F':
+             sprintf(tbuf,"%d", operand*2);
+             break;
+           case 'c':
+             strcpy(tbuf, cc_names[operand]);
+             break;
+           case 't':
+             sprintf(tbuf,"0x%08x (L%p)",
+                 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4 +
+                 (operand << 1),
+                 lir->target);
+             break;
+           case 'u': {
+             int offset_1 = lir->operands[0];
+             int offset_2 = NEXT_LIR(lir)->operands[0];
+             uintptr_t target =
+                 (((reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4) &
+                 ~3) + (offset_1 << 21 >> 9) + (offset_2 << 1)) &
+                 0xfffffffc;
+             sprintf(tbuf, "%p", reinterpret_cast<void *>(target));
+             break;
+          }
+
+           /* Nothing to print for BLX_2 */
+           case 'v':
+             strcpy(tbuf, "see above");
+             break;
+           case 'R':
+             DecodeRegList(lir->opcode, operand, tbuf);
+             break;
+           case 'P':
+             DecodeFPCSRegList(operand, 16, tbuf);
+             break;
+           case 'Q':
+             DecodeFPCSRegList(operand, 0, tbuf);
+             break;
+           default:
+             strcpy(tbuf,"DecodeError1");
+             break;
+        }
+        buf += tbuf;
+      }
+    } else {
+       buf += *fmt++;
+    }
+  }
+  return buf;
+}
+
+void ArmCodegen::DumpResourceMask(LIR* arm_lir, uint64_t mask, const char* prefix)
+{
+  char buf[256];
+  buf[0] = 0;
+
+  if (mask == ENCODE_ALL) {
+    strcpy(buf, "all");
+  } else {
+    char num[8];
+    int i;
+
+    for (i = 0; i < kArmRegEnd; i++) {
+      if (mask & (1ULL << i)) {
+        sprintf(num, "%d ", i);
+        strcat(buf, num);
+      }
+    }
+
+    if (mask & ENCODE_CCODE) {
+      strcat(buf, "cc ");
+    }
+    if (mask & ENCODE_FP_STATUS) {
+      strcat(buf, "fpcc ");
+    }
+
+    /* Memory bits */
+    if (arm_lir && (mask & ENCODE_DALVIK_REG)) {
+      sprintf(buf + strlen(buf), "dr%d%s", arm_lir->alias_info & 0xffff,
+              (arm_lir->alias_info & 0x80000000) ? "(+1)" : "");
+    }
+    if (mask & ENCODE_LITERAL) {
+      strcat(buf, "lit ");
+    }
+
+    if (mask & ENCODE_HEAP_REF) {
+      strcat(buf, "heap ");
+    }
+    if (mask & ENCODE_MUST_NOT_ALIAS) {
+      strcat(buf, "noalias ");
+    }
+  }
+  if (buf[0]) {
+    LOG(INFO) << prefix << ": " << buf;
+  }
+}
+
+bool ArmCodegen::IsUnconditionalBranch(LIR* lir)
+{
+  return ((lir->opcode == kThumbBUncond) || (lir->opcode == kThumb2BUncond));
+}
+
+bool InitArmCodegen(CompilationUnit* cu)
+{
+  cu->cg.reset(new ArmCodegen());
+  for (int i = 0; i < kArmLast; i++) {
+    if (ArmCodegen::EncodingMap[i].opcode != i) {
+      LOG(FATAL) << "Encoding order for " << ArmCodegen::EncodingMap[i].name
+                 << " is wrong: expecting " << i << ", seeing "
+                 << static_cast<int>(ArmCodegen::EncodingMap[i].opcode);
+    }
+  }
+  return true;
+}
+
+/*
+ * Alloc a pair of core registers, or a double.  Low reg in low byte,
+ * high reg in next byte.
+ */
+int ArmCodegen::AllocTypedTempPair(CompilationUnit* cu, bool fp_hint, int reg_class)
+{
+  int high_reg;
+  int low_reg;
+  int res = 0;
+
+  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
+    low_reg = AllocTempDouble(cu);
+    high_reg = low_reg + 1;
+  } else {
+    low_reg = AllocTemp(cu);
+    high_reg = AllocTemp(cu);
+  }
+  res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
+  return res;
+}
+
+int ArmCodegen::AllocTypedTemp(CompilationUnit* cu, bool fp_hint, int reg_class)
+{
+  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg))
+    return AllocTempFloat(cu);
+  return AllocTemp(cu);
+}
+
+void ArmCodegen::CompilerInitializeRegAlloc(CompilationUnit* cu)
+{
+  int num_regs = sizeof(core_regs)/sizeof(*core_regs);
+  int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
+  int num_temps = sizeof(core_temps)/sizeof(*core_temps);
+  int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
+  int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
+  RegisterPool *pool =
+      static_cast<RegisterPool*>(NewMem(cu, sizeof(*pool), true, kAllocRegAlloc));
+  cu->reg_pool = pool;
+  pool->num_core_regs = num_regs;
+  pool->core_regs = reinterpret_cast<RegisterInfo*>
+      (NewMem(cu, num_regs * sizeof(*cu->reg_pool->core_regs), true, kAllocRegAlloc));
+  pool->num_fp_regs = num_fp_regs;
+  pool->FPRegs = static_cast<RegisterInfo*>
+      (NewMem(cu, num_fp_regs * sizeof(*cu->reg_pool->FPRegs), true, kAllocRegAlloc));
+  CompilerInitPool(pool->core_regs, core_regs, pool->num_core_regs);
+  CompilerInitPool(pool->FPRegs, FpRegs, pool->num_fp_regs);
+  // Keep special registers from being allocated
+  for (int i = 0; i < num_reserved; i++) {
+    if (NO_SUSPEND && (ReservedRegs[i] == rARM_SUSPEND)) {
+      //To measure cost of suspend check
+      continue;
+    }
+    MarkInUse(cu, ReservedRegs[i]);
+  }
+  // Mark temp regs - all others not in use can be used for promotion
+  for (int i = 0; i < num_temps; i++) {
+    MarkTemp(cu, core_temps[i]);
+  }
+  for (int i = 0; i < num_fp_temps; i++) {
+    MarkTemp(cu, fp_temps[i]);
+  }
+
+  // Start allocation at r2 in an attempt to avoid clobbering return values
+  pool->next_core_reg = r2;
+}
+
+void ArmCodegen::FreeRegLocTemps(CompilationUnit* cu, RegLocation rl_keep,
+                     RegLocation rl_free)
+{
+  if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) &&
+    (rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) {
+    // No overlap, free both
+    FreeTemp(cu, rl_free.low_reg);
+    FreeTemp(cu, rl_free.high_reg);
+  }
+}
+/*
+ * TUNING: is leaf?  Can't just use "has_invoke" to determine as some
+ * instructions might call out to C/assembly helper functions.  Until
+ * machinery is in place, always spill lr.
+ */
+
+void ArmCodegen::AdjustSpillMask(CompilationUnit* cu)
+{
+  cu->core_spill_mask |= (1 << rARM_LR);
+  cu->num_core_spills++;
+}
+
+/*
+ * Mark a callee-save fp register as promoted.  Note that
+ * vpush/vpop uses contiguous register lists so we must
+ * include any holes in the mask.  Associate holes with
+ * Dalvik register INVALID_VREG (0xFFFFU).
+ */
+void ArmCodegen::MarkPreservedSingle(CompilationUnit* cu, int v_reg, int reg)
+{
+  DCHECK_GE(reg, ARM_FP_REG_MASK + ARM_FP_CALLEE_SAVE_BASE);
+  reg = (reg & ARM_FP_REG_MASK) - ARM_FP_CALLEE_SAVE_BASE;
+  // Ensure fp_vmap_table is large enough
+  int table_size = cu->fp_vmap_table.size();
+  for (int i = table_size; i < (reg + 1); i++) {
+    cu->fp_vmap_table.push_back(INVALID_VREG);
+  }
+  // Add the current mapping
+  cu->fp_vmap_table[reg] = v_reg;
+  // Size of fp_vmap_table is high-water mark, use to set mask
+  cu->num_fp_spills = cu->fp_vmap_table.size();
+  cu->fp_spill_mask = ((1 << cu->num_fp_spills) - 1) << ARM_FP_CALLEE_SAVE_BASE;
+}
+
+void ArmCodegen::FlushRegWide(CompilationUnit* cu, int reg1, int reg2)
+{
+  RegisterInfo* info1 = GetRegInfo(cu, reg1);
+  RegisterInfo* info2 = GetRegInfo(cu, reg2);
+  DCHECK(info1 && info2 && info1->pair && info2->pair &&
+       (info1->partner == info2->reg) &&
+       (info2->partner == info1->reg));
+  if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
+    if (!(info1->is_temp && info2->is_temp)) {
+      /* Should not happen.  If it does, there's a problem in eval_loc */
+      LOG(FATAL) << "Long half-temp, half-promoted";
+    }
+
+    info1->dirty = false;
+    info2->dirty = false;
+    if (SRegToVReg(cu, info2->s_reg) <
+      SRegToVReg(cu, info1->s_reg))
+      info1 = info2;
+    int v_reg = SRegToVReg(cu, info1->s_reg);
+    StoreBaseDispWide(cu, rARM_SP, VRegOffset(cu, v_reg), info1->reg, info1->partner);
+  }
+}
+
+void ArmCodegen::FlushReg(CompilationUnit* cu, int reg)
+{
+  RegisterInfo* info = GetRegInfo(cu, reg);
+  if (info->live && info->dirty) {
+    info->dirty = false;
+    int v_reg = SRegToVReg(cu, info->s_reg);
+    StoreBaseDisp(cu, rARM_SP, VRegOffset(cu, v_reg), reg, kWord);
+  }
+}
+
+/* Give access to the target-dependent FP register encoding to common code */
+bool ArmCodegen::IsFpReg(int reg) {
+  return ARM_FPREG(reg);
+}
+
+/* Clobber all regs that might be used by an external C call */
+void ArmCodegen::ClobberCalleeSave(CompilationUnit *cu)
+{
+  Clobber(cu, r0);
+  Clobber(cu, r1);
+  Clobber(cu, r2);
+  Clobber(cu, r3);
+  Clobber(cu, r12);
+  Clobber(cu, r14lr);
+  Clobber(cu, fr0);
+  Clobber(cu, fr1);
+  Clobber(cu, fr2);
+  Clobber(cu, fr3);
+  Clobber(cu, fr4);
+  Clobber(cu, fr5);
+  Clobber(cu, fr6);
+  Clobber(cu, fr7);
+  Clobber(cu, fr8);
+  Clobber(cu, fr9);
+  Clobber(cu, fr10);
+  Clobber(cu, fr11);
+  Clobber(cu, fr12);
+  Clobber(cu, fr13);
+  Clobber(cu, fr14);
+  Clobber(cu, fr15);
+}
+
+RegLocation ArmCodegen::GetReturnWideAlt(CompilationUnit* cu)
+{
+  RegLocation res = LocCReturnWide();
+  res.low_reg = r2;
+  res.high_reg = r3;
+  Clobber(cu, r2);
+  Clobber(cu, r3);
+  MarkInUse(cu, r2);
+  MarkInUse(cu, r3);
+  MarkPair(cu, res.low_reg, res.high_reg);
+  return res;
+}
+
+RegLocation ArmCodegen::GetReturnAlt(CompilationUnit* cu)
+{
+  RegLocation res = LocCReturn();
+  res.low_reg = r1;
+  Clobber(cu, r1);
+  MarkInUse(cu, r1);
+  return res;
+}
+
+RegisterInfo* ArmCodegen::GetRegInfo(CompilationUnit* cu, int reg)
+{
+  return ARM_FPREG(reg) ? &cu->reg_pool->FPRegs[reg & ARM_FP_REG_MASK]
+      : &cu->reg_pool->core_regs[reg];
+}
+
+/* To be used when explicitly managing register use */
+void ArmCodegen::LockCallTemps(CompilationUnit* cu)
+{
+  LockTemp(cu, r0);
+  LockTemp(cu, r1);
+  LockTemp(cu, r2);
+  LockTemp(cu, r3);
+}
+
+/* To be used when explicitly managing register use */
+void ArmCodegen::FreeCallTemps(CompilationUnit* cu)
+{
+  FreeTemp(cu, r0);
+  FreeTemp(cu, r1);
+  FreeTemp(cu, r2);
+  FreeTemp(cu, r3);
+}
+
+int ArmCodegen::LoadHelper(CompilationUnit* cu, int offset)
+{
+  LoadWordDisp(cu, rARM_SELF, offset, rARM_LR);
+  return rARM_LR;
+}
+
+uint64_t ArmCodegen::GetTargetInstFlags(int opcode)
+{
+  return ArmCodegen::EncodingMap[opcode].flags;
+}
+
+const char* ArmCodegen::GetTargetInstName(int opcode)
+{
+  return ArmCodegen::EncodingMap[opcode].name;
+}
+
+const char* ArmCodegen::GetTargetInstFmt(int opcode)
+{
+  return ArmCodegen::EncodingMap[opcode].fmt;
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/arm/utility_arm.cc b/src/compiler/dex/quick/arm/utility_arm.cc
new file mode 100644
index 0000000..ba543ac
--- /dev/null
+++ b/src/compiler/dex/quick/arm/utility_arm.cc
@@ -0,0 +1,1091 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_lir.h"
+#include "codegen_arm.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+
+namespace art {
+
+/* This file contains codegen for the Thumb ISA. */
+
+static int EncodeImmSingle(int value)
+{
+  int res;
+  int bit_a =  (value & 0x80000000) >> 31;
+  int not_bit_b = (value & 0x40000000) >> 30;
+  int bit_b =  (value & 0x20000000) >> 29;
+  int b_smear =  (value & 0x3e000000) >> 25;
+  int slice =   (value & 0x01f80000) >> 19;
+  int zeroes =  (value & 0x0007ffff);
+  if (zeroes != 0)
+    return -1;
+  if (bit_b) {
+    if ((not_bit_b != 0) || (b_smear != 0x1f))
+      return -1;
+  } else {
+    if ((not_bit_b != 1) || (b_smear != 0x0))
+      return -1;
+  }
+  res = (bit_a << 7) | (bit_b << 6) | slice;
+  return res;
+}
+
+/*
+ * Determine whether value can be encoded as a Thumb2 floating point
+ * immediate.  If not, return -1.  If so return encoded 8-bit value.
+ */
+static int EncodeImmDouble(int64_t value)
+{
+  int res;
+  int bit_a = (value & 0x8000000000000000ll) >> 63;
+  int not_bit_b = (value & 0x4000000000000000ll) >> 62;
+  int bit_b = (value & 0x2000000000000000ll) >> 61;
+  int b_smear = (value & 0x3fc0000000000000ll) >> 54;
+  int slice =  (value & 0x003f000000000000ll) >> 48;
+  uint64_t zeroes = (value & 0x0000ffffffffffffll);
+  if (zeroes != 0)
+    return -1;
+  if (bit_b) {
+    if ((not_bit_b != 0) || (b_smear != 0xff))
+      return -1;
+  } else {
+    if ((not_bit_b != 1) || (b_smear != 0x0))
+      return -1;
+  }
+  res = (bit_a << 7) | (bit_b << 6) | slice;
+  return res;
+}
+
+static LIR* LoadFPConstantValue(CompilationUnit* cu, int r_dest, int value)
+{
+  DCHECK(ARM_SINGLEREG(r_dest));
+  if (value == 0) {
+    // TODO: we need better info about the target CPU.  a vector exclusive or
+    //       would probably be better here if we could rely on its existance.
+    // Load an immediate +2.0 (which encodes to 0)
+    NewLIR2(cu, kThumb2Vmovs_IMM8, r_dest, 0);
+    // +0.0 = +2.0 - +2.0
+    return NewLIR3(cu, kThumb2Vsubs, r_dest, r_dest, r_dest);
+  } else {
+    int encoded_imm = EncodeImmSingle(value);
+    if (encoded_imm >= 0) {
+      return NewLIR2(cu, kThumb2Vmovs_IMM8, r_dest, encoded_imm);
+    }
+  }
+  LIR* data_target = ScanLiteralPool(cu->literal_list, value, 0);
+  if (data_target == NULL) {
+    data_target = AddWordData(cu, &cu->literal_list, value);
+  }
+  LIR* load_pc_rel = RawLIR(cu, cu->current_dalvik_offset, kThumb2Vldrs,
+                          r_dest, r15pc, 0, 0, 0, data_target);
+  SetMemRefType(cu, load_pc_rel, true, kLiteral);
+  load_pc_rel->alias_info = reinterpret_cast<uintptr_t>(data_target);
+  AppendLIR(cu, load_pc_rel);
+  return load_pc_rel;
+}
+
+static int LeadingZeros(uint32_t val)
+{
+  uint32_t alt;
+  int n;
+  int count;
+
+  count = 16;
+  n = 32;
+  do {
+    alt = val >> count;
+    if (alt != 0) {
+      n = n - count;
+      val = alt;
+    }
+    count >>= 1;
+  } while (count);
+  return n - val;
+}
+
+/*
+ * Determine whether value can be encoded as a Thumb2 modified
+ * immediate.  If not, return -1.  If so, return i:imm3:a:bcdefgh form.
+ */
+int ArmCodegen::ModifiedImmediate(uint32_t value)
+{
+   int z_leading;
+   int z_trailing;
+   uint32_t b0 = value & 0xff;
+
+   /* Note: case of value==0 must use 0:000:0:0000000 encoding */
+   if (value <= 0xFF)
+     return b0;  // 0:000:a:bcdefgh
+   if (value == ((b0 << 16) | b0))
+     return (0x1 << 8) | b0; /* 0:001:a:bcdefgh */
+   if (value == ((b0 << 24) | (b0 << 16) | (b0 << 8) | b0))
+     return (0x3 << 8) | b0; /* 0:011:a:bcdefgh */
+   b0 = (value >> 8) & 0xff;
+   if (value == ((b0 << 24) | (b0 << 8)))
+     return (0x2 << 8) | b0; /* 0:010:a:bcdefgh */
+   /* Can we do it with rotation? */
+   z_leading = LeadingZeros(value);
+   z_trailing = 32 - LeadingZeros(~value & (value - 1));
+   /* A run of eight or fewer active bits? */
+   if ((z_leading + z_trailing) < 24)
+     return -1;  /* No - bail */
+   /* left-justify the constant, discarding msb (known to be 1) */
+   value <<= z_leading + 1;
+   /* Create bcdefgh */
+   value >>= 25;
+   /* Put it all together */
+   return value | ((0x8 + z_leading) << 7); /* [01000..11111]:bcdefgh */
+}
+
+bool ArmCodegen::InexpensiveConstantInt(int32_t value)
+{
+  return (ModifiedImmediate(value) >= 0) || (ModifiedImmediate(~value) >= 0);
+}
+
+bool ArmCodegen::InexpensiveConstantFloat(int32_t value)
+{
+  return EncodeImmSingle(value) >= 0;
+}
+
+bool ArmCodegen::InexpensiveConstantLong(int64_t value)
+{
+  return InexpensiveConstantInt(High32Bits(value)) && InexpensiveConstantInt(Low32Bits(value));
+}
+
+bool ArmCodegen::InexpensiveConstantDouble(int64_t value)
+{
+  return EncodeImmDouble(value) >= 0;
+}
+
+/*
+ * Load a immediate using a shortcut if possible; otherwise
+ * grab from the per-translation literal pool.
+ *
+ * No additional register clobbering operation performed. Use this version when
+ * 1) r_dest is freshly returned from AllocTemp or
+ * 2) The codegen is under fixed register usage
+ */
+LIR* ArmCodegen::LoadConstantNoClobber(CompilationUnit* cu, int r_dest, int value)
+{
+  LIR* res;
+  int mod_imm;
+
+  if (ARM_FPREG(r_dest)) {
+    return LoadFPConstantValue(cu, r_dest, value);
+  }
+
+  /* See if the value can be constructed cheaply */
+  if (ARM_LOWREG(r_dest) && (value >= 0) && (value <= 255)) {
+    return NewLIR2(cu, kThumbMovImm, r_dest, value);
+  }
+  /* Check Modified immediate special cases */
+  mod_imm = ModifiedImmediate(value);
+  if (mod_imm >= 0) {
+    res = NewLIR2(cu, kThumb2MovImmShift, r_dest, mod_imm);
+    return res;
+  }
+  mod_imm = ModifiedImmediate(~value);
+  if (mod_imm >= 0) {
+    res = NewLIR2(cu, kThumb2MvnImm12, r_dest, mod_imm);
+    return res;
+  }
+  /* 16-bit immediate? */
+  if ((value & 0xffff) == value) {
+    res = NewLIR2(cu, kThumb2MovImm16, r_dest, value);
+    return res;
+  }
+  /* Do a low/high pair */
+  res = NewLIR2(cu, kThumb2MovImm16, r_dest, Low16Bits(value));
+  NewLIR2(cu, kThumb2MovImm16H, r_dest, High16Bits(value));
+  return res;
+}
+
+LIR* ArmCodegen::OpUnconditionalBranch(CompilationUnit* cu, LIR* target)
+{
+  LIR* res = NewLIR1(cu, kThumbBUncond, 0 /* offset to be patched  during assembly*/);
+  res->target = target;
+  return res;
+}
+
+LIR* ArmCodegen::OpCondBranch(CompilationUnit* cu, ConditionCode cc, LIR* target)
+{
+  LIR* branch = NewLIR2(cu, kThumb2BCond, 0 /* offset to be patched */,
+                        ArmConditionEncoding(cc));
+  branch->target = target;
+  return branch;
+}
+
+LIR* ArmCodegen::OpReg(CompilationUnit* cu, OpKind op, int r_dest_src)
+{
+  ArmOpcode opcode = kThumbBkpt;
+  switch (op) {
+    case kOpBlx:
+      opcode = kThumbBlxR;
+      break;
+    default:
+      LOG(FATAL) << "Bad opcode " << op;
+  }
+  return NewLIR1(cu, opcode, r_dest_src);
+}
+
+LIR* ArmCodegen::OpRegRegShift(CompilationUnit* cu, OpKind op, int r_dest_src1, int r_src2,
+                               int shift)
+{
+  bool thumb_form = ((shift == 0) && ARM_LOWREG(r_dest_src1) && ARM_LOWREG(r_src2));
+  ArmOpcode opcode = kThumbBkpt;
+  switch (op) {
+    case kOpAdc:
+      opcode = (thumb_form) ? kThumbAdcRR : kThumb2AdcRRR;
+      break;
+    case kOpAnd:
+      opcode = (thumb_form) ? kThumbAndRR : kThumb2AndRRR;
+      break;
+    case kOpBic:
+      opcode = (thumb_form) ? kThumbBicRR : kThumb2BicRRR;
+      break;
+    case kOpCmn:
+      DCHECK_EQ(shift, 0);
+      opcode = (thumb_form) ? kThumbCmnRR : kThumb2CmnRR;
+      break;
+    case kOpCmp:
+      if (thumb_form)
+        opcode = kThumbCmpRR;
+      else if ((shift == 0) && !ARM_LOWREG(r_dest_src1) && !ARM_LOWREG(r_src2))
+        opcode = kThumbCmpHH;
+      else if ((shift == 0) && ARM_LOWREG(r_dest_src1))
+        opcode = kThumbCmpLH;
+      else if (shift == 0)
+        opcode = kThumbCmpHL;
+      else
+        opcode = kThumb2CmpRR;
+      break;
+    case kOpXor:
+      opcode = (thumb_form) ? kThumbEorRR : kThumb2EorRRR;
+      break;
+    case kOpMov:
+      DCHECK_EQ(shift, 0);
+      if (ARM_LOWREG(r_dest_src1) && ARM_LOWREG(r_src2))
+        opcode = kThumbMovRR;
+      else if (!ARM_LOWREG(r_dest_src1) && !ARM_LOWREG(r_src2))
+        opcode = kThumbMovRR_H2H;
+      else if (ARM_LOWREG(r_dest_src1))
+        opcode = kThumbMovRR_H2L;
+      else
+        opcode = kThumbMovRR_L2H;
+      break;
+    case kOpMul:
+      DCHECK_EQ(shift, 0);
+      opcode = (thumb_form) ? kThumbMul : kThumb2MulRRR;
+      break;
+    case kOpMvn:
+      opcode = (thumb_form) ? kThumbMvn : kThumb2MnvRR;
+      break;
+    case kOpNeg:
+      DCHECK_EQ(shift, 0);
+      opcode = (thumb_form) ? kThumbNeg : kThumb2NegRR;
+      break;
+    case kOpOr:
+      opcode = (thumb_form) ? kThumbOrr : kThumb2OrrRRR;
+      break;
+    case kOpSbc:
+      opcode = (thumb_form) ? kThumbSbc : kThumb2SbcRRR;
+      break;
+    case kOpTst:
+      opcode = (thumb_form) ? kThumbTst : kThumb2TstRR;
+      break;
+    case kOpLsl:
+      DCHECK_EQ(shift, 0);
+      opcode = (thumb_form) ? kThumbLslRR : kThumb2LslRRR;
+      break;
+    case kOpLsr:
+      DCHECK_EQ(shift, 0);
+      opcode = (thumb_form) ? kThumbLsrRR : kThumb2LsrRRR;
+      break;
+    case kOpAsr:
+      DCHECK_EQ(shift, 0);
+      opcode = (thumb_form) ? kThumbAsrRR : kThumb2AsrRRR;
+      break;
+    case kOpRor:
+      DCHECK_EQ(shift, 0);
+      opcode = (thumb_form) ? kThumbRorRR : kThumb2RorRRR;
+      break;
+    case kOpAdd:
+      opcode = (thumb_form) ? kThumbAddRRR : kThumb2AddRRR;
+      break;
+    case kOpSub:
+      opcode = (thumb_form) ? kThumbSubRRR : kThumb2SubRRR;
+      break;
+    case kOp2Byte:
+      DCHECK_EQ(shift, 0);
+      return NewLIR4(cu, kThumb2Sbfx, r_dest_src1, r_src2, 0, 8);
+    case kOp2Short:
+      DCHECK_EQ(shift, 0);
+      return NewLIR4(cu, kThumb2Sbfx, r_dest_src1, r_src2, 0, 16);
+    case kOp2Char:
+      DCHECK_EQ(shift, 0);
+      return NewLIR4(cu, kThumb2Ubfx, r_dest_src1, r_src2, 0, 16);
+    default:
+      LOG(FATAL) << "Bad opcode: " << op;
+      break;
+  }
+  DCHECK_GE(static_cast<int>(opcode), 0);
+  if (EncodingMap[opcode].flags & IS_BINARY_OP)
+    return NewLIR2(cu, opcode, r_dest_src1, r_src2);
+  else if (EncodingMap[opcode].flags & IS_TERTIARY_OP) {
+    if (EncodingMap[opcode].field_loc[2].kind == kFmtShift)
+      return NewLIR3(cu, opcode, r_dest_src1, r_src2, shift);
+    else
+      return NewLIR3(cu, opcode, r_dest_src1, r_dest_src1, r_src2);
+  } else if (EncodingMap[opcode].flags & IS_QUAD_OP)
+    return NewLIR4(cu, opcode, r_dest_src1, r_dest_src1, r_src2, shift);
+  else {
+    LOG(FATAL) << "Unexpected encoding operand count";
+    return NULL;
+  }
+}
+
+LIR* ArmCodegen::OpRegReg(CompilationUnit* cu, OpKind op, int r_dest_src1, int r_src2)
+{
+  return OpRegRegShift(cu, op, r_dest_src1, r_src2, 0);
+}
+
+LIR* ArmCodegen::OpRegRegRegShift(CompilationUnit* cu, OpKind op, int r_dest, int r_src1,
+                                  int r_src2, int shift)
+{
+  ArmOpcode opcode = kThumbBkpt;
+  bool thumb_form = (shift == 0) && ARM_LOWREG(r_dest) && ARM_LOWREG(r_src1) &&
+      ARM_LOWREG(r_src2);
+  switch (op) {
+    case kOpAdd:
+      opcode = (thumb_form) ? kThumbAddRRR : kThumb2AddRRR;
+      break;
+    case kOpSub:
+      opcode = (thumb_form) ? kThumbSubRRR : kThumb2SubRRR;
+      break;
+    case kOpRsub:
+      opcode = kThumb2RsubRRR;
+      break;
+    case kOpAdc:
+      opcode = kThumb2AdcRRR;
+      break;
+    case kOpAnd:
+      opcode = kThumb2AndRRR;
+      break;
+    case kOpBic:
+      opcode = kThumb2BicRRR;
+      break;
+    case kOpXor:
+      opcode = kThumb2EorRRR;
+      break;
+    case kOpMul:
+      DCHECK_EQ(shift, 0);
+      opcode = kThumb2MulRRR;
+      break;
+    case kOpOr:
+      opcode = kThumb2OrrRRR;
+      break;
+    case kOpSbc:
+      opcode = kThumb2SbcRRR;
+      break;
+    case kOpLsl:
+      DCHECK_EQ(shift, 0);
+      opcode = kThumb2LslRRR;
+      break;
+    case kOpLsr:
+      DCHECK_EQ(shift, 0);
+      opcode = kThumb2LsrRRR;
+      break;
+    case kOpAsr:
+      DCHECK_EQ(shift, 0);
+      opcode = kThumb2AsrRRR;
+      break;
+    case kOpRor:
+      DCHECK_EQ(shift, 0);
+      opcode = kThumb2RorRRR;
+      break;
+    default:
+      LOG(FATAL) << "Bad opcode: " << op;
+      break;
+  }
+  DCHECK_GE(static_cast<int>(opcode), 0);
+  if (EncodingMap[opcode].flags & IS_QUAD_OP)
+    return NewLIR4(cu, opcode, r_dest, r_src1, r_src2, shift);
+  else {
+    DCHECK(EncodingMap[opcode].flags & IS_TERTIARY_OP);
+    return NewLIR3(cu, opcode, r_dest, r_src1, r_src2);
+  }
+}
+
+LIR* ArmCodegen::OpRegRegReg(CompilationUnit* cu, OpKind op, int r_dest, int r_src1, int r_src2)
+{
+  return OpRegRegRegShift(cu, op, r_dest, r_src1, r_src2, 0);
+}
+
+LIR* ArmCodegen::OpRegRegImm(CompilationUnit* cu, OpKind op, int r_dest, int r_src1, int value)
+{
+  LIR* res;
+  bool neg = (value < 0);
+  int abs_value = (neg) ? -value : value;
+  ArmOpcode opcode = kThumbBkpt;
+  ArmOpcode alt_opcode = kThumbBkpt;
+  bool all_low_regs = (ARM_LOWREG(r_dest) && ARM_LOWREG(r_src1));
+  int mod_imm = ModifiedImmediate(value);
+  int mod_imm_neg = ModifiedImmediate(-value);
+
+  switch (op) {
+    case kOpLsl:
+      if (all_low_regs)
+        return NewLIR3(cu, kThumbLslRRI5, r_dest, r_src1, value);
+      else
+        return NewLIR3(cu, kThumb2LslRRI5, r_dest, r_src1, value);
+    case kOpLsr:
+      if (all_low_regs)
+        return NewLIR3(cu, kThumbLsrRRI5, r_dest, r_src1, value);
+      else
+        return NewLIR3(cu, kThumb2LsrRRI5, r_dest, r_src1, value);
+    case kOpAsr:
+      if (all_low_regs)
+        return NewLIR3(cu, kThumbAsrRRI5, r_dest, r_src1, value);
+      else
+        return NewLIR3(cu, kThumb2AsrRRI5, r_dest, r_src1, value);
+    case kOpRor:
+      return NewLIR3(cu, kThumb2RorRRI5, r_dest, r_src1, value);
+    case kOpAdd:
+      if (ARM_LOWREG(r_dest) && (r_src1 == r13sp) &&
+        (value <= 1020) && ((value & 0x3)==0)) {
+        return NewLIR3(cu, kThumbAddSpRel, r_dest, r_src1, value >> 2);
+      } else if (ARM_LOWREG(r_dest) && (r_src1 == r15pc) &&
+          (value <= 1020) && ((value & 0x3)==0)) {
+        return NewLIR3(cu, kThumbAddPcRel, r_dest, r_src1, value >> 2);
+      }
+      // Note: intentional fallthrough
+    case kOpSub:
+      if (all_low_regs && ((abs_value & 0x7) == abs_value)) {
+        if (op == kOpAdd)
+          opcode = (neg) ? kThumbSubRRI3 : kThumbAddRRI3;
+        else
+          opcode = (neg) ? kThumbAddRRI3 : kThumbSubRRI3;
+        return NewLIR3(cu, opcode, r_dest, r_src1, abs_value);
+      } else if ((abs_value & 0xff) == abs_value) {
+        if (op == kOpAdd)
+          opcode = (neg) ? kThumb2SubRRI12 : kThumb2AddRRI12;
+        else
+          opcode = (neg) ? kThumb2AddRRI12 : kThumb2SubRRI12;
+        return NewLIR3(cu, opcode, r_dest, r_src1, abs_value);
+      }
+      if (mod_imm_neg >= 0) {
+        op = (op == kOpAdd) ? kOpSub : kOpAdd;
+        mod_imm = mod_imm_neg;
+      }
+      if (op == kOpSub) {
+        opcode = kThumb2SubRRI8;
+        alt_opcode = kThumb2SubRRR;
+      } else {
+        opcode = kThumb2AddRRI8;
+        alt_opcode = kThumb2AddRRR;
+      }
+      break;
+    case kOpRsub:
+      opcode = kThumb2RsubRRI8;
+      alt_opcode = kThumb2RsubRRR;
+      break;
+    case kOpAdc:
+      opcode = kThumb2AdcRRI8;
+      alt_opcode = kThumb2AdcRRR;
+      break;
+    case kOpSbc:
+      opcode = kThumb2SbcRRI8;
+      alt_opcode = kThumb2SbcRRR;
+      break;
+    case kOpOr:
+      opcode = kThumb2OrrRRI8;
+      alt_opcode = kThumb2OrrRRR;
+      break;
+    case kOpAnd:
+      opcode = kThumb2AndRRI8;
+      alt_opcode = kThumb2AndRRR;
+      break;
+    case kOpXor:
+      opcode = kThumb2EorRRI8;
+      alt_opcode = kThumb2EorRRR;
+      break;
+    case kOpMul:
+      //TUNING: power of 2, shift & add
+      mod_imm = -1;
+      alt_opcode = kThumb2MulRRR;
+      break;
+    case kOpCmp: {
+      int mod_imm = ModifiedImmediate(value);
+      LIR* res;
+      if (mod_imm >= 0) {
+        res = NewLIR2(cu, kThumb2CmpRI12, r_src1, mod_imm);
+      } else {
+        int r_tmp = AllocTemp(cu);
+        res = LoadConstant(cu, r_tmp, value);
+        OpRegReg(cu, kOpCmp, r_src1, r_tmp);
+        FreeTemp(cu, r_tmp);
+      }
+      return res;
+    }
+    default:
+      LOG(FATAL) << "Bad opcode: " << op;
+  }
+
+  if (mod_imm >= 0) {
+    return NewLIR3(cu, opcode, r_dest, r_src1, mod_imm);
+  } else {
+    int r_scratch = AllocTemp(cu);
+    LoadConstant(cu, r_scratch, value);
+    if (EncodingMap[alt_opcode].flags & IS_QUAD_OP)
+      res = NewLIR4(cu, alt_opcode, r_dest, r_src1, r_scratch, 0);
+    else
+      res = NewLIR3(cu, alt_opcode, r_dest, r_src1, r_scratch);
+    FreeTemp(cu, r_scratch);
+    return res;
+  }
+}
+
+/* Handle Thumb-only variants here - otherwise punt to OpRegRegImm */
+LIR* ArmCodegen::OpRegImm(CompilationUnit* cu, OpKind op, int r_dest_src1, int value)
+{
+  bool neg = (value < 0);
+  int abs_value = (neg) ? -value : value;
+  bool short_form = (((abs_value & 0xff) == abs_value) && ARM_LOWREG(r_dest_src1));
+  ArmOpcode opcode = kThumbBkpt;
+  switch (op) {
+    case kOpAdd:
+      if ( !neg && (r_dest_src1 == r13sp) && (value <= 508)) { /* sp */
+        DCHECK_EQ((value & 0x3), 0);
+        return NewLIR1(cu, kThumbAddSpI7, value >> 2);
+      } else if (short_form) {
+        opcode = (neg) ? kThumbSubRI8 : kThumbAddRI8;
+      }
+      break;
+    case kOpSub:
+      if (!neg && (r_dest_src1 == r13sp) && (value <= 508)) { /* sp */
+        DCHECK_EQ((value & 0x3), 0);
+        return NewLIR1(cu, kThumbSubSpI7, value >> 2);
+      } else if (short_form) {
+        opcode = (neg) ? kThumbAddRI8 : kThumbSubRI8;
+      }
+      break;
+    case kOpCmp:
+      if (ARM_LOWREG(r_dest_src1) && short_form)
+        opcode = (short_form) ?  kThumbCmpRI8 : kThumbCmpRR;
+      else if (ARM_LOWREG(r_dest_src1))
+        opcode = kThumbCmpRR;
+      else {
+        short_form = false;
+        opcode = kThumbCmpHL;
+      }
+      break;
+    default:
+      /* Punt to OpRegRegImm - if bad case catch it there */
+      short_form = false;
+      break;
+  }
+  if (short_form)
+    return NewLIR2(cu, opcode, r_dest_src1, abs_value);
+  else {
+    return OpRegRegImm(cu, op, r_dest_src1, r_dest_src1, value);
+  }
+}
+
+LIR* ArmCodegen::LoadConstantWide(CompilationUnit* cu, int r_dest_lo, int r_dest_hi, int64_t value)
+{
+  LIR* res = NULL;
+  int32_t val_lo = Low32Bits(value);
+  int32_t val_hi = High32Bits(value);
+  int target_reg = S2d(r_dest_lo, r_dest_hi);
+  if (ARM_FPREG(r_dest_lo)) {
+    if ((val_lo == 0) && (val_hi == 0)) {
+      // TODO: we need better info about the target CPU.  a vector exclusive or
+      //       would probably be better here if we could rely on its existance.
+      // Load an immediate +2.0 (which encodes to 0)
+      NewLIR2(cu, kThumb2Vmovd_IMM8, target_reg, 0);
+      // +0.0 = +2.0 - +2.0
+      res = NewLIR3(cu, kThumb2Vsubd, target_reg, target_reg, target_reg);
+    } else {
+      int encoded_imm = EncodeImmDouble(value);
+      if (encoded_imm >= 0) {
+        res = NewLIR2(cu, kThumb2Vmovd_IMM8, target_reg, encoded_imm);
+      }
+    }
+  } else {
+    if ((InexpensiveConstantInt(val_lo) && (InexpensiveConstantInt(val_hi)))) {
+      res = LoadConstantNoClobber(cu, r_dest_lo, val_lo);
+      LoadConstantNoClobber(cu, r_dest_hi, val_hi);
+    }
+  }
+  if (res == NULL) {
+    // No short form - load from the literal pool.
+    LIR* data_target = ScanLiteralPoolWide(cu->literal_list, val_lo, val_hi);
+    if (data_target == NULL) {
+      data_target = AddWideData(cu, &cu->literal_list, val_lo, val_hi);
+    }
+    if (ARM_FPREG(r_dest_lo)) {
+      res = RawLIR(cu, cu->current_dalvik_offset, kThumb2Vldrd,
+                   target_reg, r15pc, 0, 0, 0, data_target);
+    } else {
+      res = RawLIR(cu, cu->current_dalvik_offset, kThumb2LdrdPcRel8,
+                   r_dest_lo, r_dest_hi, r15pc, 0, 0, data_target);
+    }
+    SetMemRefType(cu, res, true, kLiteral);
+    res->alias_info = reinterpret_cast<uintptr_t>(data_target);
+    AppendLIR(cu, res);
+  }
+  return res;
+}
+
+int ArmCodegen::EncodeShift(int code, int amount) {
+  return ((amount & 0x1f) << 2) | code;
+}
+
+LIR* ArmCodegen::LoadBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_dest,
+                                 int scale, OpSize size)
+{
+  bool all_low_regs = ARM_LOWREG(rBase) && ARM_LOWREG(r_index) && ARM_LOWREG(r_dest);
+  LIR* load;
+  ArmOpcode opcode = kThumbBkpt;
+  bool thumb_form = (all_low_regs && (scale == 0));
+  int reg_ptr;
+
+  if (ARM_FPREG(r_dest)) {
+    if (ARM_SINGLEREG(r_dest)) {
+      DCHECK((size == kWord) || (size == kSingle));
+      opcode = kThumb2Vldrs;
+      size = kSingle;
+    } else {
+      DCHECK(ARM_DOUBLEREG(r_dest));
+      DCHECK((size == kLong) || (size == kDouble));
+      DCHECK_EQ((r_dest & 0x1), 0);
+      opcode = kThumb2Vldrd;
+      size = kDouble;
+    }
+  } else {
+    if (size == kSingle)
+      size = kWord;
+  }
+
+  switch (size) {
+    case kDouble: // fall-through
+    case kSingle:
+      reg_ptr = AllocTemp(cu);
+      if (scale) {
+        NewLIR4(cu, kThumb2AddRRR, reg_ptr, rBase, r_index,
+                EncodeShift(kArmLsl, scale));
+      } else {
+        OpRegRegReg(cu, kOpAdd, reg_ptr, rBase, r_index);
+      }
+      load = NewLIR3(cu, opcode, r_dest, reg_ptr, 0);
+      FreeTemp(cu, reg_ptr);
+      return load;
+    case kWord:
+      opcode = (thumb_form) ? kThumbLdrRRR : kThumb2LdrRRR;
+      break;
+    case kUnsignedHalf:
+      opcode = (thumb_form) ? kThumbLdrhRRR : kThumb2LdrhRRR;
+      break;
+    case kSignedHalf:
+      opcode = (thumb_form) ? kThumbLdrshRRR : kThumb2LdrshRRR;
+      break;
+    case kUnsignedByte:
+      opcode = (thumb_form) ? kThumbLdrbRRR : kThumb2LdrbRRR;
+      break;
+    case kSignedByte:
+      opcode = (thumb_form) ? kThumbLdrsbRRR : kThumb2LdrsbRRR;
+      break;
+    default:
+      LOG(FATAL) << "Bad size: " << size;
+  }
+  if (thumb_form)
+    load = NewLIR3(cu, opcode, r_dest, rBase, r_index);
+  else
+    load = NewLIR4(cu, opcode, r_dest, rBase, r_index, scale);
+
+  return load;
+}
+
+LIR* ArmCodegen::StoreBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_src,
+                                  int scale, OpSize size)
+{
+  bool all_low_regs = ARM_LOWREG(rBase) && ARM_LOWREG(r_index) && ARM_LOWREG(r_src);
+  LIR* store = NULL;
+  ArmOpcode opcode = kThumbBkpt;
+  bool thumb_form = (all_low_regs && (scale == 0));
+  int reg_ptr;
+
+  if (ARM_FPREG(r_src)) {
+    if (ARM_SINGLEREG(r_src)) {
+      DCHECK((size == kWord) || (size == kSingle));
+      opcode = kThumb2Vstrs;
+      size = kSingle;
+    } else {
+      DCHECK(ARM_DOUBLEREG(r_src));
+      DCHECK((size == kLong) || (size == kDouble));
+      DCHECK_EQ((r_src & 0x1), 0);
+      opcode = kThumb2Vstrd;
+      size = kDouble;
+    }
+  } else {
+    if (size == kSingle)
+      size = kWord;
+  }
+
+  switch (size) {
+    case kDouble: // fall-through
+    case kSingle:
+      reg_ptr = AllocTemp(cu);
+      if (scale) {
+        NewLIR4(cu, kThumb2AddRRR, reg_ptr, rBase, r_index,
+                EncodeShift(kArmLsl, scale));
+      } else {
+        OpRegRegReg(cu, kOpAdd, reg_ptr, rBase, r_index);
+      }
+      store = NewLIR3(cu, opcode, r_src, reg_ptr, 0);
+      FreeTemp(cu, reg_ptr);
+      return store;
+    case kWord:
+      opcode = (thumb_form) ? kThumbStrRRR : kThumb2StrRRR;
+      break;
+    case kUnsignedHalf:
+    case kSignedHalf:
+      opcode = (thumb_form) ? kThumbStrhRRR : kThumb2StrhRRR;
+      break;
+    case kUnsignedByte:
+    case kSignedByte:
+      opcode = (thumb_form) ? kThumbStrbRRR : kThumb2StrbRRR;
+      break;
+    default:
+      LOG(FATAL) << "Bad size: " << size;
+  }
+  if (thumb_form)
+    store = NewLIR3(cu, opcode, r_src, rBase, r_index);
+  else
+    store = NewLIR4(cu, opcode, r_src, rBase, r_index, scale);
+
+  return store;
+}
+
+/*
+ * Load value from base + displacement.  Optionally perform null check
+ * on base (which must have an associated s_reg and MIR).  If not
+ * performing null check, incoming MIR can be null.
+ */
+LIR* ArmCodegen::LoadBaseDispBody(CompilationUnit* cu, int rBase, int displacement, int r_dest,
+                                  int r_dest_hi, OpSize size, int s_reg)
+{
+  Codegen* cg = cu->cg.get();
+  LIR* load = NULL;
+  ArmOpcode opcode = kThumbBkpt;
+  bool short_form = false;
+  bool thumb2Form = (displacement < 4092 && displacement >= 0);
+  bool all_low_regs = (ARM_LOWREG(rBase) && ARM_LOWREG(r_dest));
+  int encoded_disp = displacement;
+  bool is64bit = false;
+  bool already_generated = false;
+  switch (size) {
+    case kDouble:
+    case kLong:
+      is64bit = true;
+      if (ARM_FPREG(r_dest)) {
+        if (ARM_SINGLEREG(r_dest)) {
+          DCHECK(ARM_FPREG(r_dest_hi));
+          r_dest = cg->S2d(r_dest, r_dest_hi);
+        }
+        opcode = kThumb2Vldrd;
+        if (displacement <= 1020) {
+          short_form = true;
+          encoded_disp >>= 2;
+        }
+        break;
+      } else {
+        if (displacement <= 1020) {
+          load = NewLIR4(cu, kThumb2LdrdI8, r_dest, r_dest_hi, rBase, displacement >> 2);
+        } else {
+          load = LoadBaseDispBody(cu, rBase, displacement, r_dest,
+                                 -1, kWord, s_reg);
+          LoadBaseDispBody(cu, rBase, displacement + 4, r_dest_hi,
+                           -1, kWord, INVALID_SREG);
+        }
+        already_generated = true;
+      }
+    case kSingle:
+    case kWord:
+      if (ARM_FPREG(r_dest)) {
+        opcode = kThumb2Vldrs;
+        if (displacement <= 1020) {
+          short_form = true;
+          encoded_disp >>= 2;
+        }
+        break;
+      }
+      if (ARM_LOWREG(r_dest) && (rBase == r15pc) &&
+          (displacement <= 1020) && (displacement >= 0)) {
+        short_form = true;
+        encoded_disp >>= 2;
+        opcode = kThumbLdrPcRel;
+      } else if (ARM_LOWREG(r_dest) && (rBase == r13sp) &&
+          (displacement <= 1020) && (displacement >= 0)) {
+        short_form = true;
+        encoded_disp >>= 2;
+        opcode = kThumbLdrSpRel;
+      } else if (all_low_regs && displacement < 128 && displacement >= 0) {
+        DCHECK_EQ((displacement & 0x3), 0);
+        short_form = true;
+        encoded_disp >>= 2;
+        opcode = kThumbLdrRRI5;
+      } else if (thumb2Form) {
+        short_form = true;
+        opcode = kThumb2LdrRRI12;
+      }
+      break;
+    case kUnsignedHalf:
+      if (all_low_regs && displacement < 64 && displacement >= 0) {
+        DCHECK_EQ((displacement & 0x1), 0);
+        short_form = true;
+        encoded_disp >>= 1;
+        opcode = kThumbLdrhRRI5;
+      } else if (displacement < 4092 && displacement >= 0) {
+        short_form = true;
+        opcode = kThumb2LdrhRRI12;
+      }
+      break;
+    case kSignedHalf:
+      if (thumb2Form) {
+        short_form = true;
+        opcode = kThumb2LdrshRRI12;
+      }
+      break;
+    case kUnsignedByte:
+      if (all_low_regs && displacement < 32 && displacement >= 0) {
+        short_form = true;
+        opcode = kThumbLdrbRRI5;
+      } else if (thumb2Form) {
+        short_form = true;
+        opcode = kThumb2LdrbRRI12;
+      }
+      break;
+    case kSignedByte:
+      if (thumb2Form) {
+        short_form = true;
+        opcode = kThumb2LdrsbRRI12;
+      }
+      break;
+    default:
+      LOG(FATAL) << "Bad size: " << size;
+  }
+
+  if (!already_generated) {
+    if (short_form) {
+      load = NewLIR3(cu, opcode, r_dest, rBase, encoded_disp);
+    } else {
+      int reg_offset = AllocTemp(cu);
+      cg->LoadConstant(cu, reg_offset, encoded_disp);
+      load = cg->LoadBaseIndexed(cu, rBase, reg_offset, r_dest, 0, size);
+      FreeTemp(cu, reg_offset);
+    }
+  }
+
+  // TODO: in future may need to differentiate Dalvik accesses w/ spills
+  if (rBase == rARM_SP) {
+    AnnotateDalvikRegAccess(cu, load, displacement >> 2, true /* is_load */, is64bit);
+  }
+  return load;
+}
+
+LIR* ArmCodegen::LoadBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_dest,
+                              OpSize size, int s_reg)
+{
+  return LoadBaseDispBody(cu, rBase, displacement, r_dest, -1, size, s_reg);
+}
+
+LIR* ArmCodegen::LoadBaseDispWide(CompilationUnit* cu, int rBase, int displacement, int r_dest_lo,
+                                  int r_dest_hi, int s_reg)
+{
+  return LoadBaseDispBody(cu, rBase, displacement, r_dest_lo, r_dest_hi, kLong, s_reg);
+}
+
+
+LIR* ArmCodegen::StoreBaseDispBody(CompilationUnit* cu, int rBase, int displacement,
+                                   int r_src, int r_src_hi, OpSize size) {
+  Codegen* cg = cu->cg.get();
+  LIR* store = NULL;
+  ArmOpcode opcode = kThumbBkpt;
+  bool short_form = false;
+  bool thumb2Form = (displacement < 4092 && displacement >= 0);
+  bool all_low_regs = (ARM_LOWREG(rBase) && ARM_LOWREG(r_src));
+  int encoded_disp = displacement;
+  bool is64bit = false;
+  bool already_generated = false;
+  switch (size) {
+    case kLong:
+    case kDouble:
+      is64bit = true;
+      if (!ARM_FPREG(r_src)) {
+        if (displacement <= 1020) {
+          store = NewLIR4(cu, kThumb2StrdI8, r_src, r_src_hi, rBase, displacement >> 2);
+        } else {
+          store = StoreBaseDispBody(cu, rBase, displacement, r_src, -1, kWord);
+          StoreBaseDispBody(cu, rBase, displacement + 4, r_src_hi, -1, kWord);
+        }
+        already_generated = true;
+      } else {
+        if (ARM_SINGLEREG(r_src)) {
+          DCHECK(ARM_FPREG(r_src_hi));
+          r_src = cg->S2d(r_src, r_src_hi);
+        }
+        opcode = kThumb2Vstrd;
+        if (displacement <= 1020) {
+          short_form = true;
+          encoded_disp >>= 2;
+        }
+      }
+      break;
+    case kSingle:
+    case kWord:
+      if (ARM_FPREG(r_src)) {
+        DCHECK(ARM_SINGLEREG(r_src));
+        opcode = kThumb2Vstrs;
+        if (displacement <= 1020) {
+          short_form = true;
+          encoded_disp >>= 2;
+        }
+      break;
+      }
+      if (all_low_regs && displacement < 128 && displacement >= 0) {
+        DCHECK_EQ((displacement & 0x3), 0);
+        short_form = true;
+        encoded_disp >>= 2;
+        opcode = kThumbStrRRI5;
+      } else if (thumb2Form) {
+        short_form = true;
+        opcode = kThumb2StrRRI12;
+      }
+      break;
+    case kUnsignedHalf:
+    case kSignedHalf:
+      if (all_low_regs && displacement < 64 && displacement >= 0) {
+        DCHECK_EQ((displacement & 0x1), 0);
+        short_form = true;
+        encoded_disp >>= 1;
+        opcode = kThumbStrhRRI5;
+      } else if (thumb2Form) {
+        short_form = true;
+        opcode = kThumb2StrhRRI12;
+      }
+      break;
+    case kUnsignedByte:
+    case kSignedByte:
+      if (all_low_regs && displacement < 32 && displacement >= 0) {
+        short_form = true;
+        opcode = kThumbStrbRRI5;
+      } else if (thumb2Form) {
+        short_form = true;
+        opcode = kThumb2StrbRRI12;
+      }
+      break;
+    default:
+      LOG(FATAL) << "Bad size: " << size;
+  }
+  if (!already_generated) {
+    if (short_form) {
+      store = NewLIR3(cu, opcode, r_src, rBase, encoded_disp);
+    } else {
+      int r_scratch = AllocTemp(cu);
+      cg->LoadConstant(cu, r_scratch, encoded_disp);
+      store = cg->StoreBaseIndexed(cu, rBase, r_scratch, r_src, 0, size);
+      FreeTemp(cu, r_scratch);
+    }
+  }
+
+  // TODO: In future, may need to differentiate Dalvik & spill accesses
+  if (rBase == rARM_SP) {
+    AnnotateDalvikRegAccess(cu, store, displacement >> 2, false /* is_load */, is64bit);
+  }
+  return store;
+}
+
+LIR* ArmCodegen::StoreBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_src,
+                               OpSize size)
+{
+  return StoreBaseDispBody(cu, rBase, displacement, r_src, -1, size);
+}
+
+LIR* ArmCodegen::StoreBaseDispWide(CompilationUnit* cu, int rBase, int displacement,
+                                   int r_src_lo, int r_src_hi)
+{
+  return StoreBaseDispBody(cu, rBase, displacement, r_src_lo, r_src_hi, kLong);
+}
+
+LIR* ArmCodegen::OpFpRegCopy(CompilationUnit* cu, int r_dest, int r_src)
+{
+  int opcode;
+  DCHECK_EQ(ARM_DOUBLEREG(r_dest), ARM_DOUBLEREG(r_src));
+  if (ARM_DOUBLEREG(r_dest)) {
+    opcode = kThumb2Vmovd;
+  } else {
+    if (ARM_SINGLEREG(r_dest)) {
+      opcode = ARM_SINGLEREG(r_src) ? kThumb2Vmovs : kThumb2Fmsr;
+    } else {
+      DCHECK(ARM_SINGLEREG(r_src));
+      opcode = kThumb2Fmrs;
+    }
+  }
+  LIR* res = RawLIR(cu, cu->current_dalvik_offset, opcode, r_dest, r_src);
+  if (!(cu->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
+    res->flags.is_nop = true;
+  }
+  return res;
+}
+
+LIR* ArmCodegen::OpThreadMem(CompilationUnit* cu, OpKind op, int thread_offset)
+{
+  LOG(FATAL) << "Unexpected use of OpThreadMem for Arm";
+  return NULL;
+}
+
+LIR* ArmCodegen::OpMem(CompilationUnit* cu, OpKind op, int rBase, int disp)
+{
+  LOG(FATAL) << "Unexpected use of OpMem for Arm";
+  return NULL;
+}
+
+LIR* ArmCodegen::StoreBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                      int displacement, int r_src, int r_src_hi, OpSize size,
+                                      int s_reg)
+{
+  LOG(FATAL) << "Unexpected use of StoreBaseIndexedDisp for Arm";
+  return NULL;
+}
+
+LIR* ArmCodegen::OpRegMem(CompilationUnit *cu, OpKind op, int r_dest, int rBase, int offset)
+{
+  LOG(FATAL) << "Unexpected use of OpRegMem for Arm";
+  return NULL;
+}
+
+LIR* ArmCodegen::LoadBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                     int displacement, int r_dest, int r_dest_hi, OpSize size,
+                                     int s_reg)
+{
+  LOG(FATAL) << "Unexpected use of LoadBaseIndexedDisp for Arm";
+  return NULL;
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/codegen.h b/src/compiler/dex/quick/codegen.h
new file mode 100644
index 0000000..63c8460
--- /dev/null
+++ b/src/compiler/dex/quick/codegen.h
@@ -0,0 +1,406 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_CODEGEN_H_
+#define ART_SRC_COMPILER_DEX_QUICK_CODEGEN_H_
+
+#include "compiler/dex/compiler_ir.h"
+
+namespace art {
+
+// Set to 1 to measure cost of suspend check.
+#define NO_SUSPEND 0
+
+#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
+#define IS_BRANCH            (1ULL << kIsBranch)
+#define IS_IT                (1ULL << kIsIT)
+#define IS_LOAD              (1ULL << kMemLoad)
+#define IS_QUAD_OP           (1ULL << kIsQuadOp)
+#define IS_QUIN_OP           (1ULL << kIsQuinOp)
+#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
+#define IS_STORE             (1ULL << kMemStore)
+#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
+#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
+#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
+#define NO_OPERAND           (1ULL << kNoOperand)
+#define REG_DEF0             (1ULL << kRegDef0)
+#define REG_DEF1             (1ULL << kRegDef1)
+#define REG_DEFA             (1ULL << kRegDefA)
+#define REG_DEFD             (1ULL << kRegDefD)
+#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
+#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
+#define REG_DEF_LIST0        (1ULL << kRegDefList0)
+#define REG_DEF_LIST1        (1ULL << kRegDefList1)
+#define REG_DEF_LR           (1ULL << kRegDefLR)
+#define REG_DEF_SP           (1ULL << kRegDefSP)
+#define REG_USE0             (1ULL << kRegUse0)
+#define REG_USE1             (1ULL << kRegUse1)
+#define REG_USE2             (1ULL << kRegUse2)
+#define REG_USE3             (1ULL << kRegUse3)
+#define REG_USE4             (1ULL << kRegUse4)
+#define REG_USEA             (1ULL << kRegUseA)
+#define REG_USEC             (1ULL << kRegUseC)
+#define REG_USED             (1ULL << kRegUseD)
+#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
+#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
+#define REG_USE_LIST0        (1ULL << kRegUseList0)
+#define REG_USE_LIST1        (1ULL << kRegUseList1)
+#define REG_USE_LR           (1ULL << kRegUseLR)
+#define REG_USE_PC           (1ULL << kRegUsePC)
+#define REG_USE_SP           (1ULL << kRegUseSP)
+#define SETS_CCODES          (1ULL << kSetsCCodes)
+#define USES_CCODES          (1ULL << kUsesCCodes)
+
+// Common combo register usage patterns.
+#define REG_DEF01            (REG_DEF0 | REG_DEF1)
+#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
+#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
+#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
+#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
+#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
+#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
+#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
+#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
+#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
+#define REG_USE012           (REG_USE01 | REG_USE2)
+#define REG_USE014           (REG_USE01 | REG_USE4)
+#define REG_USE01            (REG_USE0 | REG_USE1)
+#define REG_USE02            (REG_USE0 | REG_USE2)
+#define REG_USE12            (REG_USE1 | REG_USE2)
+#define REG_USE23            (REG_USE2 | REG_USE3)
+
+typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int, uint32_t dex_idx,
+                            uint32_t method_idx, uintptr_t direct_code,
+                            uintptr_t direct_method, InvokeType type);
+
+// Target-specific initialization.
+bool InitArmCodegen(CompilationUnit* cu);
+bool InitMipsCodegen(CompilationUnit* cu);
+bool InitX86Codegen(CompilationUnit* cu);
+
+class Codegen {
+
+  public:
+
+    virtual ~Codegen(){};
+
+    // Shared by all targets - implemented in gen_common.cc.
+    void HandleSuspendLaunchPads(CompilationUnit *cu);
+    void HandleIntrinsicLaunchPads(CompilationUnit *cu);
+    void HandleThrowLaunchPads(CompilationUnit *cu);
+    void GenBarrier(CompilationUnit* cu);
+    LIR* GenCheck(CompilationUnit* cu, ConditionCode c_code, ThrowKind kind);
+    LIR* GenImmedCheck(CompilationUnit* cu, ConditionCode c_code, int reg, int imm_val,
+                       ThrowKind kind);
+    LIR* GenNullCheck(CompilationUnit* cu, int s_reg, int m_reg, int opt_flags);
+    LIR* GenRegRegCheck(CompilationUnit* cu, ConditionCode c_code, int reg1, int reg2,
+                        ThrowKind kind);
+    void GenCompareAndBranch(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_src1,
+                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
+    void GenCompareZeroAndBranch(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_src,
+                                 LIR* taken, LIR* fall_through);
+    void GenIntToLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    void GenIntNarrowing(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                         RegLocation rl_src);
+    void GenNewArray(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest,
+                     RegLocation rl_src);
+    void GenFilledNewArray(CompilationUnit* cu, CallInfo* info);
+    void GenSput(CompilationUnit* cu, uint32_t field_idx, RegLocation rl_src,
+                 bool is_long_or_double, bool is_object);
+    void GenSget(CompilationUnit* cu, uint32_t field_idx, RegLocation rl_dest,
+                 bool is_long_or_double, bool is_object);
+    void GenShowTarget(CompilationUnit* cu);
+    void GenIGet(CompilationUnit* cu, uint32_t field_idx, int opt_flags, OpSize size,
+                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
+    void GenIPut(CompilationUnit* cu, uint32_t field_idx, int opt_flags, OpSize size,
+                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
+    void GenConstClass(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest);
+    void GenConstString(CompilationUnit* cu, uint32_t string_idx, RegLocation rl_dest);
+    void GenNewInstance(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest);
+    void GenThrow(CompilationUnit* cu, RegLocation rl_src);
+    void GenInstanceof(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest,
+                       RegLocation rl_src);
+    void GenCheckCast(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_src);
+    void GenLong3Addr(CompilationUnit* cu, OpKind first_op, OpKind second_op, RegLocation rl_dest,
+                      RegLocation rl_src1, RegLocation rl_src2);
+    void GenShiftOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                        RegLocation rl_src1, RegLocation rl_shift);
+    void GenArithOpInt(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                       RegLocation rl_src1, RegLocation rl_src2);
+    void GenArithOpIntLit(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                          RegLocation rl_src, int lit);
+    void GenArithOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                        RegLocation rl_src1, RegLocation rl_src2);
+    void GenConversionCall(CompilationUnit* cu, int func_offset, RegLocation rl_dest,
+                           RegLocation rl_src);
+    void GenSuspendTest(CompilationUnit* cu, int opt_flags);
+    void GenSuspendTestAndBranch(CompilationUnit* cu, int opt_flags, LIR* target);
+
+    // Shared by all targets - implemented in gen_invoke.cc.
+    int CallHelperSetup(CompilationUnit* cu, int helper_offset);
+    LIR* CallHelper(CompilationUnit* cu, int r_tgt, int helper_offset, bool safepoint_pc);
+    void CallRuntimeHelperImm(CompilationUnit* cu, int helper_offset, int arg0, bool safepoint_pc);
+    void CallRuntimeHelperReg(CompilationUnit* cu, int helper_offset, int arg0, bool safepoint_pc);
+    void CallRuntimeHelperRegLocation(CompilationUnit* cu, int helper_offset, RegLocation arg0,
+                                       bool safepoint_pc);
+    void CallRuntimeHelperImmImm(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                                 bool safepoint_pc);
+    void CallRuntimeHelperImmRegLocation(CompilationUnit* cu, int helper_offset, int arg0,
+                                         RegLocation arg1, bool safepoint_pc);
+    void CallRuntimeHelperRegLocationImm(CompilationUnit* cu, int helper_offset, RegLocation arg0,
+                                         int arg1, bool safepoint_pc);
+    void CallRuntimeHelperImmReg(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                                 bool safepoint_pc);
+    void CallRuntimeHelperRegImm(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                                 bool safepoint_pc);
+    void CallRuntimeHelperImmMethod(CompilationUnit* cu, int helper_offset, int arg0,
+                                    bool safepoint_pc);
+    void CallRuntimeHelperRegLocationRegLocation(CompilationUnit* cu, int helper_offset,
+                                                 RegLocation arg0, RegLocation arg1,
+                                                 bool safepoint_pc);
+    void CallRuntimeHelperRegReg(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                                 bool safepoint_pc);
+    void CallRuntimeHelperRegRegImm(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                                    int arg2, bool safepoint_pc);
+    void CallRuntimeHelperImmMethodRegLocation(CompilationUnit* cu, int helper_offset, int arg0,
+                                               RegLocation arg2, bool safepoint_pc);
+    void CallRuntimeHelperImmMethodImm(CompilationUnit* cu, int helper_offset, int arg0, int arg2,
+                                       bool safepoint_pc);
+    void CallRuntimeHelperImmRegLocationRegLocation(CompilationUnit* cu, int helper_offset,
+                                                    int arg0, RegLocation arg1, RegLocation arg2,
+                                                    bool safepoint_pc);
+    void GenInvoke(CompilationUnit* cu, CallInfo* info);
+    void FlushIns(CompilationUnit* cu, RegLocation* ArgLocs, RegLocation rl_method);
+    int GenDalvikArgsNoRange(CompilationUnit* cu, CallInfo* info, int call_state, LIR** pcrLabel,
+                             NextCallInsn next_call_insn, uint32_t dex_idx, uint32_t method_idx,
+                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
+                             bool skip_this);
+    int GenDalvikArgsRange(CompilationUnit* cu, CallInfo* info, int call_state, LIR** pcrLabel,
+                           NextCallInsn next_call_insn, uint32_t dex_idx, uint32_t method_idx,
+                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
+                           bool skip_this);
+    RegLocation InlineTarget(CompilationUnit* cu, CallInfo* info);
+    RegLocation InlineTargetWide(CompilationUnit* cu, CallInfo* info);
+    CallInfo* NewMemCallInfo(CompilationUnit* cu, BasicBlock* bb, MIR* mir, InvokeType type,
+                             bool is_range);
+    bool GenInlinedCharAt(CompilationUnit* cu, CallInfo* info);
+    bool GenInlinedStringIsEmptyOrLength(CompilationUnit* cu, CallInfo* info, bool is_empty);
+    bool GenInlinedAbsInt(CompilationUnit *cu, CallInfo* info);
+    bool GenInlinedAbsLong(CompilationUnit *cu, CallInfo* info);
+    bool GenInlinedFloatCvt(CompilationUnit *cu, CallInfo* info);
+    bool GenInlinedDoubleCvt(CompilationUnit *cu, CallInfo* info);
+    bool GenInlinedIndexOf(CompilationUnit* cu, CallInfo* info, bool zero_based);
+    bool GenInlinedStringCompareTo(CompilationUnit* cu, CallInfo* info);
+    bool GenInlinedCurrentThread(CompilationUnit* cu, CallInfo* info);
+    bool GenInlinedUnsafeGet(CompilationUnit* cu, CallInfo* info, bool is_long, bool is_volatile);
+    bool GenInlinedUnsafePut(CompilationUnit* cu, CallInfo* info, bool is_long, bool is_object,
+                             bool is_volatile, bool is_ordered);
+    bool GenIntrinsic(CompilationUnit* cu, CallInfo* info);
+
+    // Shared by all targets - implemented in gen_loadstore.cc.
+    RegLocation LoadCurrMethod(CompilationUnit *cu);
+    void LoadCurrMethodDirect(CompilationUnit *cu, int r_tgt);
+    LIR* LoadConstant(CompilationUnit* cu, int r_dest, int value);
+    LIR* LoadWordDisp(CompilationUnit* cu, int rBase, int displacement, int r_dest);
+    RegLocation LoadValue(CompilationUnit* cu, RegLocation rl_src, RegisterClass op_kind);
+    RegLocation LoadValueWide(CompilationUnit* cu, RegLocation rl_src, RegisterClass op_kind);
+    void LoadValueDirect(CompilationUnit* cu, RegLocation rl_src, int r_dest);
+    void LoadValueDirectFixed(CompilationUnit* cu, RegLocation rl_src, int r_dest);
+    void LoadValueDirectWide(CompilationUnit* cu, RegLocation rl_src, int reg_lo, int reg_hi);
+    void LoadValueDirectWideFixed(CompilationUnit* cu, RegLocation rl_src, int reg_lo, int reg_hi);
+    LIR* StoreWordDisp(CompilationUnit* cu, int rBase, int displacement, int r_src);
+    void StoreValue(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    void StoreValueWide(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+
+    // Required for target - codegen helpers.
+    virtual bool SmallLiteralDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
+                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
+    virtual int LoadHelper(CompilationUnit* cu, int offset) = 0;
+    virtual LIR* LoadBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_dest,
+                              OpSize size, int s_reg) = 0;
+    virtual LIR* LoadBaseDispWide(CompilationUnit* cu, int rBase, int displacement, int r_dest_lo,
+                                  int r_dest_hi, int s_reg) = 0;
+    virtual LIR* LoadBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_dest, int scale,
+                                 OpSize size) = 0;
+    virtual LIR* LoadBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                     int displacement, int r_dest, int r_dest_hi, OpSize size,
+                                     int s_reg) = 0;
+    virtual LIR* LoadConstantNoClobber(CompilationUnit* cu, int r_dest, int value) = 0;
+    virtual LIR* LoadConstantWide(CompilationUnit* cu, int r_dest_lo, int r_dest_hi,
+                                  int64_t value) = 0;
+    virtual LIR* StoreBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_src,
+                               OpSize size) = 0;
+    virtual LIR* StoreBaseDispWide(CompilationUnit* cu, int rBase, int displacement, int r_src_lo,
+                                   int r_src_hi) = 0;
+    virtual LIR* StoreBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_src, int scale,
+                                 OpSize size) = 0;
+    virtual LIR* StoreBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                      int displacement, int r_src, int r_src_hi, OpSize size,
+                                      int s_reg) = 0;
+    virtual void MarkGCCard(CompilationUnit* cu, int val_reg, int tgt_addr_reg) = 0;
+
+    // Required for target - register utilities.
+    virtual bool IsFpReg(int reg) = 0;
+    virtual bool SameRegType(int reg1, int reg2) = 0;
+    virtual int AllocTypedTemp(CompilationUnit* cu, bool fp_hint, int reg_class) = 0;
+    virtual int AllocTypedTempPair(CompilationUnit* cu, bool fp_hint, int reg_class) = 0;
+    virtual int S2d(int low_reg, int high_reg) = 0;
+    virtual int TargetReg(SpecialTargetRegister reg) = 0;
+    virtual RegisterInfo* GetRegInfo(CompilationUnit* cu, int reg) = 0;
+    virtual RegLocation GetReturnAlt(CompilationUnit* cu) = 0;
+    virtual RegLocation GetReturnWideAlt(CompilationUnit* cu) = 0;
+    virtual RegLocation LocCReturn() = 0;
+    virtual RegLocation LocCReturnDouble() = 0;
+    virtual RegLocation LocCReturnFloat() = 0;
+    virtual RegLocation LocCReturnWide() = 0;
+    virtual uint32_t FpRegMask() = 0;
+    virtual uint64_t GetRegMaskCommon(CompilationUnit* cu, int reg) = 0;
+    virtual void AdjustSpillMask(CompilationUnit* cu) = 0;
+    virtual void ClobberCalleeSave(CompilationUnit *cu) = 0;
+    virtual void FlushReg(CompilationUnit* cu, int reg) = 0;
+    virtual void FlushRegWide(CompilationUnit* cu, int reg1, int reg2) = 0;
+    virtual void FreeCallTemps(CompilationUnit* cu) = 0;
+    virtual void FreeRegLocTemps(CompilationUnit* cu, RegLocation rl_keep, RegLocation rl_free) = 0;
+    virtual void LockCallTemps(CompilationUnit* cu) = 0;
+    virtual void MarkPreservedSingle(CompilationUnit* cu, int v_reg, int reg) = 0;
+    virtual void CompilerInitializeRegAlloc(CompilationUnit* cu) = 0;
+
+    // Required for target - miscellaneous.
+    virtual AssemblerStatus AssembleInstructions(CompilationUnit* cu, uintptr_t start_addr) = 0;
+    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
+    virtual void SetupTargetResourceMasks(CompilationUnit* cu, LIR* lir) = 0;
+    virtual const char* GetTargetInstFmt(int opcode) = 0;
+    virtual const char* GetTargetInstName(int opcode) = 0;
+    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
+    virtual uint64_t GetPCUseDefEncoding() = 0;
+    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
+    virtual int GetInsnSize(LIR* lir) = 0;
+    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
+
+    // Required for target - Dalvik-level generators.
+    virtual void GenArithImmOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
+    virtual void GenMulLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2) = 0;
+    virtual void GenAddLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2) = 0;
+    virtual void GenAndLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2) = 0;
+    virtual void GenArithOpDouble(CompilationUnit* cu, Instruction::Code opcode,
+                                  RegLocation rl_dest, RegLocation rl_src1,
+                                  RegLocation rl_src2) = 0;
+    virtual void GenArithOpFloat(CompilationUnit *cu, Instruction::Code opcode, RegLocation rl_dest,
+                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
+    virtual void GenCmpFP(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                          RegLocation rl_src1, RegLocation rl_src2) = 0;
+    virtual void GenConversion(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                               RegLocation rl_src) = 0;
+    virtual bool GenInlinedCas32(CompilationUnit* cu, CallInfo* info, bool need_write_barrier) = 0;
+    virtual bool GenInlinedMinMaxInt(CompilationUnit *cu, CallInfo* info, bool is_min) = 0;
+    virtual bool GenInlinedSqrt(CompilationUnit* cu, CallInfo* info) = 0;
+    virtual void GenNegLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) = 0;
+    virtual void GenOrLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                           RegLocation rl_src2) = 0;
+    virtual void GenSubLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2) = 0;
+    virtual void GenXorLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2) = 0;
+    virtual LIR* GenRegMemCheck(CompilationUnit* cu, ConditionCode c_code, int reg1, int base,
+                                int offset, ThrowKind kind) = 0;
+    virtual RegLocation GenDivRem(CompilationUnit* cu, RegLocation rl_dest, int reg_lo, int reg_hi,
+                                  bool is_div) = 0;
+    virtual RegLocation GenDivRemLit(CompilationUnit* cu, RegLocation rl_dest, int reg_lo, int lit,
+                                     bool is_div) = 0;
+    virtual void GenCmpLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2) = 0;
+    virtual void GenDivZeroCheck(CompilationUnit* cu, int reg_lo, int reg_hi) = 0;
+    virtual void GenEntrySequence(CompilationUnit* cu, RegLocation* ArgLocs,
+                                  RegLocation rl_method) = 0;
+    virtual void GenExitSequence(CompilationUnit* cu) = 0;
+    virtual void GenFillArrayData(CompilationUnit* cu, uint32_t table_offset,
+                                  RegLocation rl_src) = 0;
+    virtual void GenFusedFPCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir, bool gt_bias,
+                                     bool is_double) = 0;
+    virtual void GenFusedLongCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir) = 0;
+    virtual void GenSelect(CompilationUnit* cu, BasicBlock* bb, MIR* mir) = 0;
+    virtual void GenMemBarrier(CompilationUnit* cu, MemBarrierKind barrier_kind) = 0;
+    virtual void GenMonitorEnter(CompilationUnit* cu, int opt_flags, RegLocation rl_src) = 0;
+    virtual void GenMonitorExit(CompilationUnit* cu, int opt_flags, RegLocation rl_src) = 0;
+    virtual void GenMoveException(CompilationUnit* cu, RegLocation rl_dest) = 0;
+    virtual void GenMultiplyByTwoBitMultiplier(CompilationUnit* cu, RegLocation rl_src,
+                                               RegLocation rl_result, int lit, int first_bit,
+                                               int second_bit) = 0;
+    virtual void GenNegDouble(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) = 0;
+    virtual void GenNegFloat(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) = 0;
+    virtual void GenPackedSwitch(CompilationUnit* cu, uint32_t table_offset,
+                                 RegLocation rl_src) = 0;
+    virtual void GenSparseSwitch(CompilationUnit* cu, uint32_t table_offset,
+                                 RegLocation rl_src) = 0;
+    virtual void GenSpecialCase(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                                SpecialCaseHandler special_case) = 0;
+    virtual void GenArrayObjPut(CompilationUnit* cu, int opt_flags, RegLocation rl_array,
+                                RegLocation rl_index, RegLocation rl_src, int scale) = 0;
+    virtual void GenArrayGet(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
+    virtual void GenArrayPut(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                     RegLocation rl_index, RegLocation rl_src, int scale) = 0;
+    virtual void GenShiftImmOpLong(CompilationUnit* cu, Instruction::Code opcode,
+                                   RegLocation rl_dest, RegLocation rl_src1,
+                                   RegLocation rl_shift) = 0;
+
+    // Required for target - single operation generators.
+    virtual LIR* OpUnconditionalBranch(CompilationUnit* cu, LIR* target) = 0;
+    virtual LIR* OpCmpBranch(CompilationUnit* cu, ConditionCode cond, int src1, int src2,
+                             LIR* target) = 0;
+    virtual LIR* OpCmpImmBranch(CompilationUnit* cu, ConditionCode cond, int reg, int check_value,
+                                LIR* target) = 0;
+    virtual LIR* OpCondBranch(CompilationUnit* cu, ConditionCode cc, LIR* target) = 0;
+    virtual LIR* OpDecAndBranch(CompilationUnit* cu, ConditionCode c_code, int reg,
+                                LIR* target) = 0;
+    virtual LIR* OpFpRegCopy(CompilationUnit* cu, int r_dest, int r_src) = 0;
+    virtual LIR* OpIT(CompilationUnit* cu, ConditionCode cond, const char* guide) = 0;
+    virtual LIR* OpMem(CompilationUnit* cu, OpKind op, int rBase, int disp) = 0;
+    virtual LIR* OpPcRelLoad(CompilationUnit* cu, int reg, LIR* target) = 0;
+    virtual LIR* OpReg(CompilationUnit* cu, OpKind op, int r_dest_src) = 0;
+    virtual LIR* OpRegCopy(CompilationUnit* cu, int r_dest, int r_src) = 0;
+    virtual LIR* OpRegCopyNoInsert(CompilationUnit* cu, int r_dest, int r_src) = 0;
+    virtual LIR* OpRegImm(CompilationUnit* cu, OpKind op, int r_dest_src1, int value) = 0;
+    virtual LIR* OpRegMem(CompilationUnit* cu, OpKind op, int r_dest, int rBase, int offset) = 0;
+    virtual LIR* OpRegReg(CompilationUnit* cu, OpKind op, int r_dest_src1, int r_src2) = 0;
+    virtual LIR* OpRegRegImm(CompilationUnit* cu, OpKind op, int r_dest, int r_src1, int value) = 0;
+    virtual LIR* OpRegRegReg(CompilationUnit* cu, OpKind op, int r_dest, int r_src1,
+                             int r_src2) = 0;
+    virtual LIR* OpTestSuspend(CompilationUnit* cu, LIR* target) = 0;
+    virtual LIR* OpThreadMem(CompilationUnit* cu, OpKind op, int thread_offset) = 0;
+    virtual LIR* OpVldm(CompilationUnit* cu, int rBase, int count) = 0;
+    virtual LIR* OpVstm(CompilationUnit* cu, int rBase, int count) = 0;
+    virtual void OpLea(CompilationUnit* cu, int rBase, int reg1, int reg2, int scale,
+                       int offset) = 0;
+    virtual void OpRegCopyWide(CompilationUnit* cu, int dest_lo, int dest_hi, int src_lo,
+                               int src_hi) = 0;
+    virtual void OpTlsCmp(CompilationUnit* cu, int offset, int val) = 0;
+    virtual bool InexpensiveConstantInt(int32_t value) = 0;
+    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
+    virtual bool InexpensiveConstantLong(int64_t value) = 0;
+    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
+
+    // Temp workaround
+    void Workaround7250540(CompilationUnit* cu, RegLocation rl_dest, int value);
+    };  // Class Codegen
+
+}  // namespace art
+
+#endif // ART_SRC_COMPILER_DEX_QUICK_CODEGEN_H_
diff --git a/src/compiler/dex/quick/codegen_util.cc b/src/compiler/dex/quick/codegen_util.cc
new file mode 100644
index 0000000..06221f8
--- /dev/null
+++ b/src/compiler/dex/quick/codegen_util.cc
@@ -0,0 +1,1143 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler/dex/compiler_internals.h"
+#include "gc_map.h"
+#include "verifier/dex_gc_map.h"
+#include "verifier/method_verifier.h"
+#include "ralloc_util.h"
+#include "codegen_util.h"
+
+namespace art {
+
+bool IsInexpensiveConstant(CompilationUnit* cu, RegLocation rl_src)
+{
+  bool res = false;
+  if (rl_src.is_const) {
+    if (rl_src.wide) {
+      if (rl_src.fp) {
+         res = cu->cg->InexpensiveConstantDouble(ConstantValueWide(cu, rl_src));
+      } else {
+         res = cu->cg->InexpensiveConstantLong(ConstantValueWide(cu, rl_src));
+      }
+    } else {
+      if (rl_src.fp) {
+         res = cu->cg->InexpensiveConstantFloat(ConstantValue(cu, rl_src));
+      } else {
+         res = cu->cg->InexpensiveConstantInt(ConstantValue(cu, rl_src));
+      }
+    }
+  }
+  return res;
+}
+
+void MarkSafepointPC(CompilationUnit* cu, LIR* inst)
+{
+  inst->def_mask = ENCODE_ALL;
+  LIR* safepoint_pc = NewLIR0(cu, kPseudoSafepointPC);
+  DCHECK_EQ(safepoint_pc->def_mask, ENCODE_ALL);
+}
+
+bool FastInstance(CompilationUnit* cu,  uint32_t field_idx,
+                  int& field_offset, bool& is_volatile, bool is_put)
+{
+  OatCompilationUnit m_unit(cu->class_loader, cu->class_linker,
+                            *cu->dex_file, cu->code_item,
+                            cu->class_def_idx, cu->method_idx,
+                            cu->access_flags);
+  return cu->compiler->ComputeInstanceFieldInfo(field_idx, &m_unit,
+           field_offset, is_volatile, is_put);
+}
+
+/* Convert an instruction to a NOP */
+void NopLIR( LIR* lir)
+{
+  lir->flags.is_nop = true;
+}
+
+void SetMemRefType(CompilationUnit* cu, LIR* lir, bool is_load, int mem_type)
+{
+  uint64_t *mask_ptr;
+  uint64_t mask = ENCODE_MEM;;
+  Codegen* cg = cu->cg.get();
+  DCHECK(cg->GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE));
+  if (is_load) {
+    mask_ptr = &lir->use_mask;
+  } else {
+    mask_ptr = &lir->def_mask;
+  }
+  /* Clear out the memref flags */
+  *mask_ptr &= ~mask;
+  /* ..and then add back the one we need */
+  switch (mem_type) {
+    case kLiteral:
+      DCHECK(is_load);
+      *mask_ptr |= ENCODE_LITERAL;
+      break;
+    case kDalvikReg:
+      *mask_ptr |= ENCODE_DALVIK_REG;
+      break;
+    case kHeapRef:
+      *mask_ptr |= ENCODE_HEAP_REF;
+      break;
+    case kMustNotAlias:
+      /* Currently only loads can be marked as kMustNotAlias */
+      DCHECK(!(cg->GetTargetInstFlags(lir->opcode) & IS_STORE));
+      *mask_ptr |= ENCODE_MUST_NOT_ALIAS;
+      break;
+    default:
+      LOG(FATAL) << "Oat: invalid memref kind - " << mem_type;
+  }
+}
+
+/*
+ * Mark load/store instructions that access Dalvik registers through the stack.
+ */
+void AnnotateDalvikRegAccess(CompilationUnit* cu, LIR* lir, int reg_id, bool is_load, bool is64bit)
+{
+  SetMemRefType(cu, lir, is_load, kDalvikReg);
+
+  /*
+   * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit
+   * access.
+   */
+  lir->alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit);
+}
+
+/*
+ * Mark the corresponding bit(s).
+ */
+void SetupRegMask(CompilationUnit* cu, uint64_t* mask, int reg)
+{
+  Codegen* cg = cu->cg.get();
+  *mask |= cg->GetRegMaskCommon(cu, reg);
+}
+
+/*
+ * Set up the proper fields in the resource mask
+ */
+void SetupResourceMasks(CompilationUnit* cu, LIR* lir)
+{
+  int opcode = lir->opcode;
+  Codegen* cg = cu->cg.get();
+
+  if (opcode <= 0) {
+    lir->use_mask = lir->def_mask = 0;
+    return;
+  }
+
+  uint64_t flags = cg->GetTargetInstFlags(opcode);
+
+  if (flags & NEEDS_FIXUP) {
+    lir->flags.pcRelFixup = true;
+  }
+
+  /* Get the starting size of the instruction's template */
+  lir->flags.size = cg->GetInsnSize(lir);
+
+  /* Set up the mask for resources that are updated */
+  if (flags & (IS_LOAD | IS_STORE)) {
+    /* Default to heap - will catch specialized classes later */
+    SetMemRefType(cu, lir, flags & IS_LOAD, kHeapRef);
+  }
+
+  /*
+   * Conservatively assume the branch here will call out a function that in
+   * turn will trash everything.
+   */
+  if (flags & IS_BRANCH) {
+    lir->def_mask = lir->use_mask = ENCODE_ALL;
+    return;
+  }
+
+  if (flags & REG_DEF0) {
+    SetupRegMask(cu, &lir->def_mask, lir->operands[0]);
+  }
+
+  if (flags & REG_DEF1) {
+    SetupRegMask(cu, &lir->def_mask, lir->operands[1]);
+  }
+
+
+  if (flags & SETS_CCODES) {
+    lir->def_mask |= ENCODE_CCODE;
+  }
+
+  if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) {
+    int i;
+
+    for (i = 0; i < 4; i++) {
+      if (flags & (1 << (kRegUse0 + i))) {
+        SetupRegMask(cu, &lir->use_mask, lir->operands[i]);
+      }
+    }
+  }
+
+  if (flags & USES_CCODES) {
+    lir->use_mask |= ENCODE_CCODE;
+  }
+
+  // Handle target-specific actions
+  cg->SetupTargetResourceMasks(cu, lir);
+}
+
+/*
+ * Debugging macros
+ */
+#define DUMP_RESOURCE_MASK(X)
+
+/* Pretty-print a LIR instruction */
+void DumpLIRInsn(CompilationUnit* cu, LIR* lir, unsigned char* base_addr)
+{
+  int offset = lir->offset;
+  int dest = lir->operands[0];
+  const bool dump_nop = (cu->enable_debug & (1 << kDebugShowNops));
+  Codegen* cg = cu->cg.get();
+
+  /* Handle pseudo-ops individually, and all regular insns as a group */
+  switch (lir->opcode) {
+    case kPseudoMethodEntry:
+      LOG(INFO) << "-------- method entry "
+                << PrettyMethod(cu->method_idx, *cu->dex_file);
+      break;
+    case kPseudoMethodExit:
+      LOG(INFO) << "-------- Method_Exit";
+      break;
+    case kPseudoBarrier:
+      LOG(INFO) << "-------- BARRIER";
+      break;
+    case kPseudoEntryBlock:
+      LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest;
+      break;
+    case kPseudoDalvikByteCodeBoundary:
+      if (lir->operands[0] == 0) {
+         lir->operands[0] = reinterpret_cast<uintptr_t>("No instruction string");
+      }
+      LOG(INFO) << "-------- dalvik offset: 0x" << std::hex
+                << lir->dalvik_offset << " @ " << reinterpret_cast<char*>(lir->operands[0]);
+      break;
+    case kPseudoExitBlock:
+      LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest;
+      break;
+    case kPseudoPseudoAlign4:
+      LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex
+                << offset << "): .align4";
+      break;
+    case kPseudoEHBlockLabel:
+      LOG(INFO) << "Exception_Handling:";
+      break;
+    case kPseudoTargetLabel:
+    case kPseudoNormalBlockLabel:
+      LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":";
+      break;
+    case kPseudoThrowTarget:
+      LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":";
+      break;
+    case kPseudoIntrinsicRetry:
+      LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":";
+      break;
+    case kPseudoSuspendTarget:
+      LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":";
+      break;
+    case kPseudoSafepointPC:
+      LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
+      break;
+    case kPseudoExportedPC:
+      LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
+      break;
+    case kPseudoCaseLabel:
+      LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x"
+                << std::hex << lir->operands[0] << "|" << std::dec <<
+        lir->operands[0];
+      break;
+    default:
+      if (lir->flags.is_nop && !dump_nop) {
+        break;
+      } else {
+        std::string op_name(cg->BuildInsnString(cg->GetTargetInstName(lir->opcode),
+                                               lir, base_addr));
+        std::string op_operands(cg->BuildInsnString(cg->GetTargetInstFmt(lir->opcode),
+                                                    lir, base_addr));
+        LOG(INFO) << StringPrintf("%05x: %-9s%s%s",
+                                  reinterpret_cast<unsigned int>(base_addr + offset),
+                                  op_name.c_str(), op_operands.c_str(),
+                                  lir->flags.is_nop ? "(nop)" : "");
+      }
+      break;
+  }
+
+  if (lir->use_mask && (!lir->flags.is_nop || dump_nop)) {
+    DUMP_RESOURCE_MASK(DumpResourceMask((LIR* ) lir, lir->use_mask, "use"));
+  }
+  if (lir->def_mask && (!lir->flags.is_nop || dump_nop)) {
+    DUMP_RESOURCE_MASK(DumpResourceMask((LIR* ) lir, lir->def_mask, "def"));
+  }
+}
+
+void DumpPromotionMap(CompilationUnit *cu)
+{
+  Codegen* cg = cu->cg.get();
+  int num_regs = cu->num_dalvik_registers + cu->num_compiler_temps + 1;
+  for (int i = 0; i < num_regs; i++) {
+    PromotionMap v_reg_map = cu->promotion_map[i];
+    std::string buf;
+    if (v_reg_map.fp_location == kLocPhysReg) {
+      StringAppendF(&buf, " : s%d", v_reg_map.FpReg & cg->FpRegMask());
+    }
+
+    std::string buf3;
+    if (i < cu->num_dalvik_registers) {
+      StringAppendF(&buf3, "%02d", i);
+    } else if (i == cu->method_sreg) {
+      buf3 = "Method*";
+    } else {
+      StringAppendF(&buf3, "ct%d", i - cu->num_dalvik_registers);
+    }
+
+    LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(),
+                              v_reg_map.core_location == kLocPhysReg ?
+                              "r" : "SP+", v_reg_map.core_location == kLocPhysReg ?
+                              v_reg_map.core_reg : SRegOffset(cu, i),
+                              buf.c_str());
+  }
+}
+
+/* Dump a mapping table */
+static void DumpMappingTable(const char* table_name, const std::string& descriptor,
+                             const std::string& name, const std::string& signature,
+                             const std::vector<uint32_t>& v) {
+  if (v.size() > 0) {
+    std::string line(StringPrintf("\n  %s %s%s_%s_table[%zu] = {", table_name,
+                     descriptor.c_str(), name.c_str(), signature.c_str(), v.size()));
+    std::replace(line.begin(), line.end(), ';', '_');
+    LOG(INFO) << line;
+    for (uint32_t i = 0; i < v.size(); i+=2) {
+      line = StringPrintf("    {0x%05x, 0x%04x},", v[i], v[i+1]);
+      LOG(INFO) << line;
+    }
+    LOG(INFO) <<"  };\n\n";
+  }
+}
+
+/* Dump instructions and constant pool contents */
+void CodegenDump(CompilationUnit* cu)
+{
+  LOG(INFO) << "Dumping LIR insns for "
+            << PrettyMethod(cu->method_idx, *cu->dex_file);
+  LIR* lir_insn;
+  int insns_size = cu->insns_size;
+
+  LOG(INFO) << "Regs (excluding ins) : " << cu->num_regs;
+  LOG(INFO) << "Ins          : " << cu->num_ins;
+  LOG(INFO) << "Outs         : " << cu->num_outs;
+  LOG(INFO) << "CoreSpills       : " << cu->num_core_spills;
+  LOG(INFO) << "FPSpills       : " << cu->num_fp_spills;
+  LOG(INFO) << "CompilerTemps    : " << cu->num_compiler_temps;
+  LOG(INFO) << "Frame size       : " << cu->frame_size;
+  LOG(INFO) << "code size is " << cu->total_size <<
+    " bytes, Dalvik size is " << insns_size * 2;
+  LOG(INFO) << "expansion factor: "
+            << static_cast<float>(cu->total_size) / static_cast<float>(insns_size * 2);
+  DumpPromotionMap(cu);
+  for (lir_insn = cu->first_lir_insn; lir_insn != NULL; lir_insn = lir_insn->next) {
+    DumpLIRInsn(cu, lir_insn, 0);
+  }
+  for (lir_insn = cu->literal_list; lir_insn != NULL; lir_insn = lir_insn->next) {
+    LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset,
+                              lir_insn->operands[0]);
+  }
+
+  const DexFile::MethodId& method_id =
+      cu->dex_file->GetMethodId(cu->method_idx);
+  std::string signature(cu->dex_file->GetMethodSignature(method_id));
+  std::string name(cu->dex_file->GetMethodName(method_id));
+  std::string descriptor(cu->dex_file->GetMethodDeclaringClassDescriptor(method_id));
+
+  // Dump mapping tables
+  DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature, cu->pc2dexMappingTable);
+  DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature, cu->dex2pcMappingTable);
+}
+
+
+LIR* RawLIR(CompilationUnit* cu, int dalvik_offset, int opcode, int op0,
+      int op1, int op2, int op3, int op4, LIR* target)
+{
+  LIR* insn = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocLIR));
+  insn->dalvik_offset = dalvik_offset;
+  insn->opcode = opcode;
+  insn->operands[0] = op0;
+  insn->operands[1] = op1;
+  insn->operands[2] = op2;
+  insn->operands[3] = op3;
+  insn->operands[4] = op4;
+  insn->target = target;
+  SetupResourceMasks(cu, insn);
+  if ((opcode == kPseudoTargetLabel) || (opcode == kPseudoSafepointPC) ||
+      (opcode == kPseudoExportedPC)) {
+    // Always make labels scheduling barriers
+    insn->use_mask = insn->def_mask = ENCODE_ALL;
+  }
+  return insn;
+}
+
+/*
+ * The following are building blocks to construct low-level IRs with 0 - 4
+ * operands.
+ */
+LIR* NewLIR0(CompilationUnit* cu, int opcode)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & NO_OPERAND))
+      << cg->GetTargetInstName(opcode) << " " << opcode << " "
+      << PrettyMethod(cu->method_idx, *cu->dex_file) << " "
+      << cu->current_dalvik_offset;
+  LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode);
+  AppendLIR(cu, insn);
+  return insn;
+}
+
+LIR* NewLIR1(CompilationUnit* cu, int opcode,
+               int dest)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_UNARY_OP))
+      << cg->GetTargetInstName(opcode) << " " << opcode << " "
+      << PrettyMethod(cu->method_idx, *cu->dex_file) << " "
+      << cu->current_dalvik_offset;
+  LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest);
+  AppendLIR(cu, insn);
+  return insn;
+}
+
+LIR* NewLIR2(CompilationUnit* cu, int opcode,
+               int dest, int src1)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_BINARY_OP))
+      << cg->GetTargetInstName(opcode) << " " << opcode << " "
+      << PrettyMethod(cu->method_idx, *cu->dex_file) << " "
+      << cu->current_dalvik_offset;
+  LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1);
+  AppendLIR(cu, insn);
+  return insn;
+}
+
+LIR* NewLIR3(CompilationUnit* cu, int opcode,
+               int dest, int src1, int src2)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_TERTIARY_OP))
+      << cg->GetTargetInstName(opcode) << " " << opcode << " "
+      << PrettyMethod(cu->method_idx, *cu->dex_file) << " "
+      << cu->current_dalvik_offset;
+  LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1, src2);
+  AppendLIR(cu, insn);
+  return insn;
+}
+
+LIR* NewLIR4(CompilationUnit* cu, int opcode,
+      int dest, int src1, int src2, int info)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_QUAD_OP))
+      << cg->GetTargetInstName(opcode) << " " << opcode << " "
+      << PrettyMethod(cu->method_idx, *cu->dex_file) << " "
+      << cu->current_dalvik_offset;
+  LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1, src2, info);
+  AppendLIR(cu, insn);
+  return insn;
+}
+
+LIR* NewLIR5(CompilationUnit* cu, int opcode,
+       int dest, int src1, int src2, int info1, int info2)
+{
+  Codegen* cg = cu->cg.get();
+  DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_QUIN_OP))
+      << cg->GetTargetInstName(opcode) << " " << opcode << " "
+      << PrettyMethod(cu->method_idx, *cu->dex_file) << " "
+      << cu->current_dalvik_offset;
+  LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1, src2, info1, info2);
+  AppendLIR(cu, insn);
+  return insn;
+}
+
+/*
+ * Search the existing constants in the literal pool for an exact or close match
+ * within specified delta (greater or equal to 0).
+ */
+LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta)
+{
+  while (data_target) {
+    if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta)
+      return data_target;
+    data_target = data_target->next;
+  }
+  return NULL;
+}
+
+/* Search the existing constants in the literal pool for an exact wide match */
+LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi)
+{
+  bool lo_match = false;
+  LIR* lo_target = NULL;
+  while (data_target) {
+    if (lo_match && (data_target->operands[0] == val_hi)) {
+      // Record high word in case we need to expand this later.
+      lo_target->operands[1] = val_hi;
+      return lo_target;
+    }
+    lo_match = false;
+    if (data_target->operands[0] == val_lo) {
+      lo_match = true;
+      lo_target = data_target;
+    }
+    data_target = data_target->next;
+  }
+  return NULL;
+}
+
+/*
+ * The following are building blocks to insert constants into the pool or
+ * instruction streams.
+ */
+
+/* Add a 32-bit constant to the constant pool */
+LIR* AddWordData(CompilationUnit* cu, LIR* *constant_list_p, int value)
+{
+  /* Add the constant to the literal pool */
+  if (constant_list_p) {
+    LIR* new_value = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocData));
+    new_value->operands[0] = value;
+    new_value->next = *constant_list_p;
+    *constant_list_p = new_value;
+    return new_value;
+  }
+  return NULL;
+}
+
+/* Add a 64-bit constant to the constant pool or mixed with code */
+LIR* AddWideData(CompilationUnit* cu, LIR* *constant_list_p,
+               int val_lo, int val_hi)
+{
+  AddWordData(cu, constant_list_p, val_hi);
+  return AddWordData(cu, constant_list_p, val_lo);
+}
+
+static void PushWord(std::vector<uint8_t>&buf, int data) {
+  buf.push_back( data & 0xff);
+  buf.push_back( (data >> 8) & 0xff);
+  buf.push_back( (data >> 16) & 0xff);
+  buf.push_back( (data >> 24) & 0xff);
+}
+
+static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) {
+  while (buf.size() < offset) {
+    buf.push_back(0);
+  }
+}
+
+/* Write the literal pool to the output stream */
+static void InstallLiteralPools(CompilationUnit* cu)
+{
+  AlignBuffer(cu->code_buffer, cu->data_offset);
+  LIR* data_lir = cu->literal_list;
+  while (data_lir != NULL) {
+    PushWord(cu->code_buffer, data_lir->operands[0]);
+    data_lir = NEXT_LIR(data_lir);
+  }
+  // Push code and method literals, record offsets for the compiler to patch.
+  data_lir = cu->code_literal_list;
+  while (data_lir != NULL) {
+    uint32_t target = data_lir->operands[0];
+    cu->compiler->AddCodePatch(cu->dex_file,
+                                  cu->method_idx,
+                                  cu->invoke_type,
+                                  target,
+                                  static_cast<InvokeType>(data_lir->operands[1]),
+                                  cu->code_buffer.size());
+    const DexFile::MethodId& id = cu->dex_file->GetMethodId(target);
+    // unique based on target to ensure code deduplication works
+    uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id);
+    PushWord(cu->code_buffer, unique_patch_value);
+    data_lir = NEXT_LIR(data_lir);
+  }
+  data_lir = cu->method_literal_list;
+  while (data_lir != NULL) {
+    uint32_t target = data_lir->operands[0];
+    cu->compiler->AddMethodPatch(cu->dex_file,
+                                    cu->method_idx,
+                                    cu->invoke_type,
+                                    target,
+                                    static_cast<InvokeType>(data_lir->operands[1]),
+                                    cu->code_buffer.size());
+    const DexFile::MethodId& id = cu->dex_file->GetMethodId(target);
+    // unique based on target to ensure code deduplication works
+    uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id);
+    PushWord(cu->code_buffer, unique_patch_value);
+    data_lir = NEXT_LIR(data_lir);
+  }
+}
+
+/* Write the switch tables to the output stream */
+static void InstallSwitchTables(CompilationUnit* cu)
+{
+  GrowableListIterator iterator;
+  GrowableListIteratorInit(&cu->switch_tables, &iterator);
+  while (true) {
+    SwitchTable* tab_rec = reinterpret_cast<SwitchTable*>(GrowableListIteratorNext( &iterator));
+    if (tab_rec == NULL) break;
+    AlignBuffer(cu->code_buffer, tab_rec->offset);
+    /*
+     * For Arm, our reference point is the address of the bx
+     * instruction that does the launch, so we have to subtract
+     * the auto pc-advance.  For other targets the reference point
+     * is a label, so we can use the offset as-is.
+     */
+    int bx_offset = INVALID_OFFSET;
+    switch (cu->instruction_set) {
+      case kThumb2:
+        bx_offset = tab_rec->anchor->offset + 4;
+        break;
+      case kX86:
+        bx_offset = 0;
+        break;
+      case kMips:
+        bx_offset = tab_rec->anchor->offset;
+        break;
+      default: LOG(FATAL) << "Unexpected instruction set: " << cu->instruction_set;
+    }
+    if (cu->verbose) {
+      LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset;
+    }
+    if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
+      const int* keys = reinterpret_cast<const int*>(&(tab_rec->table[2]));
+      for (int elems = 0; elems < tab_rec->table[1]; elems++) {
+        int disp = tab_rec->targets[elems]->offset - bx_offset;
+        if (cu->verbose) {
+          LOG(INFO) << "  Case[" << elems << "] key: 0x"
+                    << std::hex << keys[elems] << ", disp: 0x"
+                    << std::hex << disp;
+        }
+        PushWord(cu->code_buffer, keys[elems]);
+        PushWord(cu->code_buffer,
+          tab_rec->targets[elems]->offset - bx_offset);
+      }
+    } else {
+      DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
+                static_cast<int>(Instruction::kPackedSwitchSignature));
+      for (int elems = 0; elems < tab_rec->table[1]; elems++) {
+        int disp = tab_rec->targets[elems]->offset - bx_offset;
+        if (cu->verbose) {
+          LOG(INFO) << "  Case[" << elems << "] disp: 0x"
+                    << std::hex << disp;
+        }
+        PushWord(cu->code_buffer, tab_rec->targets[elems]->offset - bx_offset);
+      }
+    }
+  }
+}
+
+/* Write the fill array dta to the output stream */
+static void InstallFillArrayData(CompilationUnit* cu)
+{
+  GrowableListIterator iterator;
+  GrowableListIteratorInit(&cu->fill_array_data, &iterator);
+  while (true) {
+    FillArrayData *tab_rec =
+        reinterpret_cast<FillArrayData*>(GrowableListIteratorNext( &iterator));
+    if (tab_rec == NULL) break;
+    AlignBuffer(cu->code_buffer, tab_rec->offset);
+    for (int i = 0; i < (tab_rec->size + 1) / 2; i++) {
+      cu->code_buffer.push_back( tab_rec->table[i] & 0xFF);
+      cu->code_buffer.push_back( (tab_rec->table[i] >> 8) & 0xFF);
+    }
+  }
+}
+
+static int AssignLiteralOffsetCommon(LIR* lir, int offset)
+{
+  for (;lir != NULL; lir = lir->next) {
+    lir->offset = offset;
+    offset += 4;
+  }
+  return offset;
+}
+
+// Make sure we have a code address for every declared catch entry
+static bool VerifyCatchEntries(CompilationUnit* cu)
+{
+  bool success = true;
+  for (std::set<uint32_t>::const_iterator it = cu->catches.begin(); it != cu->catches.end(); ++it) {
+    uint32_t dex_pc = *it;
+    bool found = false;
+    for (size_t i = 0; i < cu->dex2pcMappingTable.size(); i += 2) {
+      if (dex_pc == cu->dex2pcMappingTable[i+1]) {
+        found = true;
+        break;
+      }
+    }
+    if (!found) {
+      LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc;
+      success = false;
+    }
+  }
+  // Now, try in the other direction
+  for (size_t i = 0; i < cu->dex2pcMappingTable.size(); i += 2) {
+    uint32_t dex_pc = cu->dex2pcMappingTable[i+1];
+    if (cu->catches.find(dex_pc) == cu->catches.end()) {
+      LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << dex_pc;
+      success = false;
+    }
+  }
+  if (!success) {
+    LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu->method_idx, *cu->dex_file);
+    LOG(INFO) << "Entries @ decode: " << cu->catches.size() << ", Entries in table: "
+              << cu->dex2pcMappingTable.size()/2;
+  }
+  return success;
+}
+
+static void CreateMappingTables(CompilationUnit* cu)
+{
+  for (LIR* tgt_lir = cu->first_lir_insn; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) {
+    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
+      cu->pc2dexMappingTable.push_back(tgt_lir->offset);
+      cu->pc2dexMappingTable.push_back(tgt_lir->dalvik_offset);
+    }
+    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
+      cu->dex2pcMappingTable.push_back(tgt_lir->offset);
+      cu->dex2pcMappingTable.push_back(tgt_lir->dalvik_offset);
+    }
+  }
+  DCHECK(VerifyCatchEntries(cu));
+  cu->combined_mapping_table.push_back(cu->pc2dexMappingTable.size() +
+                                        cu->dex2pcMappingTable.size());
+  cu->combined_mapping_table.push_back(cu->pc2dexMappingTable.size());
+  cu->combined_mapping_table.insert(cu->combined_mapping_table.end(),
+                                     cu->pc2dexMappingTable.begin(),
+                                     cu->pc2dexMappingTable.end());
+  cu->combined_mapping_table.insert(cu->combined_mapping_table.end(),
+                                     cu->dex2pcMappingTable.begin(),
+                                     cu->dex2pcMappingTable.end());
+}
+
+class NativePcToReferenceMapBuilder {
+ public:
+  NativePcToReferenceMapBuilder(std::vector<uint8_t>* table,
+                                size_t entries, uint32_t max_native_offset,
+                                size_t references_width) : entries_(entries),
+                                references_width_(references_width), in_use_(entries),
+                                table_(table) {
+    // Compute width in bytes needed to hold max_native_offset.
+    native_offset_width_ = 0;
+    while (max_native_offset != 0) {
+      native_offset_width_++;
+      max_native_offset >>= 8;
+    }
+    // Resize table and set up header.
+    table->resize((EntryWidth() * entries) + sizeof(uint32_t));
+    CHECK_LT(native_offset_width_, 1U << 3);
+    (*table)[0] = native_offset_width_ & 7;
+    CHECK_LT(references_width_, 1U << 13);
+    (*table)[0] |= (references_width_ << 3) & 0xFF;
+    (*table)[1] = (references_width_ >> 5) & 0xFF;
+    CHECK_LT(entries, 1U << 16);
+    (*table)[2] = entries & 0xFF;
+    (*table)[3] = (entries >> 8) & 0xFF;
+  }
+
+  void AddEntry(uint32_t native_offset, const uint8_t* references) {
+    size_t table_index = TableIndex(native_offset);
+    while (in_use_[table_index]) {
+      table_index = (table_index + 1) % entries_;
+    }
+    in_use_[table_index] = true;
+    SetNativeOffset(table_index, native_offset);
+    DCHECK_EQ(native_offset, GetNativeOffset(table_index));
+    SetReferences(table_index, references);
+  }
+
+ private:
+  size_t TableIndex(uint32_t native_offset) {
+    return NativePcOffsetToReferenceMap::Hash(native_offset) % entries_;
+  }
+
+  uint32_t GetNativeOffset(size_t table_index) {
+    uint32_t native_offset = 0;
+    size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t);
+    for (size_t i = 0; i < native_offset_width_; i++) {
+      native_offset |= (*table_)[table_offset + i] << (i * 8);
+    }
+    return native_offset;
+  }
+
+  void SetNativeOffset(size_t table_index, uint32_t native_offset) {
+    size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t);
+    for (size_t i = 0; i < native_offset_width_; i++) {
+      (*table_)[table_offset + i] = (native_offset >> (i * 8)) & 0xFF;
+    }
+  }
+
+  void SetReferences(size_t table_index, const uint8_t* references) {
+    size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t);
+    memcpy(&(*table_)[table_offset + native_offset_width_], references, references_width_);
+  }
+
+  size_t EntryWidth() const {
+    return native_offset_width_ + references_width_;
+  }
+
+  // Number of entries in the table.
+  const size_t entries_;
+  // Number of bytes used to encode the reference bitmap.
+  const size_t references_width_;
+  // Number of bytes used to encode a native offset.
+  size_t native_offset_width_;
+  // Entries that are in use.
+  std::vector<bool> in_use_;
+  // The table we're building.
+  std::vector<uint8_t>* const table_;
+};
+
+static void CreateNativeGcMap(CompilationUnit* cu) {
+  const std::vector<uint32_t>& mapping_table = cu->pc2dexMappingTable;
+  uint32_t max_native_offset = 0;
+  for (size_t i = 0; i < mapping_table.size(); i += 2) {
+    uint32_t native_offset = mapping_table[i + 0];
+    if (native_offset > max_native_offset) {
+      max_native_offset = native_offset;
+    }
+  }
+  Compiler::MethodReference method_ref(cu->dex_file, cu->method_idx);
+  const std::vector<uint8_t>* gc_map_raw = verifier::MethodVerifier::GetDexGcMap(method_ref);
+  verifier::DexPcToReferenceMap dex_gc_map(&(*gc_map_raw)[4], gc_map_raw->size() - 4);
+  // Compute native offset to references size.
+  NativePcToReferenceMapBuilder native_gc_map_builder(&cu->native_gc_map,
+                                                      mapping_table.size() / 2, max_native_offset,
+                                                      dex_gc_map.RegWidth());
+
+  for (size_t i = 0; i < mapping_table.size(); i += 2) {
+    uint32_t native_offset = mapping_table[i + 0];
+    uint32_t dex_pc = mapping_table[i + 1];
+    const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
+    CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc;
+    native_gc_map_builder.AddEntry(native_offset, references);
+  }
+}
+
+/* Determine the offset of each literal field */
+static int AssignLiteralOffset(CompilationUnit* cu, int offset)
+{
+  offset = AssignLiteralOffsetCommon(cu->literal_list, offset);
+  offset = AssignLiteralOffsetCommon(cu->code_literal_list, offset);
+  offset = AssignLiteralOffsetCommon(cu->method_literal_list, offset);
+  return offset;
+}
+
+static int AssignSwitchTablesOffset(CompilationUnit* cu, int offset)
+{
+  GrowableListIterator iterator;
+  GrowableListIteratorInit(&cu->switch_tables, &iterator);
+  while (true) {
+    SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(GrowableListIteratorNext(&iterator));
+    if (tab_rec == NULL) break;
+    tab_rec->offset = offset;
+    if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
+      offset += tab_rec->table[1] * (sizeof(int) * 2);
+    } else {
+      DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
+                static_cast<int>(Instruction::kPackedSwitchSignature));
+      offset += tab_rec->table[1] * sizeof(int);
+    }
+  }
+  return offset;
+}
+
+static int AssignFillArrayDataOffset(CompilationUnit* cu, int offset)
+{
+  GrowableListIterator iterator;
+  GrowableListIteratorInit(&cu->fill_array_data, &iterator);
+  while (true) {
+    FillArrayData *tab_rec =
+        reinterpret_cast<FillArrayData*>(GrowableListIteratorNext(&iterator));
+    if (tab_rec == NULL) break;
+    tab_rec->offset = offset;
+    offset += tab_rec->size;
+    // word align
+    offset = (offset + 3) & ~3;
+    }
+  return offset;
+}
+
+// LIR offset assignment.
+static int AssignInsnOffsets(CompilationUnit* cu)
+{
+  LIR* lir;
+  int offset = 0;
+
+  for (lir = cu->first_lir_insn; lir != NULL; lir = NEXT_LIR(lir)) {
+    lir->offset = offset;
+    if (lir->opcode >= 0) {
+      if (!lir->flags.is_nop) {
+        offset += lir->flags.size;
+      }
+    } else if (lir->opcode == kPseudoPseudoAlign4) {
+      if (offset & 0x2) {
+        offset += 2;
+        lir->operands[0] = 1;
+      } else {
+        lir->operands[0] = 0;
+      }
+    }
+    /* Pseudo opcodes don't consume space */
+  }
+
+  return offset;
+}
+
+/*
+ * Walk the compilation unit and assign offsets to instructions
+ * and literals and compute the total size of the compiled unit.
+ */
+static void AssignOffsets(CompilationUnit* cu)
+{
+  int offset = AssignInsnOffsets(cu);
+
+  /* Const values have to be word aligned */
+  offset = (offset + 3) & ~3;
+
+  /* Set up offsets for literals */
+  cu->data_offset = offset;
+
+  offset = AssignLiteralOffset(cu, offset);
+
+  offset = AssignSwitchTablesOffset(cu, offset);
+
+  offset = AssignFillArrayDataOffset(cu, offset);
+
+  cu->total_size = offset;
+}
+
+/*
+ * Go over each instruction in the list and calculate the offset from the top
+ * before sending them off to the assembler. If out-of-range branch distance is
+ * seen rearrange the instructions a bit to correct it.
+ */
+void AssembleLIR(CompilationUnit* cu)
+{
+  Codegen* cg = cu->cg.get();
+  AssignOffsets(cu);
+  /*
+   * Assemble here.  Note that we generate code with optimistic assumptions
+   * and if found now to work, we'll have to redo the sequence and retry.
+   */
+
+  while (true) {
+    AssemblerStatus res = cg->AssembleInstructions(cu, 0);
+    if (res == kSuccess) {
+      break;
+    } else {
+      cu->assembler_retries++;
+      if (cu->assembler_retries > MAX_ASSEMBLER_RETRIES) {
+        CodegenDump(cu);
+        LOG(FATAL) << "Assembler error - too many retries";
+      }
+      // Redo offsets and try again
+      AssignOffsets(cu);
+      cu->code_buffer.clear();
+    }
+  }
+
+  // Install literals
+  InstallLiteralPools(cu);
+
+  // Install switch tables
+  InstallSwitchTables(cu);
+
+  // Install fill array data
+  InstallFillArrayData(cu);
+
+  // Create the mapping table and native offset to reference map.
+  CreateMappingTables(cu);
+
+  CreateNativeGcMap(cu);
+}
+
+/*
+ * Insert a kPseudoCaseLabel at the beginning of the Dalvik
+ * offset vaddr.  This label will be used to fix up the case
+ * branch table during the assembly phase.  Be sure to set
+ * all resource flags on this to prevent code motion across
+ * target boundaries.  KeyVal is just there for debugging.
+ */
+static LIR* InsertCaseLabel(CompilationUnit* cu, int vaddr, int keyVal)
+{
+  SafeMap<unsigned int, LIR*>::iterator it;
+  it = cu->boundary_map.find(vaddr);
+  if (it == cu->boundary_map.end()) {
+    LOG(FATAL) << "Error: didn't find vaddr 0x" << std::hex << vaddr;
+  }
+  LIR* new_label = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocLIR));
+  new_label->dalvik_offset = vaddr;
+  new_label->opcode = kPseudoCaseLabel;
+  new_label->operands[0] = keyVal;
+  InsertLIRAfter(it->second, new_label);
+  return new_label;
+}
+
+static void MarkPackedCaseLabels(CompilationUnit* cu, SwitchTable *tab_rec)
+{
+  const uint16_t* table = tab_rec->table;
+  int base_vaddr = tab_rec->vaddr;
+  const int *targets = reinterpret_cast<const int*>(&table[4]);
+  int entries = table[1];
+  int low_key = s4FromSwitchData(&table[2]);
+  for (int i = 0; i < entries; i++) {
+    tab_rec->targets[i] = InsertCaseLabel(cu, base_vaddr + targets[i], i + low_key);
+  }
+}
+
+static void MarkSparseCaseLabels(CompilationUnit* cu, SwitchTable *tab_rec)
+{
+  const uint16_t* table = tab_rec->table;
+  int base_vaddr = tab_rec->vaddr;
+  int entries = table[1];
+  const int* keys = reinterpret_cast<const int*>(&table[2]);
+  const int* targets = &keys[entries];
+  for (int i = 0; i < entries; i++) {
+    tab_rec->targets[i] = InsertCaseLabel(cu, base_vaddr + targets[i], keys[i]);
+  }
+}
+
+void ProcessSwitchTables(CompilationUnit* cu)
+{
+  GrowableListIterator iterator;
+  GrowableListIteratorInit(&cu->switch_tables, &iterator);
+  while (true) {
+    SwitchTable *tab_rec =
+        reinterpret_cast<SwitchTable*>(GrowableListIteratorNext(&iterator));
+    if (tab_rec == NULL) break;
+    if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) {
+      MarkPackedCaseLabels(cu, tab_rec);
+    } else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
+      MarkSparseCaseLabels(cu, tab_rec);
+    } else {
+      LOG(FATAL) << "Invalid switch table";
+    }
+  }
+}
+
+void DumpSparseSwitchTable(const uint16_t* table)
+  /*
+   * Sparse switch data format:
+   *  ushort ident = 0x0200   magic value
+   *  ushort size       number of entries in the table; > 0
+   *  int keys[size]      keys, sorted low-to-high; 32-bit aligned
+   *  int targets[size]     branch targets, relative to switch opcode
+   *
+   * Total size is (2+size*4) 16-bit code units.
+   */
+{
+  uint16_t ident = table[0];
+  int entries = table[1];
+  const int* keys = reinterpret_cast<const int*>(&table[2]);
+  const int* targets = &keys[entries];
+  LOG(INFO) <<  "Sparse switch table - ident:0x" << std::hex << ident
+            << ", entries: " << std::dec << entries;
+  for (int i = 0; i < entries; i++) {
+    LOG(INFO) << "  Key[" << keys[i] << "] -> 0x" << std::hex << targets[i];
+  }
+}
+
+void DumpPackedSwitchTable(const uint16_t* table)
+  /*
+   * Packed switch data format:
+   *  ushort ident = 0x0100   magic value
+   *  ushort size       number of entries in the table
+   *  int first_key       first (and lowest) switch case value
+   *  int targets[size]     branch targets, relative to switch opcode
+   *
+   * Total size is (4+size*2) 16-bit code units.
+   */
+{
+  uint16_t ident = table[0];
+  const int* targets = reinterpret_cast<const int*>(&table[4]);
+  int entries = table[1];
+  int low_key = s4FromSwitchData(&table[2]);
+  LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident
+            << ", entries: " << std::dec << entries << ", low_key: " << low_key;
+  for (int i = 0; i < entries; i++) {
+    LOG(INFO) << "  Key[" << (i + low_key) << "] -> 0x" << std::hex
+              << targets[i];
+  }
+}
+
+/*
+ * Set up special LIR to mark a Dalvik byte-code instruction start and
+ * record it in the boundary_map.  NOTE: in cases such as kMirOpCheck in
+ * which we split a single Dalvik instruction, only the first MIR op
+ * associated with a Dalvik PC should be entered into the map.
+ */
+LIR* MarkBoundary(CompilationUnit* cu, int offset, const char* inst_str)
+{
+  LIR* res = NewLIR1(cu, kPseudoDalvikByteCodeBoundary, reinterpret_cast<uintptr_t>(inst_str));
+  if (cu->boundary_map.find(offset) == cu->boundary_map.end()) {
+    cu->boundary_map.Put(offset, res);
+  }
+  return res;
+}
+
+bool EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2)
+{
+  bool is_taken;
+  switch (opcode) {
+    case Instruction::IF_EQ: is_taken = (src1 == src2); break;
+    case Instruction::IF_NE: is_taken = (src1 != src2); break;
+    case Instruction::IF_LT: is_taken = (src1 < src2); break;
+    case Instruction::IF_GE: is_taken = (src1 >= src2); break;
+    case Instruction::IF_GT: is_taken = (src1 > src2); break;
+    case Instruction::IF_LE: is_taken = (src1 <= src2); break;
+    case Instruction::IF_EQZ: is_taken = (src1 == 0); break;
+    case Instruction::IF_NEZ: is_taken = (src1 != 0); break;
+    case Instruction::IF_LTZ: is_taken = (src1 < 0); break;
+    case Instruction::IF_GEZ: is_taken = (src1 >= 0); break;
+    case Instruction::IF_GTZ: is_taken = (src1 > 0); break;
+    case Instruction::IF_LEZ: is_taken = (src1 <= 0); break;
+    default:
+      LOG(FATAL) << "Unexpected opcode " << opcode;
+      is_taken = false;
+  }
+  return is_taken;
+}
+
+// Convert relation of src1/src2 to src2/src1
+ConditionCode FlipComparisonOrder(ConditionCode before) {
+  ConditionCode res;
+  switch (before) {
+    case kCondEq: res = kCondEq; break;
+    case kCondNe: res = kCondNe; break;
+    case kCondLt: res = kCondGt; break;
+    case kCondGt: res = kCondLt; break;
+    case kCondLe: res = kCondGe; break;
+    case kCondGe: res = kCondLe; break;
+    default:
+      res = static_cast<ConditionCode>(0);
+      LOG(FATAL) << "Unexpected ccode " << before;
+  }
+  return res;
+}
+
+} // namespace art
diff --git a/src/compiler/dex/quick/codegen_util.h b/src/compiler/dex/quick/codegen_util.h
new file mode 100644
index 0000000..7fd26f3
--- /dev/null
+++ b/src/compiler/dex/quick/codegen_util.h
@@ -0,0 +1,68 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_CODEGENUTIL_H_
+#define ART_SRC_COMPILER_DEX_QUICK_CODEGENUTIL_H_
+
+#include <stdint.h>
+
+#include "compiler/dex/compiler_enums.h"
+#include "compiler/dex/compiler_ir.h"
+
+namespace art {
+
+class CompilationUnit;
+struct LIR;
+
+void MarkSafepointPC(CompilationUnit* cu, LIR* inst);
+bool FastInstance(CompilationUnit* cu,  uint32_t field_idx,
+                  int& field_offset, bool& is_volatile, bool is_put);
+void SetupResourceMasks(CompilationUnit* cu, LIR* lir);
+inline int32_t s4FromSwitchData(const void* switch_data) { return *reinterpret_cast<const int32_t*>(switch_data); }
+inline RegisterClass oat_reg_class_by_size(OpSize size) { return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte || size == kSignedByte ) ? kCoreReg : kAnyReg; }
+void AssembleLIR(CompilationUnit* cu);
+void SetMemRefType(CompilationUnit* cu, LIR* lir, bool is_load, int mem_type);
+void AnnotateDalvikRegAccess(CompilationUnit* cu, LIR* lir, int reg_id, bool is_load, bool is64bit);
+uint64_t GetRegMaskCommon(CompilationUnit* cu, int reg);
+void SetupRegMask(CompilationUnit* cu, uint64_t* mask, int reg);
+void SetupResourceMasks(CompilationUnit* cu, LIR* lir);
+void DumpLIRInsn(CompilationUnit* cu, LIR* arg, unsigned char* base_addr);
+void DumpPromotionMap(CompilationUnit *cu);
+void CodegenDump(CompilationUnit* cu);
+LIR* RawLIR(CompilationUnit* cu, int dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
+            int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
+LIR* NewLIR0(CompilationUnit* cu, int opcode);
+LIR* NewLIR1(CompilationUnit* cu, int opcode, int dest);
+LIR* NewLIR2(CompilationUnit* cu, int opcode, int dest, int src1);
+LIR* NewLIR3(CompilationUnit* cu, int opcode, int dest, int src1, int src2);
+LIR* NewLIR4(CompilationUnit* cu, int opcode, int dest, int src1, int src2, int info);
+LIR* NewLIR5(CompilationUnit* cu, int opcode, int dest, int src1, int src2, int info1, int info2);
+LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
+LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
+LIR* AddWordData(CompilationUnit* cu, LIR* *constant_list_p, int value);
+LIR* AddWideData(CompilationUnit* cu, LIR* *constant_list_p, int val_lo, int val_hi);
+void ProcessSwitchTables(CompilationUnit* cu);
+void DumpSparseSwitchTable(const uint16_t* table);
+void DumpPackedSwitchTable(const uint16_t* table);
+LIR* MarkBoundary(CompilationUnit* cu, int offset, const char* inst_str);
+void NopLIR(LIR* lir);
+bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
+bool IsInexpensiveConstant(CompilationUnit* cu, RegLocation rl_src);
+ConditionCode FlipComparisonOrder(ConditionCode before);
+
+}  // namespace art
+
+#endif // ART_SRC_COMPILER_DEX_QUICK_CODEGENUTIL_H_
diff --git a/src/compiler/dex/quick/gen_common.cc b/src/compiler/dex/quick/gen_common.cc
new file mode 100644
index 0000000..bc022fc
--- /dev/null
+++ b/src/compiler/dex/quick/gen_common.cc
@@ -0,0 +1,1734 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_util.h"
+#include "compiler/dex/compiler_ir.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+#include "ralloc_util.h"
+
+namespace art {
+
+/*
+ * This source files contains "gen" codegen routines that should
+ * be applicable to most targets.  Only mid-level support utilities
+ * and "op" calls may be used here.
+ */
+
+/*
+ * Generate an kPseudoBarrier marker to indicate the boundary of special
+ * blocks.
+ */
+void Codegen::GenBarrier(CompilationUnit* cu)
+{
+  LIR* barrier = NewLIR0(cu, kPseudoBarrier);
+  /* Mark all resources as being clobbered */
+  barrier->def_mask = -1;
+}
+
+// FIXME: need to do some work to split out targets with
+// condition codes and those without
+LIR* Codegen::GenCheck(CompilationUnit* cu, ConditionCode c_code, ThrowKind kind)
+{
+  DCHECK_NE(cu->instruction_set, kMips);
+  LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
+                    cu->current_dalvik_offset);
+  LIR* branch = OpCondBranch(cu, c_code, tgt);
+  // Remember branch target - will process later
+  InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
+  return branch;
+}
+
+LIR* Codegen::GenImmedCheck(CompilationUnit* cu, ConditionCode c_code, int reg, int imm_val,
+                            ThrowKind kind)
+{
+  LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
+                    cu->current_dalvik_offset, reg, imm_val);
+  LIR* branch;
+  if (c_code == kCondAl) {
+    branch = OpUnconditionalBranch(cu, tgt);
+  } else {
+    branch = OpCmpImmBranch(cu, c_code, reg, imm_val, tgt);
+  }
+  // Remember branch target - will process later
+  InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
+  return branch;
+}
+
+/* Perform null-check on a register.  */
+LIR* Codegen::GenNullCheck(CompilationUnit* cu, int s_reg, int m_reg, int opt_flags)
+{
+  if (!(cu->disable_opt & (1 << kNullCheckElimination)) &&
+    opt_flags & MIR_IGNORE_NULL_CHECK) {
+    return NULL;
+  }
+  return GenImmedCheck(cu, kCondEq, m_reg, 0, kThrowNullPointer);
+}
+
+/* Perform check on two registers */
+LIR* Codegen::GenRegRegCheck(CompilationUnit* cu, ConditionCode c_code, int reg1, int reg2,
+                             ThrowKind kind)
+{
+  LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
+                    cu->current_dalvik_offset, reg1, reg2);
+  LIR* branch = OpCmpBranch(cu, c_code, reg1, reg2, tgt);
+  // Remember branch target - will process later
+  InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
+  return branch;
+}
+
+void Codegen::GenCompareAndBranch(CompilationUnit* cu, Instruction::Code opcode,
+                                  RegLocation rl_src1, RegLocation rl_src2, LIR* taken,
+                                  LIR* fall_through)
+{
+  ConditionCode cond;
+  switch (opcode) {
+    case Instruction::IF_EQ:
+      cond = kCondEq;
+      break;
+    case Instruction::IF_NE:
+      cond = kCondNe;
+      break;
+    case Instruction::IF_LT:
+      cond = kCondLt;
+      break;
+    case Instruction::IF_GE:
+      cond = kCondGe;
+      break;
+    case Instruction::IF_GT:
+      cond = kCondGt;
+      break;
+    case Instruction::IF_LE:
+      cond = kCondLe;
+      break;
+    default:
+      cond = static_cast<ConditionCode>(0);
+      LOG(FATAL) << "Unexpected opcode " << opcode;
+  }
+
+  // Normalize such that if either operand is constant, src2 will be constant
+  if (rl_src1.is_const) {
+    RegLocation rl_temp = rl_src1;
+    rl_src1 = rl_src2;
+    rl_src2 = rl_temp;
+    cond = FlipComparisonOrder(cond);
+  }
+
+  rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+  // Is this really an immediate comparison?
+  if (rl_src2.is_const) {
+    // If it's already live in a register or not easily materialized, just keep going
+    RegLocation rl_temp = UpdateLoc(cu, rl_src2);
+    if ((rl_temp.location == kLocDalvikFrame) &&
+        InexpensiveConstantInt(ConstantValue(cu, rl_src2))) {
+      // OK - convert this to a compare immediate and branch
+      OpCmpImmBranch(cu, cond, rl_src1.low_reg, ConstantValue(cu, rl_src2), taken);
+      OpUnconditionalBranch(cu, fall_through);
+      return;
+    }
+  }
+  rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+  OpCmpBranch(cu, cond, rl_src1.low_reg, rl_src2.low_reg, taken);
+  OpUnconditionalBranch(cu, fall_through);
+}
+
+void Codegen::GenCompareZeroAndBranch(CompilationUnit* cu, Instruction::Code opcode,
+                                      RegLocation rl_src, LIR* taken, LIR* fall_through)
+{
+  ConditionCode cond;
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  switch (opcode) {
+    case Instruction::IF_EQZ:
+      cond = kCondEq;
+      break;
+    case Instruction::IF_NEZ:
+      cond = kCondNe;
+      break;
+    case Instruction::IF_LTZ:
+      cond = kCondLt;
+      break;
+    case Instruction::IF_GEZ:
+      cond = kCondGe;
+      break;
+    case Instruction::IF_GTZ:
+      cond = kCondGt;
+      break;
+    case Instruction::IF_LEZ:
+      cond = kCondLe;
+      break;
+    default:
+      cond = static_cast<ConditionCode>(0);
+      LOG(FATAL) << "Unexpected opcode " << opcode;
+  }
+  OpCmpImmBranch(cu, cond, rl_src.low_reg, 0, taken);
+  OpUnconditionalBranch(cu, fall_through);
+}
+
+void Codegen::GenIntToLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (rl_src.location == kLocPhysReg) {
+    OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg);
+  } else {
+    LoadValueDirect(cu, rl_src, rl_result.low_reg);
+  }
+  OpRegRegImm(cu, kOpAsr, rl_result.high_reg, rl_result.low_reg, 31);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void Codegen::GenIntNarrowing(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                              RegLocation rl_src)
+{
+   rl_src = LoadValue(cu, rl_src, kCoreReg);
+   RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+   OpKind op = kOpInvalid;
+   switch (opcode) {
+     case Instruction::INT_TO_BYTE:
+       op = kOp2Byte;
+       break;
+     case Instruction::INT_TO_SHORT:
+        op = kOp2Short;
+        break;
+     case Instruction::INT_TO_CHAR:
+        op = kOp2Char;
+        break;
+     default:
+       LOG(ERROR) << "Bad int conversion type";
+   }
+   OpRegReg(cu, op, rl_result.low_reg, rl_src.low_reg);
+   StoreValue(cu, rl_dest, rl_result);
+}
+
+/*
+ * Let helper function take care of everything.  Will call
+ * Array::AllocFromCode(type_idx, method, count);
+ * Note: AllocFromCode will handle checks for errNegativeArraySize.
+ */
+void Codegen::GenNewArray(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest,
+                          RegLocation rl_src)
+{
+  FlushAllRegs(cu);  /* Everything to home location */
+  int func_offset;
+  if (cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                  *cu->dex_file,
+                                                  type_idx)) {
+    func_offset = ENTRYPOINT_OFFSET(pAllocArrayFromCode);
+  } else {
+    func_offset= ENTRYPOINT_OFFSET(pAllocArrayFromCodeWithAccessCheck);
+  }
+  CallRuntimeHelperImmMethodRegLocation(cu, func_offset, type_idx, rl_src, true);
+  RegLocation rl_result = GetReturn(cu, false);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+/*
+ * Similar to GenNewArray, but with post-allocation initialization.
+ * Verifier guarantees we're dealing with an array class.  Current
+ * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
+ * Current code also throws internal unimp if not 'L', '[' or 'I'.
+ */
+void Codegen::GenFilledNewArray(CompilationUnit* cu, CallInfo* info)
+{
+  int elems = info->num_arg_words;
+  int type_idx = info->index;
+  FlushAllRegs(cu);  /* Everything to home location */
+  int func_offset;
+  if (cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                  *cu->dex_file,
+                                                  type_idx)) {
+    func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCode);
+  } else {
+    func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCodeWithAccessCheck);
+  }
+  CallRuntimeHelperImmMethodImm(cu, func_offset, type_idx, elems, true);
+  FreeTemp(cu, TargetReg(kArg2));
+  FreeTemp(cu, TargetReg(kArg1));
+  /*
+   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
+   * return region.  Because AllocFromCode placed the new array
+   * in kRet0, we'll just lock it into place.  When debugger support is
+   * added, it may be necessary to additionally copy all return
+   * values to a home location in thread-local storage
+   */
+  LockTemp(cu, TargetReg(kRet0));
+
+  // TODO: use the correct component size, currently all supported types
+  // share array alignment with ints (see comment at head of function)
+  size_t component_size = sizeof(int32_t);
+
+  // Having a range of 0 is legal
+  if (info->is_range && (elems > 0)) {
+    /*
+     * Bit of ugliness here.  We're going generate a mem copy loop
+     * on the register range, but it is possible that some regs
+     * in the range have been promoted.  This is unlikely, but
+     * before generating the copy, we'll just force a flush
+     * of any regs in the source range that have been promoted to
+     * home location.
+     */
+    for (int i = 0; i < elems; i++) {
+      RegLocation loc = UpdateLoc(cu, info->args[i]);
+      if (loc.location == kLocPhysReg) {
+        StoreBaseDisp(cu, TargetReg(kSp), SRegOffset(cu, loc.s_reg_low),
+                      loc.low_reg, kWord);
+      }
+    }
+    /*
+     * TUNING note: generated code here could be much improved, but
+     * this is an uncommon operation and isn't especially performance
+     * critical.
+     */
+    int r_src = AllocTemp(cu);
+    int r_dst = AllocTemp(cu);
+    int r_idx = AllocTemp(cu);
+    int r_val = INVALID_REG;
+    switch(cu->instruction_set) {
+      case kThumb2:
+        r_val = TargetReg(kLr);
+        break;
+      case kX86:
+        FreeTemp(cu, TargetReg(kRet0));
+        r_val = AllocTemp(cu);
+        break;
+      case kMips:
+        r_val = AllocTemp(cu);
+        break;
+      default: LOG(FATAL) << "Unexpected instruction set: " << cu->instruction_set;
+    }
+    // Set up source pointer
+    RegLocation rl_first = info->args[0];
+    OpRegRegImm(cu, kOpAdd, r_src, TargetReg(kSp),
+                SRegOffset(cu, rl_first.s_reg_low));
+    // Set up the target pointer
+    OpRegRegImm(cu, kOpAdd, r_dst, TargetReg(kRet0),
+                mirror::Array::DataOffset(component_size).Int32Value());
+    // Set up the loop counter (known to be > 0)
+    LoadConstant(cu, r_idx, elems - 1);
+    // Generate the copy loop.  Going backwards for convenience
+    LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+    // Copy next element
+    LoadBaseIndexed(cu, r_src, r_idx, r_val, 2, kWord);
+    StoreBaseIndexed(cu, r_dst, r_idx, r_val, 2, kWord);
+    FreeTemp(cu, r_val);
+    OpDecAndBranch(cu, kCondGe, r_idx, target);
+    if (cu->instruction_set == kX86) {
+      // Restore the target pointer
+      OpRegRegImm(cu, kOpAdd, TargetReg(kRet0), r_dst,
+                  -mirror::Array::DataOffset(component_size).Int32Value());
+    }
+  } else if (!info->is_range) {
+    // TUNING: interleave
+    for (int i = 0; i < elems; i++) {
+      RegLocation rl_arg = LoadValue(cu, info->args[i], kCoreReg);
+      StoreBaseDisp(cu, TargetReg(kRet0),
+                    mirror::Array::DataOffset(component_size).Int32Value() +
+                    i * 4, rl_arg.low_reg, kWord);
+      // If the LoadValue caused a temp to be allocated, free it
+      if (IsTemp(cu, rl_arg.low_reg)) {
+        FreeTemp(cu, rl_arg.low_reg);
+      }
+    }
+  }
+  if (info->result.location != kLocInvalid) {
+    StoreValue(cu, info->result, GetReturn(cu, false /* not fp */));
+  }
+}
+
+void Codegen::GenSput(CompilationUnit* cu, uint32_t field_idx, RegLocation rl_src,
+                      bool is_long_or_double, bool is_object)
+{
+  int field_offset;
+  int ssb_index;
+  bool is_volatile;
+  bool is_referrers_class;
+
+  OatCompilationUnit m_unit(cu->class_loader, cu->class_linker, *cu->dex_file, cu->code_item,
+                            cu->class_def_idx, cu->method_idx, cu->access_flags);
+
+  bool fast_path =
+      cu->compiler->ComputeStaticFieldInfo(field_idx, &m_unit,
+                                              field_offset, ssb_index,
+                                              is_referrers_class, is_volatile,
+                                              true);
+  if (fast_path && !SLOW_FIELD_PATH) {
+    DCHECK_GE(field_offset, 0);
+    int rBase;
+    if (is_referrers_class) {
+      // Fast path, static storage base is this method's class
+      RegLocation rl_method  = LoadCurrMethod(cu);
+      rBase = AllocTemp(cu);
+      LoadWordDisp(cu, rl_method.low_reg,
+                   mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase);
+      if (IsTemp(cu, rl_method.low_reg)) {
+        FreeTemp(cu, rl_method.low_reg);
+      }
+    } else {
+      // Medium path, static storage base in a different class which
+      // requires checks that the other class is initialized.
+      DCHECK_GE(ssb_index, 0);
+      // May do runtime call so everything to home locations.
+      FlushAllRegs(cu);
+      // Using fixed register to sync with possible call to runtime
+      // support.
+      int r_method = TargetReg(kArg1);
+      LockTemp(cu, r_method);
+      LoadCurrMethodDirect(cu, r_method);
+      rBase = TargetReg(kArg0);
+      LockTemp(cu, rBase);
+      LoadWordDisp(cu, r_method,
+                   mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(),
+                   rBase);
+      LoadWordDisp(cu, rBase,
+                   mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
+                   sizeof(int32_t*) * ssb_index, rBase);
+      // rBase now points at appropriate static storage base (Class*)
+      // or NULL if not initialized. Check for NULL and call helper if NULL.
+      // TUNING: fast path should fall through
+      LIR* branch_over = OpCmpImmBranch(cu, kCondNe, rBase, 0, NULL);
+      LoadConstant(cu, TargetReg(kArg0), ssb_index);
+      CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true);
+      if (cu->instruction_set == kMips) {
+        // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy
+        OpRegCopy(cu, rBase, TargetReg(kRet0));
+      }
+      LIR* skip_target = NewLIR0(cu, kPseudoTargetLabel);
+      branch_over->target = skip_target;
+      FreeTemp(cu, r_method);
+    }
+    // rBase now holds static storage base
+    if (is_long_or_double) {
+      rl_src = LoadValueWide(cu, rl_src, kAnyReg);
+    } else {
+      rl_src = LoadValue(cu, rl_src, kAnyReg);
+    }
+    if (is_volatile) {
+      GenMemBarrier(cu, kStoreStore);
+    }
+    if (is_long_or_double) {
+      StoreBaseDispWide(cu, rBase, field_offset, rl_src.low_reg,
+                        rl_src.high_reg);
+    } else {
+      StoreWordDisp(cu, rBase, field_offset, rl_src.low_reg);
+    }
+    if (is_volatile) {
+      GenMemBarrier(cu, kStoreLoad);
+    }
+    if (is_object && !IsConstantNullRef(cu, rl_src)) {
+      MarkGCCard(cu, rl_src.low_reg, rBase);
+    }
+    FreeTemp(cu, rBase);
+  } else {
+    FlushAllRegs(cu);  // Everything to home locations
+    int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Static) :
+        (is_object ? ENTRYPOINT_OFFSET(pSetObjStatic)
+        : ENTRYPOINT_OFFSET(pSet32Static));
+    CallRuntimeHelperImmRegLocation(cu, setter_offset, field_idx, rl_src, true);
+  }
+}
+
+void Codegen::GenSget(CompilationUnit* cu, uint32_t field_idx, RegLocation rl_dest,
+                      bool is_long_or_double, bool is_object)
+{
+  int field_offset;
+  int ssb_index;
+  bool is_volatile;
+  bool is_referrers_class;
+
+  OatCompilationUnit m_unit(cu->class_loader, cu->class_linker,
+                            *cu->dex_file, cu->code_item,
+                            cu->class_def_idx, cu->method_idx,
+                            cu->access_flags);
+
+  bool fast_path =
+    cu->compiler->ComputeStaticFieldInfo(field_idx, &m_unit,
+                                            field_offset, ssb_index,
+                                            is_referrers_class, is_volatile,
+                                            false);
+  if (fast_path && !SLOW_FIELD_PATH) {
+    DCHECK_GE(field_offset, 0);
+    int rBase;
+    if (is_referrers_class) {
+      // Fast path, static storage base is this method's class
+      RegLocation rl_method  = LoadCurrMethod(cu);
+      rBase = AllocTemp(cu);
+      LoadWordDisp(cu, rl_method.low_reg,
+                   mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase);
+    } else {
+      // Medium path, static storage base in a different class which
+      // requires checks that the other class is initialized
+      DCHECK_GE(ssb_index, 0);
+      // May do runtime call so everything to home locations.
+      FlushAllRegs(cu);
+      // Using fixed register to sync with possible call to runtime
+      // support
+      int r_method = TargetReg(kArg1);
+      LockTemp(cu, r_method);
+      LoadCurrMethodDirect(cu, r_method);
+      rBase = TargetReg(kArg0);
+      LockTemp(cu, rBase);
+      LoadWordDisp(cu, r_method,
+                   mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(),
+                   rBase);
+      LoadWordDisp(cu, rBase,
+                   mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
+                   sizeof(int32_t*) * ssb_index, rBase);
+      // rBase now points at appropriate static storage base (Class*)
+      // or NULL if not initialized. Check for NULL and call helper if NULL.
+      // TUNING: fast path should fall through
+      LIR* branch_over = OpCmpImmBranch(cu, kCondNe, rBase, 0, NULL);
+      CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true);
+      if (cu->instruction_set == kMips) {
+        // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy
+        OpRegCopy(cu, rBase, TargetReg(kRet0));
+      }
+      LIR* skip_target = NewLIR0(cu, kPseudoTargetLabel);
+      branch_over->target = skip_target;
+      FreeTemp(cu, r_method);
+    }
+    // rBase now holds static storage base
+    RegLocation rl_result = EvalLoc(cu, rl_dest, kAnyReg, true);
+    if (is_volatile) {
+      GenMemBarrier(cu, kLoadLoad);
+    }
+    if (is_long_or_double) {
+      LoadBaseDispWide(cu, rBase, field_offset, rl_result.low_reg,
+                       rl_result.high_reg, INVALID_SREG);
+    } else {
+      LoadWordDisp(cu, rBase, field_offset, rl_result.low_reg);
+    }
+    FreeTemp(cu, rBase);
+    if (is_long_or_double) {
+      StoreValueWide(cu, rl_dest, rl_result);
+    } else {
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  } else {
+    FlushAllRegs(cu);  // Everything to home locations
+    int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Static) :
+        (is_object ? ENTRYPOINT_OFFSET(pGetObjStatic)
+        : ENTRYPOINT_OFFSET(pGet32Static));
+    CallRuntimeHelperImm(cu, getterOffset, field_idx, true);
+    if (is_long_or_double) {
+      RegLocation rl_result = GetReturnWide(cu, rl_dest.fp);
+      StoreValueWide(cu, rl_dest, rl_result);
+    } else {
+      RegLocation rl_result = GetReturn(cu, rl_dest.fp);
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  }
+}
+
+
+// Debugging routine - if null target, branch to DebugMe
+void Codegen::GenShowTarget(CompilationUnit* cu)
+{
+  DCHECK_NE(cu->instruction_set, kX86) << "unimplemented GenShowTarget";
+  LIR* branch_over = OpCmpImmBranch(cu, kCondNe, TargetReg(kInvokeTgt), 0, NULL);
+  LoadWordDisp(cu, TargetReg(kSelf), ENTRYPOINT_OFFSET(pDebugMe), TargetReg(kInvokeTgt));
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch_over->target = target;
+}
+
+void Codegen::HandleSuspendLaunchPads(CompilationUnit *cu)
+{
+  LIR** suspend_label = reinterpret_cast<LIR**>(cu->suspend_launchpads.elem_list);
+  int num_elems = cu->suspend_launchpads.num_used;
+  int helper_offset = ENTRYPOINT_OFFSET(pTestSuspendFromCode);
+  for (int i = 0; i < num_elems; i++) {
+    ResetRegPool(cu);
+    ResetDefTracking(cu);
+    LIR* lab = suspend_label[i];
+    LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[0]);
+    cu->current_dalvik_offset = lab->operands[1];
+    AppendLIR(cu, lab);
+    int r_tgt = CallHelperSetup(cu, helper_offset);
+    CallHelper(cu, r_tgt, helper_offset, true /* MarkSafepointPC */);
+    OpUnconditionalBranch(cu, resume_lab);
+  }
+}
+
+void Codegen::HandleIntrinsicLaunchPads(CompilationUnit *cu)
+{
+  LIR** intrinsic_label = reinterpret_cast<LIR**>(cu->intrinsic_launchpads.elem_list);
+  int num_elems = cu->intrinsic_launchpads.num_used;
+  for (int i = 0; i < num_elems; i++) {
+    ResetRegPool(cu);
+    ResetDefTracking(cu);
+    LIR* lab = intrinsic_label[i];
+    CallInfo* info = reinterpret_cast<CallInfo*>(lab->operands[0]);
+    cu->current_dalvik_offset = info->offset;
+    AppendLIR(cu, lab);
+    // NOTE: GenInvoke handles MarkSafepointPC
+    GenInvoke(cu, info);
+    LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[2]);
+    if (resume_lab != NULL) {
+      OpUnconditionalBranch(cu, resume_lab);
+    }
+  }
+}
+
+void Codegen::HandleThrowLaunchPads(CompilationUnit *cu)
+{
+  LIR** throw_label = reinterpret_cast<LIR**>(cu->throw_launchpads.elem_list);
+  int num_elems = cu->throw_launchpads.num_used;
+  for (int i = 0; i < num_elems; i++) {
+    ResetRegPool(cu);
+    ResetDefTracking(cu);
+    LIR* lab = throw_label[i];
+    cu->current_dalvik_offset = lab->operands[1];
+    AppendLIR(cu, lab);
+    int func_offset = 0;
+    int v1 = lab->operands[2];
+    int v2 = lab->operands[3];
+    bool target_x86 = (cu->instruction_set == kX86);
+    switch (lab->operands[0]) {
+      case kThrowNullPointer:
+        func_offset = ENTRYPOINT_OFFSET(pThrowNullPointerFromCode);
+        break;
+      case kThrowConstantArrayBounds: // v1 is length reg (for Arm/Mips), v2 constant index
+        // v1 holds the constant array index.  Mips/Arm uses v2 for length, x86 reloads.
+        if (target_x86) {
+          OpRegMem(cu, kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value());
+        } else {
+          OpRegCopy(cu, TargetReg(kArg1), v1);
+        }
+        // Make sure the following LoadConstant doesn't mess with kArg1.
+        LockTemp(cu, TargetReg(kArg1));
+        LoadConstant(cu, TargetReg(kArg0), v2);
+        func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode);
+        break;
+      case kThrowArrayBounds:
+        // Move v1 (array index) to kArg0 and v2 (array length) to kArg1
+        if (v2 != TargetReg(kArg0)) {
+          OpRegCopy(cu, TargetReg(kArg0), v1);
+          if (target_x86) {
+            // x86 leaves the array pointer in v2, so load the array length that the handler expects
+            OpRegMem(cu, kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
+          } else {
+            OpRegCopy(cu, TargetReg(kArg1), v2);
+          }
+        } else {
+          if (v1 == TargetReg(kArg1)) {
+            // Swap v1 and v2, using kArg2 as a temp
+            OpRegCopy(cu, TargetReg(kArg2), v1);
+            if (target_x86) {
+              // x86 leaves the array pointer in v2; load the array length that the handler expects
+              OpRegMem(cu, kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
+            } else {
+              OpRegCopy(cu, TargetReg(kArg1), v2);
+            }
+            OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));
+          } else {
+            if (target_x86) {
+              // x86 leaves the array pointer in v2; load the array length that the handler expects
+              OpRegMem(cu, kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
+            } else {
+              OpRegCopy(cu, TargetReg(kArg1), v2);
+            }
+            OpRegCopy(cu, TargetReg(kArg0), v1);
+          }
+        }
+        func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode);
+        break;
+      case kThrowDivZero:
+        func_offset = ENTRYPOINT_OFFSET(pThrowDivZeroFromCode);
+        break;
+      case kThrowNoSuchMethod:
+        OpRegCopy(cu, TargetReg(kArg0), v1);
+        func_offset =
+          ENTRYPOINT_OFFSET(pThrowNoSuchMethodFromCode);
+        break;
+      case kThrowStackOverflow:
+        func_offset = ENTRYPOINT_OFFSET(pThrowStackOverflowFromCode);
+        // Restore stack alignment
+        if (target_x86) {
+          OpRegImm(cu, kOpAdd, TargetReg(kSp), cu->frame_size);
+        } else {
+          OpRegImm(cu, kOpAdd, TargetReg(kSp), (cu->num_core_spills + cu->num_fp_spills) * 4);
+        }
+        break;
+      default:
+        LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0];
+    }
+    ClobberCalleeSave(cu);
+    int r_tgt = CallHelperSetup(cu, func_offset);
+    CallHelper(cu, r_tgt, func_offset, true /* MarkSafepointPC */);
+  }
+}
+
+void Codegen::GenIGet(CompilationUnit* cu, uint32_t field_idx, int opt_flags, OpSize size,
+                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
+                      bool is_object)
+{
+  int field_offset;
+  bool is_volatile;
+
+  bool fast_path = FastInstance(cu, field_idx, field_offset, is_volatile, false);
+
+  if (fast_path && !SLOW_FIELD_PATH) {
+    RegLocation rl_result;
+    RegisterClass reg_class = oat_reg_class_by_size(size);
+    DCHECK_GE(field_offset, 0);
+    rl_obj = LoadValue(cu, rl_obj, kCoreReg);
+    if (is_long_or_double) {
+      DCHECK(rl_dest.wide);
+      GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+      if (cu->instruction_set == kX86) {
+        rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+        GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+        LoadBaseDispWide(cu, rl_obj.low_reg, field_offset, rl_result.low_reg,
+                         rl_result.high_reg, rl_obj.s_reg_low);
+        if (is_volatile) {
+          GenMemBarrier(cu, kLoadLoad);
+        }
+      } else {
+        int reg_ptr = AllocTemp(cu);
+        OpRegRegImm(cu, kOpAdd, reg_ptr, rl_obj.low_reg, field_offset);
+        rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+        LoadBaseDispWide(cu, reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
+        if (is_volatile) {
+          GenMemBarrier(cu, kLoadLoad);
+        }
+        FreeTemp(cu, reg_ptr);
+      }
+      StoreValueWide(cu, rl_dest, rl_result);
+    } else {
+      rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+      GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+      LoadBaseDisp(cu, rl_obj.low_reg, field_offset, rl_result.low_reg,
+                   kWord, rl_obj.s_reg_low);
+      if (is_volatile) {
+        GenMemBarrier(cu, kLoadLoad);
+      }
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  } else {
+    int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Instance) :
+        (is_object ? ENTRYPOINT_OFFSET(pGetObjInstance)
+        : ENTRYPOINT_OFFSET(pGet32Instance));
+    CallRuntimeHelperImmRegLocation(cu, getterOffset, field_idx, rl_obj, true);
+    if (is_long_or_double) {
+      RegLocation rl_result = GetReturnWide(cu, rl_dest.fp);
+      StoreValueWide(cu, rl_dest, rl_result);
+    } else {
+      RegLocation rl_result = GetReturn(cu, rl_dest.fp);
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  }
+}
+
+void Codegen::GenIPut(CompilationUnit* cu, uint32_t field_idx, int opt_flags, OpSize size,
+                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
+                      bool is_object)
+{
+  int field_offset;
+  bool is_volatile;
+
+  bool fast_path = FastInstance(cu, field_idx, field_offset, is_volatile,
+                 true);
+  if (fast_path && !SLOW_FIELD_PATH) {
+    RegisterClass reg_class = oat_reg_class_by_size(size);
+    DCHECK_GE(field_offset, 0);
+    rl_obj = LoadValue(cu, rl_obj, kCoreReg);
+    if (is_long_or_double) {
+      int reg_ptr;
+      rl_src = LoadValueWide(cu, rl_src, kAnyReg);
+      GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+      reg_ptr = AllocTemp(cu);
+      OpRegRegImm(cu, kOpAdd, reg_ptr, rl_obj.low_reg, field_offset);
+      if (is_volatile) {
+        GenMemBarrier(cu, kStoreStore);
+      }
+      StoreBaseDispWide(cu, reg_ptr, 0, rl_src.low_reg, rl_src.high_reg);
+      if (is_volatile) {
+        GenMemBarrier(cu, kLoadLoad);
+      }
+      FreeTemp(cu, reg_ptr);
+    } else {
+      rl_src = LoadValue(cu, rl_src, reg_class);
+      GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+      if (is_volatile) {
+        GenMemBarrier(cu, kStoreStore);
+      }
+      StoreBaseDisp(cu, rl_obj.low_reg, field_offset, rl_src.low_reg, kWord);
+      if (is_volatile) {
+        GenMemBarrier(cu, kLoadLoad);
+      }
+      if (is_object && !IsConstantNullRef(cu, rl_src)) {
+        MarkGCCard(cu, rl_src.low_reg, rl_obj.low_reg);
+      }
+    }
+  } else {
+    int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Instance) :
+        (is_object ? ENTRYPOINT_OFFSET(pSetObjInstance)
+        : ENTRYPOINT_OFFSET(pSet32Instance));
+    CallRuntimeHelperImmRegLocationRegLocation(cu, setter_offset, field_idx, rl_obj, rl_src, true);
+  }
+}
+
+void Codegen::GenConstClass(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest)
+{
+  RegLocation rl_method = LoadCurrMethod(cu);
+  int res_reg = AllocTemp(cu);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (!cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                   *cu->dex_file,
+                                                   type_idx)) {
+    // Call out to helper which resolves type and verifies access.
+    // Resolved type returned in kRet0.
+    CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
+                            type_idx, rl_method.low_reg, true);
+    RegLocation rl_result = GetReturn(cu, false);
+    StoreValue(cu, rl_dest, rl_result);
+  } else {
+    // We're don't need access checks, load type from dex cache
+    int32_t dex_cache_offset =
+        mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value();
+    LoadWordDisp(cu, rl_method.low_reg, dex_cache_offset, res_reg);
+    int32_t offset_of_type =
+        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
+                          * type_idx);
+    LoadWordDisp(cu, res_reg, offset_of_type, rl_result.low_reg);
+    if (!cu->compiler->CanAssumeTypeIsPresentInDexCache(*cu->dex_file,
+        type_idx) || SLOW_TYPE_PATH) {
+      // Slow path, at runtime test if type is null and if so initialize
+      FlushAllRegs(cu);
+      LIR* branch1 = OpCmpImmBranch(cu, kCondEq, rl_result.low_reg, 0, NULL);
+      // Resolved, store and hop over following code
+      StoreValue(cu, rl_dest, rl_result);
+      /*
+       * Because we have stores of the target value on two paths,
+       * clobber temp tracking for the destination using the ssa name
+       */
+      ClobberSReg(cu, rl_dest.s_reg_low);
+      LIR* branch2 = OpUnconditionalBranch(cu,0);
+      // TUNING: move slow path to end & remove unconditional branch
+      LIR* target1 = NewLIR0(cu, kPseudoTargetLabel);
+      // Call out to helper, which will return resolved type in kArg0
+      CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx,
+                              rl_method.low_reg, true);
+      RegLocation rl_result = GetReturn(cu, false);
+      StoreValue(cu, rl_dest, rl_result);
+      /*
+       * Because we have stores of the target value on two paths,
+       * clobber temp tracking for the destination using the ssa name
+       */
+      ClobberSReg(cu, rl_dest.s_reg_low);
+      // Rejoin code paths
+      LIR* target2 = NewLIR0(cu, kPseudoTargetLabel);
+      branch1->target = target1;
+      branch2->target = target2;
+    } else {
+      // Fast path, we're done - just store result
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  }
+}
+
+void Codegen::GenConstString(CompilationUnit* cu, uint32_t string_idx, RegLocation rl_dest)
+{
+  /* NOTE: Most strings should be available at compile time */
+  int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() +
+                 (sizeof(mirror::String*) * string_idx);
+  if (!cu->compiler->CanAssumeStringIsPresentInDexCache(
+      *cu->dex_file, string_idx) || SLOW_STRING_PATH) {
+    // slow path, resolve string if not in dex cache
+    FlushAllRegs(cu);
+    LockCallTemps(cu); // Using explicit registers
+    LoadCurrMethodDirect(cu, TargetReg(kArg2));
+    LoadWordDisp(cu, TargetReg(kArg2),
+                 mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0));
+    // Might call out to helper, which will return resolved string in kRet0
+    int r_tgt = CallHelperSetup(cu, ENTRYPOINT_OFFSET(pResolveStringFromCode));
+    LoadWordDisp(cu, TargetReg(kArg0), offset_of_string, TargetReg(kRet0));
+    LoadConstant(cu, TargetReg(kArg1), string_idx);
+    if (cu->instruction_set == kThumb2) {
+      OpRegImm(cu, kOpCmp, TargetReg(kRet0), 0);  // Is resolved?
+      GenBarrier(cu);
+      // For testing, always force through helper
+      if (!EXERCISE_SLOWEST_STRING_PATH) {
+        OpIT(cu, kCondEq, "T");
+      }
+      OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));   // .eq
+      LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);    // .eq, helper(Method*, string_idx)
+      MarkSafepointPC(cu, call_inst);
+      FreeTemp(cu, r_tgt);
+    } else if (cu->instruction_set == kMips) {
+      LIR* branch = OpCmpImmBranch(cu, kCondNe, TargetReg(kRet0), 0, NULL);
+      OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));   // .eq
+      LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);
+      MarkSafepointPC(cu, call_inst);
+      FreeTemp(cu, r_tgt);
+      LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+      branch->target = target;
+    } else {
+      DCHECK_EQ(cu->instruction_set, kX86);
+      CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pResolveStringFromCode), TargetReg(kArg2), TargetReg(kArg1), true);
+    }
+    GenBarrier(cu);
+    StoreValue(cu, rl_dest, GetReturn(cu, false));
+  } else {
+    RegLocation rl_method = LoadCurrMethod(cu);
+    int res_reg = AllocTemp(cu);
+    RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+    LoadWordDisp(cu, rl_method.low_reg,
+                 mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), res_reg);
+    LoadWordDisp(cu, res_reg, offset_of_string, rl_result.low_reg);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+/*
+ * Let helper function take care of everything.  Will
+ * call Class::NewInstanceFromCode(type_idx, method);
+ */
+void Codegen::GenNewInstance(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest)
+{
+  FlushAllRegs(cu);  /* Everything to home location */
+  // alloc will always check for resolution, do we also need to verify
+  // access because the verifier was unable to?
+  int func_offset;
+  if (cu->compiler->CanAccessInstantiableTypeWithoutChecks(
+      cu->method_idx, *cu->dex_file, type_idx)) {
+    func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCode);
+  } else {
+    func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCodeWithAccessCheck);
+  }
+  CallRuntimeHelperImmMethod(cu, func_offset, type_idx, true);
+  RegLocation rl_result = GetReturn(cu, false);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void Codegen::GenThrow(CompilationUnit* cu, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  CallRuntimeHelperRegLocation(cu, ENTRYPOINT_OFFSET(pDeliverException), rl_src, true);
+}
+
+void Codegen::GenInstanceof(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest,
+                            RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  // May generate a call - use explicit registers
+  LockCallTemps(cu);
+  LoadCurrMethodDirect(cu, TargetReg(kArg1));  // kArg1 <= current Method*
+  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
+  if (!cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                   *cu->dex_file,
+                                                   type_idx)) {
+    // Check we have access to type_idx and if not throw IllegalAccessError,
+    // returns Class* in kArg0
+    CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
+                         type_idx, true);
+    OpRegCopy(cu, class_reg, TargetReg(kRet0));  // Align usage with fast path
+    LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));  // kArg0 <= ref
+  } else {
+    // Load dex cache entry into class_reg (kArg2)
+    LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));  // kArg0 <= ref
+    LoadWordDisp(cu, TargetReg(kArg1),
+                 mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
+    int32_t offset_of_type =
+        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
+        * type_idx);
+    LoadWordDisp(cu, class_reg, offset_of_type, class_reg);
+    if (!cu->compiler->CanAssumeTypeIsPresentInDexCache(
+        *cu->dex_file, type_idx)) {
+      // Need to test presence of type in dex cache at runtime
+      LIR* hop_branch = OpCmpImmBranch(cu, kCondNe, class_reg, 0, NULL);
+      // Not resolved
+      // Call out to helper, which will return resolved type in kRet0
+      CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, true);
+      OpRegCopy(cu, TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path
+      LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));  /* reload Ref */
+      // Rejoin code paths
+      LIR* hop_target = NewLIR0(cu, kPseudoTargetLabel);
+      hop_branch->target = hop_target;
+    }
+  }
+  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
+  RegLocation rl_result = GetReturn(cu, false);
+  if (cu->instruction_set == kMips) {
+    LoadConstant(cu, rl_result.low_reg, 0);  // store false result for if branch is taken
+  }
+  LIR* branch1 = OpCmpImmBranch(cu, kCondEq, TargetReg(kArg0), 0, NULL);
+  /* load object->klass_ */
+  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
+  LoadWordDisp(cu, TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
+  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
+  LIR* call_inst;
+  LIR* branchover = NULL;
+  if (cu->instruction_set == kThumb2) {
+    /* Uses conditional nullification */
+    int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
+    OpRegReg(cu, kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same?
+    OpIT(cu, kCondEq, "EE");   // if-convert the test
+    LoadConstant(cu, TargetReg(kArg0), 1);     // .eq case - load true
+    OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
+    call_inst = OpReg(cu, kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
+    FreeTemp(cu, r_tgt);
+  } else {
+    /* Uses branchovers */
+    LoadConstant(cu, rl_result.low_reg, 1);     // assume true
+    branchover = OpCmpBranch(cu, kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
+    if (cu->instruction_set != kX86) {
+      int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
+      OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
+      call_inst = OpReg(cu, kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
+      FreeTemp(cu, r_tgt);
+    } else {
+      OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));
+      call_inst = OpThreadMem(cu, kOpBlx, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
+    }
+  }
+  MarkSafepointPC(cu, call_inst);
+  ClobberCalleeSave(cu);
+  /* branch targets here */
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  StoreValue(cu, rl_dest, rl_result);
+  branch1->target = target;
+  if (cu->instruction_set != kThumb2) {
+    branchover->target = target;
+  }
+}
+
+void Codegen::GenCheckCast(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  // May generate a call - use explicit registers
+  LockCallTemps(cu);
+  LoadCurrMethodDirect(cu, TargetReg(kArg1));  // kArg1 <= current Method*
+  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
+  if (!cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                   *cu->dex_file,
+                                                   type_idx)) {
+    // Check we have access to type_idx and if not throw IllegalAccessError,
+    // returns Class* in kRet0
+    // InitializeTypeAndVerifyAccess(idx, method)
+    CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
+                            type_idx, TargetReg(kArg1), true);
+    OpRegCopy(cu, class_reg, TargetReg(kRet0));  // Align usage with fast path
+  } else {
+    // Load dex cache entry into class_reg (kArg2)
+    LoadWordDisp(cu, TargetReg(kArg1),
+                 mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
+    int32_t offset_of_type =
+        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
+        (sizeof(mirror::Class*) * type_idx);
+    LoadWordDisp(cu, class_reg, offset_of_type, class_reg);
+    if (!cu->compiler->CanAssumeTypeIsPresentInDexCache(
+        *cu->dex_file, type_idx)) {
+      // Need to test presence of type in dex cache at runtime
+      LIR* hop_branch = OpCmpImmBranch(cu, kCondNe, class_reg, 0, NULL);
+      // Not resolved
+      // Call out to helper, which will return resolved type in kArg0
+      // InitializeTypeFromCode(idx, method)
+      CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, TargetReg(kArg1),
+                              true);
+      OpRegCopy(cu, class_reg, TargetReg(kRet0)); // Align usage with fast path
+      // Rejoin code paths
+      LIR* hop_target = NewLIR0(cu, kPseudoTargetLabel);
+      hop_branch->target = hop_target;
+    }
+  }
+  // At this point, class_reg (kArg2) has class
+  LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));  // kArg0 <= ref
+  /* Null is OK - continue */
+  LIR* branch1 = OpCmpImmBranch(cu, kCondEq, TargetReg(kArg0), 0, NULL);
+  /* load object->klass_ */
+  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
+  LoadWordDisp(cu, TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
+  /* kArg1 now contains object->klass_ */
+  LIR* branch2;
+  if (cu->instruction_set == kThumb2) {
+    int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pCheckCastFromCode));
+    OpRegReg(cu, kOpCmp, TargetReg(kArg1), class_reg);
+    branch2 = OpCondBranch(cu, kCondEq, NULL); /* If eq, trivial yes */
+    OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg1));
+    OpRegCopy(cu, TargetReg(kArg1), TargetReg(kArg2));
+    ClobberCalleeSave(cu);
+    LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);
+    MarkSafepointPC(cu, call_inst);
+    FreeTemp(cu, r_tgt);
+  } else {
+    branch2 = OpCmpBranch(cu, kCondEq, TargetReg(kArg1), class_reg, NULL);
+    CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pCheckCastFromCode), TargetReg(kArg1), TargetReg(kArg2), true);
+  }
+  /* branch target here */
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch1->target = target;
+  branch2->target = target;
+}
+
+void Codegen::GenLong3Addr(CompilationUnit* cu, OpKind first_op, OpKind second_op,
+                           RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
+{
+  RegLocation rl_result;
+  if (cu->instruction_set == kThumb2) {
+    /*
+     * NOTE:  This is the one place in the code in which we might have
+     * as many as six live temporary registers.  There are 5 in the normal
+     * set for Arm.  Until we have spill capabilities, temporarily add
+     * lr to the temp set.  It is safe to do this locally, but note that
+     * lr is used explicitly elsewhere in the code generator and cannot
+     * normally be used as a general temp register.
+     */
+    MarkTemp(cu, TargetReg(kLr));   // Add lr to the temp pool
+    FreeTemp(cu, TargetReg(kLr));   // and make it available
+  }
+  rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+  rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+  rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  // The longs may overlap - use intermediate temp if so
+  if ((rl_result.low_reg == rl_src1.high_reg) || (rl_result.low_reg == rl_src2.high_reg)){
+    int t_reg = AllocTemp(cu);
+    OpRegRegReg(cu, first_op, t_reg, rl_src1.low_reg, rl_src2.low_reg);
+    OpRegRegReg(cu, second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg);
+    OpRegCopy(cu, rl_result.low_reg, t_reg);
+    FreeTemp(cu, t_reg);
+  } else {
+    OpRegRegReg(cu, first_op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
+    OpRegRegReg(cu, second_op, rl_result.high_reg, rl_src1.high_reg,
+                rl_src2.high_reg);
+  }
+  /*
+   * NOTE: If rl_dest refers to a frame variable in a large frame, the
+   * following StoreValueWide might need to allocate a temp register.
+   * To further work around the lack of a spill capability, explicitly
+   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
+   * Remove when spill is functional.
+   */
+  FreeRegLocTemps(cu, rl_result, rl_src1);
+  FreeRegLocTemps(cu, rl_result, rl_src2);
+  StoreValueWide(cu, rl_dest, rl_result);
+  if (cu->instruction_set == kThumb2) {
+    Clobber(cu, TargetReg(kLr));
+    UnmarkTemp(cu, TargetReg(kLr));  // Remove lr from the temp pool
+  }
+}
+
+
+void Codegen::GenShiftOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                             RegLocation rl_src1, RegLocation rl_shift)
+{
+  int func_offset = -1; // Make gcc happy
+
+  switch (opcode) {
+    case Instruction::SHL_LONG:
+    case Instruction::SHL_LONG_2ADDR:
+      func_offset = ENTRYPOINT_OFFSET(pShlLong);
+      break;
+    case Instruction::SHR_LONG:
+    case Instruction::SHR_LONG_2ADDR:
+      func_offset = ENTRYPOINT_OFFSET(pShrLong);
+      break;
+    case Instruction::USHR_LONG:
+    case Instruction::USHR_LONG_2ADDR:
+      func_offset = ENTRYPOINT_OFFSET(pUshrLong);
+      break;
+    default:
+      LOG(FATAL) << "Unexpected case";
+  }
+  FlushAllRegs(cu);   /* Send everything to home location */
+  CallRuntimeHelperRegLocationRegLocation(cu, func_offset, rl_src1, rl_shift, false);
+  RegLocation rl_result = GetReturnWide(cu, false);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+
+void Codegen::GenArithOpInt(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                            RegLocation rl_src1, RegLocation rl_src2)
+{
+  OpKind op = kOpBkpt;
+  bool is_div_rem = false;
+  bool check_zero = false;
+  bool unary = false;
+  RegLocation rl_result;
+  bool shift_op = false;
+  switch (opcode) {
+    case Instruction::NEG_INT:
+      op = kOpNeg;
+      unary = true;
+      break;
+    case Instruction::NOT_INT:
+      op = kOpMvn;
+      unary = true;
+      break;
+    case Instruction::ADD_INT:
+    case Instruction::ADD_INT_2ADDR:
+      op = kOpAdd;
+      break;
+    case Instruction::SUB_INT:
+    case Instruction::SUB_INT_2ADDR:
+      op = kOpSub;
+      break;
+    case Instruction::MUL_INT:
+    case Instruction::MUL_INT_2ADDR:
+      op = kOpMul;
+      break;
+    case Instruction::DIV_INT:
+    case Instruction::DIV_INT_2ADDR:
+      check_zero = true;
+      op = kOpDiv;
+      is_div_rem = true;
+      break;
+    /* NOTE: returns in kArg1 */
+    case Instruction::REM_INT:
+    case Instruction::REM_INT_2ADDR:
+      check_zero = true;
+      op = kOpRem;
+      is_div_rem = true;
+      break;
+    case Instruction::AND_INT:
+    case Instruction::AND_INT_2ADDR:
+      op = kOpAnd;
+      break;
+    case Instruction::OR_INT:
+    case Instruction::OR_INT_2ADDR:
+      op = kOpOr;
+      break;
+    case Instruction::XOR_INT:
+    case Instruction::XOR_INT_2ADDR:
+      op = kOpXor;
+      break;
+    case Instruction::SHL_INT:
+    case Instruction::SHL_INT_2ADDR:
+      shift_op = true;
+      op = kOpLsl;
+      break;
+    case Instruction::SHR_INT:
+    case Instruction::SHR_INT_2ADDR:
+      shift_op = true;
+      op = kOpAsr;
+      break;
+    case Instruction::USHR_INT:
+    case Instruction::USHR_INT_2ADDR:
+      shift_op = true;
+      op = kOpLsr;
+      break;
+    default:
+      LOG(FATAL) << "Invalid word arith op: " << opcode;
+  }
+  if (!is_div_rem) {
+    if (unary) {
+      rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+      rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+      OpRegReg(cu, op, rl_result.low_reg, rl_src1.low_reg);
+    } else {
+      if (shift_op) {
+        int t_reg = INVALID_REG;
+        if (cu->instruction_set == kX86) {
+          // X86 doesn't require masking and must use ECX
+          t_reg = TargetReg(kCount);  // rCX
+          LoadValueDirectFixed(cu, rl_src2, t_reg);
+        } else {
+          rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+          t_reg = AllocTemp(cu);
+          OpRegRegImm(cu, kOpAnd, t_reg, rl_src2.low_reg, 31);
+        }
+        rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+        rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+        OpRegRegReg(cu, op, rl_result.low_reg, rl_src1.low_reg, t_reg);
+        FreeTemp(cu, t_reg);
+      } else {
+        rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+        rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+        rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+        OpRegRegReg(cu, op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
+      }
+    }
+    StoreValue(cu, rl_dest, rl_result);
+  } else {
+    if (cu->instruction_set == kMips) {
+      rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+      rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+      if (check_zero) {
+          GenImmedCheck(cu, kCondEq, rl_src2.low_reg, 0, kThrowDivZero);
+      }
+      rl_result = GenDivRem(cu, rl_dest, rl_src1.low_reg, rl_src2.low_reg, op == kOpDiv);
+    } else {
+      int func_offset = ENTRYPOINT_OFFSET(pIdivmod);
+      FlushAllRegs(cu);   /* Send everything to home location */
+      LoadValueDirectFixed(cu, rl_src2, TargetReg(kArg1));
+      int r_tgt = CallHelperSetup(cu, func_offset);
+      LoadValueDirectFixed(cu, rl_src1, TargetReg(kArg0));
+      if (check_zero) {
+        GenImmedCheck(cu, kCondEq, TargetReg(kArg1), 0, kThrowDivZero);
+      }
+      // NOTE: callout here is not a safepoint
+      CallHelper(cu, r_tgt, func_offset, false /* not a safepoint */ );
+      if (op == kOpDiv)
+        rl_result = GetReturn(cu, false);
+      else
+        rl_result = GetReturnAlt(cu);
+    }
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+/*
+ * The following are the first-level codegen routines that analyze the format
+ * of each bytecode then either dispatch special purpose codegen routines
+ * or produce corresponding Thumb instructions directly.
+ */
+
+static bool IsPowerOfTwo(int x)
+{
+  return (x & (x - 1)) == 0;
+}
+
+// Returns true if no more than two bits are set in 'x'.
+static bool IsPopCountLE2(unsigned int x)
+{
+  x &= x - 1;
+  return (x & (x - 1)) == 0;
+}
+
+// Returns the index of the lowest set bit in 'x'.
+static int LowestSetBit(unsigned int x) {
+  int bit_posn = 0;
+  while ((x & 0xf) == 0) {
+    bit_posn += 4;
+    x >>= 4;
+  }
+  while ((x & 1) == 0) {
+    bit_posn++;
+    x >>= 1;
+  }
+  return bit_posn;
+}
+
+// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
+// and store the result in 'rl_dest'.
+static bool HandleEasyDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
+                             RegLocation rl_src, RegLocation rl_dest, int lit)
+{
+  if ((lit < 2) || ((cu->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
+    return false;
+  }
+  Codegen* cg = cu->cg.get();
+  // No divide instruction for Arm, so check for more special cases
+  if ((cu->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
+    return cg->SmallLiteralDivide(cu, dalvik_opcode, rl_src, rl_dest, lit);
+  }
+  int k = LowestSetBit(lit);
+  if (k >= 30) {
+    // Avoid special cases.
+    return false;
+  }
+  bool div = (dalvik_opcode == Instruction::DIV_INT_LIT8 ||
+      dalvik_opcode == Instruction::DIV_INT_LIT16);
+  rl_src = cg->LoadValue(cu, rl_src, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (div) {
+    int t_reg = AllocTemp(cu);
+    if (lit == 2) {
+      // Division by 2 is by far the most common division by constant.
+      cg->OpRegRegImm(cu, kOpLsr, t_reg, rl_src.low_reg, 32 - k);
+      cg->OpRegRegReg(cu, kOpAdd, t_reg, t_reg, rl_src.low_reg);
+      cg->OpRegRegImm(cu, kOpAsr, rl_result.low_reg, t_reg, k);
+    } else {
+      cg->OpRegRegImm(cu, kOpAsr, t_reg, rl_src.low_reg, 31);
+      cg->OpRegRegImm(cu, kOpLsr, t_reg, t_reg, 32 - k);
+      cg->OpRegRegReg(cu, kOpAdd, t_reg, t_reg, rl_src.low_reg);
+      cg->OpRegRegImm(cu, kOpAsr, rl_result.low_reg, t_reg, k);
+    }
+  } else {
+    int t_reg1 = AllocTemp(cu);
+    int t_reg2 = AllocTemp(cu);
+    if (lit == 2) {
+      cg->OpRegRegImm(cu, kOpLsr, t_reg1, rl_src.low_reg, 32 - k);
+      cg->OpRegRegReg(cu, kOpAdd, t_reg2, t_reg1, rl_src.low_reg);
+      cg->OpRegRegImm(cu, kOpAnd, t_reg2, t_reg2, lit -1);
+      cg->OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg2, t_reg1);
+    } else {
+      cg->OpRegRegImm(cu, kOpAsr, t_reg1, rl_src.low_reg, 31);
+      cg->OpRegRegImm(cu, kOpLsr, t_reg1, t_reg1, 32 - k);
+      cg->OpRegRegReg(cu, kOpAdd, t_reg2, t_reg1, rl_src.low_reg);
+      cg->OpRegRegImm(cu, kOpAnd, t_reg2, t_reg2, lit - 1);
+      cg->OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg2, t_reg1);
+    }
+  }
+  cg->StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
+// and store the result in 'rl_dest'.
+static bool HandleEasyMultiply(CompilationUnit* cu, RegLocation rl_src,
+                               RegLocation rl_dest, int lit)
+{
+  // Can we simplify this multiplication?
+  bool power_of_two = false;
+  bool pop_count_le2 = false;
+  bool power_of_two_minus_one = false;
+  if (lit < 2) {
+    // Avoid special cases.
+    return false;
+  } else if (IsPowerOfTwo(lit)) {
+    power_of_two = true;
+  } else if (IsPopCountLE2(lit)) {
+    pop_count_le2 = true;
+  } else if (IsPowerOfTwo(lit + 1)) {
+    power_of_two_minus_one = true;
+  } else {
+    return false;
+  }
+  Codegen* cg = cu->cg.get();
+  rl_src = cg->LoadValue(cu, rl_src, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (power_of_two) {
+    // Shift.
+    cg->OpRegRegImm(cu, kOpLsl, rl_result.low_reg, rl_src.low_reg, LowestSetBit(lit));
+  } else if (pop_count_le2) {
+    // Shift and add and shift.
+    int first_bit = LowestSetBit(lit);
+    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
+    cg->GenMultiplyByTwoBitMultiplier(cu, rl_src, rl_result, lit, first_bit, second_bit);
+  } else {
+    // Reverse subtract: (src << (shift + 1)) - src.
+    DCHECK(power_of_two_minus_one);
+    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
+    int t_reg = AllocTemp(cu);
+    cg->OpRegRegImm(cu, kOpLsl, t_reg, rl_src.low_reg, LowestSetBit(lit + 1));
+    cg->OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg);
+  }
+  cg->StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+void Codegen::GenArithOpIntLit(CompilationUnit* cu, Instruction::Code opcode,
+                               RegLocation rl_dest, RegLocation rl_src, int lit)
+{
+  RegLocation rl_result;
+  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
+  int shift_op = false;
+  bool is_div = false;
+
+  switch (opcode) {
+    case Instruction::RSUB_INT_LIT8:
+    case Instruction::RSUB_INT: {
+      rl_src = LoadValue(cu, rl_src, kCoreReg);
+      rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+      if (cu->instruction_set == kThumb2) {
+        OpRegRegImm(cu, kOpRsub, rl_result.low_reg, rl_src.low_reg, lit);
+      } else {
+        OpRegReg(cu, kOpNeg, rl_result.low_reg, rl_src.low_reg);
+        OpRegImm(cu, kOpAdd, rl_result.low_reg, lit);
+      }
+      StoreValue(cu, rl_dest, rl_result);
+      return;
+    }
+
+    case Instruction::SUB_INT:
+    case Instruction::SUB_INT_2ADDR:
+      lit = -lit;
+      // Intended fallthrough
+    case Instruction::ADD_INT:
+    case Instruction::ADD_INT_2ADDR:
+    case Instruction::ADD_INT_LIT8:
+    case Instruction::ADD_INT_LIT16:
+      op = kOpAdd;
+      break;
+    case Instruction::MUL_INT:
+    case Instruction::MUL_INT_2ADDR:
+    case Instruction::MUL_INT_LIT8:
+    case Instruction::MUL_INT_LIT16: {
+      if (HandleEasyMultiply(cu, rl_src, rl_dest, lit)) {
+        return;
+      }
+      op = kOpMul;
+      break;
+    }
+    case Instruction::AND_INT:
+    case Instruction::AND_INT_2ADDR:
+    case Instruction::AND_INT_LIT8:
+    case Instruction::AND_INT_LIT16:
+      op = kOpAnd;
+      break;
+    case Instruction::OR_INT:
+    case Instruction::OR_INT_2ADDR:
+    case Instruction::OR_INT_LIT8:
+    case Instruction::OR_INT_LIT16:
+      op = kOpOr;
+      break;
+    case Instruction::XOR_INT:
+    case Instruction::XOR_INT_2ADDR:
+    case Instruction::XOR_INT_LIT8:
+    case Instruction::XOR_INT_LIT16:
+      op = kOpXor;
+      break;
+    case Instruction::SHL_INT_LIT8:
+    case Instruction::SHL_INT:
+    case Instruction::SHL_INT_2ADDR:
+      lit &= 31;
+      shift_op = true;
+      op = kOpLsl;
+      break;
+    case Instruction::SHR_INT_LIT8:
+    case Instruction::SHR_INT:
+    case Instruction::SHR_INT_2ADDR:
+      lit &= 31;
+      shift_op = true;
+      op = kOpAsr;
+      break;
+    case Instruction::USHR_INT_LIT8:
+    case Instruction::USHR_INT:
+    case Instruction::USHR_INT_2ADDR:
+      lit &= 31;
+      shift_op = true;
+      op = kOpLsr;
+      break;
+
+    case Instruction::DIV_INT:
+    case Instruction::DIV_INT_2ADDR:
+    case Instruction::DIV_INT_LIT8:
+    case Instruction::DIV_INT_LIT16:
+    case Instruction::REM_INT:
+    case Instruction::REM_INT_2ADDR:
+    case Instruction::REM_INT_LIT8:
+    case Instruction::REM_INT_LIT16: {
+      if (lit == 0) {
+        GenImmedCheck(cu, kCondAl, 0, 0, kThrowDivZero);
+        return;
+      }
+      if (HandleEasyDivide(cu, opcode, rl_src, rl_dest, lit)) {
+        return;
+      }
+      if ((opcode == Instruction::DIV_INT_LIT8) ||
+          (opcode == Instruction::DIV_INT) ||
+          (opcode == Instruction::DIV_INT_2ADDR) ||
+          (opcode == Instruction::DIV_INT_LIT16)) {
+        is_div = true;
+      } else {
+        is_div = false;
+      }
+      if (cu->instruction_set == kMips) {
+        rl_src = LoadValue(cu, rl_src, kCoreReg);
+        rl_result = GenDivRemLit(cu, rl_dest, rl_src.low_reg, lit, is_div);
+      } else {
+        FlushAllRegs(cu);   /* Everything to home location */
+        LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));
+        Clobber(cu, TargetReg(kArg0));
+        int func_offset = ENTRYPOINT_OFFSET(pIdivmod);
+        CallRuntimeHelperRegImm(cu, func_offset, TargetReg(kArg0), lit, false);
+        if (is_div)
+          rl_result = GetReturn(cu, false);
+        else
+          rl_result = GetReturnAlt(cu);
+      }
+      StoreValue(cu, rl_dest, rl_result);
+      return;
+    }
+    default:
+      LOG(FATAL) << "Unexpected opcode " << opcode;
+  }
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
+  if (shift_op && (lit == 0)) {
+    OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg);
+  } else {
+    OpRegRegImm(cu, op, rl_result.low_reg, rl_src.low_reg, lit);
+  }
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void Codegen::GenArithOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                             RegLocation rl_src1, RegLocation rl_src2)
+{
+  RegLocation rl_result;
+  OpKind first_op = kOpBkpt;
+  OpKind second_op = kOpBkpt;
+  bool call_out = false;
+  bool check_zero = false;
+  int func_offset;
+  int ret_reg = TargetReg(kRet0);
+
+  switch (opcode) {
+    case Instruction::NOT_LONG:
+      rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+      rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+      // Check for destructive overlap
+      if (rl_result.low_reg == rl_src2.high_reg) {
+        int t_reg = AllocTemp(cu);
+        OpRegCopy(cu, t_reg, rl_src2.high_reg);
+        OpRegReg(cu, kOpMvn, rl_result.low_reg, rl_src2.low_reg);
+        OpRegReg(cu, kOpMvn, rl_result.high_reg, t_reg);
+        FreeTemp(cu, t_reg);
+      } else {
+        OpRegReg(cu, kOpMvn, rl_result.low_reg, rl_src2.low_reg);
+        OpRegReg(cu, kOpMvn, rl_result.high_reg, rl_src2.high_reg);
+      }
+      StoreValueWide(cu, rl_dest, rl_result);
+      return;
+    case Instruction::ADD_LONG:
+    case Instruction::ADD_LONG_2ADDR:
+      if (cu->instruction_set != kThumb2) {
+        GenAddLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      }
+      first_op = kOpAdd;
+      second_op = kOpAdc;
+      break;
+    case Instruction::SUB_LONG:
+    case Instruction::SUB_LONG_2ADDR:
+      if (cu->instruction_set != kThumb2) {
+        GenSubLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      }
+      first_op = kOpSub;
+      second_op = kOpSbc;
+      break;
+    case Instruction::MUL_LONG:
+    case Instruction::MUL_LONG_2ADDR:
+      if (cu->instruction_set == kThumb2) {
+        GenMulLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      } else {
+        call_out = true;
+        ret_reg = TargetReg(kRet0);
+        func_offset = ENTRYPOINT_OFFSET(pLmul);
+      }
+      break;
+    case Instruction::DIV_LONG:
+    case Instruction::DIV_LONG_2ADDR:
+      call_out = true;
+      check_zero = true;
+      ret_reg = TargetReg(kRet0);
+      func_offset = ENTRYPOINT_OFFSET(pLdiv);
+      break;
+    case Instruction::REM_LONG:
+    case Instruction::REM_LONG_2ADDR:
+      call_out = true;
+      check_zero = true;
+      func_offset = ENTRYPOINT_OFFSET(pLdivmod);
+      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
+      ret_reg = (cu->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0);
+      break;
+    case Instruction::AND_LONG_2ADDR:
+    case Instruction::AND_LONG:
+      if (cu->instruction_set == kX86) {
+        return GenAndLong(cu, rl_dest, rl_src1, rl_src2);
+      }
+      first_op = kOpAnd;
+      second_op = kOpAnd;
+      break;
+    case Instruction::OR_LONG:
+    case Instruction::OR_LONG_2ADDR:
+      if (cu->instruction_set == kX86) {
+        GenOrLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      }
+      first_op = kOpOr;
+      second_op = kOpOr;
+      break;
+    case Instruction::XOR_LONG:
+    case Instruction::XOR_LONG_2ADDR:
+      if (cu->instruction_set == kX86) {
+        GenXorLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      }
+      first_op = kOpXor;
+      second_op = kOpXor;
+      break;
+    case Instruction::NEG_LONG: {
+      GenNegLong(cu, rl_dest, rl_src2);
+      return;
+    }
+    default:
+      LOG(FATAL) << "Invalid long arith op";
+  }
+  if (!call_out) {
+    GenLong3Addr(cu, first_op, second_op, rl_dest, rl_src1, rl_src2);
+  } else {
+    FlushAllRegs(cu);   /* Send everything to home location */
+    if (check_zero) {
+      LoadValueDirectWideFixed(cu, rl_src2, TargetReg(kArg2), TargetReg(kArg3));
+      int r_tgt = CallHelperSetup(cu, func_offset);
+      GenDivZeroCheck(cu, TargetReg(kArg2), TargetReg(kArg3));
+      LoadValueDirectWideFixed(cu, rl_src1, TargetReg(kArg0), TargetReg(kArg1));
+      // NOTE: callout here is not a safepoint
+      CallHelper(cu, r_tgt, func_offset, false /* not safepoint */);
+    } else {
+      CallRuntimeHelperRegLocationRegLocation(cu, func_offset,
+                          rl_src1, rl_src2, false);
+    }
+    // Adjust return regs in to handle case of rem returning kArg2/kArg3
+    if (ret_reg == TargetReg(kRet0))
+      rl_result = GetReturnWide(cu, false);
+    else
+      rl_result = GetReturnWideAlt(cu);
+    StoreValueWide(cu, rl_dest, rl_result);
+  }
+}
+
+void Codegen::GenConversionCall(CompilationUnit* cu, int func_offset,
+                                RegLocation rl_dest, RegLocation rl_src)
+{
+  /*
+   * Don't optimize the register usage since it calls out to support
+   * functions
+   */
+  FlushAllRegs(cu);   /* Send everything to home location */
+  if (rl_src.wide) {
+    LoadValueDirectWideFixed(cu, rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0),
+                             rl_src.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
+  } else {
+    LoadValueDirectFixed(cu, rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
+  }
+  CallRuntimeHelperRegLocation(cu, func_offset, rl_src, false);
+  if (rl_dest.wide) {
+    RegLocation rl_result;
+    rl_result = GetReturnWide(cu, rl_dest.fp);
+    StoreValueWide(cu, rl_dest, rl_result);
+  } else {
+    RegLocation rl_result;
+    rl_result = GetReturn(cu, rl_dest.fp);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+/* Check if we need to check for pending suspend request */
+void Codegen::GenSuspendTest(CompilationUnit* cu, int opt_flags)
+{
+  if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
+    return;
+  }
+  FlushAllRegs(cu);
+  LIR* branch = OpTestSuspend(cu, NULL);
+  LIR* ret_lab = NewLIR0(cu, kPseudoTargetLabel);
+  LIR* target = RawLIR(cu, cu->current_dalvik_offset, kPseudoSuspendTarget,
+                       reinterpret_cast<uintptr_t>(ret_lab), cu->current_dalvik_offset);
+  branch->target = target;
+  InsertGrowableList(cu, &cu->suspend_launchpads, reinterpret_cast<uintptr_t>(target));
+}
+
+/* Check if we need to check for pending suspend request */
+void Codegen::GenSuspendTestAndBranch(CompilationUnit* cu, int opt_flags, LIR* target)
+{
+  if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
+    OpUnconditionalBranch(cu, target);
+    return;
+  }
+  OpTestSuspend(cu, target);
+  LIR* launch_pad =
+      RawLIR(cu, cu->current_dalvik_offset, kPseudoSuspendTarget,
+             reinterpret_cast<uintptr_t>(target), cu->current_dalvik_offset);
+  FlushAllRegs(cu);
+  OpUnconditionalBranch(cu, launch_pad);
+  InsertGrowableList(cu, &cu->suspend_launchpads, reinterpret_cast<uintptr_t>(launch_pad));
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/gen_invoke.cc b/src/compiler/dex/quick/gen_invoke.cc
new file mode 100644
index 0000000..9a1fa5c
--- /dev/null
+++ b/src/compiler/dex/quick/gen_invoke.cc
@@ -0,0 +1,1477 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_util.h"
+#include "compiler/dex/compiler_ir.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+#include "ralloc_util.h"
+#include "x86/codegen_x86.h"
+
+namespace art {
+
+/*
+ * This source files contains "gen" codegen routines that should
+ * be applicable to most targets.  Only mid-level support utilities
+ * and "op" calls may be used here.
+ */
+
+/*
+ * To save scheduling time, helper calls are broken into two parts: generation of
+ * the helper target address, and the actuall call to the helper.  Because x86
+ * has a memory call operation, part 1 is a NOP for x86.  For other targets,
+ * load arguments between the two parts.
+ */
+int Codegen::CallHelperSetup(CompilationUnit* cu, int helper_offset)
+{
+  return (cu->instruction_set == kX86) ? 0 : LoadHelper(cu, helper_offset);
+}
+
+/* NOTE: if r_tgt is a temp, it will be freed following use */
+LIR* Codegen::CallHelper(CompilationUnit* cu, int r_tgt, int helper_offset, bool safepoint_pc)
+{
+  LIR* call_inst;
+  if (cu->instruction_set == kX86) {
+    call_inst = OpThreadMem(cu, kOpBlx, helper_offset);
+  } else {
+    call_inst = OpReg(cu, kOpBlx, r_tgt);
+    FreeTemp(cu, r_tgt);
+  }
+  if (safepoint_pc) {
+    MarkSafepointPC(cu, call_inst);
+  }
+  return call_inst;
+}
+
+void Codegen::CallRuntimeHelperImm(CompilationUnit* cu, int helper_offset, int arg0,
+                                   bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  LoadConstant(cu, TargetReg(kArg0), arg0);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperReg(CompilationUnit* cu, int helper_offset, int arg0,
+                                   bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  OpRegCopy(cu, TargetReg(kArg0), arg0);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperRegLocation(CompilationUnit* cu, int helper_offset, RegLocation arg0,
+                                          bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  if (arg0.wide == 0) {
+    LoadValueDirectFixed(cu, arg0, TargetReg(kArg0));
+  } else {
+    LoadValueDirectWideFixed(cu, arg0, TargetReg(kArg0), TargetReg(kArg1));
+  }
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperImmImm(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                                      bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  LoadConstant(cu, TargetReg(kArg0), arg0);
+  LoadConstant(cu, TargetReg(kArg1), arg1);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperImmRegLocation(CompilationUnit* cu, int helper_offset, int arg0,
+                                              RegLocation arg1, bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  if (arg1.wide == 0) {
+    LoadValueDirectFixed(cu, arg1, TargetReg(kArg1));
+  } else {
+    LoadValueDirectWideFixed(cu, arg1, TargetReg(kArg1), TargetReg(kArg2));
+  }
+  LoadConstant(cu, TargetReg(kArg0), arg0);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperRegLocationImm(CompilationUnit* cu, int helper_offset,
+                                              RegLocation arg0, int arg1, bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  LoadValueDirectFixed(cu, arg0, TargetReg(kArg0));
+  LoadConstant(cu, TargetReg(kArg1), arg1);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperImmReg(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                                      bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  OpRegCopy(cu, TargetReg(kArg1), arg1);
+  LoadConstant(cu, TargetReg(kArg0), arg0);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperRegImm(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                             bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  OpRegCopy(cu, TargetReg(kArg0), arg0);
+  LoadConstant(cu, TargetReg(kArg1), arg1);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperImmMethod(CompilationUnit* cu, int helper_offset, int arg0,
+                                         bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  LoadCurrMethodDirect(cu, TargetReg(kArg1));
+  LoadConstant(cu, TargetReg(kArg0), arg0);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperRegLocationRegLocation(CompilationUnit* cu, int helper_offset,
+                                                      RegLocation arg0, RegLocation arg1,
+                                                      bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  if (arg0.wide == 0) {
+    LoadValueDirectFixed(cu, arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
+    if (arg1.wide == 0) {
+      if (cu->instruction_set == kMips) {
+        LoadValueDirectFixed(cu, arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1));
+      } else {
+        LoadValueDirectFixed(cu, arg1, TargetReg(kArg1));
+      }
+    } else {
+      if (cu->instruction_set == kMips) {
+        LoadValueDirectWideFixed(cu, arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2));
+      } else {
+        LoadValueDirectWideFixed(cu, arg1, TargetReg(kArg1), TargetReg(kArg2));
+      }
+    }
+  } else {
+    LoadValueDirectWideFixed(cu, arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
+    if (arg1.wide == 0) {
+      LoadValueDirectFixed(cu, arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
+    } else {
+      LoadValueDirectWideFixed(cu, arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3));
+    }
+  }
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperRegReg(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                                      bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  DCHECK_NE(TargetReg(kArg0), arg1);  // check copy into arg0 won't clobber arg1
+  OpRegCopy(cu, TargetReg(kArg0), arg0);
+  OpRegCopy(cu, TargetReg(kArg1), arg1);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperRegRegImm(CompilationUnit* cu, int helper_offset, int arg0, int arg1,
+                                         int arg2, bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  DCHECK_NE(TargetReg(kArg0), arg1);  // check copy into arg0 won't clobber arg1
+  OpRegCopy(cu, TargetReg(kArg0), arg0);
+  OpRegCopy(cu, TargetReg(kArg1), arg1);
+  LoadConstant(cu, TargetReg(kArg2), arg2);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperImmMethodRegLocation(CompilationUnit* cu, int helper_offset,
+                                                    int arg0, RegLocation arg2, bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  LoadValueDirectFixed(cu, arg2, TargetReg(kArg2));
+  LoadCurrMethodDirect(cu, TargetReg(kArg1));
+  LoadConstant(cu, TargetReg(kArg0), arg0);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperImmMethodImm(CompilationUnit* cu, int helper_offset, int arg0,
+                                            int arg2, bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  LoadCurrMethodDirect(cu, TargetReg(kArg1));
+  LoadConstant(cu, TargetReg(kArg2), arg2);
+  LoadConstant(cu, TargetReg(kArg0), arg0);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+void Codegen::CallRuntimeHelperImmRegLocationRegLocation(CompilationUnit* cu, int helper_offset,
+                                                         int arg0, RegLocation arg1,
+                                                         RegLocation arg2, bool safepoint_pc) {
+  int r_tgt = CallHelperSetup(cu, helper_offset);
+  LoadValueDirectFixed(cu, arg1, TargetReg(kArg1));
+  if (arg2.wide == 0) {
+    LoadValueDirectFixed(cu, arg2, TargetReg(kArg2));
+  } else {
+    LoadValueDirectWideFixed(cu, arg2, TargetReg(kArg2), TargetReg(kArg3));
+  }
+  LoadConstant(cu, TargetReg(kArg0), arg0);
+  ClobberCalleeSave(cu);
+  CallHelper(cu, r_tgt, helper_offset, safepoint_pc);
+}
+
+/*
+ * If there are any ins passed in registers that have not been promoted
+ * to a callee-save register, flush them to the frame.  Perform intial
+ * assignment of promoted arguments.
+ *
+ * ArgLocs is an array of location records describing the incoming arguments
+ * with one location record per word of argument.
+ */
+void Codegen::FlushIns(CompilationUnit* cu, RegLocation* ArgLocs, RegLocation rl_method)
+{
+  /*
+   * Dummy up a RegLocation for the incoming Method*
+   * It will attempt to keep kArg0 live (or copy it to home location
+   * if promoted).
+   */
+  RegLocation rl_src = rl_method;
+  rl_src.location = kLocPhysReg;
+  rl_src.low_reg = TargetReg(kArg0);
+  rl_src.home = false;
+  MarkLive(cu, rl_src.low_reg, rl_src.s_reg_low);
+  StoreValue(cu, rl_method, rl_src);
+  // If Method* has been promoted, explicitly flush
+  if (rl_method.location == kLocPhysReg) {
+    StoreWordDisp(cu, TargetReg(kSp), 0, TargetReg(kArg0));
+  }
+
+  if (cu->num_ins == 0)
+    return;
+  const int num_arg_regs = 3;
+  static SpecialTargetRegister arg_regs[] = {kArg1, kArg2, kArg3};
+  int start_vreg = cu->num_dalvik_registers - cu->num_ins;
+  /*
+   * Copy incoming arguments to their proper home locations.
+   * NOTE: an older version of dx had an issue in which
+   * it would reuse static method argument registers.
+   * This could result in the same Dalvik virtual register
+   * being promoted to both core and fp regs. To account for this,
+   * we only copy to the corresponding promoted physical register
+   * if it matches the type of the SSA name for the incoming
+   * argument.  It is also possible that long and double arguments
+   * end up half-promoted.  In those cases, we must flush the promoted
+   * half to memory as well.
+   */
+  for (int i = 0; i < cu->num_ins; i++) {
+    PromotionMap* v_map = &cu->promotion_map[start_vreg + i];
+    if (i < num_arg_regs) {
+      // If arriving in register
+      bool need_flush = true;
+      RegLocation* t_loc = &ArgLocs[i];
+      if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
+        OpRegCopy(cu, v_map->core_reg, TargetReg(arg_regs[i]));
+        need_flush = false;
+      } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
+        OpRegCopy(cu, v_map->FpReg, TargetReg(arg_regs[i]));
+        need_flush = false;
+      } else {
+        need_flush = true;
+      }
+
+      // For wide args, force flush if only half is promoted
+      if (t_loc->wide) {
+        PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
+        need_flush |= (p_map->core_location != v_map->core_location) ||
+            (p_map->fp_location != v_map->fp_location);
+      }
+      if (need_flush) {
+        StoreBaseDisp(cu, TargetReg(kSp), SRegOffset(cu, start_vreg + i),
+                      TargetReg(arg_regs[i]), kWord);
+      }
+    } else {
+      // If arriving in frame & promoted
+      if (v_map->core_location == kLocPhysReg) {
+        LoadWordDisp(cu, TargetReg(kSp), SRegOffset(cu, start_vreg + i),
+                     v_map->core_reg);
+      }
+      if (v_map->fp_location == kLocPhysReg) {
+        LoadWordDisp(cu, TargetReg(kSp), SRegOffset(cu, start_vreg + i),
+                     v_map->FpReg);
+      }
+    }
+  }
+}
+
+/*
+ * Bit of a hack here - in the absence of a real scheduling pass,
+ * emit the next instruction in static & direct invoke sequences.
+ */
+static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
+                          int state, uint32_t dex_idx, uint32_t unused,
+                          uintptr_t direct_code, uintptr_t direct_method,
+                          InvokeType type)
+{
+  Codegen* cg = cu->cg.get();
+  if (cu->instruction_set != kThumb2) {
+    // Disable sharpening
+    direct_code = 0;
+    direct_method = 0;
+  }
+  if (direct_code != 0 && direct_method != 0) {
+    switch (state) {
+    case 0:  // Get the current Method* [sets kArg0]
+      if (direct_code != static_cast<unsigned int>(-1)) {
+        cg->LoadConstant(cu, cg->TargetReg(kInvokeTgt), direct_code);
+      } else {
+        LIR* data_target = ScanLiteralPool(cu->code_literal_list, dex_idx, 0);
+        if (data_target == NULL) {
+          data_target = AddWordData(cu, &cu->code_literal_list, dex_idx);
+          data_target->operands[1] = type;
+        }
+        LIR* load_pc_rel = cg->OpPcRelLoad(cu, cg->TargetReg(kInvokeTgt), data_target);
+        AppendLIR(cu, load_pc_rel);
+        DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
+      }
+      if (direct_method != static_cast<unsigned int>(-1)) {
+        cg->LoadConstant(cu, cg->TargetReg(kArg0), direct_method);
+      } else {
+        LIR* data_target = ScanLiteralPool(cu->method_literal_list, dex_idx, 0);
+        if (data_target == NULL) {
+          data_target = AddWordData(cu, &cu->method_literal_list, dex_idx);
+          data_target->operands[1] = type;
+        }
+        LIR* load_pc_rel = cg->OpPcRelLoad(cu, cg->TargetReg(kArg0), data_target);
+        AppendLIR(cu, load_pc_rel);
+        DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
+      }
+      break;
+    default:
+      return -1;
+    }
+  } else {
+    switch (state) {
+    case 0:  // Get the current Method* [sets kArg0]
+      // TUNING: we can save a reg copy if Method* has been promoted.
+      cg->LoadCurrMethodDirect(cu, cg->TargetReg(kArg0));
+      break;
+    case 1:  // Get method->dex_cache_resolved_methods_
+      cg->LoadWordDisp(cu, cg->TargetReg(kArg0),
+        mirror::AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0));
+      // Set up direct code if known.
+      if (direct_code != 0) {
+        if (direct_code != static_cast<unsigned int>(-1)) {
+          cg->LoadConstant(cu, cg->TargetReg(kInvokeTgt), direct_code);
+        } else {
+          LIR* data_target = ScanLiteralPool(cu->code_literal_list, dex_idx, 0);
+          if (data_target == NULL) {
+            data_target = AddWordData(cu, &cu->code_literal_list, dex_idx);
+            data_target->operands[1] = type;
+          }
+          LIR* load_pc_rel = cg->OpPcRelLoad(cu, cg->TargetReg(kInvokeTgt), data_target);
+          AppendLIR(cu, load_pc_rel);
+          DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
+        }
+      }
+      break;
+    case 2:  // Grab target method*
+      cg->LoadWordDisp(cu, cg->TargetReg(kArg0),
+                       mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + dex_idx * 4,
+                       cg-> TargetReg(kArg0));
+      break;
+    case 3:  // Grab the code from the method*
+      if (cu->instruction_set != kX86) {
+        if (direct_code == 0) {
+          cg->LoadWordDisp(cu, cg->TargetReg(kArg0),
+                           mirror::AbstractMethod::GetCodeOffset().Int32Value(),
+                           cg->TargetReg(kInvokeTgt));
+        }
+        break;
+      }
+      // Intentional fallthrough for x86
+    default:
+      return -1;
+    }
+  }
+  return state + 1;
+}
+
+/*
+ * Bit of a hack here - in the absence of a real scheduling pass,
+ * emit the next instruction in a virtual invoke sequence.
+ * We can use kLr as a temp prior to target address loading
+ * Note also that we'll load the first argument ("this") into
+ * kArg1 here rather than the standard LoadArgRegs.
+ */
+static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
+                         int state, uint32_t dex_idx, uint32_t method_idx,
+                         uintptr_t unused, uintptr_t unused2, InvokeType unused3)
+{
+  Codegen* cg = cu->cg.get();
+  /*
+   * This is the fast path in which the target virtual method is
+   * fully resolved at compile time.
+   */
+  switch (state) {
+    case 0: {  // Get "this" [set kArg1]
+      RegLocation  rl_arg = info->args[0];
+      cg->LoadValueDirectFixed(cu, rl_arg, cg->TargetReg(kArg1));
+      break;
+    }
+    case 1: // Is "this" null? [use kArg1]
+      cg->GenNullCheck(cu, info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
+      // get this->klass_ [use kArg1, set kInvokeTgt]
+      cg->LoadWordDisp(cu, cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
+                       cg->TargetReg(kInvokeTgt));
+      break;
+    case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt]
+      cg->LoadWordDisp(cu, cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(),
+                       cg->TargetReg(kInvokeTgt));
+      break;
+    case 3: // Get target method [use kInvokeTgt, set kArg0]
+      cg->LoadWordDisp(cu, cg->TargetReg(kInvokeTgt), (method_idx * 4) +
+                       mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
+                       cg->TargetReg(kArg0));
+      break;
+    case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt]
+      if (cu->instruction_set != kX86) {
+        cg->LoadWordDisp(cu, cg->TargetReg(kArg0),
+                         mirror::AbstractMethod::GetCodeOffset().Int32Value(),
+                         cg->TargetReg(kInvokeTgt));
+        break;
+      }
+      // Intentional fallthrough for X86
+    default:
+      return -1;
+  }
+  return state + 1;
+}
+
+/*
+ * All invoke-interface calls bounce off of art_quick_invoke_interface_trampoline,
+ * which will locate the target and continue on via a tail call.
+ */
+static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
+                                 uint32_t dex_idx, uint32_t unused, uintptr_t unused2,
+                                 uintptr_t direct_method, InvokeType unused4)
+{
+  Codegen* cg = cu->cg.get();
+  if (cu->instruction_set != kThumb2) {
+    // Disable sharpening
+    direct_method = 0;
+  }
+  int trampoline = (cu->instruction_set == kX86) ? 0
+      : ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline);
+
+  if (direct_method != 0) {
+    switch (state) {
+      case 0:  // Load the trampoline target [sets kInvokeTgt].
+        if (cu->instruction_set != kX86) {
+          cg->LoadWordDisp(cu, cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt));
+        }
+        // Get the interface Method* [sets kArg0]
+        if (direct_method != static_cast<unsigned int>(-1)) {
+          cg->LoadConstant(cu, cg->TargetReg(kArg0), direct_method);
+        } else {
+          LIR* data_target = ScanLiteralPool(cu->method_literal_list, dex_idx, 0);
+          if (data_target == NULL) {
+            data_target = AddWordData(cu, &cu->method_literal_list, dex_idx);
+            data_target->operands[1] = kInterface;
+          }
+          LIR* load_pc_rel = cg->OpPcRelLoad(cu, cg->TargetReg(kArg0), data_target);
+          AppendLIR(cu, load_pc_rel);
+          DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
+        }
+        break;
+      default:
+        return -1;
+    }
+  } else {
+    switch (state) {
+      case 0:
+        // Get the current Method* [sets kArg0] - TUNING: remove copy of method if it is promoted.
+        cg->LoadCurrMethodDirect(cu, cg->TargetReg(kArg0));
+        // Load the trampoline target [sets kInvokeTgt].
+        if (cu->instruction_set != kX86) {
+          cg->LoadWordDisp(cu, cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt));
+        }
+        break;
+    case 1:  // Get method->dex_cache_resolved_methods_ [set/use kArg0]
+      cg->LoadWordDisp(cu, cg->TargetReg(kArg0),
+                       mirror::AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(),
+                       cg->TargetReg(kArg0));
+      break;
+    case 2:  // Grab target method* [set/use kArg0]
+      cg->LoadWordDisp(cu, cg->TargetReg(kArg0),
+                       mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + dex_idx * 4,
+                       cg->TargetReg(kArg0));
+      break;
+    default:
+      return -1;
+    }
+  }
+  return state + 1;
+}
+
+static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, int trampoline,
+                            int state, uint32_t dex_idx, uint32_t method_idx)
+{
+  Codegen* cg = cu->cg.get();
+  /*
+   * This handles the case in which the base method is not fully
+   * resolved at compile time, we bail to a runtime helper.
+   */
+  if (state == 0) {
+    if (cu->instruction_set != kX86) {
+      // Load trampoline target
+      cg->LoadWordDisp(cu, cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt));
+    }
+    // Load kArg0 with method index
+    cg->LoadConstant(cu, cg->TargetReg(kArg0), dex_idx);
+    return 1;
+  }
+  return -1;
+}
+
+static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
+                                int state, uint32_t dex_idx, uint32_t method_idx,
+                                uintptr_t unused, uintptr_t unused2,
+                         InvokeType unused3)
+{
+  int trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
+  return NextInvokeInsnSP(cu, info, trampoline, state, dex_idx, 0);
+}
+
+static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
+                                uint32_t dex_idx, uint32_t method_idx, uintptr_t unused,
+                                uintptr_t unused2, InvokeType unused3)
+{
+  int trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
+  return NextInvokeInsnSP(cu, info, trampoline, state, dex_idx, 0);
+}
+
+static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
+                               uint32_t dex_idx, uint32_t method_idx, uintptr_t unused,
+                        uintptr_t unused2, InvokeType unused3)
+{
+  int trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
+  return NextInvokeInsnSP(cu, info, trampoline, state, dex_idx, 0);
+}
+
+static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
+                           uint32_t dex_idx, uint32_t method_idx, uintptr_t unused,
+                           uintptr_t unused2, InvokeType unused3)
+{
+  int trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
+  return NextInvokeInsnSP(cu, info, trampoline, state, dex_idx, 0);
+}
+
+static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
+                                                CallInfo* info, int state,
+                                         uint32_t dex_idx, uint32_t unused,
+                                         uintptr_t unused2, uintptr_t unused3,
+                                         InvokeType unused4)
+{
+  int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
+  return NextInvokeInsnSP(cu, info, trampoline, state, dex_idx, 0);
+}
+
+static int LoadArgRegs(CompilationUnit* cu, CallInfo* info, int call_state,
+                       NextCallInsn next_call_insn, uint32_t dex_idx,
+                       uint32_t method_idx, uintptr_t direct_code,
+                       uintptr_t direct_method, InvokeType type, bool skip_this)
+{
+  Codegen* cg = cu->cg.get();
+  int last_arg_reg = cg->TargetReg(kArg3);
+  int next_reg = cg->TargetReg(kArg1);
+  int next_arg = 0;
+  if (skip_this) {
+    next_reg++;
+    next_arg++;
+  }
+  for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
+    RegLocation rl_arg = info->args[next_arg++];
+    rl_arg = UpdateRawLoc(cu, rl_arg);
+    if (rl_arg.wide && (next_reg <= cg->TargetReg(kArg2))) {
+      cg->LoadValueDirectWideFixed(cu, rl_arg, next_reg, next_reg + 1);
+      next_reg++;
+      next_arg++;
+    } else {
+      if (rl_arg.wide) {
+        rl_arg.wide = false;
+        rl_arg.is_const = false;
+      }
+      cg->LoadValueDirectFixed(cu, rl_arg, next_reg);
+    }
+    call_state = next_call_insn(cu, info, call_state, dex_idx, method_idx,
+                 direct_code, direct_method, type);
+  }
+  return call_state;
+}
+
+/*
+ * Load up to 5 arguments, the first three of which will be in
+ * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
+ * and as part of the load sequence, it must be replaced with
+ * the target method pointer.  Note, this may also be called
+ * for "range" variants if the number of arguments is 5 or fewer.
+ */
+int Codegen::GenDalvikArgsNoRange(CompilationUnit* cu, CallInfo* info,
+                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
+                                  uint32_t dex_idx, uint32_t method_idx, uintptr_t direct_code,
+                                  uintptr_t direct_method, InvokeType type, bool skip_this)
+{
+  RegLocation rl_arg;
+
+  /* If no arguments, just return */
+  if (info->num_arg_words == 0)
+    return call_state;
+
+  call_state = next_call_insn(cu, info, call_state, dex_idx, method_idx,
+                           direct_code, direct_method, type);
+
+  DCHECK_LE(info->num_arg_words, 5);
+  if (info->num_arg_words > 3) {
+    int32_t next_use = 3;
+    //Detect special case of wide arg spanning arg3/arg4
+    RegLocation rl_use0 = info->args[0];
+    RegLocation rl_use1 = info->args[1];
+    RegLocation rl_use2 = info->args[2];
+    if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) &&
+      rl_use2.wide) {
+      int reg = -1;
+      // Wide spans, we need the 2nd half of uses[2].
+      rl_arg = UpdateLocWide(cu, rl_use2);
+      if (rl_arg.location == kLocPhysReg) {
+        reg = rl_arg.high_reg;
+      } else {
+        // kArg2 & rArg3 can safely be used here
+        reg = TargetReg(kArg3);
+        LoadWordDisp(cu, TargetReg(kSp), SRegOffset(cu, rl_arg.s_reg_low) + 4, reg);
+        call_state = next_call_insn(cu, info, call_state, dex_idx,
+                                 method_idx, direct_code, direct_method, type);
+      }
+      StoreBaseDisp(cu, TargetReg(kSp), (next_use + 1) * 4, reg, kWord);
+      StoreBaseDisp(cu, TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord);
+      call_state = next_call_insn(cu, info, call_state, dex_idx, method_idx,
+                               direct_code, direct_method, type);
+      next_use++;
+    }
+    // Loop through the rest
+    while (next_use < info->num_arg_words) {
+      int low_reg;
+      int high_reg = -1;
+      rl_arg = info->args[next_use];
+      rl_arg = UpdateRawLoc(cu, rl_arg);
+      if (rl_arg.location == kLocPhysReg) {
+        low_reg = rl_arg.low_reg;
+        high_reg = rl_arg.high_reg;
+      } else {
+        low_reg = TargetReg(kArg2);
+        if (rl_arg.wide) {
+          high_reg = TargetReg(kArg3);
+          LoadValueDirectWideFixed(cu, rl_arg, low_reg, high_reg);
+        } else {
+          LoadValueDirectFixed(cu, rl_arg, low_reg);
+        }
+        call_state = next_call_insn(cu, info, call_state, dex_idx,
+                                 method_idx, direct_code, direct_method, type);
+      }
+      int outs_offset = (next_use + 1) * 4;
+      if (rl_arg.wide) {
+        StoreBaseDispWide(cu, TargetReg(kSp), outs_offset, low_reg, high_reg);
+        next_use += 2;
+      } else {
+        StoreWordDisp(cu, TargetReg(kSp), outs_offset, low_reg);
+        next_use++;
+      }
+      call_state = next_call_insn(cu, info, call_state, dex_idx, method_idx,
+                               direct_code, direct_method, type);
+    }
+  }
+
+  call_state = LoadArgRegs(cu, info, call_state, next_call_insn,
+                          dex_idx, method_idx, direct_code, direct_method,
+                          type, skip_this);
+
+  if (pcrLabel) {
+    *pcrLabel = GenNullCheck(cu, info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
+  }
+  return call_state;
+}
+
+/*
+ * May have 0+ arguments (also used for jumbo).  Note that
+ * source virtual registers may be in physical registers, so may
+ * need to be flushed to home location before copying.  This
+ * applies to arg3 and above (see below).
+ *
+ * Two general strategies:
+ *    If < 20 arguments
+ *       Pass args 3-18 using vldm/vstm block copy
+ *       Pass arg0, arg1 & arg2 in kArg1-kArg3
+ *    If 20+ arguments
+ *       Pass args arg19+ using memcpy block copy
+ *       Pass arg0, arg1 & arg2 in kArg1-kArg3
+ *
+ */
+int Codegen::GenDalvikArgsRange(CompilationUnit* cu, CallInfo* info, int call_state,
+                                LIR** pcrLabel, NextCallInsn next_call_insn, uint32_t dex_idx,
+                                uint32_t method_idx, uintptr_t direct_code, uintptr_t direct_method,
+                                InvokeType type, bool skip_this)
+{
+
+  // If we can treat it as non-range (Jumbo ops will use range form)
+  if (info->num_arg_words <= 5)
+    return GenDalvikArgsNoRange(cu, info, call_state, pcrLabel,
+                                next_call_insn, dex_idx, method_idx,
+                                direct_code, direct_method, type, skip_this);
+  /*
+   * First load the non-register arguments.  Both forms expect all
+   * of the source arguments to be in their home frame location, so
+   * scan the s_reg names and flush any that have been promoted to
+   * frame backing storage.
+   */
+  // Scan the rest of the args - if in phys_reg flush to memory
+  for (int next_arg = 0; next_arg < info->num_arg_words;) {
+    RegLocation loc = info->args[next_arg];
+    if (loc.wide) {
+      loc = UpdateLocWide(cu, loc);
+      if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
+        StoreBaseDispWide(cu, TargetReg(kSp), SRegOffset(cu, loc.s_reg_low),
+                          loc.low_reg, loc.high_reg);
+      }
+      next_arg += 2;
+    } else {
+      loc = UpdateLoc(cu, loc);
+      if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
+        StoreBaseDisp(cu, TargetReg(kSp), SRegOffset(cu, loc.s_reg_low),
+                      loc.low_reg, kWord);
+      }
+      next_arg++;
+    }
+  }
+
+  int start_offset = SRegOffset(cu, info->args[3].s_reg_low);
+  int outs_offset = 4 /* Method* */ + (3 * 4);
+  if (cu->instruction_set != kThumb2) {
+    // Generate memcpy
+    OpRegRegImm(cu, kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
+    OpRegRegImm(cu, kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
+    CallRuntimeHelperRegRegImm(cu, ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
+                               TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
+  } else {
+    if (info->num_arg_words >= 20) {
+      // Generate memcpy
+      OpRegRegImm(cu, kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
+      OpRegRegImm(cu, kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
+      CallRuntimeHelperRegRegImm(cu, ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
+                                 TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
+    } else {
+      // Use vldm/vstm pair using kArg3 as a temp
+      int regs_left = std::min(info->num_arg_words - 3, 16);
+      call_state = next_call_insn(cu, info, call_state, dex_idx, method_idx,
+                               direct_code, direct_method, type);
+      OpRegRegImm(cu, kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset);
+      LIR* ld = OpVldm(cu, TargetReg(kArg3), regs_left);
+      //TUNING: loosen barrier
+      ld->def_mask = ENCODE_ALL;
+      SetMemRefType(cu, ld, true /* is_load */, kDalvikReg);
+      call_state = next_call_insn(cu, info, call_state, dex_idx, method_idx,
+                               direct_code, direct_method, type);
+      OpRegRegImm(cu, kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4));
+      call_state = next_call_insn(cu, info, call_state, dex_idx, method_idx,
+                               direct_code, direct_method, type);
+      LIR* st = OpVstm(cu, TargetReg(kArg3), regs_left);
+      SetMemRefType(cu, st, false /* is_load */, kDalvikReg);
+      st->def_mask = ENCODE_ALL;
+      call_state = next_call_insn(cu, info, call_state, dex_idx, method_idx,
+                               direct_code, direct_method, type);
+    }
+  }
+
+  call_state = LoadArgRegs(cu, info, call_state, next_call_insn,
+                          dex_idx, method_idx, direct_code, direct_method,
+                          type, skip_this);
+
+  call_state = next_call_insn(cu, info, call_state, dex_idx, method_idx,
+                           direct_code, direct_method, type);
+  if (pcrLabel) {
+    *pcrLabel = GenNullCheck(cu, info->args[0].s_reg_low, TargetReg(kArg1),
+                             info->opt_flags);
+  }
+  return call_state;
+}
+
+RegLocation Codegen::InlineTarget(CompilationUnit* cu, CallInfo* info)
+{
+  RegLocation res;
+  if (info->result.location == kLocInvalid) {
+    res = GetReturn(cu, false);
+  } else {
+    res = info->result;
+  }
+  return res;
+}
+
+RegLocation Codegen::InlineTargetWide(CompilationUnit* cu, CallInfo* info)
+{
+  RegLocation res;
+  if (info->result.location == kLocInvalid) {
+    res = GetReturnWide(cu, false);
+  } else {
+    res = info->result;
+  }
+  return res;
+}
+
+bool Codegen::GenInlinedCharAt(CompilationUnit* cu, CallInfo* info)
+{
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  // Location of reference to data array
+  int value_offset = mirror::String::ValueOffset().Int32Value();
+  // Location of count
+  int count_offset = mirror::String::CountOffset().Int32Value();
+  // Starting offset within data array
+  int offset_offset = mirror::String::OffsetOffset().Int32Value();
+  // Start of char data with array_
+  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
+
+  RegLocation rl_obj = info->args[0];
+  RegLocation rl_idx = info->args[1];
+  rl_obj = LoadValue(cu, rl_obj, kCoreReg);
+  rl_idx = LoadValue(cu, rl_idx, kCoreReg);
+  int reg_max;
+  GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
+  bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
+  LIR* launch_pad = NULL;
+  int reg_off = INVALID_REG;
+  int reg_ptr = INVALID_REG;
+  if (cu->instruction_set != kX86) {
+    reg_off = AllocTemp(cu);
+    reg_ptr = AllocTemp(cu);
+    if (range_check) {
+      reg_max = AllocTemp(cu);
+      LoadWordDisp(cu, rl_obj.low_reg, count_offset, reg_max);
+    }
+    LoadWordDisp(cu, rl_obj.low_reg, offset_offset, reg_off);
+    LoadWordDisp(cu, rl_obj.low_reg, value_offset, reg_ptr);
+    if (range_check) {
+      // Set up a launch pad to allow retry in case of bounds violation */
+      launch_pad = RawLIR(cu, 0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
+      InsertGrowableList(cu, &cu->intrinsic_launchpads,
+                            reinterpret_cast<uintptr_t>(launch_pad));
+      OpRegReg(cu, kOpCmp, rl_idx.low_reg, reg_max);
+      FreeTemp(cu, reg_max);
+      OpCondBranch(cu, kCondCs, launch_pad);
+   }
+  } else {
+    if (range_check) {
+      reg_max = AllocTemp(cu);
+      LoadWordDisp(cu, rl_obj.low_reg, count_offset, reg_max);
+      // Set up a launch pad to allow retry in case of bounds violation */
+      launch_pad = RawLIR(cu, 0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
+      InsertGrowableList(cu, &cu->intrinsic_launchpads,
+                            reinterpret_cast<uintptr_t>(launch_pad));
+      OpRegReg(cu, kOpCmp, rl_idx.low_reg, reg_max);
+      FreeTemp(cu, reg_max);
+      OpCondBranch(cu, kCondCc, launch_pad);
+    }
+    reg_off = AllocTemp(cu);
+    reg_ptr = AllocTemp(cu);
+    LoadWordDisp(cu, rl_obj.low_reg, offset_offset, reg_off);
+    LoadWordDisp(cu, rl_obj.low_reg, value_offset, reg_ptr);
+  }
+  OpRegImm(cu, kOpAdd, reg_ptr, data_offset);
+  OpRegReg(cu, kOpAdd, reg_off, rl_idx.low_reg);
+  FreeTemp(cu, rl_obj.low_reg);
+  FreeTemp(cu, rl_idx.low_reg);
+  RegLocation rl_dest = InlineTarget(cu, info);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  LoadBaseIndexed(cu, reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf);
+  FreeTemp(cu, reg_off);
+  FreeTemp(cu, reg_ptr);
+  StoreValue(cu, rl_dest, rl_result);
+  if (range_check) {
+    launch_pad->operands[2] = 0;  // no resumption
+  }
+  // Record that we've already inlined & null checked
+  info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
+  return true;
+}
+
+// Generates an inlined String.is_empty or String.length.
+bool Codegen::GenInlinedStringIsEmptyOrLength(CompilationUnit* cu, CallInfo* info, bool is_empty)
+{
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  // dst = src.length();
+  RegLocation rl_obj = info->args[0];
+  rl_obj = LoadValue(cu, rl_obj, kCoreReg);
+  RegLocation rl_dest = InlineTarget(cu, info);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
+  LoadWordDisp(cu, rl_obj.low_reg, mirror::String::CountOffset().Int32Value(),
+               rl_result.low_reg);
+  if (is_empty) {
+    // dst = (dst == 0);
+    if (cu->instruction_set == kThumb2) {
+      int t_reg = AllocTemp(cu);
+      OpRegReg(cu, kOpNeg, t_reg, rl_result.low_reg);
+      OpRegRegReg(cu, kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg);
+    } else {
+      DCHECK_EQ(cu->instruction_set, kX86);
+      OpRegImm(cu, kOpSub, rl_result.low_reg, 1);
+      OpRegImm(cu, kOpLsr, rl_result.low_reg, 31);
+    }
+  }
+  StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+bool Codegen::GenInlinedAbsInt(CompilationUnit *cu, CallInfo* info)
+{
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  RegLocation rl_src = info->args[0];
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  RegLocation rl_dest = InlineTarget(cu, info);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  int sign_reg = AllocTemp(cu);
+  // abs(x) = y<=x>>31, (x+y)^y.
+  OpRegRegImm(cu, kOpAsr, sign_reg, rl_src.low_reg, 31);
+  OpRegRegReg(cu, kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
+  OpRegReg(cu, kOpXor, rl_result.low_reg, sign_reg);
+  StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+bool Codegen::GenInlinedAbsLong(CompilationUnit *cu, CallInfo* info)
+{
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  if (cu->instruction_set == kThumb2) {
+    RegLocation rl_src = info->args[0];
+    rl_src = LoadValueWide(cu, rl_src, kCoreReg);
+    RegLocation rl_dest = InlineTargetWide(cu, info);
+    RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+    int sign_reg = AllocTemp(cu);
+    // abs(x) = y<=x>>31, (x+y)^y.
+    OpRegRegImm(cu, kOpAsr, sign_reg, rl_src.high_reg, 31);
+    OpRegRegReg(cu, kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
+    OpRegRegReg(cu, kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg);
+    OpRegReg(cu, kOpXor, rl_result.low_reg, sign_reg);
+    OpRegReg(cu, kOpXor, rl_result.high_reg, sign_reg);
+    StoreValueWide(cu, rl_dest, rl_result);
+    return true;
+  } else {
+    DCHECK_EQ(cu->instruction_set, kX86);
+    // Reuse source registers to avoid running out of temps
+    RegLocation rl_src = info->args[0];
+    rl_src = LoadValueWide(cu, rl_src, kCoreReg);
+    RegLocation rl_dest = InlineTargetWide(cu, info);
+    RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+    OpRegCopyWide(cu, rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg);
+    FreeTemp(cu, rl_src.low_reg);
+    FreeTemp(cu, rl_src.high_reg);
+    int sign_reg = AllocTemp(cu);
+    // abs(x) = y<=x>>31, (x+y)^y.
+    OpRegRegImm(cu, kOpAsr, sign_reg, rl_result.high_reg, 31);
+    OpRegReg(cu, kOpAdd, rl_result.low_reg, sign_reg);
+    OpRegReg(cu, kOpAdc, rl_result.high_reg, sign_reg);
+    OpRegReg(cu, kOpXor, rl_result.low_reg, sign_reg);
+    OpRegReg(cu, kOpXor, rl_result.high_reg, sign_reg);
+    StoreValueWide(cu, rl_dest, rl_result);
+    return true;
+  }
+}
+
+bool Codegen::GenInlinedFloatCvt(CompilationUnit *cu, CallInfo* info)
+{
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  RegLocation rl_src = info->args[0];
+  RegLocation rl_dest = InlineTarget(cu, info);
+  StoreValue(cu, rl_dest, rl_src);
+  return true;
+}
+
+bool Codegen::GenInlinedDoubleCvt(CompilationUnit *cu, CallInfo* info)
+{
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  RegLocation rl_src = info->args[0];
+  RegLocation rl_dest = InlineTargetWide(cu, info);
+  StoreValueWide(cu, rl_dest, rl_src);
+  return true;
+}
+
+/*
+ * Fast string.index_of(I) & (II).  Tests for simple case of char <= 0xffff,
+ * otherwise bails to standard library code.
+ */
+bool Codegen::GenInlinedIndexOf(CompilationUnit* cu, CallInfo* info, bool zero_based)
+{
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  ClobberCalleeSave(cu);
+  LockCallTemps(cu);  // Using fixed registers
+  int reg_ptr = TargetReg(kArg0);
+  int reg_char = TargetReg(kArg1);
+  int reg_start = TargetReg(kArg2);
+
+  RegLocation rl_obj = info->args[0];
+  RegLocation rl_char = info->args[1];
+  RegLocation rl_start = info->args[2];
+  LoadValueDirectFixed(cu, rl_obj, reg_ptr);
+  LoadValueDirectFixed(cu, rl_char, reg_char);
+  if (zero_based) {
+    LoadConstant(cu, reg_start, 0);
+  } else {
+    LoadValueDirectFixed(cu, rl_start, reg_start);
+  }
+  int r_tgt = (cu->instruction_set != kX86) ? LoadHelper(cu, ENTRYPOINT_OFFSET(pIndexOf)) : 0;
+  GenNullCheck(cu, rl_obj.s_reg_low, reg_ptr, info->opt_flags);
+  LIR* launch_pad = RawLIR(cu, 0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
+  InsertGrowableList(cu, &cu->intrinsic_launchpads, reinterpret_cast<uintptr_t>(launch_pad));
+  OpCmpImmBranch(cu, kCondGt, reg_char, 0xFFFF, launch_pad);
+  // NOTE: not a safepoint
+  if (cu->instruction_set != kX86) {
+    OpReg(cu, kOpBlx, r_tgt);
+  } else {
+    OpThreadMem(cu, kOpBlx, ENTRYPOINT_OFFSET(pIndexOf));
+  }
+  LIR* resume_tgt = NewLIR0(cu, kPseudoTargetLabel);
+  launch_pad->operands[2] = reinterpret_cast<uintptr_t>(resume_tgt);
+  // Record that we've already inlined & null checked
+  info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
+  RegLocation rl_return = GetReturn(cu, false);
+  RegLocation rl_dest = InlineTarget(cu, info);
+  StoreValue(cu, rl_dest, rl_return);
+  return true;
+}
+
+/* Fast string.compareTo(Ljava/lang/string;)I. */
+bool Codegen::GenInlinedStringCompareTo(CompilationUnit* cu, CallInfo* info)
+{
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  ClobberCalleeSave(cu);
+  LockCallTemps(cu);  // Using fixed registers
+  int reg_this = TargetReg(kArg0);
+  int reg_cmp = TargetReg(kArg1);
+
+  RegLocation rl_this = info->args[0];
+  RegLocation rl_cmp = info->args[1];
+  LoadValueDirectFixed(cu, rl_this, reg_this);
+  LoadValueDirectFixed(cu, rl_cmp, reg_cmp);
+  int r_tgt = (cu->instruction_set != kX86) ?
+      LoadHelper(cu, ENTRYPOINT_OFFSET(pStringCompareTo)) : 0;
+  GenNullCheck(cu, rl_this.s_reg_low, reg_this, info->opt_flags);
+  //TUNING: check if rl_cmp.s_reg_low is already null checked
+  LIR* launch_pad = RawLIR(cu, 0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
+  InsertGrowableList(cu, &cu->intrinsic_launchpads, reinterpret_cast<uintptr_t>(launch_pad));
+  OpCmpImmBranch(cu, kCondEq, reg_cmp, 0, launch_pad);
+  // NOTE: not a safepoint
+  if (cu->instruction_set != kX86) {
+    OpReg(cu, kOpBlx, r_tgt);
+  } else {
+    OpThreadMem(cu, kOpBlx, ENTRYPOINT_OFFSET(pStringCompareTo));
+  }
+  launch_pad->operands[2] = 0;  // No return possible
+  // Record that we've already inlined & null checked
+  info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
+  RegLocation rl_return = GetReturn(cu, false);
+  RegLocation rl_dest = InlineTarget(cu, info);
+  StoreValue(cu, rl_dest, rl_return);
+  return true;
+}
+
+bool Codegen::GenInlinedCurrentThread(CompilationUnit* cu, CallInfo* info) {
+  RegLocation rl_dest = InlineTarget(cu, info);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  int offset = Thread::PeerOffset().Int32Value();
+  if (cu->instruction_set == kThumb2 || cu->instruction_set == kMips) {
+    LoadWordDisp(cu, TargetReg(kSelf), offset, rl_result.low_reg);
+  } else {
+    CHECK(cu->instruction_set == kX86);
+    ((X86Codegen*)this)->OpRegThreadMem(cu, kOpMov, rl_result.low_reg, offset);
+  }
+  StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+bool Codegen::GenInlinedUnsafeGet(CompilationUnit* cu, CallInfo* info,
+                                  bool is_long, bool is_volatile) {
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  // Unused - RegLocation rl_src_unsafe = info->args[0];
+  RegLocation rl_src_obj = info->args[1];  // Object
+  RegLocation rl_src_offset = info->args[2];  // long low
+  rl_src_offset.wide = 0;  // ignore high half in info->args[3]
+  RegLocation rl_dest = InlineTarget(cu, info);  // result reg
+  if (is_volatile) {
+    GenMemBarrier(cu, kLoadLoad);
+  }
+  RegLocation rl_object = LoadValue(cu, rl_src_obj, kCoreReg);
+  RegLocation rl_offset = LoadValue(cu, rl_src_offset, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (is_long) {
+    OpRegReg(cu, kOpAdd, rl_object.low_reg, rl_offset.low_reg);
+    LoadBaseDispWide(cu, rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
+    StoreValueWide(cu, rl_dest, rl_result);
+  } else {
+    LoadBaseIndexed(cu, rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+  return true;
+}
+
+bool Codegen::GenInlinedUnsafePut(CompilationUnit* cu, CallInfo* info, bool is_long,
+                                  bool is_object, bool is_volatile, bool is_ordered) {
+  if (cu->instruction_set == kMips) {
+    // TODO - add Mips implementation
+    return false;
+  }
+  // Unused - RegLocation rl_src_unsafe = info->args[0];
+  RegLocation rl_src_obj = info->args[1];  // Object
+  RegLocation rl_src_offset = info->args[2];  // long low
+  rl_src_offset.wide = 0;  // ignore high half in info->args[3]
+  RegLocation rl_src_value = info->args[4];  // value to store
+  if (is_volatile || is_ordered) {
+    GenMemBarrier(cu, kStoreStore);
+  }
+  RegLocation rl_object = LoadValue(cu, rl_src_obj, kCoreReg);
+  RegLocation rl_offset = LoadValue(cu, rl_src_offset, kCoreReg);
+  RegLocation rl_value = LoadValue(cu, rl_src_value, kCoreReg);
+  if (is_long) {
+    OpRegReg(cu, kOpAdd, rl_object.low_reg, rl_offset.low_reg);
+    StoreBaseDispWide(cu, rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
+  } else {
+    StoreBaseIndexed(cu, rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord);
+  }
+  if (is_volatile) {
+    GenMemBarrier(cu, kStoreLoad);
+  }
+  if (is_object) {
+    MarkGCCard(cu, rl_value.low_reg, rl_object.low_reg);
+  }
+  return true;
+}
+
+bool Codegen::GenIntrinsic(CompilationUnit* cu, CallInfo* info)
+{
+  if (info->opt_flags & MIR_INLINED) {
+    return false;
+  }
+  /*
+   * TODO: move these to a target-specific structured constant array
+   * and use a generic match function.  The list of intrinsics may be
+   * slightly different depending on target.
+   * TODO: Fold this into a matching function that runs during
+   * basic block building.  This should be part of the action for
+   * small method inlining and recognition of the special object init
+   * method.  By doing this during basic block construction, we can also
+   * take advantage of/generate new useful dataflow info.
+   */
+  std::string tgt_method(PrettyMethod(info->index, *cu->dex_file));
+  if (tgt_method.find(" java.lang") != std::string::npos) {
+    if (tgt_method == "long java.lang.Double.doubleToRawLongBits(double)") {
+      return GenInlinedDoubleCvt(cu, info);
+    }
+    if (tgt_method == "double java.lang.Double.longBitsToDouble(long)") {
+      return GenInlinedDoubleCvt(cu, info);
+    }
+    if (tgt_method == "int java.lang.Float.float_to_raw_int_bits(float)") {
+      return GenInlinedFloatCvt(cu, info);
+    }
+    if (tgt_method == "float java.lang.Float.intBitsToFloat(int)") {
+      return GenInlinedFloatCvt(cu, info);
+    }
+    if (tgt_method == "int java.lang.Math.abs(int)" ||
+        tgt_method == "int java.lang.StrictMath.abs(int)") {
+      return GenInlinedAbsInt(cu, info);
+    }
+    if (tgt_method == "long java.lang.Math.abs(long)" ||
+        tgt_method == "long java.lang.StrictMath.abs(long)") {
+      return GenInlinedAbsLong(cu, info);
+    }
+    if (tgt_method == "int java.lang.Math.max(int, int)" ||
+        tgt_method == "int java.lang.StrictMath.max(int, int)") {
+      return GenInlinedMinMaxInt(cu, info, false /* is_min */);
+    }
+    if (tgt_method == "int java.lang.Math.min(int, int)" ||
+        tgt_method == "int java.lang.StrictMath.min(int, int)") {
+      return GenInlinedMinMaxInt(cu, info, true /* is_min */);
+    }
+    if (tgt_method == "double java.lang.Math.sqrt(double)" ||
+        tgt_method == "double java.lang.StrictMath.sqrt(double)") {
+      return GenInlinedSqrt(cu, info);
+    }
+    if (tgt_method == "char java.lang.String.charAt(int)") {
+      return GenInlinedCharAt(cu, info);
+    }
+    if (tgt_method == "int java.lang.String.compareTo(java.lang.String)") {
+      return GenInlinedStringCompareTo(cu, info);
+    }
+    if (tgt_method == "boolean java.lang.String.is_empty()") {
+      return GenInlinedStringIsEmptyOrLength(cu, info, true /* is_empty */);
+    }
+    if (tgt_method == "int java.lang.String.index_of(int, int)") {
+      return GenInlinedIndexOf(cu, info, false /* base 0 */);
+    }
+    if (tgt_method == "int java.lang.String.index_of(int)") {
+      return GenInlinedIndexOf(cu, info, true /* base 0 */);
+    }
+    if (tgt_method == "int java.lang.String.length()") {
+      return GenInlinedStringIsEmptyOrLength(cu, info, false /* is_empty */);
+    }
+    if (tgt_method == "java.lang.Thread java.lang.Thread.currentThread()") {
+      return GenInlinedCurrentThread(cu, info);
+    }
+  } else if (tgt_method.find(" sun.misc.Unsafe") != std::string::npos) {
+    if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") {
+      return GenInlinedCas32(cu, info, false);
+    }
+    if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") {
+      return GenInlinedCas32(cu, info, true);
+    }
+    if (tgt_method == "int sun.misc.Unsafe.getInt(java.lang.Object, long)") {
+      return GenInlinedUnsafeGet(cu, info, false /* is_long */, false /* is_volatile */);
+    }
+    if (tgt_method == "int sun.misc.Unsafe.getIntVolatile(java.lang.Object, long)") {
+      return GenInlinedUnsafeGet(cu, info, false /* is_long */, true /* is_volatile */);
+    }
+    if (tgt_method == "void sun.misc.Unsafe.putInt(java.lang.Object, long, int)") {
+      return GenInlinedUnsafePut(cu, info, false /* is_long */, false /* is_object */,
+                                 false /* is_volatile */, false /* is_ordered */);
+    }
+    if (tgt_method == "void sun.misc.Unsafe.putIntVolatile(java.lang.Object, long, int)") {
+      return GenInlinedUnsafePut(cu, info, false /* is_long */, false /* is_object */,
+                                 true /* is_volatile */, false /* is_ordered */);
+    }
+    if (tgt_method == "void sun.misc.Unsafe.putOrderedInt(java.lang.Object, long, int)") {
+      return GenInlinedUnsafePut(cu, info, false /* is_long */, false /* is_object */,
+                                 false /* is_volatile */, true /* is_ordered */);
+    }
+    if (tgt_method == "long sun.misc.Unsafe.getLong(java.lang.Object, long)") {
+      return GenInlinedUnsafeGet(cu, info, true /* is_long */, false /* is_volatile */);
+    }
+    if (tgt_method == "long sun.misc.Unsafe.getLongVolatile(java.lang.Object, long)") {
+      return GenInlinedUnsafeGet(cu, info, true /* is_long */, true /* is_volatile */);
+    }
+    if (tgt_method == "void sun.misc.Unsafe.putLong(java.lang.Object, long, long)") {
+      return GenInlinedUnsafePut(cu, info, true /* is_long */, false /* is_object */,
+                                 false /* is_volatile */, false /* is_ordered */);
+    }
+    if (tgt_method == "void sun.misc.Unsafe.putLongVolatile(java.lang.Object, long, long)") {
+      return GenInlinedUnsafePut(cu, info, true /* is_long */, false /* is_object */,
+                                 true /* is_volatile */, false /* is_ordered */);
+    }
+    if (tgt_method == "void sun.misc.Unsafe.putOrderedLong(java.lang.Object, long, long)") {
+      return GenInlinedUnsafePut(cu, info, true /* is_long */, false /* is_object */,
+                                 false /* is_volatile */, true /* is_ordered */);
+    }
+    if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObject(java.lang.Object, long)") {
+      return GenInlinedUnsafeGet(cu, info, false /* is_long */, false /* is_volatile */);
+    }
+    if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObjectVolatile(java.lang.Object, long)") {
+      return GenInlinedUnsafeGet(cu, info, false /* is_long */, true /* is_volatile */);
+    }
+    if (tgt_method == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") {
+      return GenInlinedUnsafePut(cu, info, false /* is_long */, true /* is_object */,
+                                 false /* is_volatile */, false /* is_ordered */);
+    }
+    if (tgt_method == "void sun.misc.Unsafe.putObjectVolatile(java.lang.Object, long, java.lang.Object)") {
+      return GenInlinedUnsafePut(cu, info, false /* is_long */, true /* is_object */,
+                                 true /* is_volatile */, false /* is_ordered */);
+    }
+    if (tgt_method == "void sun.misc.Unsafe.putOrderedObject(java.lang.Object, long, java.lang.Object)") {
+      return GenInlinedUnsafePut(cu, info, false /* is_long */, true /* is_object */,
+                                 false /* is_volatile */, true /* is_ordered */);
+    }
+  }
+  return false;
+}
+
+void Codegen::GenInvoke(CompilationUnit* cu, CallInfo* info)
+{
+  if (GenIntrinsic(cu, info)) {
+    return;
+  }
+  InvokeType original_type = info->type;  // avoiding mutation by ComputeInvokeInfo
+  int call_state = 0;
+  LIR* null_ck;
+  LIR** p_null_ck = NULL;
+  NextCallInsn next_call_insn;
+  FlushAllRegs(cu);  /* Everything to home location */
+  // Explicit register usage
+  LockCallTemps(cu);
+
+  OatCompilationUnit m_unit(cu->class_loader, cu->class_linker,
+                            *cu->dex_file, cu->code_item,
+                            cu->class_def_idx, cu->method_idx,
+                            cu->access_flags);
+
+  uint32_t dex_method_idx = info->index;
+  int vtable_idx;
+  uintptr_t direct_code;
+  uintptr_t direct_method;
+  bool skip_this;
+  bool fast_path =
+    cu->compiler->ComputeInvokeInfo(dex_method_idx, &m_unit, info->type,
+                                       vtable_idx, direct_code,
+                                       direct_method)
+    && !SLOW_INVOKE_PATH;
+  if (info->type == kInterface) {
+    if (fast_path) {
+      p_null_ck = &null_ck;
+    }
+    next_call_insn = fast_path ? NextInterfaceCallInsn
+                            : NextInterfaceCallInsnWithAccessCheck;
+    skip_this = false;
+  } else if (info->type == kDirect) {
+    if (fast_path) {
+      p_null_ck = &null_ck;
+    }
+    next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
+    skip_this = false;
+  } else if (info->type == kStatic) {
+    next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
+    skip_this = false;
+  } else if (info->type == kSuper) {
+    DCHECK(!fast_path);  // Fast path is a direct call.
+    next_call_insn = NextSuperCallInsnSP;
+    skip_this = false;
+  } else {
+    DCHECK_EQ(info->type, kVirtual);
+    next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
+    skip_this = fast_path;
+  }
+  if (!info->is_range) {
+    call_state = GenDalvikArgsNoRange(cu, info, call_state, p_null_ck,
+                                     next_call_insn, dex_method_idx,
+                                     vtable_idx, direct_code, direct_method,
+                                     original_type, skip_this);
+  } else {
+    call_state = GenDalvikArgsRange(cu, info, call_state, p_null_ck,
+                                   next_call_insn, dex_method_idx, vtable_idx,
+                                   direct_code, direct_method, original_type,
+                                   skip_this);
+  }
+  // Finish up any of the call sequence not interleaved in arg loading
+  while (call_state >= 0) {
+    call_state = next_call_insn(cu, info, call_state, dex_method_idx,
+                             vtable_idx, direct_code, direct_method,
+                             original_type);
+  }
+  if (cu->enable_debug & (1 << kDebugDisplayMissingTargets)) {
+    GenShowTarget(cu);
+  }
+  LIR* call_inst;
+  if (cu->instruction_set != kX86) {
+    call_inst = OpReg(cu, kOpBlx, TargetReg(kInvokeTgt));
+  } else {
+    if (fast_path && info->type != kInterface) {
+      call_inst = OpMem(cu, kOpBlx, TargetReg(kArg0),
+                        mirror::AbstractMethod::GetCodeOffset().Int32Value());
+    } else {
+      int trampoline = 0;
+      switch (info->type) {
+      case kInterface:
+        trampoline = fast_path ? ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline)
+            : ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
+        break;
+      case kDirect:
+        trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
+        break;
+      case kStatic:
+        trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
+        break;
+      case kSuper:
+        trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
+        break;
+      case kVirtual:
+        trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
+        break;
+      default:
+        LOG(FATAL) << "Unexpected invoke type";
+      }
+      call_inst = OpThreadMem(cu, kOpBlx, trampoline);
+    }
+  }
+  MarkSafepointPC(cu, call_inst);
+
+  ClobberCalleeSave(cu);
+  if (info->result.location != kLocInvalid) {
+    // We have a following MOVE_RESULT - do it now.
+    if (info->result.wide) {
+      RegLocation ret_loc = GetReturnWide(cu, info->result.fp);
+      StoreValueWide(cu, info->result, ret_loc);
+    } else {
+      RegLocation ret_loc = GetReturn(cu, info->result.fp);
+      StoreValue(cu, info->result, ret_loc);
+    }
+  }
+}
+
+/*
+ * Build an array of location records for the incoming arguments.
+ * Note: one location record per word of arguments, with dummy
+ * high-word loc for wide arguments.  Also pull up any following
+ * MOVE_RESULT and incorporate it into the invoke.
+ */
+CallInfo* Codegen::NewMemCallInfo(CompilationUnit* cu, BasicBlock* bb, MIR* mir, InvokeType type,
+                                  bool is_range)
+{
+  CallInfo* info = static_cast<CallInfo*>(NewMem(cu, sizeof(CallInfo), true, kAllocMisc));
+  MIR* move_result_mir = FindMoveResult(cu, bb, mir);
+  if (move_result_mir == NULL) {
+    info->result.location = kLocInvalid;
+  } else {
+    info->result = GetRawDest(cu, move_result_mir);
+    move_result_mir->meta.original_opcode = move_result_mir->dalvikInsn.opcode;
+    move_result_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
+  }
+  info->num_arg_words = mir->ssa_rep->num_uses;
+  info->args = (info->num_arg_words == 0) ? NULL : static_cast<RegLocation*>
+      (NewMem(cu, sizeof(RegLocation) * info->num_arg_words, false, kAllocMisc));
+  for (int i = 0; i < info->num_arg_words; i++) {
+    info->args[i] = GetRawSrc(cu, mir, i);
+  }
+  info->opt_flags = mir->optimization_flags;
+  info->type = type;
+  info->is_range = is_range;
+  info->index = mir->dalvikInsn.vB;
+  info->offset = mir->offset;
+  return info;
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/gen_loadstore.cc b/src/compiler/dex/quick/gen_loadstore.cc
new file mode 100644
index 0000000..b945e31
--- /dev/null
+++ b/src/compiler/dex/quick/gen_loadstore.cc
@@ -0,0 +1,314 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_util.h"
+#include "compiler/dex/compiler_ir.h"
+#include "ralloc_util.h"
+
+namespace art {
+
+/* This file contains target-independent codegen and support. */
+
+/*
+ * Load an immediate value into a fixed or temp register.  Target
+ * register is clobbered, and marked in_use.
+ */
+LIR* Codegen::LoadConstant(CompilationUnit* cu, int r_dest, int value)
+{
+  if (IsTemp(cu, r_dest)) {
+    Clobber(cu, r_dest);
+    MarkInUse(cu, r_dest);
+  }
+  return LoadConstantNoClobber(cu, r_dest, value);
+}
+
+/*
+ * Temporary workaround for Issue 7250540.  If we're loading a constant zero into a
+ * promoted floating point register, also copy a zero into the int/ref identity of
+ * that sreg.
+ */
+void Codegen::Workaround7250540(CompilationUnit* cu, RegLocation rl_dest, int zero_reg)
+{
+  if (rl_dest.fp) {
+    int pmap_index = SRegToPMap(cu, rl_dest.s_reg_low);
+    if (cu->promotion_map[pmap_index].fp_location == kLocPhysReg) {
+      // Now, determine if this vreg is ever used as a reference.  If not, we're done.
+      if (!cu->gen_bitcode) {
+        // TUNING: We no longer have this info for QuickGBC - assume the worst
+        bool used_as_reference = false;
+        int base_vreg = SRegToVReg(cu, rl_dest.s_reg_low);
+        for (int i = 0; !used_as_reference && (i < cu->num_ssa_regs); i++) {
+          if (SRegToVReg(cu, cu->reg_location[i].s_reg_low) == base_vreg) {
+            used_as_reference |= cu->reg_location[i].ref;
+          }
+        }
+        if (!used_as_reference) {
+          return;
+        }
+      }
+      int temp_reg = zero_reg;
+      if (temp_reg == INVALID_REG) {
+        temp_reg = AllocTemp(cu);
+        cu->cg->LoadConstant(cu, temp_reg, 0);
+      }
+      if (cu->promotion_map[pmap_index].core_location == kLocPhysReg) {
+        // Promoted - just copy in a zero
+        OpRegCopy(cu, cu->promotion_map[pmap_index].core_reg, temp_reg);
+      } else {
+        // Lives in the frame, need to store.
+        StoreBaseDisp(cu, TargetReg(kSp), SRegOffset(cu, rl_dest.s_reg_low), temp_reg, kWord);
+      }
+      if (zero_reg == INVALID_REG) {
+        FreeTemp(cu, temp_reg);
+      }
+    }
+  }
+}
+
+/* Load a word at base + displacement.  Displacement must be word multiple */
+LIR* Codegen::LoadWordDisp(CompilationUnit* cu, int rBase, int displacement, int r_dest)
+{
+  return LoadBaseDisp(cu, rBase, displacement, r_dest, kWord,
+                      INVALID_SREG);
+}
+
+LIR* Codegen::StoreWordDisp(CompilationUnit* cu, int rBase, int displacement, int r_src)
+{
+  return StoreBaseDisp(cu, rBase, displacement, r_src, kWord);
+}
+
+/*
+ * Load a Dalvik register into a physical register.  Take care when
+ * using this routine, as it doesn't perform any bookkeeping regarding
+ * register liveness.  That is the responsibility of the caller.
+ */
+void Codegen::LoadValueDirect(CompilationUnit* cu, RegLocation rl_src, int r_dest)
+{
+  rl_src = UpdateLoc(cu, rl_src);
+  if (rl_src.location == kLocPhysReg) {
+    OpRegCopy(cu, r_dest, rl_src.low_reg);
+  } else if (IsInexpensiveConstant(cu, rl_src)) {
+    LoadConstantNoClobber(cu, r_dest, ConstantValue(cu, rl_src));
+  } else {
+    DCHECK((rl_src.location == kLocDalvikFrame) ||
+           (rl_src.location == kLocCompilerTemp));
+    LoadWordDisp(cu, TargetReg(kSp), SRegOffset(cu, rl_src.s_reg_low), r_dest);
+  }
+}
+
+/*
+ * Similar to LoadValueDirect, but clobbers and allocates the target
+ * register.  Should be used when loading to a fixed register (for example,
+ * loading arguments to an out of line call.
+ */
+void Codegen::LoadValueDirectFixed(CompilationUnit* cu, RegLocation rl_src, int r_dest)
+{
+  Clobber(cu, r_dest);
+  MarkInUse(cu, r_dest);
+  LoadValueDirect(cu, rl_src, r_dest);
+}
+
+/*
+ * Load a Dalvik register pair into a physical register[s].  Take care when
+ * using this routine, as it doesn't perform any bookkeeping regarding
+ * register liveness.  That is the responsibility of the caller.
+ */
+void Codegen::LoadValueDirectWide(CompilationUnit* cu, RegLocation rl_src, int reg_lo,
+             int reg_hi)
+{
+  rl_src = UpdateLocWide(cu, rl_src);
+  if (rl_src.location == kLocPhysReg) {
+    OpRegCopyWide(cu, reg_lo, reg_hi, rl_src.low_reg, rl_src.high_reg);
+  } else if (IsInexpensiveConstant(cu, rl_src)) {
+    LoadConstantWide(cu, reg_lo, reg_hi, ConstantValueWide(cu, rl_src));
+  } else {
+    DCHECK((rl_src.location == kLocDalvikFrame) ||
+           (rl_src.location == kLocCompilerTemp));
+    LoadBaseDispWide(cu, TargetReg(kSp), SRegOffset(cu, rl_src.s_reg_low),
+                     reg_lo, reg_hi, INVALID_SREG);
+  }
+}
+
+/*
+ * Similar to LoadValueDirect, but clobbers and allocates the target
+ * registers.  Should be used when loading to a fixed registers (for example,
+ * loading arguments to an out of line call.
+ */
+void Codegen::LoadValueDirectWideFixed(CompilationUnit* cu, RegLocation rl_src, int reg_lo,
+                                       int reg_hi)
+{
+  Clobber(cu, reg_lo);
+  Clobber(cu, reg_hi);
+  MarkInUse(cu, reg_lo);
+  MarkInUse(cu, reg_hi);
+  LoadValueDirectWide(cu, rl_src, reg_lo, reg_hi);
+}
+
+RegLocation Codegen::LoadValue(CompilationUnit* cu, RegLocation rl_src, RegisterClass op_kind)
+{
+  rl_src = EvalLoc(cu, rl_src, op_kind, false);
+  if (IsInexpensiveConstant(cu, rl_src) || rl_src.location != kLocPhysReg) {
+    LoadValueDirect(cu, rl_src, rl_src.low_reg);
+    rl_src.location = kLocPhysReg;
+    MarkLive(cu, rl_src.low_reg, rl_src.s_reg_low);
+  }
+  return rl_src;
+}
+
+void Codegen::StoreValue(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+#ifndef NDEBUG
+  /*
+   * Sanity checking - should never try to store to the same
+   * ssa name during the compilation of a single instruction
+   * without an intervening ClobberSReg().
+   */
+  DCHECK((cu->live_sreg == INVALID_SREG) ||
+         (rl_dest.s_reg_low != cu->live_sreg));
+  cu->live_sreg = rl_dest.s_reg_low;
+#endif
+  LIR* def_start;
+  LIR* def_end;
+  DCHECK(!rl_dest.wide);
+  DCHECK(!rl_src.wide);
+  rl_src = UpdateLoc(cu, rl_src);
+  rl_dest = UpdateLoc(cu, rl_dest);
+  if (rl_src.location == kLocPhysReg) {
+    if (IsLive(cu, rl_src.low_reg) ||
+      IsPromoted(cu, rl_src.low_reg) ||
+      (rl_dest.location == kLocPhysReg)) {
+      // Src is live/promoted or Dest has assigned reg.
+      rl_dest = EvalLoc(cu, rl_dest, kAnyReg, false);
+      OpRegCopy(cu, rl_dest.low_reg, rl_src.low_reg);
+    } else {
+      // Just re-assign the registers.  Dest gets Src's regs
+      rl_dest.low_reg = rl_src.low_reg;
+      Clobber(cu, rl_src.low_reg);
+    }
+  } else {
+    // Load Src either into promoted Dest or temps allocated for Dest
+    rl_dest = EvalLoc(cu, rl_dest, kAnyReg, false);
+    LoadValueDirect(cu, rl_src, rl_dest.low_reg);
+  }
+
+  // Dest is now live and dirty (until/if we flush it to home location)
+  MarkLive(cu, rl_dest.low_reg, rl_dest.s_reg_low);
+  MarkDirty(cu, rl_dest);
+
+
+  ResetDefLoc(cu, rl_dest);
+  if (IsDirty(cu, rl_dest.low_reg) &&
+      oat_live_out(cu, rl_dest.s_reg_low)) {
+    def_start = cu->last_lir_insn;
+    StoreBaseDisp(cu, TargetReg(kSp), SRegOffset(cu, rl_dest.s_reg_low),
+                  rl_dest.low_reg, kWord);
+    MarkClean(cu, rl_dest);
+    def_end = cu->last_lir_insn;
+    if (!rl_dest.ref) {
+      // Exclude references from store elimination
+      MarkDef(cu, rl_dest, def_start, def_end);
+    }
+  }
+}
+
+RegLocation Codegen::LoadValueWide(CompilationUnit* cu, RegLocation rl_src, RegisterClass op_kind)
+{
+  DCHECK(rl_src.wide);
+  rl_src = EvalLoc(cu, rl_src, op_kind, false);
+  if (IsInexpensiveConstant(cu, rl_src) || rl_src.location != kLocPhysReg) {
+    LoadValueDirectWide(cu, rl_src, rl_src.low_reg, rl_src.high_reg);
+    rl_src.location = kLocPhysReg;
+    MarkLive(cu, rl_src.low_reg, rl_src.s_reg_low);
+    MarkLive(cu, rl_src.high_reg, GetSRegHi(rl_src.s_reg_low));
+  }
+  return rl_src;
+}
+
+void Codegen::StoreValueWide(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+#ifndef NDEBUG
+  /*
+   * Sanity checking - should never try to store to the same
+   * ssa name during the compilation of a single instruction
+   * without an intervening ClobberSReg().
+   */
+  DCHECK((cu->live_sreg == INVALID_SREG) ||
+      (rl_dest.s_reg_low != cu->live_sreg));
+  cu->live_sreg = rl_dest.s_reg_low;
+#endif
+  LIR* def_start;
+  LIR* def_end;
+  DCHECK_EQ(IsFpReg(rl_src.low_reg), IsFpReg(rl_src.high_reg));
+  DCHECK(rl_dest.wide);
+  DCHECK(rl_src.wide);
+  if (rl_src.location == kLocPhysReg) {
+    if (IsLive(cu, rl_src.low_reg) ||
+        IsLive(cu, rl_src.high_reg) ||
+        IsPromoted(cu, rl_src.low_reg) ||
+        IsPromoted(cu, rl_src.high_reg) ||
+        (rl_dest.location == kLocPhysReg)) {
+      // Src is live or promoted or Dest has assigned reg.
+      rl_dest = EvalLoc(cu, rl_dest, kAnyReg, false);
+      OpRegCopyWide(cu, rl_dest.low_reg, rl_dest.high_reg,
+                    rl_src.low_reg, rl_src.high_reg);
+    } else {
+      // Just re-assign the registers.  Dest gets Src's regs
+      rl_dest.low_reg = rl_src.low_reg;
+      rl_dest.high_reg = rl_src.high_reg;
+      Clobber(cu, rl_src.low_reg);
+      Clobber(cu, rl_src.high_reg);
+    }
+  } else {
+    // Load Src either into promoted Dest or temps allocated for Dest
+    rl_dest = EvalLoc(cu, rl_dest, kAnyReg, false);
+    LoadValueDirectWide(cu, rl_src, rl_dest.low_reg, rl_dest.high_reg);
+  }
+
+  // Dest is now live and dirty (until/if we flush it to home location)
+  MarkLive(cu, rl_dest.low_reg, rl_dest.s_reg_low);
+  MarkLive(cu, rl_dest.high_reg, GetSRegHi(rl_dest.s_reg_low));
+  MarkDirty(cu, rl_dest);
+  MarkPair(cu, rl_dest.low_reg, rl_dest.high_reg);
+
+
+  ResetDefLocWide(cu, rl_dest);
+  if ((IsDirty(cu, rl_dest.low_reg) ||
+      IsDirty(cu, rl_dest.high_reg)) &&
+      (oat_live_out(cu, rl_dest.s_reg_low) ||
+      oat_live_out(cu, GetSRegHi(rl_dest.s_reg_low)))) {
+    def_start = cu->last_lir_insn;
+    DCHECK_EQ((SRegToVReg(cu, rl_dest.s_reg_low)+1),
+              SRegToVReg(cu, GetSRegHi(rl_dest.s_reg_low)));
+    StoreBaseDispWide(cu, TargetReg(kSp), SRegOffset(cu, rl_dest.s_reg_low),
+                      rl_dest.low_reg, rl_dest.high_reg);
+    MarkClean(cu, rl_dest);
+    def_end = cu->last_lir_insn;
+    MarkDefWide(cu, rl_dest, def_start, def_end);
+  }
+}
+
+/* Utilities to load the current Method* */
+void Codegen::LoadCurrMethodDirect(CompilationUnit *cu, int r_tgt)
+{
+  LoadValueDirectFixed(cu, cu->method_loc, r_tgt);
+}
+
+RegLocation Codegen::LoadCurrMethod(CompilationUnit *cu)
+{
+  return LoadValue(cu, cu->method_loc, kCoreReg);
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/local_optimizations.cc b/src/compiler/dex/quick/local_optimizations.cc
new file mode 100644
index 0000000..3c589373
--- /dev/null
+++ b/src/compiler/dex/quick/local_optimizations.cc
@@ -0,0 +1,504 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler/dex/compiler_internals.h"
+
+namespace art {
+
+#define DEBUG_OPT(X)
+
+/* Check RAW, WAR, and RAW dependency on the register operands */
+#define CHECK_REG_DEP(use, def, check) ((def & check->use_mask) || \
+                                        ((use | def) & check->def_mask))
+
+/* Scheduler heuristics */
+#define MAX_HOIST_DISTANCE 20
+#define LDLD_DISTANCE 4
+#define LD_LATENCY 2
+
+static bool IsDalvikRegisterClobbered(LIR* lir1, LIR* lir2)
+{
+  int reg1Lo = DECODE_ALIAS_INFO_REG(lir1->alias_info);
+  int reg1Hi = reg1Lo + DECODE_ALIAS_INFO_WIDE(lir1->alias_info);
+  int reg2Lo = DECODE_ALIAS_INFO_REG(lir2->alias_info);
+  int reg2Hi = reg2Lo + DECODE_ALIAS_INFO_WIDE(lir2->alias_info);
+
+  return (reg1Lo == reg2Lo) || (reg1Lo == reg2Hi) || (reg1Hi == reg2Lo);
+}
+
+/* Convert a more expensive instruction (ie load) into a move */
+static void ConvertMemOpIntoMove(CompilationUnit* cu, LIR* orig_lir, int dest, int src)
+{
+  Codegen* cg = cu->cg.get();
+  /* Insert a move to replace the load */
+  LIR* move_lir;
+  move_lir = cg->OpRegCopyNoInsert( cu, dest, src);
+  /*
+   * Insert the converted instruction after the original since the
+   * optimization is scannng in the top-down order and the new instruction
+   * will need to be re-checked (eg the new dest clobbers the src used in
+   * this_lir).
+   */
+  InsertLIRAfter(orig_lir, move_lir);
+}
+
+/*
+ * Perform a pass of top-down walk, from the second-last instruction in the
+ * superblock, to eliminate redundant loads and stores.
+ *
+ * An earlier load can eliminate a later load iff
+ *   1) They are must-aliases
+ *   2) The native register is not clobbered in between
+ *   3) The memory location is not written to in between
+ *
+ * An earlier store can eliminate a later load iff
+ *   1) They are must-aliases
+ *   2) The native register is not clobbered in between
+ *   3) The memory location is not written to in between
+ *
+ * A later store can be eliminated by an earlier store iff
+ *   1) They are must-aliases
+ *   2) The memory location is not written to in between
+ */
+static void ApplyLoadStoreElimination(CompilationUnit* cu, LIR* head_lir, LIR* tail_lir)
+{
+  Codegen* cg = cu->cg.get();
+  LIR* this_lir;
+
+  if (head_lir == tail_lir) return;
+
+  for (this_lir = PREV_LIR(tail_lir); this_lir != head_lir; this_lir = PREV_LIR(this_lir)) {
+
+    if (is_pseudo_opcode(this_lir->opcode)) continue;
+
+    int sink_distance = 0;
+
+    uint64_t target_flags = cg->GetTargetInstFlags(this_lir->opcode);
+
+    /* Skip non-interesting instructions */
+    if ((this_lir->flags.is_nop == true) ||
+        (target_flags & IS_BRANCH) ||
+        ((target_flags & (REG_DEF0 | REG_DEF1)) == (REG_DEF0 | REG_DEF1)) ||  // Skip wide loads.
+        ((target_flags & (REG_USE0 | REG_USE1 | REG_USE2)) ==
+         (REG_USE0 | REG_USE1 | REG_USE2)) ||  // Skip wide stores.
+        !(target_flags & (IS_LOAD | IS_STORE))) {
+      continue;
+    }
+
+    int native_reg_id;
+    if (cu->instruction_set == kX86) {
+      // If x86, location differs depending on whether memory/reg operation.
+      native_reg_id = (cg->GetTargetInstFlags(this_lir->opcode) & IS_STORE) ? this_lir->operands[2]
+          : this_lir->operands[0];
+    } else {
+      native_reg_id = this_lir->operands[0];
+    }
+    bool is_this_lir_load = cg->GetTargetInstFlags(this_lir->opcode) & IS_LOAD;
+    LIR* check_lir;
+    /* Use the mem mask to determine the rough memory location */
+    uint64_t this_mem_mask = (this_lir->use_mask | this_lir->def_mask) & ENCODE_MEM;
+
+    /*
+     * Currently only eliminate redundant ld/st for constant and Dalvik
+     * register accesses.
+     */
+    if (!(this_mem_mask & (ENCODE_LITERAL | ENCODE_DALVIK_REG))) continue;
+
+    uint64_t stop_def_reg_mask = this_lir->def_mask & ~ENCODE_MEM;
+    uint64_t stop_use_reg_mask;
+    if (cu->instruction_set == kX86) {
+      stop_use_reg_mask = (IS_BRANCH | this_lir->use_mask) & ~ENCODE_MEM;
+    } else {
+      /*
+       * Add pc to the resource mask to prevent this instruction
+       * from sinking past branch instructions. Also take out the memory
+       * region bits since stop_mask is used to check data/control
+       * dependencies.
+       */
+        stop_use_reg_mask = (cg->GetPCUseDefEncoding() | this_lir->use_mask) & ~ENCODE_MEM;
+    }
+
+    for (check_lir = NEXT_LIR(this_lir); check_lir != tail_lir; check_lir = NEXT_LIR(check_lir)) {
+
+      /*
+       * Skip already dead instructions (whose dataflow information is
+       * outdated and misleading).
+       */
+      if (check_lir->flags.is_nop || is_pseudo_opcode(check_lir->opcode)) continue;
+
+      uint64_t check_mem_mask = (check_lir->use_mask | check_lir->def_mask) & ENCODE_MEM;
+      uint64_t alias_condition = this_mem_mask & check_mem_mask;
+      bool stop_here = false;
+
+      /*
+       * Potential aliases seen - check the alias relations
+       */
+      uint64_t check_flags = cg->GetTargetInstFlags(check_lir->opcode);
+      // TUNING: Support instructions with multiple register targets.
+      if ((check_flags & (REG_DEF0 | REG_DEF1)) == (REG_DEF0 | REG_DEF1)) {
+        stop_here = true;
+      } else if (check_mem_mask != ENCODE_MEM && alias_condition != 0) {
+        bool is_check_lir_load = check_flags & IS_LOAD;
+        if  (alias_condition == ENCODE_LITERAL) {
+          /*
+           * Should only see literal loads in the instruction
+           * stream.
+           */
+          DCHECK(!(check_flags & IS_STORE));
+          /* Same value && same register type */
+          if (check_lir->alias_info == this_lir->alias_info &&
+              cg->SameRegType(check_lir->operands[0], native_reg_id)) {
+            /*
+             * Different destination register - insert
+             * a move
+             */
+            if (check_lir->operands[0] != native_reg_id) {
+              ConvertMemOpIntoMove(cu, check_lir, check_lir->operands[0],
+                                   native_reg_id);
+            }
+            check_lir->flags.is_nop = true;
+          }
+        } else if (alias_condition == ENCODE_DALVIK_REG) {
+          /* Must alias */
+          if (check_lir->alias_info == this_lir->alias_info) {
+            /* Only optimize compatible registers */
+            bool reg_compatible = cg->SameRegType(check_lir->operands[0], native_reg_id);
+            if ((is_this_lir_load && is_check_lir_load) ||
+                (!is_this_lir_load && is_check_lir_load)) {
+              /* RAR or RAW */
+              if (reg_compatible) {
+                /*
+                 * Different destination register -
+                 * insert a move
+                 */
+                if (check_lir->operands[0] !=
+                  native_reg_id) {
+                  ConvertMemOpIntoMove(cu, check_lir, check_lir->operands[0],
+                                       native_reg_id);
+                }
+                check_lir->flags.is_nop = true;
+              } else {
+                /*
+                 * Destinaions are of different types -
+                 * something complicated going on so
+                 * stop looking now.
+                 */
+                stop_here = true;
+              }
+            } else if (is_this_lir_load && !is_check_lir_load) {
+              /* WAR - register value is killed */
+              stop_here = true;
+            } else if (!is_this_lir_load && !is_check_lir_load) {
+              /* WAW - nuke the earlier store */
+              this_lir->flags.is_nop = true;
+              stop_here = true;
+            }
+          /* Partial overlap */
+          } else if (IsDalvikRegisterClobbered(this_lir, check_lir)) {
+            /*
+             * It is actually ok to continue if check_lir
+             * is a read. But it is hard to make a test
+             * case for this so we just stop here to be
+             * conservative.
+             */
+            stop_here = true;
+          }
+        }
+        /* Memory content may be updated. Stop looking now. */
+        if (stop_here) {
+          break;
+        /* The check_lir has been transformed - check the next one */
+        } else if (check_lir->flags.is_nop) {
+          continue;
+        }
+      }
+
+
+      /*
+       * this and check LIRs have no memory dependency. Now check if
+       * their register operands have any RAW, WAR, and WAW
+       * dependencies. If so, stop looking.
+       */
+      if (stop_here == false) {
+        stop_here = CHECK_REG_DEP(stop_use_reg_mask, stop_def_reg_mask, check_lir);
+      }
+
+      if (stop_here == true) {
+        if (cu->instruction_set == kX86) {
+          // Prevent stores from being sunk between ops that generate ccodes and
+          // ops that use them.
+          uint64_t flags = cg->GetTargetInstFlags(check_lir->opcode);
+          if (sink_distance > 0 && (flags & IS_BRANCH) && (flags & USES_CCODES)) {
+            check_lir = PREV_LIR(check_lir);
+            sink_distance--;
+          }
+        }
+        DEBUG_OPT(dump_dependent_insn_pair(this_lir, check_lir, "REG CLOBBERED"));
+        /* Only sink store instructions */
+        if (sink_distance && !is_this_lir_load) {
+          LIR* new_store_lir = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocLIR));
+          *new_store_lir = *this_lir;
+          /*
+           * Stop point found - insert *before* the check_lir
+           * since the instruction list is scanned in the
+           * top-down order.
+           */
+          InsertLIRBefore(check_lir, new_store_lir);
+          this_lir->flags.is_nop = true;
+        }
+        break;
+      } else if (!check_lir->flags.is_nop) {
+        sink_distance++;
+      }
+    }
+  }
+}
+
+/*
+ * Perform a pass of bottom-up walk, from the second instruction in the
+ * superblock, to try to hoist loads to earlier slots.
+ */
+void ApplyLoadHoisting(CompilationUnit* cu, LIR* head_lir, LIR* tail_lir)
+{
+  Codegen* cg = cu->cg.get();
+  LIR* this_lir, *check_lir;
+  /*
+   * Store the list of independent instructions that can be hoisted past.
+   * Will decide the best place to insert later.
+   */
+  LIR* prev_inst_list[MAX_HOIST_DISTANCE];
+
+  /* Empty block */
+  if (head_lir == tail_lir) return;
+
+  /* Start from the second instruction */
+  for (this_lir = NEXT_LIR(head_lir); this_lir != tail_lir; this_lir = NEXT_LIR(this_lir)) {
+
+    if (is_pseudo_opcode(this_lir->opcode)) continue;
+
+    uint64_t target_flags = cg->GetTargetInstFlags(this_lir->opcode);
+    /* Skip non-interesting instructions */
+    if ((this_lir->flags.is_nop == true) ||
+        ((target_flags & (REG_DEF0 | REG_DEF1)) == (REG_DEF0 | REG_DEF1)) ||
+        !(target_flags & IS_LOAD)) {
+      continue;
+    }
+
+    uint64_t stop_use_all_mask = this_lir->use_mask;
+
+    if (cu->instruction_set != kX86) {
+      /*
+       * Branches for null/range checks are marked with the true resource
+       * bits, and loads to Dalvik registers, constant pools, and non-alias
+       * locations are safe to be hoisted. So only mark the heap references
+       * conservatively here.
+       */
+      if (stop_use_all_mask & ENCODE_HEAP_REF) {
+        stop_use_all_mask |= cg->GetPCUseDefEncoding();
+      }
+    }
+
+    /* Similar as above, but just check for pure register dependency */
+    uint64_t stop_use_reg_mask = stop_use_all_mask & ~ENCODE_MEM;
+    uint64_t stop_def_reg_mask = this_lir->def_mask & ~ENCODE_MEM;
+
+    int next_slot = 0;
+    bool stop_here = false;
+
+    /* Try to hoist the load to a good spot */
+    for (check_lir = PREV_LIR(this_lir); check_lir != head_lir; check_lir = PREV_LIR(check_lir)) {
+
+      /*
+       * Skip already dead instructions (whose dataflow information is
+       * outdated and misleading).
+       */
+      if (check_lir->flags.is_nop) continue;
+
+      uint64_t check_mem_mask = check_lir->def_mask & ENCODE_MEM;
+      uint64_t alias_condition = stop_use_all_mask & check_mem_mask;
+      stop_here = false;
+
+      /* Potential WAR alias seen - check the exact relation */
+      if (check_mem_mask != ENCODE_MEM && alias_condition != 0) {
+        /* We can fully disambiguate Dalvik references */
+        if (alias_condition == ENCODE_DALVIK_REG) {
+          /* Must alias or partually overlap */
+          if ((check_lir->alias_info == this_lir->alias_info) ||
+            IsDalvikRegisterClobbered(this_lir, check_lir)) {
+            stop_here = true;
+          }
+        /* Conservatively treat all heap refs as may-alias */
+        } else {
+          DCHECK_EQ(alias_condition, ENCODE_HEAP_REF);
+          stop_here = true;
+        }
+        /* Memory content may be updated. Stop looking now. */
+        if (stop_here) {
+          prev_inst_list[next_slot++] = check_lir;
+          break;
+        }
+      }
+
+      if (stop_here == false) {
+        stop_here = CHECK_REG_DEP(stop_use_reg_mask, stop_def_reg_mask,
+                     check_lir);
+      }
+
+      /*
+       * Store the dependent or non-pseudo/indepedent instruction to the
+       * list.
+       */
+      if (stop_here || !is_pseudo_opcode(check_lir->opcode)) {
+        prev_inst_list[next_slot++] = check_lir;
+        if (next_slot == MAX_HOIST_DISTANCE) break;
+      }
+
+      /* Found a new place to put the load - move it here */
+      if (stop_here == true) {
+        DEBUG_OPT(dump_dependent_insn_pair(check_lir, this_lir "HOIST STOP"));
+        break;
+      }
+    }
+
+    /*
+     * Reached the top - use head_lir as the dependent marker as all labels
+     * are barriers.
+     */
+    if (stop_here == false && next_slot < MAX_HOIST_DISTANCE) {
+      prev_inst_list[next_slot++] = head_lir;
+    }
+
+    /*
+     * At least one independent instruction is found. Scan in the reversed
+     * direction to find a beneficial slot.
+     */
+    if (next_slot >= 2) {
+      int first_slot = next_slot - 2;
+      int slot;
+      LIR* dep_lir = prev_inst_list[next_slot-1];
+      /* If there is ld-ld dependency, wait LDLD_DISTANCE cycles */
+      if (!is_pseudo_opcode(dep_lir->opcode) &&
+        (cg->GetTargetInstFlags(dep_lir->opcode) & IS_LOAD)) {
+        first_slot -= LDLD_DISTANCE;
+      }
+      /*
+       * Make sure we check slot >= 0 since first_slot may be negative
+       * when the loop is first entered.
+       */
+      for (slot = first_slot; slot >= 0; slot--) {
+        LIR* cur_lir = prev_inst_list[slot];
+        LIR* prev_lir = prev_inst_list[slot+1];
+
+        /* Check the highest instruction */
+        if (prev_lir->def_mask == ENCODE_ALL) {
+          /*
+           * If the first instruction is a load, don't hoist anything
+           * above it since it is unlikely to be beneficial.
+           */
+          if (cg->GetTargetInstFlags(cur_lir->opcode) & IS_LOAD) continue;
+          /*
+           * If the remaining number of slots is less than LD_LATENCY,
+           * insert the hoisted load here.
+           */
+          if (slot < LD_LATENCY) break;
+        }
+
+        // Don't look across a barrier label
+        if ((prev_lir->opcode == kPseudoTargetLabel) ||
+            (prev_lir->opcode == kPseudoSafepointPC) ||
+            (prev_lir->opcode == kPseudoBarrier)) {
+          break;
+        }
+
+        /*
+         * Try to find two instructions with load/use dependency until
+         * the remaining instructions are less than LD_LATENCY.
+         */
+        bool prev_is_load = is_pseudo_opcode(prev_lir->opcode) ? false :
+            (cg->GetTargetInstFlags(prev_lir->opcode) & IS_LOAD);
+        if (((cur_lir->use_mask & prev_lir->def_mask) && prev_is_load) || (slot < LD_LATENCY)) {
+          break;
+        }
+      }
+
+      /* Found a slot to hoist to */
+      if (slot >= 0) {
+        LIR* cur_lir = prev_inst_list[slot];
+        LIR* new_load_lir = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocLIR));
+        *new_load_lir = *this_lir;
+        /*
+         * Insertion is guaranteed to succeed since check_lir
+         * is never the first LIR on the list
+         */
+        InsertLIRBefore(cur_lir, new_load_lir);
+        this_lir->flags.is_nop = true;
+      }
+    }
+  }
+}
+
+void ApplyLocalOptimizations(CompilationUnit* cu, LIR* head_lir,
+                    LIR* tail_lir)
+{
+  if (!(cu->disable_opt & (1 << kLoadStoreElimination))) {
+    ApplyLoadStoreElimination(cu, head_lir, tail_lir);
+  }
+  if (!(cu->disable_opt & (1 << kLoadHoisting))) {
+    ApplyLoadHoisting(cu, head_lir, tail_lir);
+  }
+}
+
+/*
+ * Nop any unconditional branches that go to the next instruction.
+ * Note: new redundant branches may be inserted later, and we'll
+ * use a check in final instruction assembly to nop those out.
+ */
+void RemoveRedundantBranches(CompilationUnit* cu)
+{
+  LIR* this_lir;
+  Codegen* cg = cu->cg.get();
+
+  for (this_lir = cu->first_lir_insn; this_lir != cu->last_lir_insn; this_lir = NEXT_LIR(this_lir)) {
+
+    /* Branch to the next instruction */
+    if (cg->IsUnconditionalBranch(this_lir)) {
+      LIR* next_lir = this_lir;
+
+      while (true) {
+        next_lir = NEXT_LIR(next_lir);
+
+        /*
+         * Is the branch target the next instruction?
+         */
+        if (next_lir == this_lir->target) {
+          this_lir->flags.is_nop = true;
+          break;
+        }
+
+        /*
+         * Found real useful stuff between the branch and the target.
+         * Need to explicitly check the last_lir_insn here because it
+         * might be the last real instruction.
+         */
+        if (!is_pseudo_opcode(next_lir->opcode) ||
+          (next_lir == cu->last_lir_insn))
+          break;
+      }
+    }
+  }
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/local_optimizations.h b/src/compiler/dex/quick/local_optimizations.h
new file mode 100644
index 0000000..3a376fe
--- /dev/null
+++ b/src/compiler/dex/quick/local_optimizations.h
@@ -0,0 +1,27 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_LOCALOPTIMIZATIONS_H_
+#define ART_SRC_COMPILER_DEX_QUICK_LOCALOPTIMIZATIONS_H_
+
+namespace art {
+
+void ApplyLocalOptimizations(CompilationUnit* cu, LIR* head_lir, LIR* tail_lir);
+void RemoveRedundantBranches(CompilationUnit* cu);
+
+}  // namespace art
+
+#endif // ART_SRC_COMPILER_DEX_QUICK_LOCALOPTIMIZATIONS_H_
diff --git a/src/compiler/dex/quick/mips/README.mips b/src/compiler/dex/quick/mips/README.mips
new file mode 100644
index 0000000..061c157
--- /dev/null
+++ b/src/compiler/dex/quick/mips/README.mips
@@ -0,0 +1,57 @@
+               Notes on the Mips target (3/4/2012)
+               -----------------------------------
+
+Testing
+
+The initial implementation of Mips support in the compiler is untested on
+actual hardware, and as such should be expected to have many bugs.  However,
+the vast majority of code for Mips support is either shared with other
+tested targets, or was taken from the functional Mips JIT compiler.  The
+expectation is that when it is first tried out on actual hardware lots of
+small bugs will be flushed out, but it should not take long to get it
+solidly running.  The following areas are considered most likely to have
+problems that need to be addressed:
+
+    o Endianness.  Focus was on little-endian support, and if a big-endian
+      target is desired, you should pay particular attention to the
+      code generation for switch tables, fill array data, 64-bit
+      data handling and the register usage conventions.
+
+    o The memory model.  Verify that oatGenMemoryBarrier() generates the
+      appropriate flavor of sync.
+
+Register promotion
+
+The resource masks in the LIR structure are 64-bits wide, which is enough
+room to fully describe def/use info for Arm and x86 instructions.  However,
+the larger number of MIPS core and float registers render this too small.
+Currently, the workaround for this limitation is to avoid using floating
+point registers 16-31.  These are the callee-save registers, which therefore
+means that no floating point promotion is allowed.  Among the solution are:
+     o Expand the def/use mask (which, unfortunately, is a significant change)
+     o The Arm target uses 52 of the 64 bits, so we could support float
+       registers 16-27 without much effort.
+     o We could likely assign the 4 non-register bits (kDalvikReg, kLiteral,
+       kHeapRef & kMustNotAlias) to positions occuped by MIPS registers that
+       don't need def/use bits because they are never modified by code
+       subject to scheduling: r_K0, r_K1, r_SP, r_ZERO, r_S1 (rSELF).
+
+Branch delay slots
+
+Little to no attempt was made to fill branch delay slots.  Branch
+instructions in the encoding map are given a length of 8 bytes to include
+an implicit NOP.  It should not be too difficult to provide a slot-filling
+pass following successful assembly, but thought should be given to the
+design.  Branches are currently treated as scheduling barriers.  One
+simple solution would be to copy the instruction at branch targets to the
+slot and adjust the displacement.  However, given that code expansion is
+already a problem it would be preferable to use a more sophisticated
+scheduling solution.
+
+Code expansion
+
+Code expansion for the MIPS target is significantly higher than we see
+for Arm and x86.  It might make sense to replace the inline code generation
+for some of the more verbose Dalik byte codes with subroutine calls to
+shared helper functions.
+
diff --git a/src/compiler/dex/quick/mips/assemble_mips.cc b/src/compiler/dex/quick/mips/assemble_mips.cc
new file mode 100644
index 0000000..c5cd401
--- /dev/null
+++ b/src/compiler/dex/quick/mips/assemble_mips.cc
@@ -0,0 +1,716 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_mips.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "mips_lir.h"
+
+namespace art {
+
+#define MAX_ASSEMBLER_RETRIES 50
+
+/*
+ * opcode: MipsOpCode enum
+ * skeleton: pre-designated bit-pattern for this opcode
+ * k0: key to applying ds/de
+ * ds: dest start bit position
+ * de: dest end bit position
+ * k1: key to applying s1s/s1e
+ * s1s: src1 start bit position
+ * s1e: src1 end bit position
+ * k2: key to applying s2s/s2e
+ * s2s: src2 start bit position
+ * s2e: src2 end bit position
+ * operands: number of operands (for sanity check purposes)
+ * name: mnemonic name
+ * fmt: for pretty-printing
+ */
+#define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \
+                     k3, k3s, k3e, flags, name, fmt, size) \
+        {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \
+                    {k3, k3s, k3e}}, opcode, flags, name, fmt, size}
+
+/* Instruction dump string format keys: !pf, where "!" is the start
+ * of the key, "p" is which numeric operand to use and "f" is the
+ * print format.
+ *
+ * [p]ositions:
+ *     0 -> operands[0] (dest)
+ *     1 -> operands[1] (src1)
+ *     2 -> operands[2] (src2)
+ *     3 -> operands[3] (extra)
+ *
+ * [f]ormats:
+ *     h -> 4-digit hex
+ *     d -> decimal
+ *     E -> decimal*4
+ *     F -> decimal*2
+ *     c -> branch condition (beq, bne, etc.)
+ *     t -> pc-relative target
+ *     T -> pc-region target
+ *     u -> 1st half of bl[x] target
+ *     v -> 2nd half ob bl[x] target
+ *     R -> register list
+ *     s -> single precision floating point register
+ *     S -> double precision floating point register
+ *     m -> Thumb2 modified immediate
+ *     n -> complimented Thumb2 modified immediate
+ *     M -> Thumb2 16-bit zero-extended immediate
+ *     b -> 4-digit binary
+ *     N -> append a NOP
+ *
+ *  [!] escape.  To insert "!", use "!!"
+ */
+/* NOTE: must be kept in sync with enum MipsOpcode from LIR.h */
+/*
+ * TUNING: We're currently punting on the branch delay slots.  All branch
+ * instructions in this map are given a size of 8, which during assembly
+ * is expanded to include a nop.  This scheme should be replaced with
+ * an assembler pass to fill those slots when possible.
+ */
+const MipsEncodingMap MipsCodegen::EncodingMap[kMipsLast] = {
+    ENCODING_MAP(kMips32BitData, 0x00000000,
+                 kFmtBitBlt, 31, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP,
+                 "data", "0x!0h(!0d)", 4),
+    ENCODING_MAP(kMipsAddiu, 0x24000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "addiu", "!0r,!1r,0x!2h(!2d)", 4),
+    ENCODING_MAP(kMipsAddu, 0x00000021,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "addu", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsAnd, 0x00000024,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "and", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsAndi, 0x30000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "andi", "!0r,!1r,0x!2h(!2d)", 4),
+    ENCODING_MAP(kMipsB, 0x10000000,
+                 kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP,
+                 "b", "!0t!0N", 8),
+    ENCODING_MAP(kMipsBal, 0x04110000,
+                 kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR |
+                 NEEDS_FIXUP, "bal", "!0t!0N", 8),
+    ENCODING_MAP(kMipsBeq, 0x10000000,
+                 kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01 |
+                 NEEDS_FIXUP, "beq", "!0r,!1r,!2t!0N", 8),
+    ENCODING_MAP(kMipsBeqz, 0x10000000, /* same as beq above with t = $zero */
+                 kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0 |
+                 NEEDS_FIXUP, "beqz", "!0r,!1t!0N", 8),
+    ENCODING_MAP(kMipsBgez, 0x04010000,
+                 kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0 |
+                 NEEDS_FIXUP, "bgez", "!0r,!1t!0N", 8),
+    ENCODING_MAP(kMipsBgtz, 0x1C000000,
+                 kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0 |
+                 NEEDS_FIXUP, "bgtz", "!0r,!1t!0N", 8),
+    ENCODING_MAP(kMipsBlez, 0x18000000,
+                 kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0 |
+                 NEEDS_FIXUP, "blez", "!0r,!1t!0N", 8),
+    ENCODING_MAP(kMipsBltz, 0x04000000,
+                 kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0 |
+                 NEEDS_FIXUP, "bltz", "!0r,!1t!0N", 8),
+    ENCODING_MAP(kMipsBnez, 0x14000000, /* same as bne below with t = $zero */
+                 kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0 |
+                 NEEDS_FIXUP, "bnez", "!0r,!1t!0N", 8),
+    ENCODING_MAP(kMipsBne, 0x14000000,
+                 kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01 |
+                 NEEDS_FIXUP, "bne", "!0r,!1r,!2t!0N", 8),
+    ENCODING_MAP(kMipsDiv, 0x0000001a,
+                 kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtBitBlt, 25, 21,
+                 kFmtBitBlt, 20, 16, IS_QUAD_OP | REG_DEF01 | REG_USE23,
+                 "div", "!2r,!3r", 4),
+#if __mips_isa_rev>=2
+    ENCODING_MAP(kMipsExt, 0x7c000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 10, 6,
+                 kFmtBitBlt, 15, 11, IS_QUAD_OP | REG_DEF0 | REG_USE1,
+                 "ext", "!0r,!1r,!2d,!3D", 4),
+#endif
+    ENCODING_MAP(kMipsJal, 0x0c000000,
+                 kFmtBitBlt, 25, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
+                 "jal", "!0T(!0E)!0N", 8),
+    ENCODING_MAP(kMipsJalr, 0x00000009,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF0_USE1,
+                 "jalr", "!0r,!1r!0N", 8),
+    ENCODING_MAP(kMipsJr, 0x00000008,
+                 kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0 |
+                 NEEDS_FIXUP, "jr", "!0r!0N", 8),
+    ENCODING_MAP(kMipsLahi, 0x3C000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
+                 "lahi/lui", "!0r,0x!1h(!1d)", 4),
+    ENCODING_MAP(kMipsLalo, 0x34000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "lalo/ori", "!0r,!1r,0x!2h(!2d)", 4),
+    ENCODING_MAP(kMipsLui, 0x3C000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
+                 "lui", "!0r,0x!1h(!1d)", 4),
+    ENCODING_MAP(kMipsLb, 0x80000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
+                 "lb", "!0r,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsLbu, 0x90000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
+                 "lbu", "!0r,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsLh, 0x84000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
+                 "lh", "!0r,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsLhu, 0x94000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
+                 "lhu", "!0r,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsLw, 0x8C000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
+                 "lw", "!0r,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsMfhi, 0x00000010,
+                 kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "mfhi", "!0r", 4),
+    ENCODING_MAP(kMipsMflo, 0x00000012,
+                 kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "mflo", "!0r", 4),
+    ENCODING_MAP(kMipsMove, 0x00000025, /* or using zero reg */
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "move", "!0r,!1r", 4),
+    ENCODING_MAP(kMipsMovz, 0x0000000a,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "movz", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsMul, 0x70000002,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "mul", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsNop, 0x00000000,
+                 kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, NO_OPERAND,
+                 "nop", ";", 4),
+    ENCODING_MAP(kMipsNor, 0x00000027, /* used for "not" too */
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "nor", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsOr, 0x00000025,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "or", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsOri, 0x34000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "ori", "!0r,!1r,0x!2h(!2d)", 4),
+    ENCODING_MAP(kMipsPref, 0xCC000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE2,
+                 "pref", "!0d,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsSb, 0xA0000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
+                 "sb", "!0r,!1d(!2r)", 4),
+#if __mips_isa_rev>=2
+    ENCODING_MAP(kMipsSeb, 0x7c000420,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "seb", "!0r,!1r", 4),
+    ENCODING_MAP(kMipsSeh, 0x7c000620,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "seh", "!0r,!1r", 4),
+#endif
+    ENCODING_MAP(kMipsSh, 0xA4000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
+                 "sh", "!0r,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsSll, 0x00000000,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "sll", "!0r,!1r,0x!2h(!2d)", 4),
+    ENCODING_MAP(kMipsSllv, 0x00000004,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "sllv", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsSlt, 0x0000002a,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "slt", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsSlti, 0x28000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "slti", "!0r,!1r,0x!2h(!2d)", 4),
+    ENCODING_MAP(kMipsSltu, 0x0000002b,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "sltu", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsSra, 0x00000003,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "sra", "!0r,!1r,0x!2h(!2d)", 4),
+    ENCODING_MAP(kMipsSrav, 0x00000007,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "srav", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsSrl, 0x00000002,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "srl", "!0r,!1r,0x!2h(!2d)", 4),
+    ENCODING_MAP(kMipsSrlv, 0x00000006,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "srlv", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsSubu, 0x00000023, /* used for "neg" too */
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "subu", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsSw, 0xAC000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
+                 "sw", "!0r,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsXor, 0x00000026,
+                 kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "xor", "!0r,!1r,!2r", 4),
+    ENCODING_MAP(kMipsXori, 0x38000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
+                 "xori", "!0r,!1r,0x!2h(!2d)", 4),
+    ENCODING_MAP(kMipsFadds, 0x46000000,
+                 kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "add.s", "!0s,!1s,!2s", 4),
+    ENCODING_MAP(kMipsFsubs, 0x46000001,
+                 kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "sub.s", "!0s,!1s,!2s", 4),
+    ENCODING_MAP(kMipsFmuls, 0x46000002,
+                 kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "mul.s", "!0s,!1s,!2s", 4),
+    ENCODING_MAP(kMipsFdivs, 0x46000003,
+                 kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "div.s", "!0s,!1s,!2s", 4),
+    ENCODING_MAP(kMipsFaddd, 0x46200000,
+                 kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "add.d", "!0S,!1S,!2S", 4),
+    ENCODING_MAP(kMipsFsubd, 0x46200001,
+                 kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "sub.d", "!0S,!1S,!2S", 4),
+    ENCODING_MAP(kMipsFmuld, 0x46200002,
+                 kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "mul.d", "!0S,!1S,!2S", 4),
+    ENCODING_MAP(kMipsFdivd, 0x46200003,
+                 kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
+                 "div.d", "!0S,!1S,!2S", 4),
+    ENCODING_MAP(kMipsFcvtsd, 0x46200020,
+                 kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "cvt.s.d", "!0s,!1S", 4),
+    ENCODING_MAP(kMipsFcvtsw, 0x46800020,
+                 kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "cvt.s.w", "!0s,!1s", 4),
+    ENCODING_MAP(kMipsFcvtds, 0x46000021,
+                 kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "cvt.d.s", "!0S,!1s", 4),
+    ENCODING_MAP(kMipsFcvtdw, 0x46800021,
+                 kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "cvt.d.w", "!0S,!1s", 4),
+    ENCODING_MAP(kMipsFcvtws, 0x46000024,
+                 kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "cvt.w.s", "!0s,!1s", 4),
+    ENCODING_MAP(kMipsFcvtwd, 0x46200024,
+                 kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "cvt.w.d", "!0s,!1S", 4),
+    ENCODING_MAP(kMipsFmovs, 0x46000006,
+                 kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "mov.s", "!0s,!1s", 4),
+    ENCODING_MAP(kMipsFmovd, 0x46200006,
+                 kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "mov.d", "!0S,!1S", 4),
+    ENCODING_MAP(kMipsFlwc1, 0xC4000000,
+                 kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
+                 "lwc1", "!0s,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsFldc1, 0xD4000000,
+                 kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
+                 "ldc1", "!0S,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsFswc1, 0xE4000000,
+                 kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
+                 "swc1", "!0s,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsFsdc1, 0xF4000000,
+                 kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
+                 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
+                 "sdc1", "!0S,!1d(!2r)", 4),
+    ENCODING_MAP(kMipsMfc1, 0x44000000,
+                 kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
+                 "mfc1", "!0r,!1s", 4),
+    ENCODING_MAP(kMipsMtc1, 0x44800000,
+                 kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | REG_DEF1,
+                 "mtc1", "!0r,!1s", 4),
+    ENCODING_MAP(kMipsDelta, 0x27e00000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, 15, 0,
+                 kFmtUnused, -1, -1, IS_QUAD_OP | REG_DEF0 | REG_USE_LR |
+                 NEEDS_FIXUP, "addiu", "!0r,ra,0x!1h(!1d)", 4),
+    ENCODING_MAP(kMipsDeltaHi, 0x3C000000,
+                 kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_QUAD_OP | REG_DEF0 | NEEDS_FIXUP,
+                 "lui", "!0r,0x!1h(!1d)", 4),
+    ENCODING_MAP(kMipsDeltaLo, 0x34000000,
+                 kFmtBlt5_2, 16, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_QUAD_OP | REG_DEF0_USE0 | NEEDS_FIXUP,
+                 "ori", "!0r,!0r,0x!1h(!1d)", 4),
+    ENCODING_MAP(kMipsCurrPC, 0x04110001,
+                 kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH | REG_DEF_LR,
+                 "addiu", "ra,pc,8", 4),
+    ENCODING_MAP(kMipsSync, 0x0000000f,
+                 kFmtBitBlt, 10, 6, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, IS_UNARY_OP,
+                 "sync", ";", 4),
+    ENCODING_MAP(kMipsUndefined, 0x64000000,
+                 kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
+                 kFmtUnused, -1, -1, NO_OPERAND,
+                 "undefined", "", 4),
+};
+
+
+/*
+ * Convert a short-form branch to long form.  Hopefully, this won't happen
+ * very often because the PIC sequence is especially unfortunate.
+ *
+ * Orig conditional branch
+ * -----------------------
+ *      beq  rs,rt,target
+ *
+ * Long conditional branch
+ * -----------------------
+ *      bne  rs,rt,hop
+ *      bal  .+8   ; r_RA <- anchor
+ *      lui  r_AT, ((target-anchor) >> 16)
+ * anchor:
+ *      ori  r_AT, r_AT, ((target-anchor) & 0xffff)
+ *      addu r_AT, r_AT, r_RA
+ *      jr   r_AT
+ * hop:
+ *
+ * Orig unconditional branch
+ * -------------------------
+ *      b target
+ *
+ * Long unconditional branch
+ * -----------------------
+ *      bal  .+8   ; r_RA <- anchor
+ *      lui  r_AT, ((target-anchor) >> 16)
+ * anchor:
+ *      ori  r_AT, r_AT, ((target-anchor) & 0xffff)
+ *      addu r_AT, r_AT, r_RA
+ *      jr   r_AT
+ *
+ *
+ * NOTE: An out-of-range bal isn't supported because it should
+ * never happen with the current PIC model.
+ */
+static void ConvertShortToLongBranch(CompilationUnit* cu, LIR* lir)
+{
+  // For conditional branches we'll need to reverse the sense
+  bool unconditional = false;
+  int opcode = lir->opcode;
+  int dalvik_offset = lir->dalvik_offset;
+  switch (opcode) {
+    case kMipsBal:
+      LOG(FATAL) << "long branch and link unsupported";
+    case kMipsB:
+      unconditional = true;
+      break;
+    case kMipsBeq:  opcode = kMipsBne; break;
+    case kMipsBne:  opcode = kMipsBeq; break;
+    case kMipsBeqz: opcode = kMipsBnez; break;
+    case kMipsBgez: opcode = kMipsBltz; break;
+    case kMipsBgtz: opcode = kMipsBlez; break;
+    case kMipsBlez: opcode = kMipsBgtz; break;
+    case kMipsBltz: opcode = kMipsBgez; break;
+    case kMipsBnez: opcode = kMipsBeqz; break;
+    default:
+      LOG(FATAL) << "Unexpected branch kind " << opcode;
+  }
+  LIR* hop_target = NULL;
+  if (!unconditional) {
+    hop_target = RawLIR(cu, dalvik_offset, kPseudoTargetLabel);
+    LIR* hop_branch = RawLIR(cu, dalvik_offset, opcode, lir->operands[0],
+                            lir->operands[1], 0, 0, 0, hop_target);
+    InsertLIRBefore(lir, hop_branch);
+  }
+  LIR* curr_pc = RawLIR(cu, dalvik_offset, kMipsCurrPC);
+  InsertLIRBefore(lir, curr_pc);
+  LIR* anchor = RawLIR(cu, dalvik_offset, kPseudoTargetLabel);
+  LIR* delta_hi = RawLIR(cu, dalvik_offset, kMipsDeltaHi, r_AT, 0,
+                        reinterpret_cast<uintptr_t>(anchor), 0, 0, lir->target);
+  InsertLIRBefore(lir, delta_hi);
+  InsertLIRBefore(lir, anchor);
+  LIR* delta_lo = RawLIR(cu, dalvik_offset, kMipsDeltaLo, r_AT, 0,
+                        reinterpret_cast<uintptr_t>(anchor), 0, 0, lir->target);
+  InsertLIRBefore(lir, delta_lo);
+  LIR* addu = RawLIR(cu, dalvik_offset, kMipsAddu, r_AT, r_AT, r_RA);
+  InsertLIRBefore(lir, addu);
+  LIR* jr = RawLIR(cu, dalvik_offset, kMipsJr, r_AT);
+  InsertLIRBefore(lir, jr);
+  if (!unconditional) {
+    InsertLIRBefore(lir, hop_target);
+  }
+  lir->flags.is_nop = true;
+}
+
+/*
+ * Assemble the LIR into binary instruction format.  Note that we may
+ * discover that pc-relative displacements may not fit the selected
+ * instruction.  In those cases we will try to substitute a new code
+ * sequence or request that the trace be shortened and retried.
+ */
+AssemblerStatus MipsCodegen::AssembleInstructions(CompilationUnit *cu, uintptr_t start_addr)
+{
+  LIR *lir;
+  AssemblerStatus res = kSuccess;  // Assume success
+
+  for (lir = cu->first_lir_insn; lir != NULL; lir = NEXT_LIR(lir)) {
+    if (lir->opcode < 0) {
+      continue;
+    }
+
+
+    if (lir->flags.is_nop) {
+      continue;
+    }
+
+    if (lir->flags.pcRelFixup) {
+      if (lir->opcode == kMipsDelta) {
+        /*
+         * The "Delta" pseudo-ops load the difference between
+         * two pc-relative locations into a the target register
+         * found in operands[0].  The delta is determined by
+         * (label2 - label1), where label1 is a standard
+         * kPseudoTargetLabel and is stored in operands[2].
+         * If operands[3] is null, then label2 is a kPseudoTargetLabel
+         * and is found in lir->target.  If operands[3] is non-NULL,
+         * then it is a Switch/Data table.
+         */
+        int offset1 = (reinterpret_cast<LIR*>(lir->operands[2]))->offset;
+        SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(lir->operands[3]);
+        int offset2 = tab_rec ? tab_rec->offset : lir->target->offset;
+        int delta = offset2 - offset1;
+        if ((delta & 0xffff) == delta && ((delta & 0x8000) == 0)) {
+          // Fits
+          lir->operands[1] = delta;
+        } else {
+          // Doesn't fit - must expand to kMipsDelta[Hi|Lo] pair
+          LIR *new_delta_hi =
+              RawLIR(cu, lir->dalvik_offset, kMipsDeltaHi,
+                     lir->operands[0], 0, lir->operands[2],
+                     lir->operands[3], 0, lir->target);
+          InsertLIRBefore(lir, new_delta_hi);
+          LIR *new_delta_lo =
+              RawLIR(cu, lir->dalvik_offset, kMipsDeltaLo,
+                     lir->operands[0], 0, lir->operands[2],
+                     lir->operands[3], 0, lir->target);
+          InsertLIRBefore(lir, new_delta_lo);
+          LIR *new_addu =
+              RawLIR(cu, lir->dalvik_offset, kMipsAddu,
+                     lir->operands[0], lir->operands[0], r_RA);
+          InsertLIRBefore(lir, new_addu);
+          lir->flags.is_nop = true;
+          res = kRetryAll;
+        }
+      } else if (lir->opcode == kMipsDeltaLo) {
+        int offset1 = (reinterpret_cast<LIR*>(lir->operands[2]))->offset;
+        SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(lir->operands[3]);
+        int offset2 = tab_rec ? tab_rec->offset : lir->target->offset;
+        int delta = offset2 - offset1;
+        lir->operands[1] = delta & 0xffff;
+      } else if (lir->opcode == kMipsDeltaHi) {
+        int offset1 = (reinterpret_cast<LIR*>(lir->operands[2]))->offset;
+        SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(lir->operands[3]);
+        int offset2 = tab_rec ? tab_rec->offset : lir->target->offset;
+        int delta = offset2 - offset1;
+        lir->operands[1] = (delta >> 16) & 0xffff;
+      } else if (lir->opcode == kMipsB || lir->opcode == kMipsBal) {
+        LIR *target_lir = lir->target;
+        uintptr_t pc = lir->offset + 4;
+        uintptr_t target = target_lir->offset;
+        int delta = target - pc;
+        if (delta & 0x3) {
+          LOG(FATAL) << "PC-rel offset not multiple of 4: " << delta;
+        }
+        if (delta > 131068 || delta < -131069) {
+          res = kRetryAll;
+          ConvertShortToLongBranch(cu, lir);
+        } else {
+          lir->operands[0] = delta >> 2;
+        }
+      } else if (lir->opcode >= kMipsBeqz && lir->opcode <= kMipsBnez) {
+        LIR *target_lir = lir->target;
+        uintptr_t pc = lir->offset + 4;
+        uintptr_t target = target_lir->offset;
+        int delta = target - pc;
+        if (delta & 0x3) {
+          LOG(FATAL) << "PC-rel offset not multiple of 4: " << delta;
+        }
+        if (delta > 131068 || delta < -131069) {
+          res = kRetryAll;
+          ConvertShortToLongBranch(cu, lir);
+        } else {
+          lir->operands[1] = delta >> 2;
+        }
+      } else if (lir->opcode == kMipsBeq || lir->opcode == kMipsBne) {
+        LIR *target_lir = lir->target;
+        uintptr_t pc = lir->offset + 4;
+        uintptr_t target = target_lir->offset;
+        int delta = target - pc;
+        if (delta & 0x3) {
+          LOG(FATAL) << "PC-rel offset not multiple of 4: " << delta;
+        }
+        if (delta > 131068 || delta < -131069) {
+          res = kRetryAll;
+          ConvertShortToLongBranch(cu, lir);
+        } else {
+          lir->operands[2] = delta >> 2;
+        }
+      } else if (lir->opcode == kMipsJal) {
+        uintptr_t cur_pc = (start_addr + lir->offset + 4) & ~3;
+        uintptr_t target = lir->operands[0];
+        /* ensure PC-region branch can be used */
+        DCHECK_EQ((cur_pc & 0xF0000000), (target & 0xF0000000));
+        if (target & 0x3) {
+          LOG(FATAL) << "Jump target not multiple of 4: " << target;
+        }
+        lir->operands[0] =  target >> 2;
+      } else if (lir->opcode == kMipsLahi) { /* ld address hi (via lui) */
+        LIR *target_lir = lir->target;
+        uintptr_t target = start_addr + target_lir->offset;
+        lir->operands[1] = target >> 16;
+      } else if (lir->opcode == kMipsLalo) { /* ld address lo (via ori) */
+        LIR *target_lir = lir->target;
+        uintptr_t target = start_addr + target_lir->offset;
+        lir->operands[2] = lir->operands[2] + target;
+      }
+    }
+
+    /*
+     * If one of the pc-relative instructions expanded we'll have
+     * to make another pass.  Don't bother to fully assemble the
+     * instruction.
+     */
+    if (res != kSuccess) {
+      continue;
+    }
+    const MipsEncodingMap *encoder = &EncodingMap[lir->opcode];
+    uint32_t bits = encoder->skeleton;
+    int i;
+    for (i = 0; i < 4; i++) {
+      uint32_t operand;
+      uint32_t value;
+      operand = lir->operands[i];
+      switch (encoder->field_loc[i].kind) {
+        case kFmtUnused:
+          break;
+        case kFmtBitBlt:
+          if (encoder->field_loc[i].start == 0 && encoder->field_loc[i].end == 31) {
+            value = operand;
+          } else {
+            value = (operand << encoder->field_loc[i].start) &
+                ((1 << (encoder->field_loc[i].end + 1)) - 1);
+          }
+          bits |= value;
+          break;
+        case kFmtBlt5_2:
+          value = (operand & 0x1f);
+          bits |= (value << encoder->field_loc[i].start);
+          bits |= (value << encoder->field_loc[i].end);
+          break;
+        case kFmtDfp: {
+          DCHECK(MIPS_DOUBLEREG(operand));
+          DCHECK_EQ((operand & 0x1), 0U);
+          value = ((operand & MIPS_FP_REG_MASK) << encoder->field_loc[i].start) &
+              ((1 << (encoder->field_loc[i].end + 1)) - 1);
+          bits |= value;
+          break;
+        }
+        case kFmtSfp:
+          DCHECK(MIPS_SINGLEREG(operand));
+          value = ((operand & MIPS_FP_REG_MASK) << encoder->field_loc[i].start) &
+              ((1 << (encoder->field_loc[i].end + 1)) - 1);
+          bits |= value;
+          break;
+        default:
+          LOG(FATAL) << "Bad encoder format: " << encoder->field_loc[i].kind;
+      }
+    }
+    // We only support little-endian MIPS.
+    cu->code_buffer.push_back(bits & 0xff);
+    cu->code_buffer.push_back((bits >> 8) & 0xff);
+    cu->code_buffer.push_back((bits >> 16) & 0xff);
+    cu->code_buffer.push_back((bits >> 24) & 0xff);
+    // TUNING: replace with proper delay slot handling
+    if (encoder->size == 8) {
+      const MipsEncodingMap *encoder = &EncodingMap[kMipsNop];
+      uint32_t bits = encoder->skeleton;
+      cu->code_buffer.push_back(bits & 0xff);
+      cu->code_buffer.push_back((bits >> 8) & 0xff);
+      cu->code_buffer.push_back((bits >> 16) & 0xff);
+      cu->code_buffer.push_back((bits >> 24) & 0xff);
+    }
+  }
+  return res;
+}
+
+int MipsCodegen::GetInsnSize(LIR* lir)
+{
+  return EncodingMap[lir->opcode].size;
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/mips/call_mips.cc b/src/compiler/dex/quick/mips/call_mips.cc
new file mode 100644
index 0000000..4fbb16b
--- /dev/null
+++ b/src/compiler/dex/quick/mips/call_mips.cc
@@ -0,0 +1,387 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This file contains codegen for the Mips ISA */
+
+#include "codegen_mips.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "mips_lir.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+
+namespace art {
+
+void MipsCodegen::GenSpecialCase(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                                 SpecialCaseHandler special_case)
+{
+    // TODO
+}
+
+/*
+ * The lack of pc-relative loads on Mips presents somewhat of a challenge
+ * for our PIC switch table strategy.  To materialize the current location
+ * we'll do a dummy JAL and reference our tables using r_RA as the
+ * base register.  Note that r_RA will be used both as the base to
+ * locate the switch table data and as the reference base for the switch
+ * target offsets stored in the table.  We'll use a special pseudo-instruction
+ * to represent the jal and trigger the construction of the
+ * switch table offsets (which will happen after final assembly and all
+ * labels are fixed).
+ *
+ * The test loop will look something like:
+ *
+ *   ori   rEnd, r_ZERO, #table_size  ; size in bytes
+ *   jal   BaseLabel         ; stores "return address" (BaseLabel) in r_RA
+ *   nop                     ; opportunistically fill
+ * BaseLabel:
+ *   addiu rBase, r_RA, <table> - <BaseLabel>  ; table relative to BaseLabel
+     addu  rEnd, rEnd, rBase                   ; end of table
+ *   lw    r_val, [rSP, v_reg_off]                ; Test Value
+ * loop:
+ *   beq   rBase, rEnd, done
+ *   lw    r_key, 0(rBase)
+ *   addu  rBase, 8
+ *   bne   r_val, r_key, loop
+ *   lw    r_disp, -4(rBase)
+ *   addu  r_RA, r_disp
+ *   jr    r_RA
+ * done:
+ *
+ */
+void MipsCodegen::GenSparseSwitch(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
+{
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  if (cu->verbose) {
+    DumpSparseSwitchTable(table);
+  }
+  // Add the table to the list - we'll process it later
+  SwitchTable *tab_rec =
+      static_cast<SwitchTable*>(NewMem(cu, sizeof(SwitchTable), true, kAllocData));
+  tab_rec->table = table;
+  tab_rec->vaddr = cu->current_dalvik_offset;
+  int elements = table[1];
+  tab_rec->targets =
+      static_cast<LIR**>(NewMem(cu, elements * sizeof(LIR*), true, kAllocLIR));
+  InsertGrowableList(cu, &cu->switch_tables, reinterpret_cast<uintptr_t>(tab_rec));
+
+  // The table is composed of 8-byte key/disp pairs
+  int byte_size = elements * 8;
+
+  int size_hi = byte_size >> 16;
+  int size_lo = byte_size & 0xffff;
+
+  int rEnd = AllocTemp(cu);
+  if (size_hi) {
+    NewLIR2(cu, kMipsLui, rEnd, size_hi);
+  }
+  // Must prevent code motion for the curr pc pair
+  GenBarrier(cu);  // Scheduling barrier
+  NewLIR0(cu, kMipsCurrPC);  // Really a jal to .+8
+  // Now, fill the branch delay slot
+  if (size_hi) {
+    NewLIR3(cu, kMipsOri, rEnd, rEnd, size_lo);
+  } else {
+    NewLIR3(cu, kMipsOri, rEnd, r_ZERO, size_lo);
+  }
+  GenBarrier(cu);  // Scheduling barrier
+
+  // Construct BaseLabel and set up table base register
+  LIR* base_label = NewLIR0(cu, kPseudoTargetLabel);
+  // Remember base label so offsets can be computed later
+  tab_rec->anchor = base_label;
+  int rBase = AllocTemp(cu);
+  NewLIR4(cu, kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label),
+          reinterpret_cast<uintptr_t>(tab_rec));
+  OpRegRegReg(cu, kOpAdd, rEnd, rEnd, rBase);
+
+  // Grab switch test value
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+
+  // Test loop
+  int r_key = AllocTemp(cu);
+  LIR* loop_label = NewLIR0(cu, kPseudoTargetLabel);
+  LIR* exit_branch = OpCmpBranch(cu , kCondEq, rBase, rEnd, NULL);
+  LoadWordDisp(cu, rBase, 0, r_key);
+  OpRegImm(cu, kOpAdd, rBase, 8);
+  OpCmpBranch(cu, kCondNe, rl_src.low_reg, r_key, loop_label);
+  int r_disp = AllocTemp(cu);
+  LoadWordDisp(cu, rBase, -4, r_disp);
+  OpRegRegReg(cu, kOpAdd, r_RA, r_RA, r_disp);
+  OpReg(cu, kOpBx, r_RA);
+
+  // Loop exit
+  LIR* exit_label = NewLIR0(cu, kPseudoTargetLabel);
+  exit_branch->target = exit_label;
+}
+
+/*
+ * Code pattern will look something like:
+ *
+ *   lw    r_val
+ *   jal   BaseLabel         ; stores "return address" (BaseLabel) in r_RA
+ *   nop                     ; opportunistically fill
+ *   [subiu r_val, bias]      ; Remove bias if low_val != 0
+ *   bound check -> done
+ *   lw    r_disp, [r_RA, r_val]
+ *   addu  r_RA, r_disp
+ *   jr    r_RA
+ * done:
+ */
+void MipsCodegen::GenPackedSwitch(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
+{
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  if (cu->verbose) {
+    DumpPackedSwitchTable(table);
+  }
+  // Add the table to the list - we'll process it later
+  SwitchTable *tab_rec =
+      static_cast<SwitchTable*>(NewMem(cu, sizeof(SwitchTable), true, kAllocData));
+  tab_rec->table = table;
+  tab_rec->vaddr = cu->current_dalvik_offset;
+  int size = table[1];
+  tab_rec->targets = static_cast<LIR**>(NewMem(cu, size * sizeof(LIR*), true, kAllocLIR));
+  InsertGrowableList(cu, &cu->switch_tables, reinterpret_cast<uintptr_t>(tab_rec));
+
+  // Get the switch value
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+
+  // Prepare the bias.  If too big, handle 1st stage here
+  int low_key = s4FromSwitchData(&table[2]);
+  bool large_bias = false;
+  int r_key;
+  if (low_key == 0) {
+    r_key = rl_src.low_reg;
+  } else if ((low_key & 0xffff) != low_key) {
+    r_key = AllocTemp(cu);
+    LoadConstant(cu, r_key, low_key);
+    large_bias = true;
+  } else {
+    r_key = AllocTemp(cu);
+  }
+
+  // Must prevent code motion for the curr pc pair
+  GenBarrier(cu);
+  NewLIR0(cu, kMipsCurrPC);  // Really a jal to .+8
+  // Now, fill the branch delay slot with bias strip
+  if (low_key == 0) {
+    NewLIR0(cu, kMipsNop);
+  } else {
+    if (large_bias) {
+      OpRegRegReg(cu, kOpSub, r_key, rl_src.low_reg, r_key);
+    } else {
+      OpRegRegImm(cu, kOpSub, r_key, rl_src.low_reg, low_key);
+    }
+  }
+  GenBarrier(cu);  // Scheduling barrier
+
+  // Construct BaseLabel and set up table base register
+  LIR* base_label = NewLIR0(cu, kPseudoTargetLabel);
+  // Remember base label so offsets can be computed later
+  tab_rec->anchor = base_label;
+
+  // Bounds check - if < 0 or >= size continue following switch
+  LIR* branch_over = OpCmpImmBranch(cu, kCondHi, r_key, size-1, NULL);
+
+  // Materialize the table base pointer
+  int rBase = AllocTemp(cu);
+  NewLIR4(cu, kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label),
+          reinterpret_cast<uintptr_t>(tab_rec));
+
+  // Load the displacement from the switch table
+  int r_disp = AllocTemp(cu);
+  LoadBaseIndexed(cu, rBase, r_key, r_disp, 2, kWord);
+
+  // Add to r_AP and go
+  OpRegRegReg(cu, kOpAdd, r_RA, r_RA, r_disp);
+  OpReg(cu, kOpBx, r_RA);
+
+  /* branch_over target here */
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch_over->target = target;
+}
+
+/*
+ * Array data table format:
+ *  ushort ident = 0x0300   magic value
+ *  ushort width            width of each element in the table
+ *  uint   size             number of elements in the table
+ *  ubyte  data[size*width] table of data values (may contain a single-byte
+ *                          padding at the end)
+ *
+ * Total size is 4+(width * size + 1)/2 16-bit code units.
+ */
+void MipsCodegen::GenFillArrayData(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
+{
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  // Add the table to the list - we'll process it later
+  FillArrayData *tab_rec =
+      reinterpret_cast<FillArrayData*>(NewMem(cu, sizeof(FillArrayData), true, kAllocData));
+  tab_rec->table = table;
+  tab_rec->vaddr = cu->current_dalvik_offset;
+  uint16_t width = tab_rec->table[1];
+  uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
+  tab_rec->size = (size * width) + 8;
+
+  InsertGrowableList(cu, &cu->fill_array_data, reinterpret_cast<uintptr_t>(tab_rec));
+
+  // Making a call - use explicit registers
+  FlushAllRegs(cu);   /* Everything to home location */
+  LockCallTemps(cu);
+  LoadValueDirectFixed(cu, rl_src, rMIPS_ARG0);
+
+  // Must prevent code motion for the curr pc pair
+  GenBarrier(cu);
+  NewLIR0(cu, kMipsCurrPC);  // Really a jal to .+8
+  // Now, fill the branch delay slot with the helper load
+  int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode));
+  GenBarrier(cu);  // Scheduling barrier
+
+  // Construct BaseLabel and set up table base register
+  LIR* base_label = NewLIR0(cu, kPseudoTargetLabel);
+
+  // Materialize a pointer to the fill data image
+  NewLIR4(cu, kMipsDelta, rMIPS_ARG1, 0, reinterpret_cast<uintptr_t>(base_label),
+          reinterpret_cast<uintptr_t>(tab_rec));
+
+  // And go...
+  ClobberCalleeSave(cu);
+  LIR* call_inst = OpReg(cu, kOpBlx, r_tgt); // ( array*, fill_data* )
+  MarkSafepointPC(cu, call_inst);
+}
+
+/*
+ * TODO: implement fast path to short-circuit thin-lock case
+ */
+void MipsCodegen::GenMonitorEnter(CompilationUnit* cu, int opt_flags, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  LoadValueDirectFixed(cu, rl_src, rMIPS_ARG0);  // Get obj
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  GenNullCheck(cu, rl_src.s_reg_low, rMIPS_ARG0, opt_flags);
+  // Go expensive route - artLockObjectFromCode(self, obj);
+  int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pLockObjectFromCode));
+  ClobberCalleeSave(cu);
+  LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);
+  MarkSafepointPC(cu, call_inst);
+}
+
+/*
+ * TODO: implement fast path to short-circuit thin-lock case
+ */
+void MipsCodegen::GenMonitorExit(CompilationUnit* cu, int opt_flags, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  LoadValueDirectFixed(cu, rl_src, rMIPS_ARG0);  // Get obj
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  GenNullCheck(cu, rl_src.s_reg_low, rMIPS_ARG0, opt_flags);
+  // Go expensive route - UnlockObjectFromCode(obj);
+  int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pUnlockObjectFromCode));
+  ClobberCalleeSave(cu);
+  LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);
+  MarkSafepointPC(cu, call_inst);
+}
+
+void MipsCodegen::GenMoveException(CompilationUnit* cu, RegLocation rl_dest)
+{
+  int ex_offset = Thread::ExceptionOffset().Int32Value();
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  int reset_reg = AllocTemp(cu);
+  LoadWordDisp(cu, rMIPS_SELF, ex_offset, rl_result.low_reg);
+  LoadConstant(cu, reset_reg, 0);
+  StoreWordDisp(cu, rMIPS_SELF, ex_offset, reset_reg);
+  FreeTemp(cu, reset_reg);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+/*
+ * Mark garbage collection card. Skip if the value we're storing is null.
+ */
+void MipsCodegen::MarkGCCard(CompilationUnit* cu, int val_reg, int tgt_addr_reg)
+{
+  int reg_card_base = AllocTemp(cu);
+  int reg_card_no = AllocTemp(cu);
+  LIR* branch_over = OpCmpImmBranch(cu, kCondEq, val_reg, 0, NULL);
+  LoadWordDisp(cu, rMIPS_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base);
+  OpRegRegImm(cu, kOpLsr, reg_card_no, tgt_addr_reg, CardTable::kCardShift);
+  StoreBaseIndexed(cu, reg_card_base, reg_card_no, reg_card_base, 0,
+                   kUnsignedByte);
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch_over->target = target;
+  FreeTemp(cu, reg_card_base);
+  FreeTemp(cu, reg_card_no);
+}
+void MipsCodegen::GenEntrySequence(CompilationUnit* cu, RegLocation* ArgLocs, RegLocation rl_method)
+{
+  int spill_count = cu->num_core_spills + cu->num_fp_spills;
+  /*
+   * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live.  Let the register
+   * allocation mechanism know so it doesn't try to use any of them when
+   * expanding the frame or flushing.  This leaves the utility
+   * code with a single temp: r12.  This should be enough.
+   */
+  LockTemp(cu, rMIPS_ARG0);
+  LockTemp(cu, rMIPS_ARG1);
+  LockTemp(cu, rMIPS_ARG2);
+  LockTemp(cu, rMIPS_ARG3);
+
+  /*
+   * We can safely skip the stack overflow check if we're
+   * a leaf *and* our frame size < fudge factor.
+   */
+  bool skip_overflow_check = ((cu->attrs & METHOD_IS_LEAF) &&
+      (static_cast<size_t>(cu->frame_size) < Thread::kStackOverflowReservedBytes));
+  NewLIR0(cu, kPseudoMethodEntry);
+  int check_reg = AllocTemp(cu);
+  int new_sp = AllocTemp(cu);
+  if (!skip_overflow_check) {
+    /* Load stack limit */
+    LoadWordDisp(cu, rMIPS_SELF, Thread::StackEndOffset().Int32Value(), check_reg);
+  }
+  /* Spill core callee saves */
+  SpillCoreRegs(cu);
+  /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
+  DCHECK_EQ(cu->num_fp_spills, 0);
+  if (!skip_overflow_check) {
+    OpRegRegImm(cu, kOpSub, new_sp, rMIPS_SP, cu->frame_size - (spill_count * 4));
+    GenRegRegCheck(cu, kCondCc, new_sp, check_reg, kThrowStackOverflow);
+    OpRegCopy(cu, rMIPS_SP, new_sp);     // Establish stack
+  } else {
+    OpRegImm(cu, kOpSub, rMIPS_SP, cu->frame_size - (spill_count * 4));
+  }
+
+  FlushIns(cu, ArgLocs, rl_method);
+
+  FreeTemp(cu, rMIPS_ARG0);
+  FreeTemp(cu, rMIPS_ARG1);
+  FreeTemp(cu, rMIPS_ARG2);
+  FreeTemp(cu, rMIPS_ARG3);
+}
+
+void MipsCodegen::GenExitSequence(CompilationUnit* cu)
+{
+  /*
+   * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
+   * allocated by the register utilities as temps.
+   */
+  LockTemp(cu, rMIPS_RET0);
+  LockTemp(cu, rMIPS_RET1);
+
+  NewLIR0(cu, kPseudoMethodExit);
+  UnSpillCoreRegs(cu);
+  OpReg(cu, kOpBx, r_RA);
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/mips/codegen_mips.h b/src/compiler/dex/quick/mips/codegen_mips.h
new file mode 100644
index 0000000..f889ece
--- /dev/null
+++ b/src/compiler/dex/quick/mips/codegen_mips.h
@@ -0,0 +1,208 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_DEX_QUICK_CODEGEN_MIPS_CODEGENMIPS_H_
+#define ART_SRC_DEX_QUICK_CODEGEN_MIPS_CODEGENMIPS_H_
+
+#include "compiler/dex/compiler_internals.h"
+#include "mips_lir.h"
+
+namespace art {
+
+class MipsCodegen : public Codegen {
+  public:
+    // Required for target - codegen utilities.
+    virtual bool SmallLiteralDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
+                                    RegLocation rl_src, RegLocation rl_dest, int lit);
+    virtual int LoadHelper(CompilationUnit* cu, int offset);
+    virtual LIR* LoadBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_dest,
+                              OpSize size, int s_reg);
+    virtual LIR* LoadBaseDispWide(CompilationUnit* cu, int rBase, int displacement, int r_dest_lo,
+                                  int r_dest_hi, int s_reg);
+    virtual LIR* LoadBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_dest, int scale,
+                                 OpSize size);
+    virtual LIR* LoadBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                     int displacement, int r_dest, int r_dest_hi, OpSize size,
+                                     int s_reg);
+    virtual LIR* LoadConstantNoClobber(CompilationUnit* cu, int r_dest, int value);
+    virtual LIR* LoadConstantWide(CompilationUnit* cu, int r_dest_lo, int r_dest_hi, int64_t value);
+    virtual LIR* StoreBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_src,
+                               OpSize size);
+    virtual LIR* StoreBaseDispWide(CompilationUnit* cu, int rBase, int displacement, int r_src_lo,
+                                   int r_src_hi);
+    virtual LIR* StoreBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_src, int scale,
+                                 OpSize size);
+    virtual LIR* StoreBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                      int displacement, int r_src, int r_src_hi, OpSize size,
+                                      int s_reg);
+    virtual void MarkGCCard(CompilationUnit* cu, int val_reg, int tgt_addr_reg);
+
+    // Required for target - register utilities.
+    virtual bool IsFpReg(int reg);
+    virtual bool SameRegType(int reg1, int reg2);
+    virtual int AllocTypedTemp(CompilationUnit* cu, bool fp_hint, int reg_class);
+    virtual int AllocTypedTempPair(CompilationUnit* cu, bool fp_hint, int reg_class);
+    virtual int S2d(int low_reg, int high_reg);
+    virtual int TargetReg(SpecialTargetRegister reg);
+    virtual RegisterInfo* GetRegInfo(CompilationUnit* cu, int reg);
+    virtual RegLocation GetReturnAlt(CompilationUnit* cu);
+    virtual RegLocation GetReturnWideAlt(CompilationUnit* cu);
+    virtual RegLocation LocCReturn();
+    virtual RegLocation LocCReturnDouble();
+    virtual RegLocation LocCReturnFloat();
+    virtual RegLocation LocCReturnWide();
+    virtual uint32_t FpRegMask();
+    virtual uint64_t GetRegMaskCommon(CompilationUnit* cu, int reg);
+    virtual void AdjustSpillMask(CompilationUnit* cu);
+    virtual void ClobberCalleeSave(CompilationUnit *cu);
+    virtual void FlushReg(CompilationUnit* cu, int reg);
+    virtual void FlushRegWide(CompilationUnit* cu, int reg1, int reg2);
+    virtual void FreeCallTemps(CompilationUnit* cu);
+    virtual void FreeRegLocTemps(CompilationUnit* cu, RegLocation rl_keep, RegLocation rl_free);
+    virtual void LockCallTemps(CompilationUnit* cu);
+    virtual void MarkPreservedSingle(CompilationUnit* cu, int v_reg, int reg);
+    virtual void CompilerInitializeRegAlloc(CompilationUnit* cu);
+
+    // Required for target - miscellaneous.
+    virtual AssemblerStatus AssembleInstructions(CompilationUnit* cu, uintptr_t start_addr);
+    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix);
+    virtual void SetupTargetResourceMasks(CompilationUnit* cu, LIR* lir);
+    virtual const char* GetTargetInstFmt(int opcode);
+    virtual const char* GetTargetInstName(int opcode);
+    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
+    virtual uint64_t GetPCUseDefEncoding();
+    virtual uint64_t GetTargetInstFlags(int opcode);
+    virtual int GetInsnSize(LIR* lir);
+    virtual bool IsUnconditionalBranch(LIR* lir);
+
+    // Required for target - Dalvik-level generators.
+    virtual void GenArithImmOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                                   RegLocation rl_src1, RegLocation rl_src2);
+    virtual void GenArrayObjPut(CompilationUnit* cu, int opt_flags, RegLocation rl_array,
+                                RegLocation rl_index, RegLocation rl_src, int scale);
+    virtual void GenArrayGet(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_dest, int scale);
+    virtual void GenArrayPut(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_src, int scale);
+    virtual void GenShiftImmOpLong(CompilationUnit* cu, Instruction::Code opcode,
+                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_shift);
+    virtual void GenMulLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenAddLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenAndLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenArithOpDouble(CompilationUnit* cu, Instruction::Code opcode,
+                                  RegLocation rl_dest, RegLocation rl_src1,
+                                  RegLocation rl_src2);
+    virtual void GenArithOpFloat(CompilationUnit *cu, Instruction::Code opcode, RegLocation rl_dest,
+                                 RegLocation rl_src1, RegLocation rl_src2);
+    virtual void GenCmpFP(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                          RegLocation rl_src1, RegLocation rl_src2);
+    virtual void GenConversion(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                               RegLocation rl_src);
+    virtual bool GenInlinedCas32(CompilationUnit* cu, CallInfo* info, bool need_write_barrier);
+    virtual bool GenInlinedMinMaxInt(CompilationUnit *cu, CallInfo* info, bool is_min);
+    virtual bool GenInlinedSqrt(CompilationUnit* cu, CallInfo* info);
+    virtual void GenNegLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    virtual void GenOrLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                           RegLocation rl_src2);
+    virtual void GenSubLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenXorLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual LIR* GenRegMemCheck(CompilationUnit* cu, ConditionCode c_code, int reg1, int base,
+                                int offset, ThrowKind kind);
+    virtual RegLocation GenDivRem(CompilationUnit* cu, RegLocation rl_dest, int reg_lo, int reg_hi,
+                                  bool is_div);
+    virtual RegLocation GenDivRemLit(CompilationUnit* cu, RegLocation rl_dest, int reg_lo, int lit,
+                                     bool is_div);
+    virtual void GenCmpLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenDivZeroCheck(CompilationUnit* cu, int reg_lo, int reg_hi);
+    virtual void GenEntrySequence(CompilationUnit* cu, RegLocation* ArgLocs,
+                                  RegLocation rl_method);
+    virtual void GenExitSequence(CompilationUnit* cu);
+    virtual void GenFillArrayData(CompilationUnit* cu, uint32_t table_offset,
+                                  RegLocation rl_src);
+    virtual void GenFusedFPCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir, bool gt_bias,
+                                     bool is_double);
+    virtual void GenFusedLongCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir);
+    virtual void GenSelect(CompilationUnit* cu, BasicBlock* bb, MIR* mir);
+    virtual void GenMemBarrier(CompilationUnit* cu, MemBarrierKind barrier_kind);
+    virtual void GenMonitorEnter(CompilationUnit* cu, int opt_flags, RegLocation rl_src);
+    virtual void GenMonitorExit(CompilationUnit* cu, int opt_flags, RegLocation rl_src);
+    virtual void GenMoveException(CompilationUnit* cu, RegLocation rl_dest);
+    virtual void GenMultiplyByTwoBitMultiplier(CompilationUnit* cu, RegLocation rl_src,
+                                               RegLocation rl_result, int lit, int first_bit,
+                                               int second_bit);
+    virtual void GenNegDouble(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    virtual void GenNegFloat(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    virtual void GenPackedSwitch(CompilationUnit* cu, uint32_t table_offset,
+                                 RegLocation rl_src);
+    virtual void GenSparseSwitch(CompilationUnit* cu, uint32_t table_offset,
+                                 RegLocation rl_src);
+    virtual void GenSpecialCase(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                                SpecialCaseHandler special_case);
+
+    // Required for target - single operation generators.
+    virtual LIR* OpUnconditionalBranch(CompilationUnit* cu, LIR* target);
+    virtual LIR* OpCmpBranch(CompilationUnit* cu, ConditionCode cond, int src1, int src2,
+                             LIR* target);
+    virtual LIR* OpCmpImmBranch(CompilationUnit* cu, ConditionCode cond, int reg, int check_value,
+                                LIR* target);
+    virtual LIR* OpCondBranch(CompilationUnit* cu, ConditionCode cc, LIR* target);
+    virtual LIR* OpDecAndBranch(CompilationUnit* cu, ConditionCode c_code, int reg,
+                                LIR* target);
+    virtual LIR* OpFpRegCopy(CompilationUnit* cu, int r_dest, int r_src);
+    virtual LIR* OpIT(CompilationUnit* cu, ConditionCode cond, const char* guide);
+    virtual LIR* OpMem(CompilationUnit* cu, OpKind op, int rBase, int disp);
+    virtual LIR* OpPcRelLoad(CompilationUnit* cu, int reg, LIR* target);
+    virtual LIR* OpReg(CompilationUnit* cu, OpKind op, int r_dest_src);
+    virtual LIR* OpRegCopy(CompilationUnit* cu, int r_dest, int r_src);
+    virtual LIR* OpRegCopyNoInsert(CompilationUnit* cu, int r_dest, int r_src);
+    virtual LIR* OpRegImm(CompilationUnit* cu, OpKind op, int r_dest_src1, int value);
+    virtual LIR* OpRegMem(CompilationUnit* cu, OpKind op, int r_dest, int rBase, int offset);
+    virtual LIR* OpRegReg(CompilationUnit* cu, OpKind op, int r_dest_src1, int r_src2);
+    virtual LIR* OpRegRegImm(CompilationUnit* cu, OpKind op, int r_dest, int r_src1, int value);
+    virtual LIR* OpRegRegReg(CompilationUnit* cu, OpKind op, int r_dest, int r_src1,
+                             int r_src2);
+    virtual LIR* OpTestSuspend(CompilationUnit* cu, LIR* target);
+    virtual LIR* OpThreadMem(CompilationUnit* cu, OpKind op, int thread_offset);
+    virtual LIR* OpVldm(CompilationUnit* cu, int rBase, int count);
+    virtual LIR* OpVstm(CompilationUnit* cu, int rBase, int count);
+    virtual void OpLea(CompilationUnit* cu, int rBase, int reg1, int reg2, int scale,
+                       int offset);
+    virtual void OpRegCopyWide(CompilationUnit* cu, int dest_lo, int dest_hi, int src_lo,
+                               int src_hi);
+    virtual void OpTlsCmp(CompilationUnit* cu, int offset, int val);
+
+    LIR* LoadBaseDispBody(CompilationUnit* cu, int rBase, int displacement, int r_dest,
+                          int r_dest_hi, OpSize size, int s_reg);
+    LIR* StoreBaseDispBody(CompilationUnit* cu, int rBase, int displacement, int r_src,
+                           int r_src_hi, OpSize size);
+    void SpillCoreRegs(CompilationUnit* cu);
+    void UnSpillCoreRegs(CompilationUnit* cu);
+    static const MipsEncodingMap EncodingMap[kMipsLast];
+    bool InexpensiveConstantInt(int32_t value);
+    bool InexpensiveConstantFloat(int32_t value);
+    bool InexpensiveConstantLong(int64_t value);
+    bool InexpensiveConstantDouble(int64_t value);
+};
+
+}  // namespace art
+
+#endif  // ART_SRC_DEX_QUICK_CODEGEN_MIPS_CODEGENMIPS_H_
diff --git a/src/compiler/dex/quick/mips/fp_mips.cc b/src/compiler/dex/quick/mips/fp_mips.cc
new file mode 100644
index 0000000..96007d8
--- /dev/null
+++ b/src/compiler/dex/quick/mips/fp_mips.cc
@@ -0,0 +1,249 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_mips.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "mips_lir.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+
+namespace art {
+
+void MipsCodegen::GenArithOpFloat(CompilationUnit *cu, Instruction::Code opcode,
+                                  RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
+{
+  int op = kMipsNop;
+  RegLocation rl_result;
+
+  /*
+   * Don't attempt to optimize register usage since these opcodes call out to
+   * the handlers.
+   */
+  switch (opcode) {
+    case Instruction::ADD_FLOAT_2ADDR:
+    case Instruction::ADD_FLOAT:
+      op = kMipsFadds;
+      break;
+    case Instruction::SUB_FLOAT_2ADDR:
+    case Instruction::SUB_FLOAT:
+      op = kMipsFsubs;
+      break;
+    case Instruction::DIV_FLOAT_2ADDR:
+    case Instruction::DIV_FLOAT:
+      op = kMipsFdivs;
+      break;
+    case Instruction::MUL_FLOAT_2ADDR:
+    case Instruction::MUL_FLOAT:
+      op = kMipsFmuls;
+      break;
+    case Instruction::REM_FLOAT_2ADDR:
+    case Instruction::REM_FLOAT:
+      FlushAllRegs(cu);   // Send everything to home location
+      CallRuntimeHelperRegLocationRegLocation(cu, ENTRYPOINT_OFFSET(pFmodf), rl_src1, rl_src2, false);
+      rl_result = GetReturn(cu, true);
+      StoreValue(cu, rl_dest, rl_result);
+      return;
+    case Instruction::NEG_FLOAT:
+      GenNegFloat(cu, rl_dest, rl_src1);
+      return;
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+  rl_src1 = LoadValue(cu, rl_src1, kFPReg);
+  rl_src2 = LoadValue(cu, rl_src2, kFPReg);
+  rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+  NewLIR3(cu, op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void MipsCodegen::GenArithOpDouble(CompilationUnit *cu, Instruction::Code opcode,
+                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
+{
+  int op = kMipsNop;
+  RegLocation rl_result;
+
+  switch (opcode) {
+    case Instruction::ADD_DOUBLE_2ADDR:
+    case Instruction::ADD_DOUBLE:
+      op = kMipsFaddd;
+      break;
+    case Instruction::SUB_DOUBLE_2ADDR:
+    case Instruction::SUB_DOUBLE:
+      op = kMipsFsubd;
+      break;
+    case Instruction::DIV_DOUBLE_2ADDR:
+    case Instruction::DIV_DOUBLE:
+      op = kMipsFdivd;
+      break;
+    case Instruction::MUL_DOUBLE_2ADDR:
+    case Instruction::MUL_DOUBLE:
+      op = kMipsFmuld;
+      break;
+    case Instruction::REM_DOUBLE_2ADDR:
+    case Instruction::REM_DOUBLE:
+      FlushAllRegs(cu);   // Send everything to home location
+      CallRuntimeHelperRegLocationRegLocation(cu, ENTRYPOINT_OFFSET(pFmod), rl_src1, rl_src2, false);
+      rl_result = GetReturnWide(cu, true);
+      StoreValueWide(cu, rl_dest, rl_result);
+      return;
+    case Instruction::NEG_DOUBLE:
+      GenNegDouble(cu, rl_dest, rl_src1);
+      return;
+    default:
+      LOG(FATAL) << "Unpexpected opcode: " << opcode;
+  }
+  rl_src1 = LoadValueWide(cu, rl_src1, kFPReg);
+  DCHECK(rl_src1.wide);
+  rl_src2 = LoadValueWide(cu, rl_src2, kFPReg);
+  DCHECK(rl_src2.wide);
+  rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+  DCHECK(rl_dest.wide);
+  DCHECK(rl_result.wide);
+  NewLIR3(cu, op, S2d(rl_result.low_reg, rl_result.high_reg), S2d(rl_src1.low_reg, rl_src1.high_reg),
+          S2d(rl_src2.low_reg, rl_src2.high_reg));
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void MipsCodegen::GenConversion(CompilationUnit *cu, Instruction::Code opcode, RegLocation rl_dest,
+                                RegLocation rl_src)
+{
+  int op = kMipsNop;
+  int src_reg;
+  RegLocation rl_result;
+  switch (opcode) {
+    case Instruction::INT_TO_FLOAT:
+      op = kMipsFcvtsw;
+      break;
+    case Instruction::DOUBLE_TO_FLOAT:
+      op = kMipsFcvtsd;
+      break;
+    case Instruction::FLOAT_TO_DOUBLE:
+      op = kMipsFcvtds;
+      break;
+    case Instruction::INT_TO_DOUBLE:
+      op = kMipsFcvtdw;
+      break;
+    case Instruction::FLOAT_TO_INT:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pF2iz), rl_dest, rl_src);
+      return;
+    case Instruction::DOUBLE_TO_INT:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pD2iz), rl_dest, rl_src);
+      return;
+    case Instruction::LONG_TO_DOUBLE:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pL2d), rl_dest, rl_src);
+      return;
+    case Instruction::FLOAT_TO_LONG:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pF2l), rl_dest, rl_src);
+      return;
+    case Instruction::LONG_TO_FLOAT:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pL2f), rl_dest, rl_src);
+      return;
+    case Instruction::DOUBLE_TO_LONG:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pD2l), rl_dest, rl_src);
+      return;
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+  if (rl_src.wide) {
+    rl_src = LoadValueWide(cu, rl_src, kFPReg);
+    src_reg = S2d(rl_src.low_reg, rl_src.high_reg);
+  } else {
+    rl_src = LoadValue(cu, rl_src, kFPReg);
+    src_reg = rl_src.low_reg;
+  }
+  if (rl_dest.wide) {
+    rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+    NewLIR2(cu, op, S2d(rl_result.low_reg, rl_result.high_reg), src_reg);
+    StoreValueWide(cu, rl_dest, rl_result);
+  } else {
+    rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+    NewLIR2(cu, op, rl_result.low_reg, src_reg);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+void MipsCodegen::GenCmpFP(CompilationUnit *cu, Instruction::Code opcode, RegLocation rl_dest,
+                           RegLocation rl_src1, RegLocation rl_src2)
+{
+  bool wide = true;
+  int offset = -1; // Make gcc happy.
+
+  switch (opcode) {
+    case Instruction::CMPL_FLOAT:
+      offset = ENTRYPOINT_OFFSET(pCmplFloat);
+      wide = false;
+      break;
+    case Instruction::CMPG_FLOAT:
+      offset = ENTRYPOINT_OFFSET(pCmpgFloat);
+      wide = false;
+      break;
+    case Instruction::CMPL_DOUBLE:
+      offset = ENTRYPOINT_OFFSET(pCmplDouble);
+      break;
+    case Instruction::CMPG_DOUBLE:
+      offset = ENTRYPOINT_OFFSET(pCmpgDouble);
+      break;
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+  FlushAllRegs(cu);
+  LockCallTemps(cu);
+  if (wide) {
+    LoadValueDirectWideFixed(cu, rl_src1, rMIPS_FARG0, rMIPS_FARG1);
+    LoadValueDirectWideFixed(cu, rl_src2, rMIPS_FARG2, rMIPS_FARG3);
+  } else {
+    LoadValueDirectFixed(cu, rl_src1, rMIPS_FARG0);
+    LoadValueDirectFixed(cu, rl_src2, rMIPS_FARG2);
+  }
+  int r_tgt = LoadHelper(cu, offset);
+  // NOTE: not a safepoint
+  OpReg(cu, kOpBlx, r_tgt);
+  RegLocation rl_result = GetReturn(cu, false);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void MipsCodegen::GenFusedFPCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                                bool gt_bias, bool is_double)
+{
+  UNIMPLEMENTED(FATAL) << "Need codegen for fused fp cmp branch";
+}
+
+void MipsCodegen::GenNegFloat(CompilationUnit *cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  RegLocation rl_result;
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  OpRegRegImm(cu, kOpAdd, rl_result.low_reg, rl_src.low_reg, 0x80000000);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void MipsCodegen::GenNegDouble(CompilationUnit *cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  RegLocation rl_result;
+  rl_src = LoadValueWide(cu, rl_src, kCoreReg);
+  rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  OpRegRegImm(cu, kOpAdd, rl_result.high_reg, rl_src.high_reg, 0x80000000);
+  OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+bool MipsCodegen::GenInlinedMinMaxInt(CompilationUnit *cu, CallInfo* info, bool is_min)
+{
+  // TODO: need Mips implementation
+  return false;
+}
+
+} //  namespace art
diff --git a/src/compiler/dex/quick/mips/int_mips.cc b/src/compiler/dex/quick/mips/int_mips.cc
new file mode 100644
index 0000000..d648c44
--- /dev/null
+++ b/src/compiler/dex/quick/mips/int_mips.cc
@@ -0,0 +1,659 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This file contains codegen for the Mips ISA */
+
+#include "codegen_mips.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "mips_lir.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+
+namespace art {
+
+/*
+ * Compare two 64-bit values
+ *    x = y     return  0
+ *    x < y     return -1
+ *    x > y     return  1
+ *
+ *    slt   t0,  x.hi, y.hi;        # (x.hi < y.hi) ? 1:0
+ *    sgt   t1,  x.hi, y.hi;        # (y.hi > x.hi) ? 1:0
+ *    subu  res, t0, t1             # res = -1:1:0 for [ < > = ]
+ *    bnez  res, finish
+ *    sltu  t0, x.lo, y.lo
+ *    sgtu  r1, x.lo, y.lo
+ *    subu  res, t0, t1
+ * finish:
+ *
+ */
+void MipsCodegen::GenCmpLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                             RegLocation rl_src2)
+{
+  rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+  rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+  int t0 = AllocTemp(cu);
+  int t1 = AllocTemp(cu);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  NewLIR3(cu, kMipsSlt, t0, rl_src1.high_reg, rl_src2.high_reg);
+  NewLIR3(cu, kMipsSlt, t1, rl_src2.high_reg, rl_src1.high_reg);
+  NewLIR3(cu, kMipsSubu, rl_result.low_reg, t1, t0);
+  LIR* branch = OpCmpImmBranch(cu, kCondNe, rl_result.low_reg, 0, NULL);
+  NewLIR3(cu, kMipsSltu, t0, rl_src1.low_reg, rl_src2.low_reg);
+  NewLIR3(cu, kMipsSltu, t1, rl_src2.low_reg, rl_src1.low_reg);
+  NewLIR3(cu, kMipsSubu, rl_result.low_reg, t1, t0);
+  FreeTemp(cu, t0);
+  FreeTemp(cu, t1);
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch->target = target;
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+LIR* MipsCodegen::OpCmpBranch(CompilationUnit* cu, ConditionCode cond, int src1, int src2,
+                              LIR* target)
+{
+  LIR* branch;
+  MipsOpCode slt_op;
+  MipsOpCode br_op;
+  bool cmp_zero = false;
+  bool swapped = false;
+  switch (cond) {
+    case kCondEq:
+      br_op = kMipsBeq;
+      cmp_zero = true;
+      break;
+    case kCondNe:
+      br_op = kMipsBne;
+      cmp_zero = true;
+      break;
+    case kCondCc:
+      slt_op = kMipsSltu;
+      br_op = kMipsBnez;
+      break;
+    case kCondCs:
+      slt_op = kMipsSltu;
+      br_op = kMipsBeqz;
+      break;
+    case kCondGe:
+      slt_op = kMipsSlt;
+      br_op = kMipsBeqz;
+      break;
+    case kCondGt:
+      slt_op = kMipsSlt;
+      br_op = kMipsBnez;
+      swapped = true;
+      break;
+    case kCondLe:
+      slt_op = kMipsSlt;
+      br_op = kMipsBeqz;
+      swapped = true;
+      break;
+    case kCondLt:
+      slt_op = kMipsSlt;
+      br_op = kMipsBnez;
+      break;
+    case kCondHi:  // Gtu
+      slt_op = kMipsSltu;
+      br_op = kMipsBnez;
+      swapped = true;
+      break;
+    default:
+      LOG(FATAL) << "No support for ConditionCode: " << cond;
+      return NULL;
+  }
+  if (cmp_zero) {
+    branch = NewLIR2(cu, br_op, src1, src2);
+  } else {
+    int t_reg = AllocTemp(cu);
+    if (swapped) {
+      NewLIR3(cu, slt_op, t_reg, src2, src1);
+    } else {
+      NewLIR3(cu, slt_op, t_reg, src1, src2);
+    }
+    branch = NewLIR1(cu, br_op, t_reg);
+    FreeTemp(cu, t_reg);
+  }
+  branch->target = target;
+  return branch;
+}
+
+LIR* MipsCodegen::OpCmpImmBranch(CompilationUnit* cu, ConditionCode cond, int reg,
+                                 int check_value, LIR* target)
+{
+  LIR* branch;
+  if (check_value != 0) {
+    // TUNING: handle s16 & kCondLt/Mi case using slti
+    int t_reg = AllocTemp(cu);
+    LoadConstant(cu, t_reg, check_value);
+    branch = OpCmpBranch(cu, cond, reg, t_reg, target);
+    FreeTemp(cu, t_reg);
+    return branch;
+  }
+  MipsOpCode opc;
+  switch (cond) {
+    case kCondEq: opc = kMipsBeqz; break;
+    case kCondGe: opc = kMipsBgez; break;
+    case kCondGt: opc = kMipsBgtz; break;
+    case kCondLe: opc = kMipsBlez; break;
+    //case KCondMi:
+    case kCondLt: opc = kMipsBltz; break;
+    case kCondNe: opc = kMipsBnez; break;
+    default:
+      // Tuning: use slti when applicable
+      int t_reg = AllocTemp(cu);
+      LoadConstant(cu, t_reg, check_value);
+      branch = OpCmpBranch(cu, cond, reg, t_reg, target);
+      FreeTemp(cu, t_reg);
+      return branch;
+  }
+  branch = NewLIR1(cu, opc, reg);
+  branch->target = target;
+  return branch;
+}
+
+LIR* MipsCodegen::OpRegCopyNoInsert(CompilationUnit *cu, int r_dest, int r_src)
+{
+  if (MIPS_FPREG(r_dest) || MIPS_FPREG(r_src))
+    return OpFpRegCopy(cu, r_dest, r_src);
+  LIR* res = RawLIR(cu, cu->current_dalvik_offset, kMipsMove,
+            r_dest, r_src);
+  if (!(cu->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
+    res->flags.is_nop = true;
+  }
+  return res;
+}
+
+LIR* MipsCodegen::OpRegCopy(CompilationUnit *cu, int r_dest, int r_src)
+{
+  LIR *res = OpRegCopyNoInsert(cu, r_dest, r_src);
+  AppendLIR(cu, res);
+  return res;
+}
+
+void MipsCodegen::OpRegCopyWide(CompilationUnit *cu, int dest_lo, int dest_hi, int src_lo,
+                                int src_hi)
+{
+  bool dest_fp = MIPS_FPREG(dest_lo) && MIPS_FPREG(dest_hi);
+  bool src_fp = MIPS_FPREG(src_lo) && MIPS_FPREG(src_hi);
+  assert(MIPS_FPREG(src_lo) == MIPS_FPREG(src_hi));
+  assert(MIPS_FPREG(dest_lo) == MIPS_FPREG(dest_hi));
+  if (dest_fp) {
+    if (src_fp) {
+      OpRegCopy(cu, S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
+    } else {
+       /* note the operands are swapped for the mtc1 instr */
+      NewLIR2(cu, kMipsMtc1, src_lo, dest_lo);
+      NewLIR2(cu, kMipsMtc1, src_hi, dest_hi);
+    }
+  } else {
+    if (src_fp) {
+      NewLIR2(cu, kMipsMfc1, dest_lo, src_lo);
+      NewLIR2(cu, kMipsMfc1, dest_hi, src_hi);
+    } else {
+      // Handle overlap
+      if (src_hi == dest_lo) {
+        OpRegCopy(cu, dest_hi, src_hi);
+        OpRegCopy(cu, dest_lo, src_lo);
+      } else {
+        OpRegCopy(cu, dest_lo, src_lo);
+        OpRegCopy(cu, dest_hi, src_hi);
+      }
+    }
+  }
+}
+
+void MipsCodegen::GenSelect(CompilationUnit* cu, BasicBlock* bb, MIR* mir)
+{
+  UNIMPLEMENTED(FATAL) << "Need codegen for select";
+}
+
+void MipsCodegen::GenFusedLongCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir)
+{
+  UNIMPLEMENTED(FATAL) << "Need codegen for fused long cmp branch";
+}
+
+LIR* MipsCodegen::GenRegMemCheck(CompilationUnit* cu, ConditionCode c_code,
+                    int reg1, int base, int offset, ThrowKind kind)
+{
+  LOG(FATAL) << "Unexpected use of GenRegMemCheck for Arm";
+  return NULL;
+}
+
+RegLocation MipsCodegen::GenDivRem(CompilationUnit* cu, RegLocation rl_dest, int reg1, int reg2,
+                                    bool is_div)
+{
+  NewLIR4(cu, kMipsDiv, r_HI, r_LO, reg1, reg2);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (is_div) {
+    NewLIR2(cu, kMipsMflo, rl_result.low_reg, r_LO);
+  } else {
+    NewLIR2(cu, kMipsMfhi, rl_result.low_reg, r_HI);
+  }
+  return rl_result;
+}
+
+RegLocation MipsCodegen::GenDivRemLit(CompilationUnit* cu, RegLocation rl_dest, int reg1, int lit,
+                                       bool is_div)
+{
+  int t_reg = AllocTemp(cu);
+  NewLIR3(cu, kMipsAddiu, t_reg, r_ZERO, lit);
+  NewLIR4(cu, kMipsDiv, r_HI, r_LO, reg1, t_reg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (is_div) {
+    NewLIR2(cu, kMipsMflo, rl_result.low_reg, r_LO);
+  } else {
+    NewLIR2(cu, kMipsMfhi, rl_result.low_reg, r_HI);
+  }
+  FreeTemp(cu, t_reg);
+  return rl_result;
+}
+
+void MipsCodegen::OpLea(CompilationUnit* cu, int rBase, int reg1, int reg2, int scale, int offset)
+{
+  LOG(FATAL) << "Unexpected use of OpLea for Arm";
+}
+
+void MipsCodegen::OpTlsCmp(CompilationUnit* cu, int offset, int val)
+{
+  LOG(FATAL) << "Unexpected use of OpTlsCmp for Arm";
+}
+
+bool MipsCodegen::GenInlinedCas32(CompilationUnit* cu, CallInfo* info, bool need_write_barrier) {
+  DCHECK_NE(cu->instruction_set, kThumb2);
+  return false;
+}
+
+bool MipsCodegen::GenInlinedSqrt(CompilationUnit* cu, CallInfo* info) {
+  DCHECK_NE(cu->instruction_set, kThumb2);
+  return false;
+}
+
+LIR* MipsCodegen::OpPcRelLoad(CompilationUnit* cu, int reg, LIR* target) {
+  LOG(FATAL) << "Unexpected use of OpPcRelLoad for Mips";
+  return NULL;
+}
+
+LIR* MipsCodegen::OpVldm(CompilationUnit* cu, int rBase, int count)
+{
+  LOG(FATAL) << "Unexpected use of OpVldm for Mips";
+  return NULL;
+}
+
+LIR* MipsCodegen::OpVstm(CompilationUnit* cu, int rBase, int count)
+{
+  LOG(FATAL) << "Unexpected use of OpVstm for Mips";
+  return NULL;
+}
+
+void MipsCodegen::GenMultiplyByTwoBitMultiplier(CompilationUnit* cu, RegLocation rl_src,
+                                                RegLocation rl_result, int lit,
+                                                int first_bit, int second_bit)
+{
+  int t_reg = AllocTemp(cu);
+  OpRegRegImm(cu, kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
+  OpRegRegReg(cu, kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
+  FreeTemp(cu, t_reg);
+  if (first_bit != 0) {
+    OpRegRegImm(cu, kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
+  }
+}
+
+void MipsCodegen::GenDivZeroCheck(CompilationUnit* cu, int reg_lo, int reg_hi)
+{
+  int t_reg = AllocTemp(cu);
+  OpRegRegReg(cu, kOpOr, t_reg, reg_lo, reg_hi);
+  GenImmedCheck(cu, kCondEq, t_reg, 0, kThrowDivZero);
+  FreeTemp(cu, t_reg);
+}
+
+// Test suspend flag, return target of taken suspend branch
+LIR* MipsCodegen::OpTestSuspend(CompilationUnit* cu, LIR* target)
+{
+  OpRegImm(cu, kOpSub, rMIPS_SUSPEND, 1);
+  return OpCmpImmBranch(cu, (target == NULL) ? kCondEq : kCondNe, rMIPS_SUSPEND, 0, target);
+}
+
+// Decrement register and branch on condition
+LIR* MipsCodegen::OpDecAndBranch(CompilationUnit* cu, ConditionCode c_code, int reg, LIR* target)
+{
+  OpRegImm(cu, kOpSub, reg, 1);
+  return OpCmpImmBranch(cu, c_code, reg, 0, target);
+}
+
+bool MipsCodegen::SmallLiteralDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
+                                     RegLocation rl_src, RegLocation rl_dest, int lit)
+{
+  LOG(FATAL) << "Unexpected use of smallLiteralDive in Mips";
+  return false;
+}
+
+LIR* MipsCodegen::OpIT(CompilationUnit* cu, ConditionCode cond, const char* guide)
+{
+  LOG(FATAL) << "Unexpected use of OpIT in Mips";
+  return NULL;
+}
+
+void MipsCodegen::GenMulLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                             RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of GenMulLong for Mips";
+}
+
+void MipsCodegen::GenAddLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                             RegLocation rl_src2)
+{
+  rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+  rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  /*
+   *  [v1 v0] =  [a1 a0] + [a3 a2];
+   *  addu v0,a2,a0
+   *  addu t1,a3,a1
+   *  sltu v1,v0,a2
+   *  addu v1,v1,t1
+   */
+
+  OpRegRegReg(cu, kOpAdd, rl_result.low_reg, rl_src2.low_reg, rl_src1.low_reg);
+  int t_reg = AllocTemp(cu);
+  OpRegRegReg(cu, kOpAdd, t_reg, rl_src2.high_reg, rl_src1.high_reg);
+  NewLIR3(cu, kMipsSltu, rl_result.high_reg, rl_result.low_reg, rl_src2.low_reg);
+  OpRegRegReg(cu, kOpAdd, rl_result.high_reg, rl_result.high_reg, t_reg);
+  FreeTemp(cu, t_reg);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void MipsCodegen::GenSubLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                             RegLocation rl_src2)
+{
+  rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+  rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  /*
+   *  [v1 v0] =  [a1 a0] - [a3 a2];
+   *  sltu  t1,a0,a2
+   *  subu  v0,a0,a2
+   *  subu  v1,a1,a3
+   *  subu  v1,v1,t1
+   */
+
+  int t_reg = AllocTemp(cu);
+  NewLIR3(cu, kMipsSltu, t_reg, rl_src1.low_reg, rl_src2.low_reg);
+  OpRegRegReg(cu, kOpSub, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
+  OpRegRegReg(cu, kOpSub, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg);
+  OpRegRegReg(cu, kOpSub, rl_result.high_reg, rl_result.high_reg, t_reg);
+  FreeTemp(cu, t_reg);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void MipsCodegen::GenNegLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  rl_src = LoadValueWide(cu, rl_src, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  /*
+   *  [v1 v0] =  -[a1 a0]
+   *  negu  v0,a0
+   *  negu  v1,a1
+   *  sltu  t1,r_zero
+   *  subu  v1,v1,t1
+   */
+
+  OpRegReg(cu, kOpNeg, rl_result.low_reg, rl_src.low_reg);
+  OpRegReg(cu, kOpNeg, rl_result.high_reg, rl_src.high_reg);
+  int t_reg = AllocTemp(cu);
+  NewLIR3(cu, kMipsSltu, t_reg, r_ZERO, rl_result.low_reg);
+  OpRegRegReg(cu, kOpSub, rl_result.high_reg, rl_result.high_reg, t_reg);
+  FreeTemp(cu, t_reg);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void MipsCodegen::GenAndLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                             RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of GenAndLong for Mips";
+}
+
+void MipsCodegen::GenOrLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of GenOrLong for Mips";
+}
+
+void MipsCodegen::GenXorLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                             RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of GenXorLong for Mips";
+}
+
+/*
+ * Generate array load
+ */
+void MipsCodegen::GenArrayGet(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                          RegLocation rl_index, RegLocation rl_dest, int scale)
+{
+  RegisterClass reg_class = oat_reg_class_by_size(size);
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  int data_offset;
+  RegLocation rl_result;
+  rl_array = LoadValue(cu, rl_array, kCoreReg);
+  rl_index = LoadValue(cu, rl_index, kCoreReg);
+
+  if (size == kLong || size == kDouble) {
+    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
+  } else {
+    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
+  }
+
+  /* null object? */
+  GenNullCheck(cu, rl_array.s_reg_low, rl_array.low_reg, opt_flags);
+
+  int reg_ptr = AllocTemp(cu);
+  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
+  int reg_len = INVALID_REG;
+  if (needs_range_check) {
+    reg_len = AllocTemp(cu);
+    /* Get len */
+    LoadWordDisp(cu, rl_array.low_reg, len_offset, reg_len);
+  }
+  /* reg_ptr -> array data */
+  OpRegRegImm(cu, kOpAdd, reg_ptr, rl_array.low_reg, data_offset);
+  FreeTemp(cu, rl_array.low_reg);
+  if ((size == kLong) || (size == kDouble)) {
+    if (scale) {
+      int r_new_index = AllocTemp(cu);
+      OpRegRegImm(cu, kOpLsl, r_new_index, rl_index.low_reg, scale);
+      OpRegReg(cu, kOpAdd, reg_ptr, r_new_index);
+      FreeTemp(cu, r_new_index);
+    } else {
+      OpRegReg(cu, kOpAdd, reg_ptr, rl_index.low_reg);
+    }
+    FreeTemp(cu, rl_index.low_reg);
+    rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+
+    if (needs_range_check) {
+      // TODO: change kCondCS to a more meaningful name, is the sense of
+      // carry-set/clear flipped?
+      GenRegRegCheck(cu, kCondCs, rl_index.low_reg, reg_len, kThrowArrayBounds);
+      FreeTemp(cu, reg_len);
+    }
+    LoadBaseDispWide(cu, reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
+
+    FreeTemp(cu, reg_ptr);
+    StoreValueWide(cu, rl_dest, rl_result);
+  } else {
+    rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+
+    if (needs_range_check) {
+      // TODO: change kCondCS to a more meaningful name, is the sense of
+      // carry-set/clear flipped?
+      GenRegRegCheck(cu, kCondCs, rl_index.low_reg, reg_len, kThrowArrayBounds);
+      FreeTemp(cu, reg_len);
+    }
+    LoadBaseIndexed(cu, reg_ptr, rl_index.low_reg, rl_result.low_reg, scale, size);
+
+    FreeTemp(cu, reg_ptr);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+/*
+ * Generate array store
+ *
+ */
+void MipsCodegen::GenArrayPut(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                          RegLocation rl_index, RegLocation rl_src, int scale)
+{
+  RegisterClass reg_class = oat_reg_class_by_size(size);
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  int data_offset;
+
+  if (size == kLong || size == kDouble) {
+    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
+  } else {
+    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
+  }
+
+  rl_array = LoadValue(cu, rl_array, kCoreReg);
+  rl_index = LoadValue(cu, rl_index, kCoreReg);
+  int reg_ptr = INVALID_REG;
+  if (IsTemp(cu, rl_array.low_reg)) {
+    Clobber(cu, rl_array.low_reg);
+    reg_ptr = rl_array.low_reg;
+  } else {
+    reg_ptr = AllocTemp(cu);
+    OpRegCopy(cu, reg_ptr, rl_array.low_reg);
+  }
+
+  /* null object? */
+  GenNullCheck(cu, rl_array.s_reg_low, rl_array.low_reg, opt_flags);
+
+  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
+  int reg_len = INVALID_REG;
+  if (needs_range_check) {
+    reg_len = AllocTemp(cu);
+    //NOTE: max live temps(4) here.
+    /* Get len */
+    LoadWordDisp(cu, rl_array.low_reg, len_offset, reg_len);
+  }
+  /* reg_ptr -> array data */
+  OpRegImm(cu, kOpAdd, reg_ptr, data_offset);
+  /* at this point, reg_ptr points to array, 2 live temps */
+  if ((size == kLong) || (size == kDouble)) {
+    //TUNING: specific wide routine that can handle fp regs
+    if (scale) {
+      int r_new_index = AllocTemp(cu);
+      OpRegRegImm(cu, kOpLsl, r_new_index, rl_index.low_reg, scale);
+      OpRegReg(cu, kOpAdd, reg_ptr, r_new_index);
+      FreeTemp(cu, r_new_index);
+    } else {
+      OpRegReg(cu, kOpAdd, reg_ptr, rl_index.low_reg);
+    }
+    rl_src = LoadValueWide(cu, rl_src, reg_class);
+
+    if (needs_range_check) {
+      GenRegRegCheck(cu, kCondCs, rl_index.low_reg, reg_len, kThrowArrayBounds);
+      FreeTemp(cu, reg_len);
+    }
+
+    StoreBaseDispWide(cu, reg_ptr, 0, rl_src.low_reg, rl_src.high_reg);
+
+    FreeTemp(cu, reg_ptr);
+  } else {
+    rl_src = LoadValue(cu, rl_src, reg_class);
+    if (needs_range_check) {
+      GenRegRegCheck(cu, kCondCs, rl_index.low_reg, reg_len, kThrowArrayBounds);
+      FreeTemp(cu, reg_len);
+    }
+    StoreBaseIndexed(cu, reg_ptr, rl_index.low_reg, rl_src.low_reg,
+                     scale, size);
+  }
+}
+
+/*
+ * Generate array store
+ *
+ */
+void MipsCodegen::GenArrayObjPut(CompilationUnit* cu, int opt_flags, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_src, int scale)
+{
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  int data_offset = mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value();
+
+  FlushAllRegs(cu);  // Use explicit registers
+  LockCallTemps(cu);
+
+  int r_value = TargetReg(kArg0);  // Register holding value
+  int r_array_class = TargetReg(kArg1);  // Register holding array's Class
+  int r_array = TargetReg(kArg2);  // Register holding array
+  int r_index = TargetReg(kArg3);  // Register holding index into array
+
+  LoadValueDirectFixed(cu, rl_array, r_array);  // Grab array
+  LoadValueDirectFixed(cu, rl_src, r_value);  // Grab value
+  LoadValueDirectFixed(cu, rl_index, r_index);  // Grab index
+
+  GenNullCheck(cu, rl_array.s_reg_low, r_array, opt_flags);  // NPE?
+
+  // Store of null?
+  LIR* null_value_check = OpCmpImmBranch(cu, kCondEq, r_value, 0, NULL);
+
+  // Get the array's class.
+  LoadWordDisp(cu, r_array, mirror::Object::ClassOffset().Int32Value(), r_array_class);
+  CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pCanPutArrayElementFromCode), r_value,
+                          r_array_class, true);
+  // Redo LoadValues in case they didn't survive the call.
+  LoadValueDirectFixed(cu, rl_array, r_array);  // Reload array
+  LoadValueDirectFixed(cu, rl_index, r_index);  // Reload index
+  LoadValueDirectFixed(cu, rl_src, r_value);  // Reload value
+  r_array_class = INVALID_REG;
+
+  // Branch here if value to be stored == null
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  null_value_check->target = target;
+
+  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
+  int reg_len = INVALID_REG;
+  if (needs_range_check) {
+    reg_len = TargetReg(kArg1);
+    LoadWordDisp(cu, r_array, len_offset, reg_len);  // Get len
+  }
+  /* r_ptr -> array data */
+  int r_ptr = AllocTemp(cu);
+  OpRegRegImm(cu, kOpAdd, r_ptr, r_array, data_offset);
+  if (needs_range_check) {
+    GenRegRegCheck(cu, kCondCs, r_index, reg_len, kThrowArrayBounds);
+  }
+  StoreBaseIndexed(cu, r_ptr, r_index, r_value, scale, kWord);
+  FreeTemp(cu, r_ptr);
+  FreeTemp(cu, r_index);
+  if (!IsConstantNullRef(cu, rl_src)) {
+    MarkGCCard(cu, r_value, r_array);
+  }
+}
+
+void MipsCodegen::GenShiftImmOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                                    RegLocation rl_src1, RegLocation rl_shift)
+{
+  // Default implementation is just to ignore the constant case.
+  GenShiftOpLong(cu, opcode, rl_dest, rl_src1, rl_shift);
+}
+
+void MipsCodegen::GenArithImmOpLong(CompilationUnit* cu, Instruction::Code opcode,
+                                    RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
+{
+  // Default - bail to non-const handler.
+  GenArithOpLong(cu, opcode, rl_dest, rl_src1, rl_src2);
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/mips/mips_lir.h b/src/compiler/dex/quick/mips/mips_lir.h
new file mode 100644
index 0000000..9771ea9
--- /dev/null
+++ b/src/compiler/dex/quick/mips/mips_lir.h
@@ -0,0 +1,432 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_MIPS_MIPSLIR_H_
+#define ART_SRC_COMPILER_DEX_QUICK_MIPS_MIPSLIR_H_
+
+#include "compiler/dex/compiler_internals.h"
+
+namespace art {
+
+/*
+ * Runtime register conventions.
+ *
+ * zero is always the value 0
+ * at is scratch (normally used as temp reg by assembler)
+ * v0, v1 are scratch (normally hold subroutine return values)
+ * a0-a3 are scratch (normally hold subroutine arguments)
+ * t0-t8 are scratch
+ * t9 is scratch (normally used for function calls)
+ * s0 (rMIPS_SUSPEND) is reserved [holds suspend-check counter]
+ * s1 (rMIPS_SELF) is reserved [holds current &Thread]
+ * s2-s7 are callee save (promotion target)
+ * k0, k1 are reserved for use by interrupt handlers
+ * gp is reserved for global pointer
+ * sp is reserved
+ * s8 is callee save (promotion target)
+ * ra is scratch (normally holds the return addr)
+ *
+ * Preserved across C calls: s0-s8
+ * Trashed across C calls: at, v0-v1, a0-a3, t0-t9, gp, ra
+ *
+ * Floating pointer registers
+ * NOTE: there are 32 fp registers (16 df pairs), but currently
+ *       only support 16 fp registers (8 df pairs).
+ * f0-f15
+ * df0-df7, where df0={f0,f1}, df1={f2,f3}, ... , df7={f14,f15}
+ *
+ * f0-f15 (df0-df7) trashed across C calls
+ *
+ * For mips32 code use:
+ *      a0-a3 to hold operands
+ *      v0-v1 to hold results
+ *      t0-t9 for temps
+ *
+ * All jump/branch instructions have a delay slot after it.
+ *
+ *  Stack frame diagram (stack grows down, higher addresses at top):
+ *
+ * +------------------------+
+ * | IN[ins-1]              |  {Note: resides in caller's frame}
+ * |       .                |
+ * | IN[0]                  |
+ * | caller's Method*       |
+ * +========================+  {Note: start of callee's frame}
+ * | spill region           |  {variable sized - will include lr if non-leaf.}
+ * +------------------------+
+ * | ...filler word...      |  {Note: used as 2nd word of V[locals-1] if long]
+ * +------------------------+
+ * | V[locals-1]            |
+ * | V[locals-2]            |
+ * |      .                 |
+ * |      .                 |
+ * | V[1]                   |
+ * | V[0]                   |
+ * +------------------------+
+ * |  0 to 3 words padding  |
+ * +------------------------+
+ * | OUT[outs-1]            |
+ * | OUT[outs-2]            |
+ * |       .                |
+ * | OUT[0]                 |
+ * | cur_method*            | <<== sp w/ 16-byte alignment
+ * +========================+
+ */
+
+// Offset to distingish FP regs.
+#define MIPS_FP_REG_OFFSET 32
+// Offset to distinguish DP FP regs.
+#define MIPS_FP_DOUBLE 64
+// Offset to distingish the extra regs.
+#define MIPS_EXTRA_REG_OFFSET 128
+// Reg types.
+#define MIPS_REGTYPE(x) (x & (MIPS_FP_REG_OFFSET | MIPS_FP_DOUBLE))
+#define MIPS_FPREG(x) ((x & MIPS_FP_REG_OFFSET) == MIPS_FP_REG_OFFSET)
+#define MIPS_EXTRAREG(x) ((x & MIPS_EXTRA_REG_OFFSET) == MIPS_EXTRA_REG_OFFSET)
+#define MIPS_DOUBLEREG(x) ((x & MIPS_FP_DOUBLE) == MIPS_FP_DOUBLE)
+#define MIPS_SINGLEREG(x) (MIPS_FPREG(x) && !MIPS_DOUBLEREG(x))
+/*
+ * Note: the low register of a floating point pair is sufficient to
+ * create the name of a double, but require both names to be passed to
+ * allow for asserts to verify that the pair is consecutive if significant
+ * rework is done in this area.  Also, it is a good reminder in the calling
+ * code that reg locations always describe doubles as a pair of singles.
+ */
+#define MIPS_S2D(x,y) ((x) | MIPS_FP_DOUBLE)
+// Mask to strip off fp flags.
+#define MIPS_FP_REG_MASK (MIPS_FP_REG_OFFSET-1)
+
+#ifdef HAVE_LITTLE_ENDIAN
+#define LOWORD_OFFSET 0
+#define HIWORD_OFFSET 4
+#define r_ARG0 r_A0
+#define r_ARG1 r_A1
+#define r_ARG2 r_A2
+#define r_ARG3 r_A3
+#define r_RESULT0 r_V0
+#define r_RESULT1 r_V1
+#else
+#define LOWORD_OFFSET 4
+#define HIWORD_OFFSET 0
+#define r_ARG0 r_A1
+#define r_ARG1 r_A0
+#define r_ARG2 r_A3
+#define r_ARG3 r_A2
+#define r_RESULT0 r_V1
+#define r_RESULT1 r_V0
+#endif
+
+// These are the same for both big and little endian.
+#define r_FARG0 r_F12
+#define r_FARG1 r_F13
+#define r_FARG2 r_F14
+#define r_FARG3 r_F15
+#define r_FRESULT0 r_F0
+#define r_FRESULT1 r_F1
+
+// Regs not used for Mips.
+#define rMIPS_LR INVALID_REG
+#define rMIPS_PC INVALID_REG
+
+// RegisterLocation templates return values (r_V0, or r_V0/r_V1).
+#define MIPS_LOC_C_RETURN {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, r_V0, INVALID_REG, \
+                           INVALID_SREG, INVALID_SREG}
+#define MIPS_LOC_C_RETURN_FLOAT {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, r_FRESULT0, \
+                                 INVALID_REG, INVALID_SREG, INVALID_SREG}
+#define MIPS_LOC_C_RETURN_WIDE {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r_RESULT0, \
+                                r_RESULT1, INVALID_SREG, INVALID_SREG}
+#define MIPS_LOC_C_RETURN_DOUBLE {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r_FRESULT0,\
+                                  r_FRESULT1, INVALID_SREG, INVALID_SREG}
+
+enum MipsResourceEncodingPos {
+  kMipsGPReg0   = 0,
+  kMipsRegSP    = 29,
+  kMipsRegLR    = 31,
+  kMipsFPReg0   = 32, // only 16 fp regs supported currently.
+  kMipsFPRegEnd   = 48,
+  kMipsRegHI    = kMipsFPRegEnd,
+  kMipsRegLO,
+  kMipsRegPC,
+  kMipsRegEnd   = 51,
+};
+
+#define ENCODE_MIPS_REG_LIST(N)      (static_cast<uint64_t>(N))
+#define ENCODE_MIPS_REG_SP           (1ULL << kMipsRegSP)
+#define ENCODE_MIPS_REG_LR           (1ULL << kMipsRegLR)
+#define ENCODE_MIPS_REG_PC           (1ULL << kMipsRegPC)
+
+enum MipsNativeRegisterPool {
+  r_ZERO = 0,
+  r_AT = 1,
+  r_V0 = 2,
+  r_V1 = 3,
+  r_A0 = 4,
+  r_A1 = 5,
+  r_A2 = 6,
+  r_A3 = 7,
+  r_T0 = 8,
+  r_T1 = 9,
+  r_T2 = 10,
+  r_T3 = 11,
+  r_T4 = 12,
+  r_T5 = 13,
+  r_T6 = 14,
+  r_T7 = 15,
+  r_S0 = 16,
+  r_S1 = 17,
+  r_S2 = 18,
+  r_S3 = 19,
+  r_S4 = 20,
+  r_S5 = 21,
+  r_S6 = 22,
+  r_S7 = 23,
+  r_T8 = 24,
+  r_T9 = 25,
+  r_K0 = 26,
+  r_K1 = 27,
+  r_GP = 28,
+  r_SP = 29,
+  r_FP = 30,
+  r_RA = 31,
+
+  r_F0 = 0 + MIPS_FP_REG_OFFSET,
+  r_F1,
+  r_F2,
+  r_F3,
+  r_F4,
+  r_F5,
+  r_F6,
+  r_F7,
+  r_F8,
+  r_F9,
+  r_F10,
+  r_F11,
+  r_F12,
+  r_F13,
+  r_F14,
+  r_F15,
+#if 0
+  /*
+   * TODO: The shared resource mask doesn't have enough bit positions to describe all
+   * MIPS registers.  Expand it and enable use of fp registers 16 through 31.
+   */
+  r_F16,
+  r_F17,
+  r_F18,
+  r_F19,
+  r_F20,
+  r_F21,
+  r_F22,
+  r_F23,
+  r_F24,
+  r_F25,
+  r_F26,
+  r_F27,
+  r_F28,
+  r_F29,
+  r_F30,
+  r_F31,
+#endif
+  r_DF0 = r_F0 + MIPS_FP_DOUBLE,
+  r_DF1 = r_F2 + MIPS_FP_DOUBLE,
+  r_DF2 = r_F4 + MIPS_FP_DOUBLE,
+  r_DF3 = r_F6 + MIPS_FP_DOUBLE,
+  r_DF4 = r_F8 + MIPS_FP_DOUBLE,
+  r_DF5 = r_F10 + MIPS_FP_DOUBLE,
+  r_DF6 = r_F12 + MIPS_FP_DOUBLE,
+  r_DF7 = r_F14 + MIPS_FP_DOUBLE,
+#if 0 // TODO: expand resource mask to enable use of all MIPS fp registers.
+  r_DF8 = r_F16 + MIPS_FP_DOUBLE,
+  r_DF9 = r_F18 + MIPS_FP_DOUBLE,
+  r_DF10 = r_F20 + MIPS_FP_DOUBLE,
+  r_DF11 = r_F22 + MIPS_FP_DOUBLE,
+  r_DF12 = r_F24 + MIPS_FP_DOUBLE,
+  r_DF13 = r_F26 + MIPS_FP_DOUBLE,
+  r_DF14 = r_F28 + MIPS_FP_DOUBLE,
+  r_DF15 = r_F30 + MIPS_FP_DOUBLE,
+#endif
+  r_HI = MIPS_EXTRA_REG_OFFSET,
+  r_LO,
+  r_PC,
+};
+
+#define rMIPS_SUSPEND r_S0
+#define rMIPS_SELF r_S1
+#define rMIPS_SP r_SP
+#define rMIPS_ARG0 r_ARG0
+#define rMIPS_ARG1 r_ARG1
+#define rMIPS_ARG2 r_ARG2
+#define rMIPS_ARG3 r_ARG3
+#define rMIPS_FARG0 r_FARG0
+#define rMIPS_FARG1 r_FARG1
+#define rMIPS_FARG2 r_FARG2
+#define rMIPS_FARG3 r_FARG3
+#define rMIPS_RET0 r_RESULT0
+#define rMIPS_RET1 r_RESULT1
+#define rMIPS_INVOKE_TGT r_T9
+#define rMIPS_COUNT INVALID_REG
+
+enum MipsShiftEncodings {
+  kMipsLsl = 0x0,
+  kMipsLsr = 0x1,
+  kMipsAsr = 0x2,
+  kMipsRor = 0x3
+};
+
+// MIPS sync kinds (Note: support for kinds other than kSYNC0 may not exist).
+#define kSYNC0        0x00
+#define kSYNC_WMB     0x04
+#define kSYNC_MB      0x01
+#define kSYNC_ACQUIRE 0x11
+#define kSYNC_RELEASE 0x12
+#define kSYNC_RMB     0x13
+
+// TODO: Use smaller hammer when appropriate for target CPU.
+#define kST kSYNC0
+#define kSY kSYNC0
+
+/*
+ * The following enum defines the list of supported Thumb instructions by the
+ * assembler. Their corresponding EncodingMap positions will be defined in
+ * Assemble.cc.
+ */
+enum MipsOpCode {
+  kMipsFirst = 0,
+  kMips32BitData = kMipsFirst, // data [31..0].
+  kMipsAddiu, // addiu t,s,imm16 [001001] s[25..21] t[20..16] imm16[15..0].
+  kMipsAddu,  // add d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100001].
+  kMipsAnd,   // and d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100100].
+  kMipsAndi,  // andi t,s,imm16 [001100] s[25..21] t[20..16] imm16[15..0].
+  kMipsB,     // b o   [0001000000000000] o[15..0].
+  kMipsBal,   // bal o [0000010000010001] o[15..0].
+  // NOTE: the code tests the range kMipsBeq thru kMipsBne, so adding an instruction in this
+  //       range may require updates.
+  kMipsBeq,   // beq s,t,o [000100] s[25..21] t[20..16] o[15..0].
+  kMipsBeqz,  // beqz s,o [000100] s[25..21] [00000] o[15..0].
+  kMipsBgez,  // bgez s,o [000001] s[25..21] [00001] o[15..0].
+  kMipsBgtz,  // bgtz s,o [000111] s[25..21] [00000] o[15..0].
+  kMipsBlez,  // blez s,o [000110] s[25..21] [00000] o[15..0].
+  kMipsBltz,  // bltz s,o [000001] s[25..21] [00000] o[15..0].
+  kMipsBnez,  // bnez s,o [000101] s[25..21] [00000] o[15..0].
+  kMipsBne,   // bne s,t,o [000101] s[25..21] t[20..16] o[15..0].
+  kMipsDiv,   // div s,t [000000] s[25..21] t[20..16] [0000000000011010].
+#if __mips_isa_rev>=2
+  kMipsExt,   // ext t,s,p,z [011111] s[25..21] t[20..16] z[15..11] p[10..6] [000000].
+#endif
+  kMipsJal,   // jal t [000011] t[25..0].
+  kMipsJalr,  // jalr d,s [000000] s[25..21] [00000] d[15..11] hint[10..6] [001001].
+  kMipsJr,    // jr s [000000] s[25..21] [0000000000] hint[10..6] [001000].
+  kMipsLahi,  // lui t,imm16 [00111100000] t[20..16] imm16[15..0] load addr hi.
+  kMipsLalo,  // ori t,s,imm16 [001001] s[25..21] t[20..16] imm16[15..0] load addr lo.
+  kMipsLui,   // lui t,imm16 [00111100000] t[20..16] imm16[15..0].
+  kMipsLb,    // lb t,o(b) [100000] b[25..21] t[20..16] o[15..0].
+  kMipsLbu,   // lbu t,o(b) [100100] b[25..21] t[20..16] o[15..0].
+  kMipsLh,    // lh t,o(b) [100001] b[25..21] t[20..16] o[15..0].
+  kMipsLhu,   // lhu t,o(b) [100101] b[25..21] t[20..16] o[15..0].
+  kMipsLw,    // lw t,o(b) [100011] b[25..21] t[20..16] o[15..0].
+  kMipsMfhi,  // mfhi d [0000000000000000] d[15..11] [00000010000].
+  kMipsMflo,  // mflo d [0000000000000000] d[15..11] [00000010010].
+  kMipsMove,  // move d,s [000000] s[25..21] [00000] d[15..11] [00000100101].
+  kMipsMovz,  // movz d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000001010].
+  kMipsMul,   // mul d,s,t [011100] s[25..21] t[20..16] d[15..11] [00000000010].
+  kMipsNop,   // nop [00000000000000000000000000000000].
+  kMipsNor,   // nor d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100111].
+  kMipsOr,    // or d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100101].
+  kMipsOri,   // ori t,s,imm16 [001001] s[25..21] t[20..16] imm16[15..0].
+  kMipsPref,  // pref h,o(b) [101011] b[25..21] h[20..16] o[15..0].
+  kMipsSb,    // sb t,o(b) [101000] b[25..21] t[20..16] o[15..0].
+#if __mips_isa_rev>=2
+  kMipsSeb,   // seb d,t [01111100000] t[20..16] d[15..11] [10000100000].
+  kMipsSeh,   // seh d,t [01111100000] t[20..16] d[15..11] [11000100000].
+#endif
+  kMipsSh,    // sh t,o(b) [101001] b[25..21] t[20..16] o[15..0].
+  kMipsSll,   // sll d,t,a [00000000000] t[20..16] d[15..11] a[10..6] [000000].
+  kMipsSllv,  // sllv d,t,s [000000] s[25..21] t[20..16] d[15..11] [00000000100].
+  kMipsSlt,   // slt d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000101010].
+  kMipsSlti,  // slti t,s,imm16 [001010] s[25..21] t[20..16] imm16[15..0].
+  kMipsSltu,  // sltu d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000101011].
+  kMipsSra,   // sra d,s,imm5 [00000000000] t[20..16] d[15..11] imm5[10..6] [000011].
+  kMipsSrav,  // srav d,t,s [000000] s[25..21] t[20..16] d[15..11] [00000000111].
+  kMipsSrl,   // srl d,t,a [00000000000] t[20..16] d[20..16] a[10..6] [000010].
+  kMipsSrlv,  // srlv d,t,s [000000] s[25..21] t[20..16] d[15..11] [00000000110].
+  kMipsSubu,  // subu d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100011].
+  kMipsSw,    // sw t,o(b) [101011] b[25..21] t[20..16] o[15..0].
+  kMipsXor,   // xor d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100110].
+  kMipsXori,  // xori t,s,imm16 [001110] s[25..21] t[20..16] imm16[15..0].
+  kMipsFadds, // add.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000000].
+  kMipsFsubs, // sub.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000001].
+  kMipsFmuls, // mul.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000010].
+  kMipsFdivs, // div.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000011].
+  kMipsFaddd, // add.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000000].
+  kMipsFsubd, // sub.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000001].
+  kMipsFmuld, // mul.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000010].
+  kMipsFdivd, // div.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000011].
+  kMipsFcvtsd,// cvt.s.d d,s [01000110001] [00000] s[15..11] d[10..6] [100000].
+  kMipsFcvtsw,// cvt.s.w d,s [01000110100] [00000] s[15..11] d[10..6] [100000].
+  kMipsFcvtds,// cvt.d.s d,s [01000110000] [00000] s[15..11] d[10..6] [100001].
+  kMipsFcvtdw,// cvt.d.w d,s [01000110100] [00000] s[15..11] d[10..6] [100001].
+  kMipsFcvtws,// cvt.w.d d,s [01000110000] [00000] s[15..11] d[10..6] [100100].
+  kMipsFcvtwd,// cvt.w.d d,s [01000110001] [00000] s[15..11] d[10..6] [100100].
+  kMipsFmovs, // mov.s d,s [01000110000] [00000] s[15..11] d[10..6] [000110].
+  kMipsFmovd, // mov.d d,s [01000110001] [00000] s[15..11] d[10..6] [000110].
+  kMipsFlwc1, // lwc1 t,o(b) [110001] b[25..21] t[20..16] o[15..0].
+  kMipsFldc1, // ldc1 t,o(b) [110101] b[25..21] t[20..16] o[15..0].
+  kMipsFswc1, // swc1 t,o(b) [111001] b[25..21] t[20..16] o[15..0].
+  kMipsFsdc1, // sdc1 t,o(b) [111101] b[25..21] t[20..16] o[15..0].
+  kMipsMfc1,  // mfc1 t,s [01000100000] t[20..16] s[15..11] [00000000000].
+  kMipsMtc1,  // mtc1 t,s [01000100100] t[20..16] s[15..11] [00000000000].
+  kMipsDelta, // Psuedo for ori t, s, <label>-<label>.
+  kMipsDeltaHi, // Pseudo for lui t, high16(<label>-<label>).
+  kMipsDeltaLo, // Pseudo for ori t, s, low16(<label>-<label>).
+  kMipsCurrPC,  // jal to .+8 to materialize pc.
+  kMipsSync,    // sync kind [000000] [0000000000000000] s[10..6] [001111].
+  kMipsUndefined,  // undefined [011001xxxxxxxxxxxxxxxx].
+  kMipsLast
+};
+
+// Instruction assembly field_loc kind.
+enum MipsEncodingKind {
+  kFmtUnused,
+  kFmtBitBlt,    /* Bit string using end/start */
+  kFmtDfp,       /* Double FP reg */
+  kFmtSfp,       /* Single FP reg */
+  kFmtBlt5_2,    /* Same 5-bit field to 2 locations */
+};
+
+// Struct used to define the snippet positions for each MIPS opcode.
+struct MipsEncodingMap {
+  uint32_t skeleton;
+  struct {
+    MipsEncodingKind kind;
+    int end;   // end for kFmtBitBlt, 1-bit slice end for FP regs.
+    int start; // start for kFmtBitBlt, 4-bit slice end for FP regs.
+  } field_loc[4];
+  MipsOpCode opcode;
+  uint64_t flags;
+  const char *name;
+  const char* fmt;
+  int size;   // Note: size is in bytes.
+};
+
+extern MipsEncodingMap EncodingMap[kMipsLast];
+
+#define IS_UIMM16(v) ((0 <= (v)) && ((v) <= 65535))
+#define IS_SIMM16(v) ((-32768 <= (v)) && ((v) <= 32766))
+#define IS_SIMM16_2WORD(v) ((-32764 <= (v)) && ((v) <= 32763)) // 2 offsets must fit.
+
+}  // namespace art
+
+#endif  // ART_SRC_COMPILER_DEX_QUICK_MIPS_MIPSLIR_H_
diff --git a/src/compiler/dex/quick/mips/target_mips.cc b/src/compiler/dex/quick/mips/target_mips.cc
new file mode 100644
index 0000000..ab6517c
--- /dev/null
+++ b/src/compiler/dex/quick/mips/target_mips.cc
@@ -0,0 +1,608 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_mips.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/compiler_internals.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "mips_lir.h"
+
+#include <string>
+
+namespace art {
+
+static int core_regs[] = {r_ZERO, r_AT, r_V0, r_V1, r_A0, r_A1, r_A2, r_A3,
+                          r_T0, r_T1, r_T2, r_T3, r_T4, r_T5, r_T6, r_T7,
+                          r_S0, r_S1, r_S2, r_S3, r_S4, r_S5, r_S6, r_S7, r_T8,
+                          r_T9, r_K0, r_K1, r_GP, r_SP, r_FP, r_RA};
+static int ReservedRegs[] = {r_ZERO, r_AT, r_S0, r_S1, r_K0, r_K1, r_GP, r_SP,
+                             r_RA};
+static int core_temps[] = {r_V0, r_V1, r_A0, r_A1, r_A2, r_A3, r_T0, r_T1, r_T2,
+                           r_T3, r_T4, r_T5, r_T6, r_T7, r_T8};
+static int FpRegs[] = {r_F0, r_F1, r_F2, r_F3, r_F4, r_F5, r_F6, r_F7,
+                       r_F8, r_F9, r_F10, r_F11, r_F12, r_F13, r_F14, r_F15};
+static int fp_temps[] = {r_F0, r_F1, r_F2, r_F3, r_F4, r_F5, r_F6, r_F7,
+                         r_F8, r_F9, r_F10, r_F11, r_F12, r_F13, r_F14, r_F15};
+
+RegLocation MipsCodegen::LocCReturn()
+{
+  RegLocation res = MIPS_LOC_C_RETURN;
+  return res;
+}
+
+RegLocation MipsCodegen::LocCReturnWide()
+{
+  RegLocation res = MIPS_LOC_C_RETURN_WIDE;
+  return res;
+}
+
+RegLocation MipsCodegen::LocCReturnFloat()
+{
+  RegLocation res = MIPS_LOC_C_RETURN_FLOAT;
+  return res;
+}
+
+RegLocation MipsCodegen::LocCReturnDouble()
+{
+  RegLocation res = MIPS_LOC_C_RETURN_DOUBLE;
+  return res;
+}
+
+// Return a target-dependent special register.
+int MipsCodegen::TargetReg(SpecialTargetRegister reg) {
+  int res = INVALID_REG;
+  switch (reg) {
+    case kSelf: res = rMIPS_SELF; break;
+    case kSuspend: res =  rMIPS_SUSPEND; break;
+    case kLr: res =  rMIPS_LR; break;
+    case kPc: res =  rMIPS_PC; break;
+    case kSp: res =  rMIPS_SP; break;
+    case kArg0: res = rMIPS_ARG0; break;
+    case kArg1: res = rMIPS_ARG1; break;
+    case kArg2: res = rMIPS_ARG2; break;
+    case kArg3: res = rMIPS_ARG3; break;
+    case kFArg0: res = rMIPS_FARG0; break;
+    case kFArg1: res = rMIPS_FARG1; break;
+    case kFArg2: res = rMIPS_FARG2; break;
+    case kFArg3: res = rMIPS_FARG3; break;
+    case kRet0: res = rMIPS_RET0; break;
+    case kRet1: res = rMIPS_RET1; break;
+    case kInvokeTgt: res = rMIPS_INVOKE_TGT; break;
+    case kCount: res = rMIPS_COUNT; break;
+  }
+  return res;
+}
+
+// Create a double from a pair of singles.
+int MipsCodegen::S2d(int low_reg, int high_reg)
+{
+  return MIPS_S2D(low_reg, high_reg);
+}
+
+// Return mask to strip off fp reg flags and bias.
+uint32_t MipsCodegen::FpRegMask()
+{
+  return MIPS_FP_REG_MASK;
+}
+
+// True if both regs single, both core or both double.
+bool MipsCodegen::SameRegType(int reg1, int reg2)
+{
+  return (MIPS_REGTYPE(reg1) == MIPS_REGTYPE(reg2));
+}
+
+/*
+ * Decode the register id.
+ */
+uint64_t MipsCodegen::GetRegMaskCommon(CompilationUnit* cu, int reg)
+{
+  uint64_t seed;
+  int shift;
+  int reg_id;
+
+
+  reg_id = reg & 0x1f;
+  /* Each double register is equal to a pair of single-precision FP registers */
+  seed = MIPS_DOUBLEREG(reg) ? 3 : 1;
+  /* FP register starts at bit position 16 */
+  shift = MIPS_FPREG(reg) ? kMipsFPReg0 : 0;
+  /* Expand the double register id into single offset */
+  shift += reg_id;
+  return (seed << shift);
+}
+
+uint64_t MipsCodegen::GetPCUseDefEncoding()
+{
+  return ENCODE_MIPS_REG_PC;
+}
+
+
+void MipsCodegen::SetupTargetResourceMasks(CompilationUnit* cu, LIR* lir)
+{
+  DCHECK_EQ(cu->instruction_set, kMips);
+
+  // Mips-specific resource map setup here.
+  uint64_t flags = MipsCodegen::EncodingMap[lir->opcode].flags;
+
+  if (flags & REG_DEF_SP) {
+    lir->def_mask |= ENCODE_MIPS_REG_SP;
+  }
+
+  if (flags & REG_USE_SP) {
+    lir->use_mask |= ENCODE_MIPS_REG_SP;
+  }
+
+  if (flags & REG_DEF_LR) {
+    lir->def_mask |= ENCODE_MIPS_REG_LR;
+  }
+}
+
+/* For dumping instructions */
+#define MIPS_REG_COUNT 32
+static const char *mips_reg_name[MIPS_REG_COUNT] = {
+  "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
+  "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
+  "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+  "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra"
+};
+
+/*
+ * Interpret a format string and build a string no longer than size
+ * See format key in Assemble.c.
+ */
+std::string MipsCodegen::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr)
+{
+  std::string buf;
+  int i;
+  const char *fmt_end = &fmt[strlen(fmt)];
+  char tbuf[256];
+  char nc;
+  while (fmt < fmt_end) {
+    int operand;
+    if (*fmt == '!') {
+      fmt++;
+      DCHECK_LT(fmt, fmt_end);
+      nc = *fmt++;
+      if (nc=='!') {
+        strcpy(tbuf, "!");
+      } else {
+         DCHECK_LT(fmt, fmt_end);
+         DCHECK_LT(static_cast<unsigned>(nc-'0'), 4u);
+         operand = lir->operands[nc-'0'];
+         switch (*fmt++) {
+           case 'b':
+             strcpy(tbuf,"0000");
+             for (i=3; i>= 0; i--) {
+               tbuf[i] += operand & 1;
+               operand >>= 1;
+             }
+             break;
+           case 's':
+             sprintf(tbuf,"$f%d",operand & MIPS_FP_REG_MASK);
+             break;
+           case 'S':
+             DCHECK_EQ(((operand & MIPS_FP_REG_MASK) & 1), 0);
+             sprintf(tbuf,"$f%d",operand & MIPS_FP_REG_MASK);
+             break;
+           case 'h':
+             sprintf(tbuf,"%04x", operand);
+             break;
+           case 'M':
+           case 'd':
+             sprintf(tbuf,"%d", operand);
+             break;
+           case 'D':
+             sprintf(tbuf,"%d", operand+1);
+             break;
+           case 'E':
+             sprintf(tbuf,"%d", operand*4);
+             break;
+           case 'F':
+             sprintf(tbuf,"%d", operand*2);
+             break;
+           case 't':
+             sprintf(tbuf,"0x%08x (L%p)", reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4 +
+                     (operand << 2), lir->target);
+             break;
+           case 'T':
+             sprintf(tbuf,"0x%08x", operand << 2);
+             break;
+           case 'u': {
+             int offset_1 = lir->operands[0];
+             int offset_2 = NEXT_LIR(lir)->operands[0];
+             uintptr_t target =
+                 (((reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4) & ~3) +
+                 (offset_1 << 21 >> 9) + (offset_2 << 1)) & 0xfffffffc;
+             sprintf(tbuf, "%p", reinterpret_cast<void*>(target));
+             break;
+          }
+
+           /* Nothing to print for BLX_2 */
+           case 'v':
+             strcpy(tbuf, "see above");
+             break;
+           case 'r':
+             DCHECK(operand >= 0 && operand < MIPS_REG_COUNT);
+             strcpy(tbuf, mips_reg_name[operand]);
+             break;
+           case 'N':
+             // Placeholder for delay slot handling
+             strcpy(tbuf, ";  nop");
+             break;
+           default:
+             strcpy(tbuf,"DecodeError");
+             break;
+         }
+         buf += tbuf;
+      }
+    } else {
+       buf += *fmt++;
+    }
+  }
+  return buf;
+}
+
+// FIXME: need to redo resource maps for MIPS - fix this at that time
+void MipsCodegen::DumpResourceMask(LIR *mips_lir, uint64_t mask, const char *prefix)
+{
+  char buf[256];
+  buf[0] = 0;
+
+  if (mask == ENCODE_ALL) {
+    strcpy(buf, "all");
+  } else {
+    char num[8];
+    int i;
+
+    for (i = 0; i < kMipsRegEnd; i++) {
+      if (mask & (1ULL << i)) {
+        sprintf(num, "%d ", i);
+        strcat(buf, num);
+      }
+    }
+
+    if (mask & ENCODE_CCODE) {
+      strcat(buf, "cc ");
+    }
+    if (mask & ENCODE_FP_STATUS) {
+      strcat(buf, "fpcc ");
+    }
+    /* Memory bits */
+    if (mips_lir && (mask & ENCODE_DALVIK_REG)) {
+      sprintf(buf + strlen(buf), "dr%d%s", mips_lir->alias_info & 0xffff,
+              (mips_lir->alias_info & 0x80000000) ? "(+1)" : "");
+    }
+    if (mask & ENCODE_LITERAL) {
+      strcat(buf, "lit ");
+    }
+
+    if (mask & ENCODE_HEAP_REF) {
+      strcat(buf, "heap ");
+    }
+    if (mask & ENCODE_MUST_NOT_ALIAS) {
+      strcat(buf, "noalias ");
+    }
+  }
+  if (buf[0]) {
+    LOG(INFO) << prefix << ": " <<  buf;
+  }
+}
+
+/*
+ * TUNING: is leaf?  Can't just use "has_invoke" to determine as some
+ * instructions might call out to C/assembly helper functions.  Until
+ * machinery is in place, always spill lr.
+ */
+
+void MipsCodegen::AdjustSpillMask(CompilationUnit* cu)
+{
+  cu->core_spill_mask |= (1 << r_RA);
+  cu->num_core_spills++;
+}
+
+/*
+ * Mark a callee-save fp register as promoted.  Note that
+ * vpush/vpop uses contiguous register lists so we must
+ * include any holes in the mask.  Associate holes with
+ * Dalvik register INVALID_VREG (0xFFFFU).
+ */
+void MipsCodegen::MarkPreservedSingle(CompilationUnit* cu, int s_reg, int reg)
+{
+  LOG(FATAL) << "No support yet for promoted FP regs";
+}
+
+void MipsCodegen::FlushRegWide(CompilationUnit* cu, int reg1, int reg2)
+{
+  RegisterInfo* info1 = GetRegInfo(cu, reg1);
+  RegisterInfo* info2 = GetRegInfo(cu, reg2);
+  DCHECK(info1 && info2 && info1->pair && info2->pair &&
+         (info1->partner == info2->reg) &&
+         (info2->partner == info1->reg));
+  if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
+    if (!(info1->is_temp && info2->is_temp)) {
+      /* Should not happen.  If it does, there's a problem in eval_loc */
+      LOG(FATAL) << "Long half-temp, half-promoted";
+    }
+
+    info1->dirty = false;
+    info2->dirty = false;
+    if (SRegToVReg(cu, info2->s_reg) < SRegToVReg(cu, info1->s_reg))
+      info1 = info2;
+    int v_reg = SRegToVReg(cu, info1->s_reg);
+    StoreBaseDispWide(cu, rMIPS_SP, VRegOffset(cu, v_reg), info1->reg, info1->partner);
+  }
+}
+
+void MipsCodegen::FlushReg(CompilationUnit* cu, int reg)
+{
+  RegisterInfo* info = GetRegInfo(cu, reg);
+  if (info->live && info->dirty) {
+    info->dirty = false;
+    int v_reg = SRegToVReg(cu, info->s_reg);
+    StoreBaseDisp(cu, rMIPS_SP, VRegOffset(cu, v_reg), reg, kWord);
+  }
+}
+
+/* Give access to the target-dependent FP register encoding to common code */
+bool MipsCodegen::IsFpReg(int reg) {
+  return MIPS_FPREG(reg);
+}
+
+/* Clobber all regs that might be used by an external C call */
+void MipsCodegen::ClobberCalleeSave(CompilationUnit *cu)
+{
+  Clobber(cu, r_ZERO);
+  Clobber(cu, r_AT);
+  Clobber(cu, r_V0);
+  Clobber(cu, r_V1);
+  Clobber(cu, r_A0);
+  Clobber(cu, r_A1);
+  Clobber(cu, r_A2);
+  Clobber(cu, r_A3);
+  Clobber(cu, r_T0);
+  Clobber(cu, r_T1);
+  Clobber(cu, r_T2);
+  Clobber(cu, r_T3);
+  Clobber(cu, r_T4);
+  Clobber(cu, r_T5);
+  Clobber(cu, r_T6);
+  Clobber(cu, r_T7);
+  Clobber(cu, r_T8);
+  Clobber(cu, r_T9);
+  Clobber(cu, r_K0);
+  Clobber(cu, r_K1);
+  Clobber(cu, r_GP);
+  Clobber(cu, r_FP);
+  Clobber(cu, r_RA);
+  Clobber(cu, r_F0);
+  Clobber(cu, r_F1);
+  Clobber(cu, r_F2);
+  Clobber(cu, r_F3);
+  Clobber(cu, r_F4);
+  Clobber(cu, r_F5);
+  Clobber(cu, r_F6);
+  Clobber(cu, r_F7);
+  Clobber(cu, r_F8);
+  Clobber(cu, r_F9);
+  Clobber(cu, r_F10);
+  Clobber(cu, r_F11);
+  Clobber(cu, r_F12);
+  Clobber(cu, r_F13);
+  Clobber(cu, r_F14);
+  Clobber(cu, r_F15);
+}
+
+RegLocation MipsCodegen::GetReturnWideAlt(CompilationUnit* cu)
+{
+  UNIMPLEMENTED(FATAL) << "No GetReturnWideAlt for MIPS";
+  RegLocation res = LocCReturnWide();
+  return res;
+}
+
+RegLocation MipsCodegen::GetReturnAlt(CompilationUnit* cu)
+{
+  UNIMPLEMENTED(FATAL) << "No GetReturnAlt for MIPS";
+  RegLocation res = LocCReturn();
+  return res;
+}
+
+RegisterInfo* MipsCodegen::GetRegInfo(CompilationUnit* cu, int reg)
+{
+  return MIPS_FPREG(reg) ? &cu->reg_pool->FPRegs[reg & MIPS_FP_REG_MASK]
+            : &cu->reg_pool->core_regs[reg];
+}
+
+/* To be used when explicitly managing register use */
+void MipsCodegen::LockCallTemps(CompilationUnit* cu)
+{
+  LockTemp(cu, rMIPS_ARG0);
+  LockTemp(cu, rMIPS_ARG1);
+  LockTemp(cu, rMIPS_ARG2);
+  LockTemp(cu, rMIPS_ARG3);
+}
+
+/* To be used when explicitly managing register use */
+void MipsCodegen::FreeCallTemps(CompilationUnit* cu)
+{
+  FreeTemp(cu, rMIPS_ARG0);
+  FreeTemp(cu, rMIPS_ARG1);
+  FreeTemp(cu, rMIPS_ARG2);
+  FreeTemp(cu, rMIPS_ARG3);
+}
+
+void MipsCodegen::GenMemBarrier(CompilationUnit *cu, MemBarrierKind barrier_kind)
+{
+#if ANDROID_SMP != 0
+  NewLIR1(cu, kMipsSync, 0 /* Only stype currently supported */);
+#endif
+}
+
+/*
+ * Alloc a pair of core registers, or a double.  Low reg in low byte,
+ * high reg in next byte.
+ */
+int MipsCodegen::AllocTypedTempPair(CompilationUnit *cu, bool fp_hint,
+                  int reg_class)
+{
+  int high_reg;
+  int low_reg;
+  int res = 0;
+
+  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
+    low_reg = AllocTempDouble(cu);
+    high_reg = low_reg + 1;
+    res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
+    return res;
+  }
+
+  low_reg = AllocTemp(cu);
+  high_reg = AllocTemp(cu);
+  res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
+  return res;
+}
+
+int MipsCodegen::AllocTypedTemp(CompilationUnit *cu, bool fp_hint, int reg_class)
+{
+  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg))
+{
+    return AllocTempFloat(cu);
+}
+  return AllocTemp(cu);
+}
+
+void MipsCodegen::CompilerInitializeRegAlloc(CompilationUnit* cu)
+{
+  int num_regs = sizeof(core_regs)/sizeof(*core_regs);
+  int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
+  int num_temps = sizeof(core_temps)/sizeof(*core_temps);
+  int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
+  int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
+  RegisterPool *pool =
+      static_cast<RegisterPool*>(NewMem(cu, sizeof(*pool), true, kAllocRegAlloc));
+  cu->reg_pool = pool;
+  pool->num_core_regs = num_regs;
+  pool->core_regs = static_cast<RegisterInfo*>
+     (NewMem(cu, num_regs * sizeof(*cu->reg_pool->core_regs), true, kAllocRegAlloc));
+  pool->num_fp_regs = num_fp_regs;
+  pool->FPRegs = static_cast<RegisterInfo*>
+      (NewMem(cu, num_fp_regs * sizeof(*cu->reg_pool->FPRegs), true, kAllocRegAlloc));
+  CompilerInitPool(pool->core_regs, core_regs, pool->num_core_regs);
+  CompilerInitPool(pool->FPRegs, FpRegs, pool->num_fp_regs);
+  // Keep special registers from being allocated
+  for (int i = 0; i < num_reserved; i++) {
+    if (NO_SUSPEND && (ReservedRegs[i] == rMIPS_SUSPEND)) {
+      //To measure cost of suspend check
+      continue;
+    }
+    MarkInUse(cu, ReservedRegs[i]);
+  }
+  // Mark temp regs - all others not in use can be used for promotion
+  for (int i = 0; i < num_temps; i++) {
+    MarkTemp(cu, core_temps[i]);
+  }
+  for (int i = 0; i < num_fp_temps; i++) {
+    MarkTemp(cu, fp_temps[i]);
+  }
+}
+
+void MipsCodegen::FreeRegLocTemps(CompilationUnit* cu, RegLocation rl_keep, RegLocation rl_free)
+{
+  if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) &&
+    (rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) {
+    // No overlap, free both
+    FreeTemp(cu, rl_free.low_reg);
+    FreeTemp(cu, rl_free.high_reg);
+  }
+}
+/*
+ * In the Arm code a it is typical to use the link register
+ * to hold the target address.  However, for Mips we must
+ * ensure that all branch instructions can be restarted if
+ * there is a trap in the shadow.  Allocate a temp register.
+ */
+int MipsCodegen::LoadHelper(CompilationUnit* cu, int offset)
+{
+  LoadWordDisp(cu, rMIPS_SELF, offset, r_T9);
+  return r_T9;
+}
+
+void MipsCodegen::SpillCoreRegs(CompilationUnit* cu)
+{
+  if (cu->num_core_spills == 0) {
+    return;
+  }
+  uint32_t mask = cu->core_spill_mask;
+  int offset = cu->num_core_spills * 4;
+  OpRegImm(cu, kOpSub, rMIPS_SP, offset);
+  for (int reg = 0; mask; mask >>= 1, reg++) {
+    if (mask & 0x1) {
+      offset -= 4;
+      StoreWordDisp(cu, rMIPS_SP, offset, reg);
+    }
+  }
+}
+
+void MipsCodegen::UnSpillCoreRegs(CompilationUnit* cu)
+{
+  if (cu->num_core_spills == 0) {
+    return;
+  }
+  uint32_t mask = cu->core_spill_mask;
+  int offset = cu->frame_size;
+  for (int reg = 0; mask; mask >>= 1, reg++) {
+    if (mask & 0x1) {
+      offset -= 4;
+      LoadWordDisp(cu, rMIPS_SP, offset, reg);
+    }
+  }
+  OpRegImm(cu, kOpAdd, rMIPS_SP, cu->frame_size);
+}
+
+bool MipsCodegen::IsUnconditionalBranch(LIR* lir)
+{
+  return (lir->opcode == kMipsB);
+}
+
+/* Common initialization routine for an architecture family */
+bool InitMipsCodegen(CompilationUnit* cu)
+{
+  cu->cg.reset(new MipsCodegen());
+  for (int i = 0; i < kMipsLast; i++) {
+    if (MipsCodegen::EncodingMap[i].opcode != i) {
+      LOG(FATAL) << "Encoding order for " << MipsCodegen::EncodingMap[i].name
+                 << " is wrong: expecting " << i << ", seeing "
+                 << static_cast<int>(MipsCodegen::EncodingMap[i].opcode);
+    }
+  }
+  return true;
+}
+
+uint64_t MipsCodegen::GetTargetInstFlags(int opcode)
+{
+  return MipsCodegen::EncodingMap[opcode].flags;
+}
+
+const char* MipsCodegen::GetTargetInstName(int opcode)
+{
+  return MipsCodegen::EncodingMap[opcode].name;
+}
+
+const char* MipsCodegen::GetTargetInstFmt(int opcode)
+{
+  return MipsCodegen::EncodingMap[opcode].fmt;
+}
+
+} // namespace art
diff --git a/src/compiler/dex/quick/mips/utility_mips.cc b/src/compiler/dex/quick/mips/utility_mips.cc
new file mode 100644
index 0000000..168eb68
--- /dev/null
+++ b/src/compiler/dex/quick/mips/utility_mips.cc
@@ -0,0 +1,705 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_mips.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "mips_lir.h"
+
+namespace art {
+
+/* This file contains codegen for the MIPS32 ISA. */
+LIR* MipsCodegen::OpFpRegCopy(CompilationUnit *cu, int r_dest, int r_src)
+{
+  int opcode;
+  /* must be both DOUBLE or both not DOUBLE */
+  DCHECK_EQ(MIPS_DOUBLEREG(r_dest),MIPS_DOUBLEREG(r_src));
+  if (MIPS_DOUBLEREG(r_dest)) {
+    opcode = kMipsFmovd;
+  } else {
+    if (MIPS_SINGLEREG(r_dest)) {
+      if (MIPS_SINGLEREG(r_src)) {
+        opcode = kMipsFmovs;
+      } else {
+        /* note the operands are swapped for the mtc1 instr */
+        int t_opnd = r_src;
+        r_src = r_dest;
+        r_dest = t_opnd;
+        opcode = kMipsMtc1;
+      }
+    } else {
+      DCHECK(MIPS_SINGLEREG(r_src));
+      opcode = kMipsMfc1;
+    }
+  }
+  LIR* res = RawLIR(cu, cu->current_dalvik_offset, opcode, r_src, r_dest);
+  if (!(cu->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
+    res->flags.is_nop = true;
+  }
+  return res;
+}
+
+bool MipsCodegen::InexpensiveConstantInt(int32_t value)
+{
+  return ((value == 0) || IsUint(16, value) || ((value < 0) && (value >= -32768)));
+}
+
+bool MipsCodegen::InexpensiveConstantFloat(int32_t value)
+{
+  return false;  // TUNING
+}
+
+bool MipsCodegen::InexpensiveConstantLong(int64_t value)
+{
+  return false;  // TUNING
+}
+
+bool MipsCodegen::InexpensiveConstantDouble(int64_t value)
+{
+  return false; // TUNING
+}
+
+/*
+ * Load a immediate using a shortcut if possible; otherwise
+ * grab from the per-translation literal pool.  If target is
+ * a high register, build constant into a low register and copy.
+ *
+ * No additional register clobbering operation performed. Use this version when
+ * 1) r_dest is freshly returned from AllocTemp or
+ * 2) The codegen is under fixed register usage
+ */
+LIR* MipsCodegen::LoadConstantNoClobber(CompilationUnit *cu, int r_dest, int value)
+{
+  LIR *res;
+
+  int r_dest_save = r_dest;
+  int is_fp_reg = MIPS_FPREG(r_dest);
+  if (is_fp_reg) {
+    DCHECK(MIPS_SINGLEREG(r_dest));
+    r_dest = AllocTemp(cu);
+  }
+
+  /* See if the value can be constructed cheaply */
+  if (value == 0) {
+    res = NewLIR2(cu, kMipsMove, r_dest, r_ZERO);
+  } else if ((value > 0) && (value <= 65535)) {
+    res = NewLIR3(cu, kMipsOri, r_dest, r_ZERO, value);
+  } else if ((value < 0) && (value >= -32768)) {
+    res = NewLIR3(cu, kMipsAddiu, r_dest, r_ZERO, value);
+  } else {
+    res = NewLIR2(cu, kMipsLui, r_dest, value>>16);
+    if (value & 0xffff)
+      NewLIR3(cu, kMipsOri, r_dest, r_dest, value);
+  }
+
+  if (is_fp_reg) {
+    NewLIR2(cu, kMipsMtc1, r_dest, r_dest_save);
+    FreeTemp(cu, r_dest);
+  }
+
+  return res;
+}
+
+LIR* MipsCodegen::OpUnconditionalBranch(CompilationUnit* cu, LIR* target)
+{
+  LIR* res = NewLIR1(cu, kMipsB, 0 /* offset to be patched during assembly*/ );
+  res->target = target;
+  return res;
+}
+
+LIR* MipsCodegen::OpReg(CompilationUnit *cu, OpKind op, int r_dest_src)
+{
+  MipsOpCode opcode = kMipsNop;
+  switch (op) {
+    case kOpBlx:
+      opcode = kMipsJalr;
+      break;
+    case kOpBx:
+      return NewLIR1(cu, kMipsJr, r_dest_src);
+      break;
+    default:
+      LOG(FATAL) << "Bad case in OpReg";
+  }
+  return NewLIR2(cu, opcode, r_RA, r_dest_src);
+}
+
+LIR* MipsCodegen::OpRegImm(CompilationUnit *cu, OpKind op, int r_dest_src1,
+          int value)
+{
+  LIR *res;
+  bool neg = (value < 0);
+  int abs_value = (neg) ? -value : value;
+  bool short_form = (abs_value & 0xff) == abs_value;
+  MipsOpCode opcode = kMipsNop;
+  switch (op) {
+    case kOpAdd:
+      return OpRegRegImm(cu, op, r_dest_src1, r_dest_src1, value);
+      break;
+    case kOpSub:
+      return OpRegRegImm(cu, op, r_dest_src1, r_dest_src1, value);
+      break;
+    default:
+      LOG(FATAL) << "Bad case in OpRegImm";
+      break;
+  }
+  if (short_form)
+    res = NewLIR2(cu, opcode, r_dest_src1, abs_value);
+  else {
+    int r_scratch = AllocTemp(cu);
+    res = LoadConstant(cu, r_scratch, value);
+    if (op == kOpCmp)
+      NewLIR2(cu, opcode, r_dest_src1, r_scratch);
+    else
+      NewLIR3(cu, opcode, r_dest_src1, r_dest_src1, r_scratch);
+  }
+  return res;
+}
+
+LIR* MipsCodegen::OpRegRegReg(CompilationUnit *cu, OpKind op, int r_dest, int r_src1, int r_src2)
+{
+  MipsOpCode opcode = kMipsNop;
+  switch (op) {
+    case kOpAdd:
+      opcode = kMipsAddu;
+      break;
+    case kOpSub:
+      opcode = kMipsSubu;
+      break;
+    case kOpAnd:
+      opcode = kMipsAnd;
+      break;
+    case kOpMul:
+      opcode = kMipsMul;
+      break;
+    case kOpOr:
+      opcode = kMipsOr;
+      break;
+    case kOpXor:
+      opcode = kMipsXor;
+      break;
+    case kOpLsl:
+      opcode = kMipsSllv;
+      break;
+    case kOpLsr:
+      opcode = kMipsSrlv;
+      break;
+    case kOpAsr:
+      opcode = kMipsSrav;
+      break;
+    case kOpAdc:
+    case kOpSbc:
+      LOG(FATAL) << "No carry bit on MIPS";
+      break;
+    default:
+      LOG(FATAL) << "bad case in OpRegRegReg";
+      break;
+  }
+  return NewLIR3(cu, opcode, r_dest, r_src1, r_src2);
+}
+
+LIR* MipsCodegen::OpRegRegImm(CompilationUnit *cu, OpKind op, int r_dest, int r_src1, int value)
+{
+  LIR *res;
+  MipsOpCode opcode = kMipsNop;
+  bool short_form = true;
+
+  switch (op) {
+    case kOpAdd:
+      if (IS_SIMM16(value)) {
+        opcode = kMipsAddiu;
+      }
+      else {
+        short_form = false;
+        opcode = kMipsAddu;
+      }
+      break;
+    case kOpSub:
+      if (IS_SIMM16((-value))) {
+        value = -value;
+        opcode = kMipsAddiu;
+      }
+      else {
+        short_form = false;
+        opcode = kMipsSubu;
+      }
+      break;
+    case kOpLsl:
+        DCHECK(value >= 0 && value <= 31);
+        opcode = kMipsSll;
+        break;
+    case kOpLsr:
+        DCHECK(value >= 0 && value <= 31);
+        opcode = kMipsSrl;
+        break;
+    case kOpAsr:
+        DCHECK(value >= 0 && value <= 31);
+        opcode = kMipsSra;
+        break;
+    case kOpAnd:
+      if (IS_UIMM16((value))) {
+        opcode = kMipsAndi;
+      }
+      else {
+        short_form = false;
+        opcode = kMipsAnd;
+      }
+      break;
+    case kOpOr:
+      if (IS_UIMM16((value))) {
+        opcode = kMipsOri;
+      }
+      else {
+        short_form = false;
+        opcode = kMipsOr;
+      }
+      break;
+    case kOpXor:
+      if (IS_UIMM16((value))) {
+        opcode = kMipsXori;
+      }
+      else {
+        short_form = false;
+        opcode = kMipsXor;
+      }
+      break;
+    case kOpMul:
+      short_form = false;
+      opcode = kMipsMul;
+      break;
+    default:
+      LOG(FATAL) << "Bad case in OpRegRegImm";
+      break;
+  }
+
+  if (short_form)
+    res = NewLIR3(cu, opcode, r_dest, r_src1, value);
+  else {
+    if (r_dest != r_src1) {
+      res = LoadConstant(cu, r_dest, value);
+      NewLIR3(cu, opcode, r_dest, r_src1, r_dest);
+    } else {
+      int r_scratch = AllocTemp(cu);
+      res = LoadConstant(cu, r_scratch, value);
+      NewLIR3(cu, opcode, r_dest, r_src1, r_scratch);
+    }
+  }
+  return res;
+}
+
+LIR* MipsCodegen::OpRegReg(CompilationUnit *cu, OpKind op, int r_dest_src1, int r_src2)
+{
+  MipsOpCode opcode = kMipsNop;
+  LIR *res;
+  switch (op) {
+    case kOpMov:
+      opcode = kMipsMove;
+      break;
+    case kOpMvn:
+      return NewLIR3(cu, kMipsNor, r_dest_src1, r_src2, r_ZERO);
+    case kOpNeg:
+      return NewLIR3(cu, kMipsSubu, r_dest_src1, r_ZERO, r_src2);
+    case kOpAdd:
+    case kOpAnd:
+    case kOpMul:
+    case kOpOr:
+    case kOpSub:
+    case kOpXor:
+      return OpRegRegReg(cu, op, r_dest_src1, r_dest_src1, r_src2);
+    case kOp2Byte:
+#if __mips_isa_rev>=2
+      res = NewLIR2(cu, kMipsSeb, r_dest_src1, r_src2);
+#else
+      res = OpRegRegImm(cu, kOpLsl, r_dest_src1, r_src2, 24);
+      OpRegRegImm(cu, kOpAsr, r_dest_src1, r_dest_src1, 24);
+#endif
+      return res;
+    case kOp2Short:
+#if __mips_isa_rev>=2
+      res = NewLIR2(cu, kMipsSeh, r_dest_src1, r_src2);
+#else
+      res = OpRegRegImm(cu, kOpLsl, r_dest_src1, r_src2, 16);
+      OpRegRegImm(cu, kOpAsr, r_dest_src1, r_dest_src1, 16);
+#endif
+      return res;
+    case kOp2Char:
+       return NewLIR3(cu, kMipsAndi, r_dest_src1, r_src2, 0xFFFF);
+    default:
+      LOG(FATAL) << "Bad case in OpRegReg";
+      break;
+  }
+  return NewLIR2(cu, opcode, r_dest_src1, r_src2);
+}
+
+LIR* MipsCodegen::LoadConstantWide(CompilationUnit *cu, int r_dest_lo, int r_dest_hi, int64_t value)
+{
+  LIR *res;
+  res = LoadConstantNoClobber(cu, r_dest_lo, Low32Bits(value));
+  LoadConstantNoClobber(cu, r_dest_hi, High32Bits(value));
+  return res;
+}
+
+/* Load value from base + scaled index. */
+LIR* MipsCodegen::LoadBaseIndexed(CompilationUnit *cu, int rBase, int r_index, int r_dest,
+                                  int scale, OpSize size)
+{
+  LIR *first = NULL;
+  LIR *res;
+  MipsOpCode opcode = kMipsNop;
+  int t_reg = AllocTemp(cu);
+
+  if (MIPS_FPREG(r_dest)) {
+    DCHECK(MIPS_SINGLEREG(r_dest));
+    DCHECK((size == kWord) || (size == kSingle));
+    size = kSingle;
+  } else {
+    if (size == kSingle)
+      size = kWord;
+  }
+
+  if (!scale) {
+    first = NewLIR3(cu, kMipsAddu, t_reg , rBase, r_index);
+  } else {
+    first = OpRegRegImm(cu, kOpLsl, t_reg, r_index, scale);
+    NewLIR3(cu, kMipsAddu, t_reg , rBase, t_reg);
+  }
+
+  switch (size) {
+    case kSingle:
+      opcode = kMipsFlwc1;
+      break;
+    case kWord:
+      opcode = kMipsLw;
+      break;
+    case kUnsignedHalf:
+      opcode = kMipsLhu;
+      break;
+    case kSignedHalf:
+      opcode = kMipsLh;
+      break;
+    case kUnsignedByte:
+      opcode = kMipsLbu;
+      break;
+    case kSignedByte:
+      opcode = kMipsLb;
+      break;
+    default:
+      LOG(FATAL) << "Bad case in LoadBaseIndexed";
+  }
+
+  res = NewLIR3(cu, opcode, r_dest, 0, t_reg);
+  FreeTemp(cu, t_reg);
+  return (first) ? first : res;
+}
+
+/* store value base base + scaled index. */
+LIR* MipsCodegen::StoreBaseIndexed(CompilationUnit *cu, int rBase, int r_index, int r_src,
+                                   int scale, OpSize size)
+{
+  LIR *first = NULL;
+  MipsOpCode opcode = kMipsNop;
+  int r_new_index = r_index;
+  int t_reg = AllocTemp(cu);
+
+  if (MIPS_FPREG(r_src)) {
+    DCHECK(MIPS_SINGLEREG(r_src));
+    DCHECK((size == kWord) || (size == kSingle));
+    size = kSingle;
+  } else {
+    if (size == kSingle)
+      size = kWord;
+  }
+
+  if (!scale) {
+    first = NewLIR3(cu, kMipsAddu, t_reg , rBase, r_index);
+  } else {
+    first = OpRegRegImm(cu, kOpLsl, t_reg, r_index, scale);
+    NewLIR3(cu, kMipsAddu, t_reg , rBase, t_reg);
+  }
+
+  switch (size) {
+    case kSingle:
+      opcode = kMipsFswc1;
+      break;
+    case kWord:
+      opcode = kMipsSw;
+      break;
+    case kUnsignedHalf:
+    case kSignedHalf:
+      opcode = kMipsSh;
+      break;
+    case kUnsignedByte:
+    case kSignedByte:
+      opcode = kMipsSb;
+      break;
+    default:
+      LOG(FATAL) << "Bad case in StoreBaseIndexed";
+  }
+  NewLIR3(cu, opcode, r_src, 0, t_reg);
+  FreeTemp(cu, r_new_index);
+  return first;
+}
+
+LIR* MipsCodegen::LoadBaseDispBody(CompilationUnit *cu, int rBase, int displacement, int r_dest,
+                                   int r_dest_hi, OpSize size, int s_reg)
+/*
+ * Load value from base + displacement.  Optionally perform null check
+ * on base (which must have an associated s_reg and MIR).  If not
+ * performing null check, incoming MIR can be null. IMPORTANT: this
+ * code must not allocate any new temps.  If a new register is needed
+ * and base and dest are the same, spill some other register to
+ * rlp and then restore.
+ */
+{
+  LIR *res;
+  LIR *load = NULL;
+  LIR *load2 = NULL;
+  MipsOpCode opcode = kMipsNop;
+  bool short_form = IS_SIMM16(displacement);
+  bool pair = false;
+
+  switch (size) {
+    case kLong:
+    case kDouble:
+      pair = true;
+      opcode = kMipsLw;
+      if (MIPS_FPREG(r_dest)) {
+        opcode = kMipsFlwc1;
+        if (MIPS_DOUBLEREG(r_dest)) {
+          r_dest = r_dest - MIPS_FP_DOUBLE;
+        } else {
+          DCHECK(MIPS_FPREG(r_dest_hi));
+          DCHECK(r_dest == (r_dest_hi - 1));
+        }
+        r_dest_hi = r_dest + 1;
+      }
+      short_form = IS_SIMM16_2WORD(displacement);
+      DCHECK_EQ((displacement & 0x3), 0);
+      break;
+    case kWord:
+    case kSingle:
+      opcode = kMipsLw;
+      if (MIPS_FPREG(r_dest)) {
+        opcode = kMipsFlwc1;
+        DCHECK(MIPS_SINGLEREG(r_dest));
+      }
+      DCHECK_EQ((displacement & 0x3), 0);
+      break;
+    case kUnsignedHalf:
+      opcode = kMipsLhu;
+      DCHECK_EQ((displacement & 0x1), 0);
+      break;
+    case kSignedHalf:
+      opcode = kMipsLh;
+      DCHECK_EQ((displacement & 0x1), 0);
+      break;
+    case kUnsignedByte:
+      opcode = kMipsLbu;
+      break;
+    case kSignedByte:
+      opcode = kMipsLb;
+      break;
+    default:
+      LOG(FATAL) << "Bad case in LoadBaseIndexedBody";
+  }
+
+  if (short_form) {
+    if (!pair) {
+      load = res = NewLIR3(cu, opcode, r_dest, displacement, rBase);
+    } else {
+      load = res = NewLIR3(cu, opcode, r_dest,
+                           displacement + LOWORD_OFFSET, rBase);
+      load2 = NewLIR3(cu, opcode, r_dest_hi,
+                      displacement + HIWORD_OFFSET, rBase);
+    }
+  } else {
+    if (pair) {
+      int r_tmp = AllocFreeTemp(cu);
+      res = OpRegRegImm(cu, kOpAdd, r_tmp, rBase, displacement);
+      load = NewLIR3(cu, opcode, r_dest, LOWORD_OFFSET, r_tmp);
+      load2 = NewLIR3(cu, opcode, r_dest_hi, HIWORD_OFFSET, r_tmp);
+      FreeTemp(cu, r_tmp);
+    } else {
+      int r_tmp = (rBase == r_dest) ? AllocFreeTemp(cu) : r_dest;
+      res = OpRegRegImm(cu, kOpAdd, r_tmp, rBase, displacement);
+      load = NewLIR3(cu, opcode, r_dest, 0, r_tmp);
+      if (r_tmp != r_dest)
+        FreeTemp(cu, r_tmp);
+    }
+  }
+
+  if (rBase == rMIPS_SP) {
+    AnnotateDalvikRegAccess(cu, load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
+                            true /* is_load */, pair /* is64bit */);
+    if (pair) {
+      AnnotateDalvikRegAccess(cu, load2, (displacement + HIWORD_OFFSET) >> 2,
+                              true /* is_load */, pair /* is64bit */);
+    }
+  }
+  return load;
+}
+
+LIR* MipsCodegen::LoadBaseDisp(CompilationUnit *cu, int rBase, int displacement, int r_dest,
+                               OpSize size, int s_reg)
+{
+  return LoadBaseDispBody(cu, rBase, displacement, r_dest, -1,
+                          size, s_reg);
+}
+
+LIR* MipsCodegen::LoadBaseDispWide(CompilationUnit *cu, int rBase, int displacement,
+                                   int r_dest_lo, int r_dest_hi, int s_reg)
+{
+  return LoadBaseDispBody(cu, rBase, displacement, r_dest_lo, r_dest_hi, kLong, s_reg);
+}
+
+LIR* MipsCodegen::StoreBaseDispBody(CompilationUnit *cu, int rBase, int displacement,
+                                    int r_src, int r_src_hi, OpSize size)
+{
+  LIR *res;
+  LIR *store = NULL;
+  LIR *store2 = NULL;
+  MipsOpCode opcode = kMipsNop;
+  bool short_form = IS_SIMM16(displacement);
+  bool pair = false;
+
+  switch (size) {
+    case kLong:
+    case kDouble:
+      pair = true;
+      opcode = kMipsSw;
+      if (MIPS_FPREG(r_src)) {
+        opcode = kMipsFswc1;
+        if (MIPS_DOUBLEREG(r_src)) {
+          r_src = r_src - MIPS_FP_DOUBLE;
+        } else {
+          DCHECK(MIPS_FPREG(r_src_hi));
+          DCHECK_EQ(r_src, (r_src_hi - 1));
+        }
+        r_src_hi = r_src + 1;
+      }
+      short_form = IS_SIMM16_2WORD(displacement);
+      DCHECK_EQ((displacement & 0x3), 0);
+      break;
+    case kWord:
+    case kSingle:
+      opcode = kMipsSw;
+      if (MIPS_FPREG(r_src)) {
+        opcode = kMipsFswc1;
+        DCHECK(MIPS_SINGLEREG(r_src));
+      }
+      DCHECK_EQ((displacement & 0x3), 0);
+      break;
+    case kUnsignedHalf:
+    case kSignedHalf:
+      opcode = kMipsSh;
+      DCHECK_EQ((displacement & 0x1), 0);
+      break;
+    case kUnsignedByte:
+    case kSignedByte:
+      opcode = kMipsSb;
+      break;
+    default:
+      LOG(FATAL) << "Bad case in StoreBaseIndexedBody";
+  }
+
+  if (short_form) {
+    if (!pair) {
+      store = res = NewLIR3(cu, opcode, r_src, displacement, rBase);
+    } else {
+      store = res = NewLIR3(cu, opcode, r_src, displacement + LOWORD_OFFSET,
+                            rBase);
+      store2 = NewLIR3(cu, opcode, r_src_hi, displacement + HIWORD_OFFSET,
+                       rBase);
+    }
+  } else {
+    int r_scratch = AllocTemp(cu);
+    res = OpRegRegImm(cu, kOpAdd, r_scratch, rBase, displacement);
+    if (!pair) {
+      store =  NewLIR3(cu, opcode, r_src, 0, r_scratch);
+    } else {
+      store =  NewLIR3(cu, opcode, r_src, LOWORD_OFFSET, r_scratch);
+      store2 = NewLIR3(cu, opcode, r_src_hi, HIWORD_OFFSET, r_scratch);
+    }
+    FreeTemp(cu, r_scratch);
+  }
+
+  if (rBase == rMIPS_SP) {
+    AnnotateDalvikRegAccess(cu, store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
+                            false /* is_load */, pair /* is64bit */);
+    if (pair) {
+      AnnotateDalvikRegAccess(cu, store2, (displacement + HIWORD_OFFSET) >> 2,
+                              false /* is_load */, pair /* is64bit */);
+    }
+  }
+
+  return res;
+}
+
+LIR* MipsCodegen::StoreBaseDisp(CompilationUnit *cu, int rBase, int displacement, int r_src,
+                                OpSize size)
+{
+  return StoreBaseDispBody(cu, rBase, displacement, r_src, -1, size);
+}
+
+LIR* MipsCodegen::StoreBaseDispWide(CompilationUnit *cu, int rBase, int displacement,
+                                    int r_src_lo, int r_src_hi)
+{
+  return StoreBaseDispBody(cu, rBase, displacement, r_src_lo, r_src_hi, kLong);
+}
+
+LIR* MipsCodegen::OpThreadMem(CompilationUnit* cu, OpKind op, int thread_offset)
+{
+  LOG(FATAL) << "Unexpected use of OpThreadMem for MIPS";
+  return NULL;
+}
+
+LIR* MipsCodegen::OpMem(CompilationUnit* cu, OpKind op, int rBase, int disp)
+{
+  LOG(FATAL) << "Unexpected use of OpMem for MIPS";
+  return NULL;
+}
+
+LIR* MipsCodegen::StoreBaseIndexedDisp(CompilationUnit *cu,
+                          int rBase, int r_index, int scale, int displacement,
+                          int r_src, int r_src_hi,
+                          OpSize size, int s_reg)
+{
+  LOG(FATAL) << "Unexpected use of StoreBaseIndexedDisp for MIPS";
+  return NULL;
+}
+
+LIR* MipsCodegen::OpRegMem(CompilationUnit *cu, OpKind op, int r_dest, int rBase,
+              int offset)
+{
+  LOG(FATAL) << "Unexpected use of OpRegMem for MIPS";
+  return NULL;
+}
+
+LIR* MipsCodegen::LoadBaseIndexedDisp(CompilationUnit *cu,
+                         int rBase, int r_index, int scale, int displacement,
+                         int r_dest, int r_dest_hi,
+                         OpSize size, int s_reg)
+{
+  LOG(FATAL) << "Unexpected use of LoadBaseIndexedDisp for MIPS";
+  return NULL;
+}
+
+LIR* MipsCodegen::OpCondBranch(CompilationUnit* cu, ConditionCode cc, LIR* target)
+{
+  LOG(FATAL) << "Unexpected use of OpCondBranch for MIPS";
+  return NULL;
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/mir_to_lir.cc b/src/compiler/dex/quick/mir_to_lir.cc
new file mode 100644
index 0000000..267f61e
--- /dev/null
+++ b/src/compiler/dex/quick/mir_to_lir.cc
@@ -0,0 +1,851 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "object_utils.h"
+
+#include "compiler/dex/compiler_internals.h"
+#include "local_optimizations.h"
+#include "codegen_util.h"
+#include "ralloc_util.h"
+
+namespace art {
+
+/*
+ * Target-independent code generation.  Use only high-level
+ * load/store utilities here, or target-dependent genXX() handlers
+ * when necessary.
+ */
+static void CompileDalvikInstruction(CompilationUnit* cu, MIR* mir, BasicBlock* bb,
+                                     LIR* label_list)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation rl_src[3];
+  RegLocation rl_dest = GetBadLoc();
+  RegLocation rl_result = GetBadLoc();
+  Instruction::Code opcode = mir->dalvikInsn.opcode;
+  int opt_flags = mir->optimization_flags;
+  uint32_t vB = mir->dalvikInsn.vB;
+  uint32_t vC = mir->dalvikInsn.vC;
+
+  // Prep Src and Dest locations.
+  int next_sreg = 0;
+  int next_loc = 0;
+  int attrs = oat_data_flow_attributes[opcode];
+  rl_src[0] = rl_src[1] = rl_src[2] = GetBadLoc();
+  if (attrs & DF_UA) {
+    if (attrs & DF_A_WIDE) {
+      rl_src[next_loc++] = GetSrcWide(cu, mir, next_sreg);
+      next_sreg+= 2;
+    } else {
+      rl_src[next_loc++] = GetSrc(cu, mir, next_sreg);
+      next_sreg++;
+    }
+  }
+  if (attrs & DF_UB) {
+    if (attrs & DF_B_WIDE) {
+      rl_src[next_loc++] = GetSrcWide(cu, mir, next_sreg);
+      next_sreg+= 2;
+    } else {
+      rl_src[next_loc++] = GetSrc(cu, mir, next_sreg);
+      next_sreg++;
+    }
+  }
+  if (attrs & DF_UC) {
+    if (attrs & DF_C_WIDE) {
+      rl_src[next_loc++] = GetSrcWide(cu, mir, next_sreg);
+    } else {
+      rl_src[next_loc++] = GetSrc(cu, mir, next_sreg);
+    }
+  }
+  if (attrs & DF_DA) {
+    if (attrs & DF_A_WIDE) {
+      rl_dest = GetDestWide(cu, mir);
+    } else {
+      rl_dest = GetDest(cu, mir);
+    }
+  }
+  switch (opcode) {
+    case Instruction::NOP:
+      break;
+
+    case Instruction::MOVE_EXCEPTION:
+      cg->GenMoveException(cu, rl_dest);
+      break;
+
+    case Instruction::RETURN_VOID:
+      if (((cu->access_flags & kAccConstructor) != 0) &&
+          cu->compiler->RequiresConstructorBarrier(Thread::Current(), cu->dex_file,
+                                                   cu->class_def_idx)) {
+        cg->GenMemBarrier(cu, kStoreStore);
+      }
+      if (!(cu->attrs & METHOD_IS_LEAF)) {
+        cg->GenSuspendTest(cu, opt_flags);
+      }
+      break;
+
+    case Instruction::RETURN:
+    case Instruction::RETURN_OBJECT:
+      if (!(cu->attrs & METHOD_IS_LEAF)) {
+        cg->GenSuspendTest(cu, opt_flags);
+      }
+      cg->StoreValue(cu, GetReturn(cu, cu->shorty[0] == 'F'), rl_src[0]);
+      break;
+
+    case Instruction::RETURN_WIDE:
+      if (!(cu->attrs & METHOD_IS_LEAF)) {
+        cg->GenSuspendTest(cu, opt_flags);
+      }
+      cg->StoreValueWide(cu, GetReturnWide(cu,
+                       cu->shorty[0] == 'D'), rl_src[0]);
+      break;
+
+    case Instruction::MOVE_RESULT_WIDE:
+      if (opt_flags & MIR_INLINED)
+        break;  // Nop - combined w/ previous invoke.
+      cg->StoreValueWide(cu, rl_dest, GetReturnWide(cu, rl_dest.fp));
+      break;
+
+    case Instruction::MOVE_RESULT:
+    case Instruction::MOVE_RESULT_OBJECT:
+      if (opt_flags & MIR_INLINED)
+        break;  // Nop - combined w/ previous invoke.
+      cg->StoreValue(cu, rl_dest, GetReturn(cu, rl_dest.fp));
+      break;
+
+    case Instruction::MOVE:
+    case Instruction::MOVE_OBJECT:
+    case Instruction::MOVE_16:
+    case Instruction::MOVE_OBJECT_16:
+    case Instruction::MOVE_FROM16:
+    case Instruction::MOVE_OBJECT_FROM16:
+      cg->StoreValue(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::MOVE_WIDE:
+    case Instruction::MOVE_WIDE_16:
+    case Instruction::MOVE_WIDE_FROM16:
+      cg->StoreValueWide(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::CONST:
+    case Instruction::CONST_4:
+    case Instruction::CONST_16:
+      rl_result = EvalLoc(cu, rl_dest, kAnyReg, true);
+      cg->LoadConstantNoClobber(cu, rl_result.low_reg, vB);
+      cg->StoreValue(cu, rl_dest, rl_result);
+      if (vB == 0) {
+        cg->Workaround7250540(cu, rl_dest, rl_result.low_reg);
+      }
+      break;
+
+    case Instruction::CONST_HIGH16:
+      rl_result = EvalLoc(cu, rl_dest, kAnyReg, true);
+      cg->LoadConstantNoClobber(cu, rl_result.low_reg, vB << 16);
+      cg->StoreValue(cu, rl_dest, rl_result);
+      if (vB == 0) {
+        cg->Workaround7250540(cu, rl_dest, rl_result.low_reg);
+      }
+      break;
+
+    case Instruction::CONST_WIDE_16:
+    case Instruction::CONST_WIDE_32:
+      rl_result = EvalLoc(cu, rl_dest, kAnyReg, true);
+      cg->LoadConstantWide(cu, rl_result.low_reg, rl_result.high_reg,
+                           static_cast<int64_t>(static_cast<int32_t>(vB)));
+      cg->StoreValueWide(cu, rl_dest, rl_result);
+      break;
+
+    case Instruction::CONST_WIDE:
+      rl_result = EvalLoc(cu, rl_dest, kAnyReg, true);
+      cg->LoadConstantWide(cu, rl_result.low_reg, rl_result.high_reg, mir->dalvikInsn.vB_wide);
+      cg->StoreValueWide(cu, rl_dest, rl_result);
+      break;
+
+    case Instruction::CONST_WIDE_HIGH16:
+      rl_result = EvalLoc(cu, rl_dest, kAnyReg, true);
+      cg->LoadConstantWide(cu, rl_result.low_reg, rl_result.high_reg,
+                           static_cast<int64_t>(vB) << 48);
+      cg->StoreValueWide(cu, rl_dest, rl_result);
+      break;
+
+    case Instruction::MONITOR_ENTER:
+      cg->GenMonitorEnter(cu, opt_flags, rl_src[0]);
+      break;
+
+    case Instruction::MONITOR_EXIT:
+      cg->GenMonitorExit(cu, opt_flags, rl_src[0]);
+      break;
+
+    case Instruction::CHECK_CAST:
+      cg->GenCheckCast(cu, vB, rl_src[0]);
+      break;
+
+    case Instruction::INSTANCE_OF:
+      cg->GenInstanceof(cu, vC, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::NEW_INSTANCE:
+      cg->GenNewInstance(cu, vB, rl_dest);
+      break;
+
+    case Instruction::THROW:
+      cg->GenThrow(cu, rl_src[0]);
+      break;
+
+    case Instruction::ARRAY_LENGTH:
+      int len_offset;
+      len_offset = mirror::Array::LengthOffset().Int32Value();
+      rl_src[0] = cg->LoadValue(cu, rl_src[0], kCoreReg);
+      cg->GenNullCheck(cu, rl_src[0].s_reg_low, rl_src[0].low_reg, opt_flags);
+      rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+      cg->LoadWordDisp(cu, rl_src[0].low_reg, len_offset, rl_result.low_reg);
+      cg->StoreValue(cu, rl_dest, rl_result);
+      break;
+
+    case Instruction::CONST_STRING:
+    case Instruction::CONST_STRING_JUMBO:
+      cg->GenConstString(cu, vB, rl_dest);
+      break;
+
+    case Instruction::CONST_CLASS:
+      cg->GenConstClass(cu, vB, rl_dest);
+      break;
+
+    case Instruction::FILL_ARRAY_DATA:
+      cg->GenFillArrayData(cu, vB, rl_src[0]);
+      break;
+
+    case Instruction::FILLED_NEW_ARRAY:
+      cg->GenFilledNewArray(cu, cg->NewMemCallInfo(cu, bb, mir, kStatic,
+                        false /* not range */));
+      break;
+
+    case Instruction::FILLED_NEW_ARRAY_RANGE:
+      cg->GenFilledNewArray(cu, cg->NewMemCallInfo(cu, bb, mir, kStatic,
+                        true /* range */));
+      break;
+
+    case Instruction::NEW_ARRAY:
+      cg->GenNewArray(cu, vC, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::GOTO:
+    case Instruction::GOTO_16:
+    case Instruction::GOTO_32:
+      if (bb->taken->start_offset <= mir->offset) {
+        cg->GenSuspendTestAndBranch(cu, opt_flags, &label_list[bb->taken->id]);
+      } else {
+        cg->OpUnconditionalBranch(cu, &label_list[bb->taken->id]);
+      }
+      break;
+
+    case Instruction::PACKED_SWITCH:
+      cg->GenPackedSwitch(cu, vB, rl_src[0]);
+      break;
+
+    case Instruction::SPARSE_SWITCH:
+      cg->GenSparseSwitch(cu, vB, rl_src[0]);
+      break;
+
+    case Instruction::CMPL_FLOAT:
+    case Instruction::CMPG_FLOAT:
+    case Instruction::CMPL_DOUBLE:
+    case Instruction::CMPG_DOUBLE:
+      cg->GenCmpFP(cu, opcode, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::CMP_LONG:
+      cg->GenCmpLong(cu, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::IF_EQ:
+    case Instruction::IF_NE:
+    case Instruction::IF_LT:
+    case Instruction::IF_GE:
+    case Instruction::IF_GT:
+    case Instruction::IF_LE: {
+      LIR* taken = &label_list[bb->taken->id];
+      LIR* fall_through = &label_list[bb->fall_through->id];
+      bool backward_branch;
+      backward_branch = (bb->taken->start_offset <= mir->offset);
+      // Result known at compile time?
+      if (rl_src[0].is_const && rl_src[1].is_const) {
+        bool is_taken = EvaluateBranch(opcode, cu->constant_values[rl_src[0].orig_sreg],
+                                       cu->constant_values[rl_src[1].orig_sreg]);
+        if (is_taken && backward_branch) {
+          cg->GenSuspendTest(cu, opt_flags);
+        }
+        int id = is_taken ? bb->taken->id : bb->fall_through->id;
+        cg->OpUnconditionalBranch(cu, &label_list[id]);
+      } else {
+        if (backward_branch) {
+          cg->GenSuspendTest(cu, opt_flags);
+        }
+        cg->GenCompareAndBranch(cu, opcode, rl_src[0], rl_src[1], taken,
+                                fall_through);
+      }
+      break;
+      }
+
+    case Instruction::IF_EQZ:
+    case Instruction::IF_NEZ:
+    case Instruction::IF_LTZ:
+    case Instruction::IF_GEZ:
+    case Instruction::IF_GTZ:
+    case Instruction::IF_LEZ: {
+      LIR* taken = &label_list[bb->taken->id];
+      LIR* fall_through = &label_list[bb->fall_through->id];
+      bool backward_branch;
+      backward_branch = (bb->taken->start_offset <= mir->offset);
+      // Result known at compile time?
+      if (rl_src[0].is_const) {
+        bool is_taken = EvaluateBranch(opcode, cu->constant_values[rl_src[0].orig_sreg], 0);
+        if (is_taken && backward_branch) {
+          cg->GenSuspendTest(cu, opt_flags);
+        }
+        int id = is_taken ? bb->taken->id : bb->fall_through->id;
+        cg->OpUnconditionalBranch(cu, &label_list[id]);
+      } else {
+        if (backward_branch) {
+          cg->GenSuspendTest(cu, opt_flags);
+        }
+        cg->GenCompareZeroAndBranch(cu, opcode, rl_src[0], taken, fall_through);
+      }
+      break;
+      }
+
+    case Instruction::AGET_WIDE:
+      cg->GenArrayGet(cu, opt_flags, kLong, rl_src[0], rl_src[1], rl_dest, 3);
+      break;
+    case Instruction::AGET:
+    case Instruction::AGET_OBJECT:
+      cg->GenArrayGet(cu, opt_flags, kWord, rl_src[0], rl_src[1], rl_dest, 2);
+      break;
+    case Instruction::AGET_BOOLEAN:
+      cg->GenArrayGet(cu, opt_flags, kUnsignedByte, rl_src[0], rl_src[1], rl_dest, 0);
+      break;
+    case Instruction::AGET_BYTE:
+      cg->GenArrayGet(cu, opt_flags, kSignedByte, rl_src[0], rl_src[1], rl_dest, 0);
+      break;
+    case Instruction::AGET_CHAR:
+      cg->GenArrayGet(cu, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
+      break;
+    case Instruction::AGET_SHORT:
+      cg->GenArrayGet(cu, opt_flags, kSignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
+      break;
+    case Instruction::APUT_WIDE:
+      cg->GenArrayPut(cu, opt_flags, kLong, rl_src[1], rl_src[2], rl_src[0], 3);
+      break;
+    case Instruction::APUT:
+      cg->GenArrayPut(cu, opt_flags, kWord, rl_src[1], rl_src[2], rl_src[0], 2);
+      break;
+    case Instruction::APUT_OBJECT:
+      cg->GenArrayObjPut(cu, opt_flags, rl_src[1], rl_src[2], rl_src[0], 2);
+      break;
+    case Instruction::APUT_SHORT:
+    case Instruction::APUT_CHAR:
+      cg->GenArrayPut(cu, opt_flags, kUnsignedHalf, rl_src[1], rl_src[2], rl_src[0], 1);
+      break;
+    case Instruction::APUT_BYTE:
+    case Instruction::APUT_BOOLEAN:
+      cg->GenArrayPut(cu, opt_flags, kUnsignedByte, rl_src[1], rl_src[2],
+            rl_src[0], 0);
+      break;
+
+    case Instruction::IGET_OBJECT:
+      cg->GenIGet(cu, vC, opt_flags, kWord, rl_dest, rl_src[0], false, true);
+      break;
+
+    case Instruction::IGET_WIDE:
+      cg->GenIGet(cu, vC, opt_flags, kLong, rl_dest, rl_src[0], true, false);
+      break;
+
+    case Instruction::IGET:
+      cg->GenIGet(cu, vC, opt_flags, kWord, rl_dest, rl_src[0], false, false);
+      break;
+
+    case Instruction::IGET_CHAR:
+      cg->GenIGet(cu, vC, opt_flags, kUnsignedHalf, rl_dest, rl_src[0], false, false);
+      break;
+
+    case Instruction::IGET_SHORT:
+      cg->GenIGet(cu, vC, opt_flags, kSignedHalf, rl_dest, rl_src[0], false, false);
+      break;
+
+    case Instruction::IGET_BOOLEAN:
+    case Instruction::IGET_BYTE:
+      cg->GenIGet(cu, vC, opt_flags, kUnsignedByte, rl_dest, rl_src[0], false, false);
+      break;
+
+    case Instruction::IPUT_WIDE:
+      cg->GenIPut(cu, vC, opt_flags, kLong, rl_src[0], rl_src[1], true, false);
+      break;
+
+    case Instruction::IPUT_OBJECT:
+      cg->GenIPut(cu, vC, opt_flags, kWord, rl_src[0], rl_src[1], false, true);
+      break;
+
+    case Instruction::IPUT:
+      cg->GenIPut(cu, vC, opt_flags, kWord, rl_src[0], rl_src[1], false, false);
+      break;
+
+    case Instruction::IPUT_BOOLEAN:
+    case Instruction::IPUT_BYTE:
+      cg->GenIPut(cu, vC, opt_flags, kUnsignedByte, rl_src[0], rl_src[1], false, false);
+      break;
+
+    case Instruction::IPUT_CHAR:
+      cg->GenIPut(cu, vC, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], false, false);
+      break;
+
+    case Instruction::IPUT_SHORT:
+      cg->GenIPut(cu, vC, opt_flags, kSignedHalf, rl_src[0], rl_src[1], false, false);
+      break;
+
+    case Instruction::SGET_OBJECT:
+      cg->GenSget(cu, vB, rl_dest, false, true);
+      break;
+    case Instruction::SGET:
+    case Instruction::SGET_BOOLEAN:
+    case Instruction::SGET_BYTE:
+    case Instruction::SGET_CHAR:
+    case Instruction::SGET_SHORT:
+      cg->GenSget(cu, vB, rl_dest, false, false);
+      break;
+
+    case Instruction::SGET_WIDE:
+      cg->GenSget(cu, vB, rl_dest, true, false);
+      break;
+
+    case Instruction::SPUT_OBJECT:
+      cg->GenSput(cu, vB, rl_src[0], false, true);
+      break;
+
+    case Instruction::SPUT:
+    case Instruction::SPUT_BOOLEAN:
+    case Instruction::SPUT_BYTE:
+    case Instruction::SPUT_CHAR:
+    case Instruction::SPUT_SHORT:
+      cg->GenSput(cu, vB, rl_src[0], false, false);
+      break;
+
+    case Instruction::SPUT_WIDE:
+      cg->GenSput(cu, vB, rl_src[0], true, false);
+      break;
+
+    case Instruction::INVOKE_STATIC_RANGE:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kStatic, true));
+      break;
+    case Instruction::INVOKE_STATIC:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kStatic, false));
+      break;
+
+    case Instruction::INVOKE_DIRECT:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kDirect, false));
+      break;
+    case Instruction::INVOKE_DIRECT_RANGE:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kDirect, true));
+      break;
+
+    case Instruction::INVOKE_VIRTUAL:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kVirtual, false));
+      break;
+    case Instruction::INVOKE_VIRTUAL_RANGE:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kVirtual, true));
+      break;
+
+    case Instruction::INVOKE_SUPER:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kSuper, false));
+      break;
+    case Instruction::INVOKE_SUPER_RANGE:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kSuper, true));
+      break;
+
+    case Instruction::INVOKE_INTERFACE:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kInterface, false));
+      break;
+    case Instruction::INVOKE_INTERFACE_RANGE:
+      cg->GenInvoke(cu, cg->NewMemCallInfo(cu, bb, mir, kInterface, true));
+      break;
+
+    case Instruction::NEG_INT:
+    case Instruction::NOT_INT:
+      cg->GenArithOpInt(cu, opcode, rl_dest, rl_src[0], rl_src[0]);
+      break;
+
+    case Instruction::NEG_LONG:
+    case Instruction::NOT_LONG:
+      cg->GenArithOpLong(cu, opcode, rl_dest, rl_src[0], rl_src[0]);
+      break;
+
+    case Instruction::NEG_FLOAT:
+      cg->GenArithOpFloat(cu, opcode, rl_dest, rl_src[0], rl_src[0]);
+      break;
+
+    case Instruction::NEG_DOUBLE:
+      cg->GenArithOpDouble(cu, opcode, rl_dest, rl_src[0], rl_src[0]);
+      break;
+
+    case Instruction::INT_TO_LONG:
+      cg->GenIntToLong(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::LONG_TO_INT:
+      rl_src[0] = UpdateLocWide(cu, rl_src[0]);
+      rl_src[0] = WideToNarrow(cu, rl_src[0]);
+      cg->StoreValue(cu, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::INT_TO_BYTE:
+    case Instruction::INT_TO_SHORT:
+    case Instruction::INT_TO_CHAR:
+      cg->GenIntNarrowing(cu, opcode, rl_dest, rl_src[0]);
+      break;
+
+    case Instruction::INT_TO_FLOAT:
+    case Instruction::INT_TO_DOUBLE:
+    case Instruction::LONG_TO_FLOAT:
+    case Instruction::LONG_TO_DOUBLE:
+    case Instruction::FLOAT_TO_INT:
+    case Instruction::FLOAT_TO_LONG:
+    case Instruction::FLOAT_TO_DOUBLE:
+    case Instruction::DOUBLE_TO_INT:
+    case Instruction::DOUBLE_TO_LONG:
+    case Instruction::DOUBLE_TO_FLOAT:
+      cg->GenConversion(cu, opcode, rl_dest, rl_src[0]);
+      break;
+
+
+    case Instruction::ADD_INT:
+    case Instruction::ADD_INT_2ADDR:
+    case Instruction::MUL_INT:
+    case Instruction::MUL_INT_2ADDR:
+    case Instruction::AND_INT:
+    case Instruction::AND_INT_2ADDR:
+    case Instruction::OR_INT:
+    case Instruction::OR_INT_2ADDR:
+    case Instruction::XOR_INT:
+    case Instruction::XOR_INT_2ADDR:
+      if (rl_src[0].is_const &&
+          cu->cg->InexpensiveConstantInt(ConstantValue(cu, rl_src[0]))) {
+        cg->GenArithOpIntLit(cu, opcode, rl_dest, rl_src[1],
+                             cu->constant_values[rl_src[0].orig_sreg]);
+      } else if (rl_src[1].is_const &&
+          cu->cg->InexpensiveConstantInt(ConstantValue(cu, rl_src[1]))) {
+        cg->GenArithOpIntLit(cu, opcode, rl_dest, rl_src[0],
+                             cu->constant_values[rl_src[1].orig_sreg]);
+      } else {
+        cg->GenArithOpInt(cu, opcode, rl_dest, rl_src[0], rl_src[1]);
+      }
+      break;
+
+    case Instruction::SUB_INT:
+    case Instruction::SUB_INT_2ADDR:
+    case Instruction::DIV_INT:
+    case Instruction::DIV_INT_2ADDR:
+    case Instruction::REM_INT:
+    case Instruction::REM_INT_2ADDR:
+    case Instruction::SHL_INT:
+    case Instruction::SHL_INT_2ADDR:
+    case Instruction::SHR_INT:
+    case Instruction::SHR_INT_2ADDR:
+    case Instruction::USHR_INT:
+    case Instruction::USHR_INT_2ADDR:
+      if (rl_src[1].is_const &&
+          cu->cg->InexpensiveConstantInt(ConstantValue(cu, rl_src[1]))) {
+        cg->GenArithOpIntLit(cu, opcode, rl_dest, rl_src[0], ConstantValue(cu, rl_src[1]));
+      } else {
+        cg->GenArithOpInt(cu, opcode, rl_dest, rl_src[0], rl_src[1]);
+      }
+      break;
+
+    case Instruction::ADD_LONG:
+    case Instruction::SUB_LONG:
+    case Instruction::AND_LONG:
+    case Instruction::OR_LONG:
+    case Instruction::XOR_LONG:
+    case Instruction::ADD_LONG_2ADDR:
+    case Instruction::SUB_LONG_2ADDR:
+    case Instruction::AND_LONG_2ADDR:
+    case Instruction::OR_LONG_2ADDR:
+    case Instruction::XOR_LONG_2ADDR:
+      if (rl_src[0].is_const || rl_src[1].is_const) {
+        cg->GenArithImmOpLong(cu, opcode, rl_dest, rl_src[0], rl_src[1]);
+        break;
+      }
+      // Note: intentional fallthrough.
+
+    case Instruction::MUL_LONG:
+    case Instruction::DIV_LONG:
+    case Instruction::REM_LONG:
+    case Instruction::MUL_LONG_2ADDR:
+    case Instruction::DIV_LONG_2ADDR:
+    case Instruction::REM_LONG_2ADDR:
+      cg->GenArithOpLong(cu, opcode, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::SHL_LONG:
+    case Instruction::SHR_LONG:
+    case Instruction::USHR_LONG:
+    case Instruction::SHL_LONG_2ADDR:
+    case Instruction::SHR_LONG_2ADDR:
+    case Instruction::USHR_LONG_2ADDR:
+      if (rl_src[1].is_const) {
+        cg->GenShiftImmOpLong(cu, opcode, rl_dest, rl_src[0], rl_src[1]);
+      } else {
+        cg->GenShiftOpLong(cu, opcode, rl_dest, rl_src[0], rl_src[1]);
+      }
+      break;
+
+    case Instruction::ADD_FLOAT:
+    case Instruction::SUB_FLOAT:
+    case Instruction::MUL_FLOAT:
+    case Instruction::DIV_FLOAT:
+    case Instruction::REM_FLOAT:
+    case Instruction::ADD_FLOAT_2ADDR:
+    case Instruction::SUB_FLOAT_2ADDR:
+    case Instruction::MUL_FLOAT_2ADDR:
+    case Instruction::DIV_FLOAT_2ADDR:
+    case Instruction::REM_FLOAT_2ADDR:
+      cg->GenArithOpFloat(cu, opcode, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::ADD_DOUBLE:
+    case Instruction::SUB_DOUBLE:
+    case Instruction::MUL_DOUBLE:
+    case Instruction::DIV_DOUBLE:
+    case Instruction::REM_DOUBLE:
+    case Instruction::ADD_DOUBLE_2ADDR:
+    case Instruction::SUB_DOUBLE_2ADDR:
+    case Instruction::MUL_DOUBLE_2ADDR:
+    case Instruction::DIV_DOUBLE_2ADDR:
+    case Instruction::REM_DOUBLE_2ADDR:
+      cg->GenArithOpDouble(cu, opcode, rl_dest, rl_src[0], rl_src[1]);
+      break;
+
+    case Instruction::RSUB_INT:
+    case Instruction::ADD_INT_LIT16:
+    case Instruction::MUL_INT_LIT16:
+    case Instruction::DIV_INT_LIT16:
+    case Instruction::REM_INT_LIT16:
+    case Instruction::AND_INT_LIT16:
+    case Instruction::OR_INT_LIT16:
+    case Instruction::XOR_INT_LIT16:
+    case Instruction::ADD_INT_LIT8:
+    case Instruction::RSUB_INT_LIT8:
+    case Instruction::MUL_INT_LIT8:
+    case Instruction::DIV_INT_LIT8:
+    case Instruction::REM_INT_LIT8:
+    case Instruction::AND_INT_LIT8:
+    case Instruction::OR_INT_LIT8:
+    case Instruction::XOR_INT_LIT8:
+    case Instruction::SHL_INT_LIT8:
+    case Instruction::SHR_INT_LIT8:
+    case Instruction::USHR_INT_LIT8:
+      cg->GenArithOpIntLit(cu, opcode, rl_dest, rl_src[0], vC);
+      break;
+
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+}
+
+// Process extended MIR instructions
+static void HandleExtendedMethodMIR(CompilationUnit* cu, BasicBlock* bb, MIR* mir)
+{
+  Codegen* cg = cu->cg.get();
+  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
+    case kMirOpCopy: {
+      RegLocation rl_src = GetSrc(cu, mir, 0);
+      RegLocation rl_dest = GetDest(cu, mir);
+      cg->StoreValue(cu, rl_dest, rl_src);
+      break;
+    }
+    case kMirOpFusedCmplFloat:
+      cg->GenFusedFPCmpBranch(cu, bb, mir, false /*gt bias*/, false /*double*/);
+      break;
+    case kMirOpFusedCmpgFloat:
+      cg->GenFusedFPCmpBranch(cu, bb, mir, true /*gt bias*/, false /*double*/);
+      break;
+    case kMirOpFusedCmplDouble:
+      cg->GenFusedFPCmpBranch(cu, bb, mir, false /*gt bias*/, true /*double*/);
+      break;
+    case kMirOpFusedCmpgDouble:
+      cg->GenFusedFPCmpBranch(cu, bb, mir, true /*gt bias*/, true /*double*/);
+      break;
+    case kMirOpFusedCmpLong:
+      cg->GenFusedLongCmpBranch(cu, bb, mir);
+      break;
+    case kMirOpSelect:
+      cg->GenSelect(cu, bb, mir);
+      break;
+    default:
+      break;
+  }
+}
+
+// Handle the content in each basic block.
+static bool MethodBlockCodeGen(CompilationUnit* cu, BasicBlock* bb)
+{
+  if (bb->block_type == kDead) return false;
+  Codegen* cg = cu->cg.get();
+  cu->current_dalvik_offset = bb->start_offset;
+  MIR* mir;
+  LIR* label_list = cu->block_label_list;
+  int block_id = bb->id;
+
+  cu->cur_block = bb;
+  label_list[block_id].operands[0] = bb->start_offset;
+
+  // Insert the block label.
+  label_list[block_id].opcode = kPseudoNormalBlockLabel;
+  AppendLIR(cu, &label_list[block_id]);
+
+  LIR* head_lir = NULL;
+
+  // If this is a catch block, export the start address.
+  if (bb->catch_entry) {
+    head_lir = NewLIR0(cu, kPseudoExportedPC);
+  }
+
+  // Free temp registers and reset redundant store tracking.
+  ResetRegPool(cu);
+  ResetDefTracking(cu);
+
+  ClobberAllRegs(cu);
+
+  if (bb->block_type == kEntryBlock) {
+    int start_vreg = cu->num_dalvik_registers - cu->num_ins;
+    cg->GenEntrySequence(cu, &cu->reg_location[start_vreg],
+                         cu->reg_location[cu->method_sreg]);
+  } else if (bb->block_type == kExitBlock) {
+    cg->GenExitSequence(cu);
+  }
+
+  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    ResetRegPool(cu);
+    if (cu->disable_opt & (1 << kTrackLiveTemps)) {
+      ClobberAllRegs(cu);
+    }
+
+    if (cu->disable_opt & (1 << kSuppressLoads)) {
+      ResetDefTracking(cu);
+    }
+
+#ifndef NDEBUG
+    // Reset temp tracking sanity check.
+    cu->live_sreg = INVALID_SREG;
+#endif
+
+    cu->current_dalvik_offset = mir->offset;
+    int opcode = mir->dalvikInsn.opcode;
+    LIR* boundary_lir;
+
+    // Mark the beginning of a Dalvik instruction for line tracking.
+    char* inst_str = cu->verbose ?
+       GetDalvikDisassembly(cu, mir) : NULL;
+    boundary_lir = MarkBoundary(cu, mir->offset, inst_str);
+    // Remember the first LIR for this block.
+    if (head_lir == NULL) {
+      head_lir = boundary_lir;
+      // Set the first boundary_lir as a scheduling barrier.
+      head_lir->def_mask = ENCODE_ALL;
+    }
+
+    if (opcode == kMirOpCheck) {
+      // Combine check and work halves of throwing instruction.
+      MIR* work_half = mir->meta.throw_insn;
+      mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode;
+      opcode = work_half->dalvikInsn.opcode;
+      SSARepresentation* ssa_rep = work_half->ssa_rep;
+      work_half->ssa_rep = mir->ssa_rep;
+      mir->ssa_rep = ssa_rep;
+      work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheckPart2);
+    }
+
+    if (opcode >= kMirOpFirst) {
+      HandleExtendedMethodMIR(cu, bb, mir);
+      continue;
+    }
+
+    CompileDalvikInstruction(cu, mir, bb, label_list);
+  }
+
+  if (head_lir) {
+    // Eliminate redundant loads/stores and delay stores into later slots.
+    ApplyLocalOptimizations(cu, head_lir, cu->last_lir_insn);
+
+    // Generate an unconditional branch to the fallthrough block.
+    if (bb->fall_through) {
+      cg->OpUnconditionalBranch(cu, &label_list[bb->fall_through->id]);
+    }
+  }
+  return false;
+}
+
+void SpecialMIR2LIR(CompilationUnit* cu, SpecialCaseHandler special_case)
+{
+  Codegen* cg = cu->cg.get();
+  // Find the first DalvikByteCode block.
+  int num_reachable_blocks = cu->num_reachable_blocks;
+  const GrowableList *block_list = &cu->block_list;
+  BasicBlock*bb = NULL;
+  for (int idx = 0; idx < num_reachable_blocks; idx++) {
+    int dfs_index = cu->dfs_order.elem_list[idx];
+    bb = reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, dfs_index));
+    if (bb->block_type == kDalvikByteCode) {
+      break;
+    }
+  }
+  if (bb == NULL) {
+    return;
+  }
+  DCHECK_EQ(bb->start_offset, 0);
+  DCHECK(bb->first_mir_insn != NULL);
+
+  // Get the first instruction.
+  MIR* mir = bb->first_mir_insn;
+
+  // Free temp registers and reset redundant store tracking.
+  ResetRegPool(cu);
+  ResetDefTracking(cu);
+  ClobberAllRegs(cu);
+
+  cg->GenSpecialCase(cu, bb, mir, special_case);
+}
+
+void MethodMIR2LIR(CompilationUnit* cu)
+{
+  Codegen* cg = cu->cg.get();
+  // Hold the labels of each block.
+  cu->block_label_list =
+      static_cast<LIR*>(NewMem(cu, sizeof(LIR) * cu->num_blocks, true, kAllocLIR));
+
+  DataFlowAnalysisDispatcher(cu, MethodBlockCodeGen,
+                                kPreOrderDFSTraversal, false /* Iterative */);
+
+  cg->HandleSuspendLaunchPads(cu);
+
+  cg->HandleThrowLaunchPads(cu);
+
+  cg->HandleIntrinsicLaunchPads(cu);
+
+  if (!(cu->disable_opt & (1 << kSafeOptimizations))) {
+    RemoveRedundantBranches(cu);
+  }
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/mir_to_lir.h b/src/compiler/dex/quick/mir_to_lir.h
new file mode 100644
index 0000000..b2767ba
--- /dev/null
+++ b/src/compiler/dex/quick/mir_to_lir.h
@@ -0,0 +1,27 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_MIRTOLIR_H_
+#define ART_SRC_COMPILER_DEX_QUICK_MIRTOLIR_H_
+
+namespace art {
+void SpecialMIR2LIR(CompilationUnit* cu, SpecialCaseHandler special_case);
+void MethodMIR2LIR(CompilationUnit* cu);
+
+
+}  // namespace art
+
+#endif // ART_SRC_COMPILER_DEX_QUICK_MIRTOLIR_H_
diff --git a/src/compiler/dex/quick/ralloc_util.cc b/src/compiler/dex/quick/ralloc_util.cc
new file mode 100644
index 0000000..a782264
--- /dev/null
+++ b/src/compiler/dex/quick/ralloc_util.cc
@@ -0,0 +1,1334 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This file contains register alloction support. */
+
+#include "codegen_util.h"
+#include "compiler/dex/compiler_ir.h"
+#include "compiler/dex/compiler_utility.h"
+#include "compiler/dex/dataflow.h"
+#include "ralloc_util.h"
+
+namespace art {
+
+static const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0,
+                                    INVALID_REG, INVALID_REG, INVALID_SREG,
+                                    INVALID_SREG};
+
+/*
+ * Free all allocated temps in the temp pools.  Note that this does
+ * not affect the "liveness" of a temp register, which will stay
+ * live until it is either explicitly killed or reallocated.
+ */
+void ResetRegPool(CompilationUnit* cu)
+{
+  int i;
+  for (i=0; i < cu->reg_pool->num_core_regs; i++) {
+    if (cu->reg_pool->core_regs[i].is_temp)
+      cu->reg_pool->core_regs[i].in_use = false;
+  }
+  for (i=0; i < cu->reg_pool->num_fp_regs; i++) {
+    if (cu->reg_pool->FPRegs[i].is_temp)
+      cu->reg_pool->FPRegs[i].in_use = false;
+  }
+}
+
+ /*
+  * Set up temp & preserved register pools specialized by target.
+  * Note: num_regs may be zero.
+  */
+void CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num)
+{
+  int i;
+  for (i=0; i < num; i++) {
+    regs[i].reg = reg_nums[i];
+    regs[i].in_use = false;
+    regs[i].is_temp = false;
+    regs[i].pair = false;
+    regs[i].live = false;
+    regs[i].dirty = false;
+    regs[i].s_reg = INVALID_SREG;
+  }
+}
+
+void DumpRegPool(RegisterInfo* p, int num_regs)
+{
+  LOG(INFO) << "================================================";
+  for (int i = 0; i < num_regs; i++) {
+    LOG(INFO) << StringPrintf(
+        "R[%d]: T:%d, U:%d, P:%d, p:%d, LV:%d, D:%d, SR:%d, ST:%x, EN:%x",
+        p[i].reg, p[i].is_temp, p[i].in_use, p[i].pair, p[i].partner,
+        p[i].live, p[i].dirty, p[i].s_reg, reinterpret_cast<uintptr_t>(p[i].def_start),
+        reinterpret_cast<uintptr_t>(p[i].def_end));
+  }
+  LOG(INFO) << "================================================";
+}
+
+void DumpCoreRegPool(CompilationUnit* cu)
+{
+  DumpRegPool(cu->reg_pool->core_regs, cu->reg_pool->num_core_regs);
+}
+
+void DumpFpRegPool(CompilationUnit* cu)
+{
+  DumpRegPool(cu->reg_pool->FPRegs, cu->reg_pool->num_fp_regs);
+}
+
+/* Mark a temp register as dead.  Does not affect allocation state. */
+static void ClobberBody(CompilationUnit *cu, RegisterInfo* p)
+{
+  if (p->is_temp) {
+    DCHECK(!(p->live && p->dirty))  << "Live & dirty temp in clobber";
+    p->live = false;
+    p->s_reg = INVALID_SREG;
+    p->def_start = NULL;
+    p->def_end = NULL;
+    if (p->pair) {
+      p->pair = false;
+      Clobber(cu, p->partner);
+    }
+  }
+}
+
+/* Mark a temp register as dead.  Does not affect allocation state. */
+void Clobber(CompilationUnit* cu, int reg)
+{
+  Codegen* cg = cu->cg.get();
+  ClobberBody(cu, cg->GetRegInfo(cu, reg));
+}
+
+static void ClobberSRegBody(RegisterInfo* p, int num_regs, int s_reg)
+{
+  int i;
+  for (i=0; i< num_regs; i++) {
+    if (p[i].s_reg == s_reg) {
+      if (p[i].is_temp) {
+        p[i].live = false;
+      }
+      p[i].def_start = NULL;
+      p[i].def_end = NULL;
+    }
+  }
+}
+
+/*
+ * Break the association between a Dalvik vreg and a physical temp register of either register
+ * class.
+ * TODO: Ideally, the public version of this code should not exist.  Besides its local usage
+ * in the register utilities, is is also used by code gen routines to work around a deficiency in
+ * local register allocation, which fails to distinguish between the "in" and "out" identities
+ * of Dalvik vregs.  This can result in useless register copies when the same Dalvik vreg
+ * is used both as the source and destination register of an operation in which the type
+ * changes (for example: INT_TO_FLOAT v1, v1).  Revisit when improved register allocation is
+ * addressed.
+ */
+void ClobberSReg(CompilationUnit* cu, int s_reg)
+{
+#ifndef NDEBUG
+  /* Reset live temp tracking sanity checker */
+  if (s_reg == cu->live_sreg) {
+    cu->live_sreg = INVALID_SREG;
+  }
+#endif
+  ClobberSRegBody(cu->reg_pool->core_regs, cu->reg_pool->num_core_regs, s_reg);
+  ClobberSRegBody(cu->reg_pool->FPRegs, cu->reg_pool->num_fp_regs, s_reg);
+}
+
+/*
+ * SSA names associated with the initial definitions of Dalvik
+ * registers are the same as the Dalvik register number (and
+ * thus take the same position in the promotion_map.  However,
+ * the special Method* and compiler temp resisters use negative
+ * v_reg numbers to distinguish them and can have an arbitrary
+ * ssa name (above the last original Dalvik register).  This function
+ * maps SSA names to positions in the promotion_map array.
+ */
+int SRegToPMap(CompilationUnit* cu, int s_reg)
+{
+  DCHECK_LT(s_reg, cu->num_ssa_regs);
+  DCHECK_GE(s_reg, 0);
+  int v_reg = SRegToVReg(cu, s_reg);
+  if (v_reg >= 0) {
+    DCHECK_LT(v_reg, cu->num_dalvik_registers);
+    return v_reg;
+  } else {
+    int pos = std::abs(v_reg) - std::abs(SSA_METHOD_BASEREG);
+    DCHECK_LE(pos, cu->num_compiler_temps);
+    return cu->num_dalvik_registers + pos;
+  }
+}
+
+void RecordCorePromotion(CompilationUnit* cu, int reg, int s_reg)
+{
+  Codegen* cg = cu->cg.get();
+  int p_map_idx = SRegToPMap(cu, s_reg);
+  int v_reg = SRegToVReg(cu, s_reg);
+  cg->GetRegInfo(cu, reg)->in_use = true;
+  cu->core_spill_mask |= (1 << reg);
+  // Include reg for later sort
+  cu->core_vmap_table.push_back(reg << VREG_NUM_WIDTH |
+                                 (v_reg & ((1 << VREG_NUM_WIDTH) - 1)));
+  cu->num_core_spills++;
+  cu->promotion_map[p_map_idx].core_location = kLocPhysReg;
+  cu->promotion_map[p_map_idx].core_reg = reg;
+}
+
+/* Reserve a callee-save register.  Return -1 if none available */
+static int AllocPreservedCoreReg(CompilationUnit* cu, int s_reg)
+{
+  int res = -1;
+  RegisterInfo* core_regs = cu->reg_pool->core_regs;
+  for (int i = 0; i < cu->reg_pool->num_core_regs; i++) {
+    if (!core_regs[i].is_temp && !core_regs[i].in_use) {
+      res = core_regs[i].reg;
+      RecordCorePromotion(cu, res, s_reg);
+      break;
+    }
+  }
+  return res;
+}
+
+void RecordFpPromotion(CompilationUnit* cu, int reg, int s_reg)
+{
+  Codegen* cg = cu->cg.get();
+  int p_map_idx = SRegToPMap(cu, s_reg);
+  int v_reg = SRegToVReg(cu, s_reg);
+  cg->GetRegInfo(cu, reg)->in_use = true;
+  cg->MarkPreservedSingle(cu, v_reg, reg);
+  cu->promotion_map[p_map_idx].fp_location = kLocPhysReg;
+  cu->promotion_map[p_map_idx].FpReg = reg;
+}
+
+/*
+ * Reserve a callee-save fp single register.  Try to fullfill request for
+ * even/odd  allocation, but go ahead and allocate anything if not
+ * available.  If nothing's available, return -1.
+ */
+static int AllocPreservedSingle(CompilationUnit* cu, int s_reg, bool even)
+{
+  int res = -1;
+  RegisterInfo* FPRegs = cu->reg_pool->FPRegs;
+  for (int i = 0; i < cu->reg_pool->num_fp_regs; i++) {
+    if (!FPRegs[i].is_temp && !FPRegs[i].in_use &&
+      ((FPRegs[i].reg & 0x1) == 0) == even) {
+      res = FPRegs[i].reg;
+      RecordFpPromotion(cu, res, s_reg);
+      break;
+    }
+  }
+  return res;
+}
+
+/*
+ * Somewhat messy code here.  We want to allocate a pair of contiguous
+ * physical single-precision floating point registers starting with
+ * an even numbered reg.  It is possible that the paired s_reg (s_reg+1)
+ * has already been allocated - try to fit if possible.  Fail to
+ * allocate if we can't meet the requirements for the pair of
+ * s_reg<=sX[even] & (s_reg+1)<= sX+1.
+ */
+static int AllocPreservedDouble(CompilationUnit* cu, int s_reg)
+{
+  Codegen* cg = cu->cg.get();
+  int res = -1; // Assume failure
+  int v_reg = SRegToVReg(cu, s_reg);
+  int p_map_idx = SRegToPMap(cu, s_reg);
+  if (cu->promotion_map[p_map_idx+1].fp_location == kLocPhysReg) {
+    // Upper reg is already allocated.  Can we fit?
+    int high_reg = cu->promotion_map[p_map_idx+1].FpReg;
+    if ((high_reg & 1) == 0) {
+      // High reg is even - fail.
+      return res;
+    }
+    // Is the low reg of the pair free?
+    RegisterInfo* p = cg->GetRegInfo(cu, high_reg-1);
+    if (p->in_use || p->is_temp) {
+      // Already allocated or not preserved - fail.
+      return res;
+    }
+    // OK - good to go.
+    res = p->reg;
+    p->in_use = true;
+    DCHECK_EQ((res & 1), 0);
+    cg->MarkPreservedSingle(cu, v_reg, res);
+  } else {
+    RegisterInfo* FPRegs = cu->reg_pool->FPRegs;
+    for (int i = 0; i < cu->reg_pool->num_fp_regs; i++) {
+      if (!FPRegs[i].is_temp && !FPRegs[i].in_use &&
+        ((FPRegs[i].reg & 0x1) == 0x0) &&
+        !FPRegs[i+1].is_temp && !FPRegs[i+1].in_use &&
+        ((FPRegs[i+1].reg & 0x1) == 0x1) &&
+        (FPRegs[i].reg + 1) == FPRegs[i+1].reg) {
+        res = FPRegs[i].reg;
+        FPRegs[i].in_use = true;
+        cg->MarkPreservedSingle(cu, v_reg, res);
+        FPRegs[i+1].in_use = true;
+        DCHECK_EQ(res + 1, FPRegs[i+1].reg);
+        cg->MarkPreservedSingle(cu, v_reg+1, res+1);
+        break;
+      }
+    }
+  }
+  if (res != -1) {
+    cu->promotion_map[p_map_idx].fp_location = kLocPhysReg;
+    cu->promotion_map[p_map_idx].FpReg = res;
+    cu->promotion_map[p_map_idx+1].fp_location = kLocPhysReg;
+    cu->promotion_map[p_map_idx+1].FpReg = res + 1;
+  }
+  return res;
+}
+
+
+/*
+ * Reserve a callee-save fp register.   If this register can be used
+ * as the first of a double, attempt to allocate an even pair of fp
+ * single regs (but if can't still attempt to allocate a single, preferring
+ * first to allocate an odd register.
+ */
+static int AllocPreservedFPReg(CompilationUnit* cu, int s_reg, bool double_start)
+{
+  int res = -1;
+  if (double_start) {
+    res = AllocPreservedDouble(cu, s_reg);
+  }
+  if (res == -1) {
+    res = AllocPreservedSingle(cu, s_reg, false /* try odd # */);
+  }
+  if (res == -1)
+    res = AllocPreservedSingle(cu, s_reg, true /* try even # */);
+  return res;
+}
+
+static int AllocTempBody(CompilationUnit* cu, RegisterInfo* p, int num_regs, int* next_temp,
+                          bool required)
+{
+  int i;
+  int next = *next_temp;
+  for (i=0; i< num_regs; i++) {
+    if (next >= num_regs)
+      next = 0;
+    if (p[next].is_temp && !p[next].in_use && !p[next].live) {
+      Clobber(cu, p[next].reg);
+      p[next].in_use = true;
+      p[next].pair = false;
+      *next_temp = next + 1;
+      return p[next].reg;
+    }
+    next++;
+  }
+  next = *next_temp;
+  for (i=0; i< num_regs; i++) {
+    if (next >= num_regs)
+      next = 0;
+    if (p[next].is_temp && !p[next].in_use) {
+      Clobber(cu, p[next].reg);
+      p[next].in_use = true;
+      p[next].pair = false;
+      *next_temp = next + 1;
+      return p[next].reg;
+    }
+    next++;
+  }
+  if (required) {
+    CodegenDump(cu);
+    DumpRegPool(cu->reg_pool->core_regs,
+          cu->reg_pool->num_core_regs);
+    LOG(FATAL) << "No free temp registers";
+  }
+  return -1;  // No register available
+}
+
+//REDO: too many assumptions.
+int AllocTempDouble(CompilationUnit* cu)
+{
+  RegisterInfo* p = cu->reg_pool->FPRegs;
+  int num_regs = cu->reg_pool->num_fp_regs;
+  /* Start looking at an even reg */
+  int next = cu->reg_pool->next_fp_reg & ~0x1;
+
+  // First try to avoid allocating live registers
+  for (int i=0; i < num_regs; i+=2) {
+    if (next >= num_regs)
+      next = 0;
+    if ((p[next].is_temp && !p[next].in_use && !p[next].live) &&
+      (p[next+1].is_temp && !p[next+1].in_use && !p[next+1].live)) {
+      Clobber(cu, p[next].reg);
+      Clobber(cu, p[next+1].reg);
+      p[next].in_use = true;
+      p[next+1].in_use = true;
+      DCHECK_EQ((p[next].reg+1), p[next+1].reg);
+      DCHECK_EQ((p[next].reg & 0x1), 0);
+      cu->reg_pool->next_fp_reg = next + 2;
+      if (cu->reg_pool->next_fp_reg >= num_regs) {
+        cu->reg_pool->next_fp_reg = 0;
+      }
+      return p[next].reg;
+    }
+    next += 2;
+  }
+  next = cu->reg_pool->next_fp_reg & ~0x1;
+
+  // No choice - find a pair and kill it.
+  for (int i=0; i < num_regs; i+=2) {
+    if (next >= num_regs)
+      next = 0;
+    if (p[next].is_temp && !p[next].in_use && p[next+1].is_temp &&
+      !p[next+1].in_use) {
+      Clobber(cu, p[next].reg);
+      Clobber(cu, p[next+1].reg);
+      p[next].in_use = true;
+      p[next+1].in_use = true;
+      DCHECK_EQ((p[next].reg+1), p[next+1].reg);
+      DCHECK_EQ((p[next].reg & 0x1), 0);
+      cu->reg_pool->next_fp_reg = next + 2;
+      if (cu->reg_pool->next_fp_reg >= num_regs) {
+        cu->reg_pool->next_fp_reg = 0;
+      }
+      return p[next].reg;
+    }
+    next += 2;
+  }
+  LOG(FATAL) << "No free temp registers (pair)";
+  return -1;
+}
+
+/* Return a temp if one is available, -1 otherwise */
+int AllocFreeTemp(CompilationUnit* cu)
+{
+  return AllocTempBody(cu, cu->reg_pool->core_regs,
+             cu->reg_pool->num_core_regs,
+             &cu->reg_pool->next_core_reg, true);
+}
+
+int AllocTemp(CompilationUnit* cu)
+{
+  return AllocTempBody(cu, cu->reg_pool->core_regs,
+             cu->reg_pool->num_core_regs,
+             &cu->reg_pool->next_core_reg, true);
+}
+
+int AllocTempFloat(CompilationUnit* cu)
+{
+  return AllocTempBody(cu, cu->reg_pool->FPRegs,
+             cu->reg_pool->num_fp_regs,
+             &cu->reg_pool->next_fp_reg, true);
+}
+
+static RegisterInfo* AllocLiveBody(RegisterInfo* p, int num_regs, int s_reg)
+{
+  int i;
+  if (s_reg == -1)
+    return NULL;
+  for (i=0; i < num_regs; i++) {
+    if (p[i].live && (p[i].s_reg == s_reg)) {
+      if (p[i].is_temp)
+        p[i].in_use = true;
+      return &p[i];
+    }
+  }
+  return NULL;
+}
+
+RegisterInfo* AllocLive(CompilationUnit* cu, int s_reg, int reg_class)
+{
+  RegisterInfo* res = NULL;
+  switch (reg_class) {
+    case kAnyReg:
+      res = AllocLiveBody(cu->reg_pool->FPRegs,
+                cu->reg_pool->num_fp_regs, s_reg);
+      if (res)
+        break;
+      /* Intentional fallthrough */
+    case kCoreReg:
+      res = AllocLiveBody(cu->reg_pool->core_regs,
+                cu->reg_pool->num_core_regs, s_reg);
+      break;
+    case kFPReg:
+      res = AllocLiveBody(cu->reg_pool->FPRegs,
+                cu->reg_pool->num_fp_regs, s_reg);
+      break;
+    default:
+      LOG(FATAL) << "Invalid register type";
+  }
+  return res;
+}
+
+void FreeTemp(CompilationUnit* cu, int reg)
+{
+  RegisterInfo* p = cu->reg_pool->core_regs;
+  int num_regs = cu->reg_pool->num_core_regs;
+  int i;
+  for (i=0; i< num_regs; i++) {
+    if (p[i].reg == reg) {
+      if (p[i].is_temp) {
+        p[i].in_use = false;
+      }
+      p[i].pair = false;
+      return;
+    }
+  }
+  p = cu->reg_pool->FPRegs;
+  num_regs = cu->reg_pool->num_fp_regs;
+  for (i=0; i< num_regs; i++) {
+    if (p[i].reg == reg) {
+      if (p[i].is_temp) {
+        p[i].in_use = false;
+      }
+      p[i].pair = false;
+      return;
+    }
+  }
+  LOG(FATAL) << "Tried to free a non-existant temp: r" << reg;
+}
+
+RegisterInfo* IsLive(CompilationUnit* cu, int reg)
+{
+  RegisterInfo* p = cu->reg_pool->core_regs;
+  int num_regs = cu->reg_pool->num_core_regs;
+  int i;
+  for (i=0; i< num_regs; i++) {
+    if (p[i].reg == reg) {
+      return p[i].live ? &p[i] : NULL;
+    }
+  }
+  p = cu->reg_pool->FPRegs;
+  num_regs = cu->reg_pool->num_fp_regs;
+  for (i=0; i< num_regs; i++) {
+    if (p[i].reg == reg) {
+      return p[i].live ? &p[i] : NULL;
+    }
+  }
+  return NULL;
+}
+
+RegisterInfo* IsTemp(CompilationUnit* cu, int reg)
+{
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* p = cg->GetRegInfo(cu, reg);
+  return (p->is_temp) ? p : NULL;
+}
+
+RegisterInfo* IsPromoted(CompilationUnit* cu, int reg)
+{
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* p = cg->GetRegInfo(cu, reg);
+  return (p->is_temp) ? NULL : p;
+}
+
+bool IsDirty(CompilationUnit* cu, int reg)
+{
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* p = cg->GetRegInfo(cu, reg);
+  return p->dirty;
+}
+
+/*
+ * Similar to AllocTemp(), but forces the allocation of a specific
+ * register.  No check is made to see if the register was previously
+ * allocated.  Use with caution.
+ */
+void LockTemp(CompilationUnit* cu, int reg)
+{
+  RegisterInfo* p = cu->reg_pool->core_regs;
+  int num_regs = cu->reg_pool->num_core_regs;
+  int i;
+  for (i=0; i< num_regs; i++) {
+    if (p[i].reg == reg) {
+      DCHECK(p[i].is_temp);
+      p[i].in_use = true;
+      p[i].live = false;
+      return;
+    }
+  }
+  p = cu->reg_pool->FPRegs;
+  num_regs = cu->reg_pool->num_fp_regs;
+  for (i=0; i< num_regs; i++) {
+    if (p[i].reg == reg) {
+      DCHECK(p[i].is_temp);
+      p[i].in_use = true;
+      p[i].live = false;
+      return;
+    }
+  }
+  LOG(FATAL) << "Tried to lock a non-existant temp: r" << reg;
+}
+
+static void ResetDefBody(RegisterInfo* p)
+{
+  p->def_start = NULL;
+  p->def_end = NULL;
+}
+
+void ResetDef(CompilationUnit* cu, int reg)
+{
+  Codegen* cg = cu->cg.get();
+  ResetDefBody(cg->GetRegInfo(cu, reg));
+}
+
+static void NullifyRange(CompilationUnit* cu, LIR *start, LIR *finish, int s_reg1, int s_reg2)
+{
+  if (start && finish) {
+    LIR *p;
+    DCHECK_EQ(s_reg1, s_reg2);
+    for (p = start; ;p = p->next) {
+      NopLIR(p);
+      if (p == finish)
+        break;
+    }
+  }
+}
+
+/*
+ * Mark the beginning and end LIR of a def sequence.  Note that
+ * on entry start points to the LIR prior to the beginning of the
+ * sequence.
+ */
+void MarkDef(CompilationUnit* cu, RegLocation rl,
+             LIR *start, LIR *finish)
+{
+  DCHECK(!rl.wide);
+  DCHECK(start && start->next);
+  DCHECK(finish);
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* p = cg->GetRegInfo(cu, rl.low_reg);
+  p->def_start = start->next;
+  p->def_end = finish;
+}
+
+/*
+ * Mark the beginning and end LIR of a def sequence.  Note that
+ * on entry start points to the LIR prior to the beginning of the
+ * sequence.
+ */
+void MarkDefWide(CompilationUnit* cu, RegLocation rl,
+               LIR *start, LIR *finish)
+{
+  DCHECK(rl.wide);
+  DCHECK(start && start->next);
+  DCHECK(finish);
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* p = cg->GetRegInfo(cu, rl.low_reg);
+  ResetDef(cu, rl.high_reg);  // Only track low of pair
+  p->def_start = start->next;
+  p->def_end = finish;
+}
+
+RegLocation WideToNarrow(CompilationUnit* cu, RegLocation rl)
+{
+  DCHECK(rl.wide);
+  Codegen* cg = cu->cg.get();
+  if (rl.location == kLocPhysReg) {
+    RegisterInfo* info_lo = cg->GetRegInfo(cu, rl.low_reg);
+    RegisterInfo* info_hi = cg->GetRegInfo(cu, rl.high_reg);
+    if (info_lo->is_temp) {
+      info_lo->pair = false;
+      info_lo->def_start = NULL;
+      info_lo->def_end = NULL;
+    }
+    if (info_hi->is_temp) {
+      info_hi->pair = false;
+      info_hi->def_start = NULL;
+      info_hi->def_end = NULL;
+    }
+  }
+  rl.wide = false;
+  return rl;
+}
+
+void ResetDefLoc(CompilationUnit* cu, RegLocation rl)
+{
+  DCHECK(!rl.wide);
+  RegisterInfo* p = IsTemp(cu, rl.low_reg);
+  if (p && !(cu->disable_opt & (1 << kSuppressLoads))) {
+    DCHECK(!p->pair);
+    NullifyRange(cu, p->def_start, p->def_end, p->s_reg, rl.s_reg_low);
+  }
+  ResetDef(cu, rl.low_reg);
+}
+
+void ResetDefLocWide(CompilationUnit* cu, RegLocation rl)
+{
+  DCHECK(rl.wide);
+  RegisterInfo* p_low = IsTemp(cu, rl.low_reg);
+  RegisterInfo* p_high = IsTemp(cu, rl.high_reg);
+  if (p_low && !(cu->disable_opt & (1 << kSuppressLoads))) {
+    DCHECK(p_low->pair);
+    NullifyRange(cu, p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
+  }
+  if (p_high && !(cu->disable_opt & (1 << kSuppressLoads))) {
+    DCHECK(p_high->pair);
+  }
+  ResetDef(cu, rl.low_reg);
+  ResetDef(cu, rl.high_reg);
+}
+
+void ResetDefTracking(CompilationUnit* cu)
+{
+  int i;
+  for (i=0; i< cu->reg_pool->num_core_regs; i++) {
+    ResetDefBody(&cu->reg_pool->core_regs[i]);
+  }
+  for (i=0; i< cu->reg_pool->num_fp_regs; i++) {
+    ResetDefBody(&cu->reg_pool->FPRegs[i]);
+  }
+}
+
+void ClobberAllRegs(CompilationUnit* cu)
+{
+  int i;
+  for (i=0; i< cu->reg_pool->num_core_regs; i++) {
+    ClobberBody(cu, &cu->reg_pool->core_regs[i]);
+  }
+  for (i=0; i< cu->reg_pool->num_fp_regs; i++) {
+    ClobberBody(cu, &cu->reg_pool->FPRegs[i]);
+  }
+}
+
+// Make sure nothing is live and dirty
+static void FlushAllRegsBody(CompilationUnit* cu, RegisterInfo* info, int num_regs)
+{
+  Codegen* cg = cu->cg.get();
+  int i;
+  for (i=0; i < num_regs; i++) {
+    if (info[i].live && info[i].dirty) {
+      if (info[i].pair) {
+        cg->FlushRegWide(cu, info[i].reg, info[i].partner);
+      } else {
+        cg->FlushReg(cu, info[i].reg);
+      }
+    }
+  }
+}
+
+void FlushAllRegs(CompilationUnit* cu)
+{
+  FlushAllRegsBody(cu, cu->reg_pool->core_regs,
+           cu->reg_pool->num_core_regs);
+  FlushAllRegsBody(cu, cu->reg_pool->FPRegs,
+           cu->reg_pool->num_fp_regs);
+  ClobberAllRegs(cu);
+}
+
+
+//TUNING: rewrite all of this reg stuff.  Probably use an attribute table
+static bool RegClassMatches(CompilationUnit* cu, int reg_class, int reg)
+{
+  Codegen* cg = cu->cg.get();
+  if (reg_class == kAnyReg) {
+    return true;
+  } else if (reg_class == kCoreReg) {
+    return !cg->IsFpReg(reg);
+  } else {
+    return cg->IsFpReg(reg);
+  }
+}
+
+void MarkLive(CompilationUnit* cu, int reg, int s_reg)
+{
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* info = cg->GetRegInfo(cu, reg);
+  if ((info->reg == reg) && (info->s_reg == s_reg) && info->live) {
+    return;  /* already live */
+  } else if (s_reg != INVALID_SREG) {
+    ClobberSReg(cu, s_reg);
+    if (info->is_temp) {
+      info->live = true;
+    }
+  } else {
+    /* Can't be live if no associated s_reg */
+    DCHECK(info->is_temp);
+    info->live = false;
+  }
+  info->s_reg = s_reg;
+}
+
+void MarkTemp(CompilationUnit* cu, int reg)
+{
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* info = cg->GetRegInfo(cu, reg);
+  info->is_temp = true;
+}
+
+void UnmarkTemp(CompilationUnit* cu, int reg)
+{
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* info = cg->GetRegInfo(cu, reg);
+  info->is_temp = false;
+}
+
+void MarkPair(CompilationUnit* cu, int low_reg, int high_reg)
+{
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* info_lo = cg->GetRegInfo(cu, low_reg);
+  RegisterInfo* info_hi = cg->GetRegInfo(cu, high_reg);
+  info_lo->pair = info_hi->pair = true;
+  info_lo->partner = high_reg;
+  info_hi->partner = low_reg;
+}
+
+void MarkClean(CompilationUnit* cu, RegLocation loc)
+{
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* info = cg->GetRegInfo(cu, loc.low_reg);
+  info->dirty = false;
+  if (loc.wide) {
+    info = cg->GetRegInfo(cu, loc.high_reg);
+    info->dirty = false;
+  }
+}
+
+void MarkDirty(CompilationUnit* cu, RegLocation loc)
+{
+  if (loc.home) {
+    // If already home, can't be dirty
+    return;
+  }
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* info = cg->GetRegInfo(cu, loc.low_reg);
+  info->dirty = true;
+  if (loc.wide) {
+    info = cg->GetRegInfo(cu, loc.high_reg);
+    info->dirty = true;
+  }
+}
+
+void MarkInUse(CompilationUnit* cu, int reg)
+{
+  Codegen* cg = cu->cg.get();
+    RegisterInfo* info = cg->GetRegInfo(cu, reg);
+    info->in_use = true;
+}
+
+static void CopyRegInfo(CompilationUnit* cu, int new_reg, int old_reg)
+{
+  Codegen* cg = cu->cg.get();
+  RegisterInfo* new_info = cg->GetRegInfo(cu, new_reg);
+  RegisterInfo* old_info = cg->GetRegInfo(cu, old_reg);
+  // Target temp status must not change
+  bool is_temp = new_info->is_temp;
+  *new_info = *old_info;
+  // Restore target's temp status
+  new_info->is_temp = is_temp;
+  new_info->reg = new_reg;
+}
+
+static bool CheckCorePoolSanity(CompilationUnit* cu)
+{
+  Codegen* cg = cu->cg.get();
+   for (static int i = 0; i < cu->reg_pool->num_core_regs; i++) {
+     if (cu->reg_pool->core_regs[i].pair) {
+       static int my_reg = cu->reg_pool->core_regs[i].reg;
+       static int my_sreg = cu->reg_pool->core_regs[i].s_reg;
+       static int partner_reg = cu->reg_pool->core_regs[i].partner;
+       static RegisterInfo* partner = cg->GetRegInfo(cu, partner_reg);
+       DCHECK(partner != NULL);
+       DCHECK(partner->pair);
+       DCHECK_EQ(my_reg, partner->partner);
+       static int partner_sreg = partner->s_reg;
+       if (my_sreg == INVALID_SREG) {
+         DCHECK_EQ(partner_sreg, INVALID_SREG);
+       } else {
+         int diff = my_sreg - partner_sreg;
+         DCHECK((diff == -1) || (diff == 1));
+       }
+     }
+     if (!cu->reg_pool->core_regs[i].live) {
+       DCHECK(cu->reg_pool->core_regs[i].def_start == NULL);
+       DCHECK(cu->reg_pool->core_regs[i].def_end == NULL);
+     }
+   }
+   return true;
+}
+
+/*
+ * Return an updated location record with current in-register status.
+ * If the value lives in live temps, reflect that fact.  No code
+ * is generated.  If the live value is part of an older pair,
+ * clobber both low and high.
+ * TUNING: clobbering both is a bit heavy-handed, but the alternative
+ * is a bit complex when dealing with FP regs.  Examine code to see
+ * if it's worthwhile trying to be more clever here.
+ */
+
+RegLocation UpdateLoc(CompilationUnit* cu, RegLocation loc)
+{
+  DCHECK(!loc.wide);
+  DCHECK(CheckCorePoolSanity(cu));
+  if (loc.location != kLocPhysReg) {
+    DCHECK((loc.location == kLocDalvikFrame) ||
+         (loc.location == kLocCompilerTemp));
+    RegisterInfo* info_lo = AllocLive(cu, loc.s_reg_low, kAnyReg);
+    if (info_lo) {
+      if (info_lo->pair) {
+        Clobber(cu, info_lo->reg);
+        Clobber(cu, info_lo->partner);
+        FreeTemp(cu, info_lo->reg);
+      } else {
+        loc.low_reg = info_lo->reg;
+        loc.location = kLocPhysReg;
+      }
+    }
+  }
+
+  return loc;
+}
+
+/* see comments for update_loc */
+RegLocation UpdateLocWide(CompilationUnit* cu, RegLocation loc)
+{
+  DCHECK(loc.wide);
+  DCHECK(CheckCorePoolSanity(cu));
+  Codegen* cg = cu->cg.get();
+  if (loc.location != kLocPhysReg) {
+    DCHECK((loc.location == kLocDalvikFrame) ||
+         (loc.location == kLocCompilerTemp));
+    // Are the dalvik regs already live in physical registers?
+    RegisterInfo* info_lo = AllocLive(cu, loc.s_reg_low, kAnyReg);
+    RegisterInfo* info_hi = AllocLive(cu,
+        GetSRegHi(loc.s_reg_low), kAnyReg);
+    bool match = true;
+    match = match && (info_lo != NULL);
+    match = match && (info_hi != NULL);
+    // Are they both core or both FP?
+    match = match && (cg->IsFpReg(info_lo->reg) == cg->IsFpReg(info_hi->reg));
+    // If a pair of floating point singles, are they properly aligned?
+    if (match && cg->IsFpReg(info_lo->reg)) {
+      match &= ((info_lo->reg & 0x1) == 0);
+      match &= ((info_hi->reg - info_lo->reg) == 1);
+    }
+    // If previously used as a pair, it is the same pair?
+    if (match && (info_lo->pair || info_hi->pair)) {
+      match = (info_lo->pair == info_hi->pair);
+      match &= ((info_lo->reg == info_hi->partner) &&
+            (info_hi->reg == info_lo->partner));
+    }
+    if (match) {
+      // Can reuse - update the register usage info
+      loc.low_reg = info_lo->reg;
+      loc.high_reg = info_hi->reg;
+      loc.location = kLocPhysReg;
+      MarkPair(cu, loc.low_reg, loc.high_reg);
+      DCHECK(!cg->IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
+      return loc;
+    }
+    // Can't easily reuse - clobber and free any overlaps
+    if (info_lo) {
+      Clobber(cu, info_lo->reg);
+      FreeTemp(cu, info_lo->reg);
+      if (info_lo->pair)
+        Clobber(cu, info_lo->partner);
+    }
+    if (info_hi) {
+      Clobber(cu, info_hi->reg);
+      FreeTemp(cu, info_hi->reg);
+      if (info_hi->pair)
+        Clobber(cu, info_hi->partner);
+    }
+  }
+  return loc;
+}
+
+
+/* For use in cases we don't know (or care) width */
+RegLocation UpdateRawLoc(CompilationUnit* cu, RegLocation loc)
+{
+  if (loc.wide)
+    return UpdateLocWide(cu, loc);
+  else
+    return UpdateLoc(cu, loc);
+}
+
+RegLocation EvalLocWide(CompilationUnit* cu, RegLocation loc, int reg_class, bool update)
+{
+  DCHECK(loc.wide);
+  int new_regs;
+  int low_reg;
+  int high_reg;
+  Codegen* cg = cu->cg.get();
+
+  loc = UpdateLocWide(cu, loc);
+
+  /* If already in registers, we can assume proper form.  Right reg class? */
+  if (loc.location == kLocPhysReg) {
+    DCHECK_EQ(cg->IsFpReg(loc.low_reg), cg->IsFpReg(loc.high_reg));
+    DCHECK(!cg->IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
+    if (!RegClassMatches(cu, reg_class, loc.low_reg)) {
+      /* Wrong register class.  Reallocate and copy */
+      new_regs = cg->AllocTypedTempPair(cu, loc.fp, reg_class);
+      low_reg = new_regs & 0xff;
+      high_reg = (new_regs >> 8) & 0xff;
+      cg->OpRegCopyWide(cu, low_reg, high_reg, loc.low_reg, loc.high_reg);
+      CopyRegInfo(cu, low_reg, loc.low_reg);
+      CopyRegInfo(cu, high_reg, loc.high_reg);
+      Clobber(cu, loc.low_reg);
+      Clobber(cu, loc.high_reg);
+      loc.low_reg = low_reg;
+      loc.high_reg = high_reg;
+      MarkPair(cu, loc.low_reg, loc.high_reg);
+      DCHECK(!cg->IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
+    }
+    return loc;
+  }
+
+  DCHECK_NE(loc.s_reg_low, INVALID_SREG);
+  DCHECK_NE(GetSRegHi(loc.s_reg_low), INVALID_SREG);
+
+  new_regs = cg->AllocTypedTempPair(cu, loc.fp, reg_class);
+  loc.low_reg = new_regs & 0xff;
+  loc.high_reg = (new_regs >> 8) & 0xff;
+
+  MarkPair(cu, loc.low_reg, loc.high_reg);
+  if (update) {
+    loc.location = kLocPhysReg;
+    MarkLive(cu, loc.low_reg, loc.s_reg_low);
+    MarkLive(cu, loc.high_reg, GetSRegHi(loc.s_reg_low));
+  }
+  DCHECK(!cg->IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
+  return loc;
+}
+
+RegLocation EvalLoc(CompilationUnit* cu, RegLocation loc,
+                int reg_class, bool update)
+{
+  int new_reg;
+
+  if (loc.wide)
+    return EvalLocWide(cu, loc, reg_class, update);
+
+  Codegen* cg = cu->cg.get();
+  loc = UpdateLoc(cu, loc);
+
+  if (loc.location == kLocPhysReg) {
+    if (!RegClassMatches(cu, reg_class, loc.low_reg)) {
+      /* Wrong register class.  Realloc, copy and transfer ownership */
+      new_reg = cg->AllocTypedTemp(cu, loc.fp, reg_class);
+      cg->OpRegCopy(cu, new_reg, loc.low_reg);
+      CopyRegInfo(cu, new_reg, loc.low_reg);
+      Clobber(cu, loc.low_reg);
+      loc.low_reg = new_reg;
+    }
+    return loc;
+  }
+
+  DCHECK_NE(loc.s_reg_low, INVALID_SREG);
+
+  new_reg = cg->AllocTypedTemp(cu, loc.fp, reg_class);
+  loc.low_reg = new_reg;
+
+  if (update) {
+    loc.location = kLocPhysReg;
+    MarkLive(cu, loc.low_reg, loc.s_reg_low);
+  }
+  return loc;
+}
+
+RegLocation GetRawSrc(CompilationUnit* cu, MIR* mir, int num)
+{
+  DCHECK(num < mir->ssa_rep->num_uses);
+  RegLocation res = cu->reg_location[mir->ssa_rep->uses[num]];
+  return res;
+}
+
+RegLocation GetRawDest(CompilationUnit* cu, MIR* mir)
+{
+  DCHECK_GT(mir->ssa_rep->num_defs, 0);
+  RegLocation res = cu->reg_location[mir->ssa_rep->defs[0]];
+  return res;
+}
+
+RegLocation GetDest(CompilationUnit* cu, MIR* mir)
+{
+  RegLocation res = GetRawDest(cu, mir);
+  DCHECK(!res.wide);
+  return res;
+}
+
+RegLocation GetSrc(CompilationUnit* cu, MIR* mir, int num)
+{
+  RegLocation res = GetRawSrc(cu, mir, num);
+  DCHECK(!res.wide);
+  return res;
+}
+
+RegLocation GetDestWide(CompilationUnit* cu, MIR* mir)
+{
+  RegLocation res = GetRawDest(cu, mir);
+  DCHECK(res.wide);
+  return res;
+}
+
+RegLocation GetSrcWide(CompilationUnit* cu, MIR* mir,
+                 int low)
+{
+  RegLocation res = GetRawSrc(cu, mir, low);
+  DCHECK(res.wide);
+  return res;
+}
+
+/* USE SSA names to count references of base Dalvik v_regs. */
+static void CountRefs(CompilationUnit *cu, BasicBlock* bb, RefCounts* core_counts,
+                      RefCounts* fp_counts)
+{
+  // TUNING: this routine could use some tweaking.
+  if ((cu->disable_opt & (1 << kPromoteRegs)) ||
+    !((bb->block_type == kEntryBlock) || (bb->block_type == kExitBlock) ||
+      (bb->block_type == kDalvikByteCode))) {
+    return;
+  }
+  for (int i = 0; i < cu->num_ssa_regs; i++) {
+    RegLocation loc = cu->reg_location[i];
+    RefCounts* counts = loc.fp ? fp_counts : core_counts;
+    int p_map_idx = SRegToPMap(cu, loc.s_reg_low);
+    //Don't count easily regenerated immediates
+    if (loc.fp || !IsInexpensiveConstant(cu, loc)) {
+      counts[p_map_idx].count += cu->raw_use_counts.elem_list[i];
+    }
+    if (loc.wide && loc.fp && !loc.high_word) {
+      counts[p_map_idx].double_start = true;
+    }
+  }
+}
+
+/* qsort callback function, sort descending */
+static int SortCounts(const void *val1, const void *val2)
+{
+  const RefCounts* op1 = reinterpret_cast<const RefCounts*>(val1);
+  const RefCounts* op2 = reinterpret_cast<const RefCounts*>(val2);
+  return (op1->count == op2->count) ? 0 : (op1->count < op2->count ? 1 : -1);
+}
+
+static void DumpCounts(const RefCounts* arr, int size, const char* msg)
+{
+  LOG(INFO) << msg;
+  for (int i = 0; i < size; i++) {
+    LOG(INFO) << "s_reg[" << arr[i].s_reg << "]: " << arr[i].count;
+  }
+}
+
+/*
+ * Note: some portions of this code required even if the kPromoteRegs
+ * optimization is disabled.
+ */
+void DoPromotion(CompilationUnit* cu)
+{
+  Codegen* cg = cu->cg.get();
+  int reg_bias = cu->num_compiler_temps + 1;
+  int dalvik_regs = cu->num_dalvik_registers;
+  int num_regs = dalvik_regs + reg_bias;
+  const int promotion_threshold = 2;
+
+  // Allow target code to add any special registers
+  cg->AdjustSpillMask(cu);
+
+  /*
+   * Simple register promotion. Just do a static count of the uses
+   * of Dalvik registers.  Note that we examine the SSA names, but
+   * count based on original Dalvik register name.  Count refs
+   * separately based on type in order to give allocation
+   * preference to fp doubles - which must be allocated sequential
+   * physical single fp registers started with an even-numbered
+   * reg.
+   * TUNING: replace with linear scan once we have the ability
+   * to describe register live ranges for GC.
+   */
+  RefCounts *core_regs = static_cast<RefCounts*>(NewMem(cu, sizeof(RefCounts) * num_regs,
+                                                       true, kAllocRegAlloc));
+  RefCounts *FpRegs = static_cast<RefCounts *>(NewMem(cu, sizeof(RefCounts) * num_regs,
+                                                      true, kAllocRegAlloc));
+  // Set ssa names for original Dalvik registers
+  for (int i = 0; i < dalvik_regs; i++) {
+    core_regs[i].s_reg = FpRegs[i].s_reg = i;
+  }
+  // Set ssa name for Method*
+  core_regs[dalvik_regs].s_reg = cu->method_sreg;
+  FpRegs[dalvik_regs].s_reg = cu->method_sreg;  // For consistecy
+  // Set ssa names for compiler_temps
+  for (int i = 1; i <= cu->num_compiler_temps; i++) {
+    CompilerTemp* ct = reinterpret_cast<CompilerTemp*>(cu->compiler_temps.elem_list[i]);
+    core_regs[dalvik_regs + i].s_reg = ct->s_reg;
+    FpRegs[dalvik_regs + i].s_reg = ct->s_reg;
+  }
+
+  GrowableListIterator iterator;
+  GrowableListIteratorInit(&cu->block_list, &iterator);
+  while (true) {
+    BasicBlock* bb;
+    bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iterator));
+    if (bb == NULL) break;
+    CountRefs(cu, bb, core_regs, FpRegs);
+  }
+
+  /*
+   * Ideally, we'd allocate doubles starting with an even-numbered
+   * register.  Bias the counts to try to allocate any vreg that's
+   * used as the start of a pair first.
+   */
+  for (int i = 0; i < num_regs; i++) {
+    if (FpRegs[i].double_start) {
+      FpRegs[i].count *= 2;
+    }
+  }
+
+  // Sort the count arrays
+  qsort(core_regs, num_regs, sizeof(RefCounts), SortCounts);
+  qsort(FpRegs, num_regs, sizeof(RefCounts), SortCounts);
+
+  if (cu->verbose) {
+    DumpCounts(core_regs, num_regs, "Core regs after sort");
+    DumpCounts(FpRegs, num_regs, "Fp regs after sort");
+  }
+
+  if (!(cu->disable_opt & (1 << kPromoteRegs))) {
+    // Promote FpRegs
+    for (int i = 0; (i < num_regs) &&
+            (FpRegs[i].count >= promotion_threshold ); i++) {
+      int p_map_idx = SRegToPMap(cu, FpRegs[i].s_reg);
+      if (cu->promotion_map[p_map_idx].fp_location != kLocPhysReg) {
+        int reg = AllocPreservedFPReg(cu, FpRegs[i].s_reg,
+          FpRegs[i].double_start);
+        if (reg < 0) {
+          break;  // No more left
+        }
+      }
+    }
+
+    // Promote core regs
+    for (int i = 0; (i < num_regs) &&
+            (core_regs[i].count > promotion_threshold); i++) {
+      int p_map_idx = SRegToPMap(cu, core_regs[i].s_reg);
+      if (cu->promotion_map[p_map_idx].core_location !=
+          kLocPhysReg) {
+        int reg = AllocPreservedCoreReg(cu, core_regs[i].s_reg);
+        if (reg < 0) {
+           break;  // No more left
+        }
+      }
+    }
+  } else if (cu->qd_mode) {
+    AllocPreservedCoreReg(cu, cu->method_sreg);
+    for (int i = 0; i < num_regs; i++) {
+      int reg = AllocPreservedCoreReg(cu, i);
+      if (reg < 0) {
+         break;  // No more left
+      }
+    }
+  }
+
+
+  // Now, update SSA names to new home locations
+  for (int i = 0; i < cu->num_ssa_regs; i++) {
+    RegLocation *curr = &cu->reg_location[i];
+    int p_map_idx = SRegToPMap(cu, curr->s_reg_low);
+    if (!curr->wide) {
+      if (curr->fp) {
+        if (cu->promotion_map[p_map_idx].fp_location == kLocPhysReg) {
+          curr->location = kLocPhysReg;
+          curr->low_reg = cu->promotion_map[p_map_idx].FpReg;
+          curr->home = true;
+        }
+      } else {
+        if (cu->promotion_map[p_map_idx].core_location == kLocPhysReg) {
+          curr->location = kLocPhysReg;
+          curr->low_reg = cu->promotion_map[p_map_idx].core_reg;
+          curr->home = true;
+        }
+      }
+      curr->high_reg = INVALID_REG;
+    } else {
+      if (curr->high_word) {
+        continue;
+      }
+      if (curr->fp) {
+        if ((cu->promotion_map[p_map_idx].fp_location == kLocPhysReg) &&
+          (cu->promotion_map[p_map_idx+1].fp_location ==
+          kLocPhysReg)) {
+          int low_reg = cu->promotion_map[p_map_idx].FpReg;
+          int high_reg = cu->promotion_map[p_map_idx+1].FpReg;
+          // Doubles require pair of singles starting at even reg
+          if (((low_reg & 0x1) == 0) && ((low_reg + 1) == high_reg)) {
+            curr->location = kLocPhysReg;
+            curr->low_reg = low_reg;
+            curr->high_reg = high_reg;
+            curr->home = true;
+          }
+        }
+      } else {
+        if ((cu->promotion_map[p_map_idx].core_location == kLocPhysReg)
+           && (cu->promotion_map[p_map_idx+1].core_location ==
+           kLocPhysReg)) {
+          curr->location = kLocPhysReg;
+          curr->low_reg = cu->promotion_map[p_map_idx].core_reg;
+          curr->high_reg = cu->promotion_map[p_map_idx+1].core_reg;
+          curr->home = true;
+        }
+      }
+    }
+  }
+  if (cu->verbose) {
+    DumpPromotionMap(cu);
+  }
+}
+
+/* Returns sp-relative offset in bytes for a VReg */
+int VRegOffset(CompilationUnit* cu, int v_reg)
+{
+  return StackVisitor::GetVRegOffset(cu->code_item, cu->core_spill_mask,
+                                     cu->fp_spill_mask, cu->frame_size, v_reg);
+}
+
+/* Returns sp-relative offset in bytes for a SReg */
+int SRegOffset(CompilationUnit* cu, int s_reg)
+{
+  return VRegOffset(cu, SRegToVReg(cu, s_reg));
+}
+
+RegLocation GetBadLoc()
+{
+  RegLocation res = bad_loc;
+  return res;
+}
+
+/* Mark register usage state and return long retloc */
+RegLocation GetReturnWide(CompilationUnit* cu, bool is_double)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation gpr_res = cg->LocCReturnWide();
+  RegLocation fpr_res = cg->LocCReturnDouble();
+  RegLocation res = is_double ? fpr_res : gpr_res;
+  Clobber(cu, res.low_reg);
+  Clobber(cu, res.high_reg);
+  LockTemp(cu, res.low_reg);
+  LockTemp(cu, res.high_reg);
+  MarkPair(cu, res.low_reg, res.high_reg);
+  return res;
+}
+
+RegLocation GetReturn(CompilationUnit* cu, bool is_float)
+{
+  Codegen* cg = cu->cg.get();
+  RegLocation gpr_res = cg->LocCReturn();
+  RegLocation fpr_res = cg->LocCReturnFloat();
+  RegLocation res = is_float ? fpr_res : gpr_res;
+  Clobber(cu, res.low_reg);
+  if (cu->instruction_set == kMips) {
+    MarkInUse(cu, res.low_reg);
+  } else {
+    LockTemp(cu, res.low_reg);
+  }
+  return res;
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/ralloc_util.h b/src/compiler/dex/quick/ralloc_util.h
new file mode 100644
index 0000000..3287047
--- /dev/null
+++ b/src/compiler/dex/quick/ralloc_util.h
@@ -0,0 +1,164 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_RALLOCUTIL_H_
+#define ART_SRC_COMPILER_DEX_QUICK_RALLOCUTIL_H_
+
+/*
+ * This file contains target independent register alloction support.
+ */
+
+#include "compiler/dex/compiler_ir.h"
+#include "compiler/dex/compiler_utility.h"
+#include "compiler/dex/dataflow.h"
+
+namespace art {
+
+/* Static register use counts */
+struct RefCounts {
+  int count;
+  int s_reg;
+  bool double_start;   // Starting v_reg for a double
+};
+
+/*
+ * Get the "real" sreg number associated with an s_reg slot.  In general,
+ * s_reg values passed through codegen are the SSA names created by
+ * dataflow analysis and refer to slot numbers in the cu->reg_location
+ * array.  However, renaming is accomplished by simply replacing RegLocation
+ * entries in the cu->reglocation[] array.  Therefore, when location
+ * records for operands are first created, we need to ask the locRecord
+ * identified by the dataflow pass what it's new name is.
+ */
+inline int GetSRegHi(int lowSreg) {
+  return (lowSreg == INVALID_SREG) ? INVALID_SREG : lowSreg + 1;
+}
+
+inline bool oat_live_out(CompilationUnit* cu, int s_reg) {
+  //For now.
+  return true;
+}
+
+inline int oatSSASrc(MIR* mir, int num) {
+  DCHECK_GT(mir->ssa_rep->num_uses, num);
+  return mir->ssa_rep->uses[num];
+}
+
+void ClobberSReg(CompilationUnit* cu, int s_reg);
+RegLocation EvalLoc(CompilationUnit* cu, RegLocation loc,
+                              int reg_class, bool update);
+// Mark a temp register as dead.  Does not affect allocation state.
+void Clobber(CompilationUnit* cu, int reg);
+
+RegLocation UpdateLoc(CompilationUnit* cu, RegLocation loc);
+RegLocation UpdateLocWide(CompilationUnit* cu, RegLocation loc);
+RegLocation UpdateRawLoc(CompilationUnit* cu, RegLocation loc);
+
+void MarkLive(CompilationUnit* cu, int reg, int s_reg);
+void MarkTemp(CompilationUnit* cu, int reg);
+void UnmarkTemp(CompilationUnit* cu, int reg);
+void MarkDirty(CompilationUnit* cu, RegLocation loc);
+void MarkPair(CompilationUnit* cu, int low_reg, int high_reg);
+void MarkClean(CompilationUnit* cu, RegLocation loc);
+void ResetDef(CompilationUnit* cu, int reg);
+void ResetDefLoc(CompilationUnit* cu, RegLocation rl);
+
+// Set up temp & preserved register pools specialized by target.
+void CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num);
+
+/*
+ * Mark the beginning and end LIR of a def sequence.  Note that
+ * on entry start points to the LIR prior to the beginning of the
+ * sequence.
+ */
+void MarkDef(CompilationUnit* cu, RegLocation rl, LIR* start, LIR* finish);
+void MarkDefWide(CompilationUnit* cu, RegLocation rl, LIR* start, LIR* finish);
+void ResetDefLocWide(CompilationUnit* cu, RegLocation rl);
+void ResetDefTracking(CompilationUnit* cu);
+
+
+// Get the LocRecord associated with an SSA name use.
+RegLocation GetSrc(CompilationUnit* cu, MIR* mir, int num);
+RegLocation GetSrcWide(CompilationUnit* cu, MIR* mir, int low);
+// Non-width checking version.
+RegLocation GetRawSrc(CompilationUnit* cu, MIR* mir, int num);
+
+// Get the LocRecord associated with an SSA name def.
+RegLocation GetDest(CompilationUnit* cu, MIR* mir);
+RegLocation GetDestWide(CompilationUnit* cu, MIR* mir);
+// Non-width checking version.
+RegLocation GetRawDest(CompilationUnit* cu, MIR* mir);
+
+// Clobber all regs that might be used by an external C call.
+void ClobberCalleeSave(CompilationUnit* cu);
+
+RegisterInfo *IsTemp(CompilationUnit* cu, int reg);
+RegisterInfo *IsPromoted(CompilationUnit* cu, int reg);
+RegisterInfo *IsLive(CompilationUnit* cu, int reg);
+bool IsDirty(CompilationUnit* cu, int reg);
+
+void MarkInUse(CompilationUnit* cu, int reg);
+
+int AllocTemp(CompilationUnit* cu);
+int AllocTempFloat(CompilationUnit* cu);
+int AllocTempDouble(CompilationUnit* cu);
+void FreeTemp(CompilationUnit* cu, int reg);
+// Return a temp if one is available, -1 otherwise.
+int AllocFreeTemp(CompilationUnit* cu);
+/*
+ * Attempt to allocate a callee-save register.
+ * Similar to AllocTemp(), but forces the allocation of a specific
+ * register.  No check is made to see if the register was previously
+ * allocated.  Use with caution.
+ */
+void LockTemp(CompilationUnit* cu, int reg);
+
+/* To be used when explicitly managing register use */
+void LockCallTemps(CompilationUnit* cu);
+void FreeCallTemps(CompilationUnit* cu);
+
+void FlushAllRegs(CompilationUnit* cu);
+
+RegLocation GetReturn(CompilationUnit* cu, bool is_float);
+RegLocation GetReturnWide(CompilationUnit* cu, bool is_double);
+RegLocation GetBadLoc();
+RegLocation WideToNarrow(CompilationUnit* cu, RegLocation rl);
+
+/*
+ * Free all allocated temps in the temp pools.  Note that this does
+ * not affect the "liveness" of a temp register, which will stay
+ * live until it is either explicitly killed or reallocated.
+ */
+void ResetRegPool(CompilationUnit* cu);
+
+void ClobberAllRegs(CompilationUnit* cu);
+
+void FlushRegWide(CompilationUnit* cu, int reg1, int reg2);
+
+void FlushReg(CompilationUnit* cu, int reg);
+
+void DoPromotion(CompilationUnit* cu);
+int VRegOffset(CompilationUnit* cu, int reg);
+int SRegOffset(CompilationUnit* cu, int reg);
+void RecordCorePromotion(CompilationUnit* cu, int reg, int s_reg);
+void RecordFpPromotion(CompilationUnit* cu, int reg, int s_reg);
+int ComputeFrameSize(CompilationUnit* cu);
+int SRegToPMap(CompilationUnit* cu, int s_reg);
+void DumpRegPool(RegisterInfo* p, int num_regs);
+
+}  // namespace art
+
+#endif // ART_SRC_COMPILER_DEX_QUICK_RALLOCUTIL_H_
diff --git a/src/compiler/dex/quick/x86/assemble_x86.cc b/src/compiler/dex/quick/x86/assemble_x86.cc
new file mode 100644
index 0000000..9ee0cb5
--- /dev/null
+++ b/src/compiler/dex/quick/x86/assemble_x86.cc
@@ -0,0 +1,1400 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_x86.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "x86_lir.h"
+
+namespace art {
+
+#define MAX_ASSEMBLER_RETRIES 50
+
+const X86EncodingMap X86Codegen::EncodingMap[kX86Last] = {
+  { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data",  "0x!0d" },
+  { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
+  { kX86Nop,       kNop,     IS_UNARY_OP,            { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop",   "" },
+
+#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
+                     rm8_r8, rm32_r32, \
+                     r8_rm8, r32_rm32, \
+                     ax8_i8, ax32_i32, \
+                     rm8_i8, rm8_i8_modrm, \
+                     rm32_i32, rm32_i32_modrm, \
+                     rm32_i8, rm32_i8_modrm) \
+{ kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
+{ kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
+{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8TR", "fs:[!0d],!1r" }, \
+{ kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RR", "!0r,!1r" }, \
+{ kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
+{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
+{ kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8TI", "fs:[!0d],!1d" }, \
+  \
+{ kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
+{ kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
+{ kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0 }, #opname "16TR", "fs:[!0d],!1r" }, \
+{ kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RR", "!0r,!1r" }, \
+{ kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
+{ kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
+{ kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16TI", "fs:[!0d],!1d" }, \
+{ kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16RI8", "!0r,!1d" }, \
+{ kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
+  \
+{ kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
+{ kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
+{ kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32TR", "fs:[!0d],!1r" }, \
+{ kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RR", "!0r,!1r" }, \
+{ kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
+{ kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
+{ kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32TI", "fs:[!0d],!1d" }, \
+{ kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32RI8", "!0r,!1d" }, \
+{ kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32TI8", "fs:[!0d],!1d" }
+
+ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
+  0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
+  0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
+  0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
+  0x80, 0x0 /* RegMem8/imm8 */,
+  0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
+ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
+  0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
+  0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
+  0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
+  0x80, 0x1 /* RegMem8/imm8 */,
+  0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
+ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
+  0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
+  0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
+  0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
+  0x80, 0x2 /* RegMem8/imm8 */,
+  0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
+ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
+  0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
+  0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
+  0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
+  0x80, 0x3 /* RegMem8/imm8 */,
+  0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
+ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
+  0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
+  0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
+  0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
+  0x80, 0x4 /* RegMem8/imm8 */,
+  0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
+ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
+  0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
+  0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
+  0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
+  0x80, 0x5 /* RegMem8/imm8 */,
+  0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
+ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
+  0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
+  0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
+  0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
+  0x80, 0x6 /* RegMem8/imm8 */,
+  0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
+ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
+  0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
+  0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
+  0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
+  0x80, 0x7 /* RegMem8/imm8 */,
+  0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
+#undef ENCODING_MAP
+
+  { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
+  { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
+  { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
+
+  { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
+  { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
+  { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
+  { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
+  { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
+  { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
+
+  { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
+  { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
+  { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
+  { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
+  { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
+  { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+  { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
+  { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
+  { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
+  { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
+  { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
+
+  { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
+  { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
+  { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
+  { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
+  { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
+  { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+  { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
+  { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
+  { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
+  { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
+  { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
+
+  { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
+  { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
+  { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
+  { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
+  { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
+  { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+  { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
+  { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
+  { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
+  { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
+  { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
+
+  { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+
+#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
+{ kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8RC", "!0r,cl" }, \
+{ kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8MC", "[!0r+!1d],cl" }, \
+{ kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
+  \
+{ kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16RC", "!0r,cl" }, \
+{ kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16MC", "[!0r+!1d],cl" }, \
+{ kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
+  \
+{ kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32RC", "!0r,cl" }, \
+{ kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32MC", "[!0r+!1d],cl" }, \
+{ kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
+
+  SHIFT_ENCODING_MAP(Rol, 0x0),
+  SHIFT_ENCODING_MAP(Ror, 0x1),
+  SHIFT_ENCODING_MAP(Rcl, 0x2),
+  SHIFT_ENCODING_MAP(Rcr, 0x3),
+  SHIFT_ENCODING_MAP(Sal, 0x4),
+  SHIFT_ENCODING_MAP(Shr, 0x5),
+  SHIFT_ENCODING_MAP(Sar, 0x7),
+#undef SHIFT_ENCODING_MAP
+
+  { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
+
+  { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
+  { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
+  { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
+  { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
+  { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
+  { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
+  { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
+  { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
+  { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
+  { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,    0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
+
+#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
+                           reg, reg_kind, reg_flags, \
+                           mem, mem_kind, mem_flags, \
+                           arr, arr_kind, arr_flags, imm, \
+                           b_flags, hw_flags, w_flags, \
+                           b_format, hw_format, w_format) \
+{ kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
+{ kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
+{ kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
+{ kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
+{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
+{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
+{ kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
+{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
+{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
+
+  UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
+  UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
+
+  UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
+  UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
+  UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
+  UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
+#undef UNARY_ENCODING_MAP
+
+#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
+{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
+{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
+
+  EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
+  { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
+  { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
+
+  EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
+  { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
+  { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
+
+  EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES),
+  EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES),
+  EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES),
+  EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES),
+  EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0),
+
+  { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
+  { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
+
+  EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
+  { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE01,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
+  { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
+  { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
+
+  { kX86Set8R, kRegCond,              IS_BINARY_OP   | REG_DEF0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
+  { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
+  { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
+
+  // TODO: load/store?
+  // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
+  { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
+
+  EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_DEF0 | SETS_CCODES),
+  EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_DEF0 | SETS_CCODES),
+
+  { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
+  { kX86CmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
+  { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
+  { kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" },
+  { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
+  { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
+
+  EXT_0F_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
+  EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
+#undef EXT_0F_ENCODING_MAP
+
+  { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0 }, "Jcc8",  "!1c !0t" },
+  { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
+  { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0 }, "Jmp8",  "!0t" },
+  { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0 }, "Jmp32", "!0t" },
+  { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0 }, "JmpR",  "!0r" },
+  { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0 }, "CallR", "!0r" },
+  { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
+  { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
+  { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
+  { kX86Ret,   kNullary,NO_OPERAND | IS_BRANCH,                             { 0,             0, 0xC3, 0,    0, 0, 0, 0 }, "Ret", "" },
+
+  { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
+  { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
+  { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr",      "!0r,!1d" },
+};
+
+static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
+  size_t size = 0;
+  if (entry->skeleton.prefix1 > 0) {
+    ++size;
+    if (entry->skeleton.prefix2 > 0) {
+      ++size;
+    }
+  }
+  ++size;  // opcode
+  if (entry->skeleton.opcode == 0x0F) {
+    ++size;
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
+      ++size;
+    }
+  }
+  ++size;  // modrm
+  if (has_sib || base == rX86_SP) {
+    // SP requires a SIB byte.
+    ++size;
+  }
+  if (displacement != 0 || base == rBP) {
+    // BP requires an explicit displacement, even when it's 0.
+    if (entry->opcode != kX86Lea32RA) {
+      DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
+    }
+    size += IS_SIMM8(displacement) ? 1 : 4;
+  }
+  size += entry->skeleton.immediate_bytes;
+  return size;
+}
+
+int X86Codegen::GetInsnSize(LIR* lir) {
+  const X86EncodingMap* entry = &X86Codegen::EncodingMap[lir->opcode];
+  switch (entry->kind) {
+    case kData:
+      return 4;  // 4 bytes of data
+    case kNop:
+      return lir->operands[0];  // length of nop is sole operand
+    case kNullary:
+      return 1;  // 1 byte of opcode
+    case kReg:  // lir operands - 0: reg
+      return ComputeSize(entry, 0, 0, false);
+    case kMem:  // lir operands - 0: base, 1: disp
+      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
+    case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
+      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
+    case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
+      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
+    case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
+      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
+    case kThreadReg:  // lir operands - 0: disp, 1: reg
+      return ComputeSize(entry, 0, lir->operands[0], false);
+    case kRegReg:
+      return ComputeSize(entry, 0, 0, false);
+    case kRegRegStore:
+      return ComputeSize(entry, 0, 0, false);
+    case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
+      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
+    case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
+      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
+    case kRegThread:  // lir operands - 0: reg, 1: disp
+      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
+    case kRegImm: {  // lir operands - 0: reg, 1: immediate
+      size_t size = ComputeSize(entry, 0, 0, false);
+      if (entry->skeleton.ax_opcode == 0) {
+        return size;
+      } else {
+        // AX opcodes don't require the modrm byte.
+        int reg = lir->operands[0];
+        return size - (reg == rAX ? 1 : 0);
+      }
+    }
+    case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
+      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
+    case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
+      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
+    case kThreadImm:  // lir operands - 0: disp, 1: imm
+      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
+    case kRegRegImm:  // lir operands - 0: reg, 1: reg, 2: imm
+      return ComputeSize(entry, 0, 0, false);
+    case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
+      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
+    case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
+      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
+    case kMovRegImm:  // lir operands - 0: reg, 1: immediate
+      return 1 + entry->skeleton.immediate_bytes;
+    case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
+      // Shift by immediate one has a shorter opcode.
+      return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
+    case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
+      // Shift by immediate one has a shorter opcode.
+      return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
+             (lir->operands[2] == 1 ? 1 : 0);
+    case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
+      // Shift by immediate one has a shorter opcode.
+      return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
+             (lir->operands[4] == 1 ? 1 : 0);
+    case kShiftRegCl:
+      return ComputeSize(entry, 0, 0, false);
+    case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
+      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
+    case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
+      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
+    case kRegCond:  // lir operands - 0: reg, 1: cond
+      return ComputeSize(entry, 0, 0, false);
+    case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
+      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
+    case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
+      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
+    case kJcc:
+      if (lir->opcode == kX86Jcc8) {
+        return 2;  // opcode + rel8
+      } else {
+        DCHECK(lir->opcode == kX86Jcc32);
+        return 6;  // 2 byte opcode + rel32
+      }
+    case kJmp:
+      if (lir->opcode == kX86Jmp8) {
+        return 2;  // opcode + rel8
+      } else if (lir->opcode == kX86Jmp32) {
+        return 5;  // opcode + rel32
+      } else {
+        DCHECK(lir->opcode == kX86JmpR);
+        return 2;  // opcode + modrm
+      }
+    case kCall:
+      switch (lir->opcode) {
+        case kX86CallR: return 2;  // opcode modrm
+        case kX86CallM:  // lir operands - 0: base, 1: disp
+          return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
+        case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
+          return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
+        case kX86CallT:  // lir operands - 0: disp
+          return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
+        default:
+          break;
+      }
+      break;
+    case kPcRel:
+      if (entry->opcode == kX86PcRelLoadRA) {
+        // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
+        return ComputeSize(entry, lir->operands[1], 0x12345678, true);
+      } else {
+        DCHECK(entry->opcode == kX86PcRelAdr);
+        return 5; // opcode with reg + 4 byte immediate
+      }
+    case kMacro:
+      DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
+      return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
+          ComputeSize(&X86Codegen::EncodingMap[kX86Sub32RI], 0, 0, false) -
+          (lir->operands[0] == rAX  ? 1 : 0);  // shorter ax encoding
+    default:
+      break;
+  }
+  UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
+  return 0;
+}
+
+static uint8_t ModrmForDisp(int base, int disp) {
+  // BP requires an explicit disp, so do not omit it in the 0 case
+  if (disp == 0 && base != rBP) {
+    return 0;
+  } else if (IS_SIMM8(disp)) {
+    return 1;
+  } else {
+    return 2;
+  }
+}
+
+static void EmitDisp(CompilationUnit* cu, int base, int disp) {
+  // BP requires an explicit disp, so do not omit it in the 0 case
+  if (disp == 0 && base != rBP) {
+    return;
+  } else if (IS_SIMM8(disp)) {
+    cu->code_buffer.push_back(disp & 0xFF);
+  } else {
+    cu->code_buffer.push_back(disp & 0xFF);
+    cu->code_buffer.push_back((disp >> 8) & 0xFF);
+    cu->code_buffer.push_back((disp >> 16) & 0xFF);
+    cu->code_buffer.push_back((disp >> 24) & 0xFF);
+  }
+}
+
+static void EmitOpReg(CompilationUnit* cu, const X86EncodingMap* entry, uint8_t reg) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  if (X86_FPREG(reg)) {
+    reg = reg & X86_FP_REG_MASK;
+  }
+  if (reg >= 4) {
+    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
+        << " in " << PrettyMethod(cu->method_idx, *cu->dex_file);
+  }
+  DCHECK_LT(reg, 8);
+  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
+  cu->code_buffer.push_back(modrm);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+static void EmitOpMem(CompilationUnit* cu, const X86EncodingMap* entry, uint8_t base, int disp) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  DCHECK_LT(entry->skeleton.modrm_opcode, 8);
+  DCHECK_LT(base, 8);
+  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
+  cu->code_buffer.push_back(modrm);
+  EmitDisp(cu, base, disp);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+static void EmitMemReg(CompilationUnit* cu, const X86EncodingMap* entry,
+                       uint8_t base, int disp, uint8_t reg) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  if (X86_FPREG(reg)) {
+    reg = reg & X86_FP_REG_MASK;
+  }
+  if (reg >= 4) {
+    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
+        << " in " << PrettyMethod(cu->method_idx, *cu->dex_file);
+  }
+  DCHECK_LT(reg, 8);
+  DCHECK_LT(base, 8);
+  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base;
+  cu->code_buffer.push_back(modrm);
+  if (base == rX86_SP) {
+    // Special SIB for SP base
+    cu->code_buffer.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
+  }
+  EmitDisp(cu, base, disp);
+  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+static void EmitRegMem(CompilationUnit* cu, const X86EncodingMap* entry,
+                       uint8_t reg, uint8_t base, int disp) {
+  // Opcode will flip operands.
+  EmitMemReg(cu, entry, base, disp, reg);
+}
+
+static void EmitRegArray(CompilationUnit* cu, const X86EncodingMap* entry, uint8_t reg,
+                         uint8_t base, uint8_t index, int scale, int disp) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  if (X86_FPREG(reg)) {
+    reg = reg & X86_FP_REG_MASK;
+  }
+  DCHECK_LT(reg, 8);
+  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP;
+  cu->code_buffer.push_back(modrm);
+  DCHECK_LT(scale, 4);
+  DCHECK_LT(index, 8);
+  DCHECK_LT(base, 8);
+  uint8_t sib = (scale << 6) | (index << 3) | base;
+  cu->code_buffer.push_back(sib);
+  EmitDisp(cu, base, disp);
+  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+static void EmitArrayReg(CompilationUnit* cu, const X86EncodingMap* entry,
+                         uint8_t base, uint8_t index, int scale, int disp, uint8_t reg) {
+  // Opcode will flip operands.
+  EmitRegArray(cu, entry, reg, base, index, scale, disp);
+}
+
+static void EmitRegThread(CompilationUnit* cu, const X86EncodingMap* entry,
+                          uint8_t reg, int disp) {
+  DCHECK_NE(entry->skeleton.prefix1, 0);
+  cu->code_buffer.push_back(entry->skeleton.prefix1);
+  if (entry->skeleton.prefix2 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  if (X86_FPREG(reg)) {
+    reg = reg & X86_FP_REG_MASK;
+  }
+  if (reg >= 4) {
+    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
+        << " in " << PrettyMethod(cu->method_idx, *cu->dex_file);
+  }
+  DCHECK_LT(reg, 8);
+  uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
+  cu->code_buffer.push_back(modrm);
+  cu->code_buffer.push_back(disp & 0xFF);
+  cu->code_buffer.push_back((disp >> 8) & 0xFF);
+  cu->code_buffer.push_back((disp >> 16) & 0xFF);
+  cu->code_buffer.push_back((disp >> 24) & 0xFF);
+  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+static void EmitRegReg(CompilationUnit* cu, const X86EncodingMap* entry,
+                       uint8_t reg1, uint8_t reg2) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  if (X86_FPREG(reg1)) {
+    reg1 = reg1 & X86_FP_REG_MASK;
+  }
+  if (X86_FPREG(reg2)) {
+    reg2 = reg2 & X86_FP_REG_MASK;
+  }
+  DCHECK_LT(reg1, 8);
+  DCHECK_LT(reg2, 8);
+  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
+  cu->code_buffer.push_back(modrm);
+  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+static void EmitRegRegImm(CompilationUnit* cu, const X86EncodingMap* entry,
+                          uint8_t reg1, uint8_t reg2, int32_t imm) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  if (X86_FPREG(reg1)) {
+    reg1 = reg1 & X86_FP_REG_MASK;
+  }
+  if (X86_FPREG(reg2)) {
+    reg2 = reg2 & X86_FP_REG_MASK;
+  }
+  DCHECK_LT(reg1, 8);
+  DCHECK_LT(reg2, 8);
+  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
+  cu->code_buffer.push_back(modrm);
+  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  switch (entry->skeleton.immediate_bytes) {
+    case 1:
+      DCHECK(IS_SIMM8(imm));
+      cu->code_buffer.push_back(imm & 0xFF);
+      break;
+    case 2:
+      DCHECK(IS_SIMM16(imm));
+      cu->code_buffer.push_back(imm & 0xFF);
+      cu->code_buffer.push_back((imm >> 8) & 0xFF);
+      break;
+    case 4:
+      cu->code_buffer.push_back(imm & 0xFF);
+      cu->code_buffer.push_back((imm >> 8) & 0xFF);
+      cu->code_buffer.push_back((imm >> 16) & 0xFF);
+      cu->code_buffer.push_back((imm >> 24) & 0xFF);
+      break;
+    default:
+      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
+                 << ") for instruction: " << entry->name;
+      break;
+  }
+}
+
+static void EmitRegImm(CompilationUnit* cu, const X86EncodingMap* entry,
+                       uint8_t reg, int imm) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  if (reg == rAX && entry->skeleton.ax_opcode != 0) {
+    cu->code_buffer.push_back(entry->skeleton.ax_opcode);
+  } else {
+    cu->code_buffer.push_back(entry->skeleton.opcode);
+    if (entry->skeleton.opcode == 0x0F) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+      if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+        cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+      } else {
+        DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+      }
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+    if (X86_FPREG(reg)) {
+      reg = reg & X86_FP_REG_MASK;
+    }
+    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
+    cu->code_buffer.push_back(modrm);
+  }
+  switch (entry->skeleton.immediate_bytes) {
+    case 1:
+      DCHECK(IS_SIMM8(imm));
+      cu->code_buffer.push_back(imm & 0xFF);
+      break;
+    case 2:
+      DCHECK(IS_SIMM16(imm));
+      cu->code_buffer.push_back(imm & 0xFF);
+      cu->code_buffer.push_back((imm >> 8) & 0xFF);
+      break;
+    case 4:
+      cu->code_buffer.push_back(imm & 0xFF);
+      cu->code_buffer.push_back((imm >> 8) & 0xFF);
+      cu->code_buffer.push_back((imm >> 16) & 0xFF);
+      cu->code_buffer.push_back((imm >> 24) & 0xFF);
+      break;
+    default:
+      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
+          << ") for instruction: " << entry->name;
+      break;
+  }
+}
+
+static void EmitThreadImm(CompilationUnit* cu, const X86EncodingMap* entry,
+                          int disp, int imm) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
+  cu->code_buffer.push_back(modrm);
+  cu->code_buffer.push_back(disp & 0xFF);
+  cu->code_buffer.push_back((disp >> 8) & 0xFF);
+  cu->code_buffer.push_back((disp >> 16) & 0xFF);
+  cu->code_buffer.push_back((disp >> 24) & 0xFF);
+  switch (entry->skeleton.immediate_bytes) {
+    case 1:
+      DCHECK(IS_SIMM8(imm));
+      cu->code_buffer.push_back(imm & 0xFF);
+      break;
+    case 2:
+      DCHECK(IS_SIMM16(imm));
+      cu->code_buffer.push_back(imm & 0xFF);
+      cu->code_buffer.push_back((imm >> 8) & 0xFF);
+      break;
+    case 4:
+      cu->code_buffer.push_back(imm & 0xFF);
+      cu->code_buffer.push_back((imm >> 8) & 0xFF);
+      cu->code_buffer.push_back((imm >> 16) & 0xFF);
+      cu->code_buffer.push_back((imm >> 24) & 0xFF);
+      break;
+    default:
+      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
+          << ") for instruction: " << entry->name;
+      break;
+  }
+  DCHECK_EQ(entry->skeleton.ax_opcode, 0);
+}
+
+static void EmitMovRegImm(CompilationUnit* cu, const X86EncodingMap* entry,
+                       uint8_t reg, int imm) {
+  DCHECK_LT(reg, 8);
+  cu->code_buffer.push_back(0xB8 + reg);
+  cu->code_buffer.push_back(imm & 0xFF);
+  cu->code_buffer.push_back((imm >> 8) & 0xFF);
+  cu->code_buffer.push_back((imm >> 16) & 0xFF);
+  cu->code_buffer.push_back((imm >> 24) & 0xFF);
+}
+
+static void EmitShiftRegImm(CompilationUnit* cu, const X86EncodingMap* entry,
+                            uint8_t reg, int imm) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  if (imm != 1) {
+    cu->code_buffer.push_back(entry->skeleton.opcode);
+  } else {
+    // Shorter encoding for 1 bit shift
+    cu->code_buffer.push_back(entry->skeleton.ax_opcode);
+  }
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  if (reg >= 4) {
+    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
+        << " in " << PrettyMethod(cu->method_idx, *cu->dex_file);
+  }
+  DCHECK_LT(reg, 8);
+  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
+  cu->code_buffer.push_back(modrm);
+  if (imm != 1) {
+    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
+    DCHECK(IS_SIMM8(imm));
+    cu->code_buffer.push_back(imm & 0xFF);
+  }
+}
+
+static void EmitShiftRegCl(CompilationUnit* cu, const X86EncodingMap* entry,
+                           uint8_t reg, uint8_t cl) {
+  DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  DCHECK_LT(reg, 8);
+  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
+  cu->code_buffer.push_back(modrm);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+static void EmitRegCond(CompilationUnit* cu, const X86EncodingMap* entry,
+                       uint8_t reg, uint8_t condition) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0x0F, entry->skeleton.opcode);
+  cu->code_buffer.push_back(0x0F);
+  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
+  cu->code_buffer.push_back(0x90 | condition);
+  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  DCHECK_LT(reg, 8);
+  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
+  cu->code_buffer.push_back(modrm);
+  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
+}
+
+static void EmitJmp(CompilationUnit* cu, const X86EncodingMap* entry, int rel) {
+  if (entry->opcode == kX86Jmp8) {
+    DCHECK(IS_SIMM8(rel));
+    cu->code_buffer.push_back(0xEB);
+    cu->code_buffer.push_back(rel & 0xFF);
+  } else if (entry->opcode == kX86Jmp32) {
+    cu->code_buffer.push_back(0xE9);
+    cu->code_buffer.push_back(rel & 0xFF);
+    cu->code_buffer.push_back((rel >> 8) & 0xFF);
+    cu->code_buffer.push_back((rel >> 16) & 0xFF);
+    cu->code_buffer.push_back((rel >> 24) & 0xFF);
+  } else {
+    DCHECK(entry->opcode == kX86JmpR);
+    cu->code_buffer.push_back(entry->skeleton.opcode);
+    uint8_t reg = static_cast<uint8_t>(rel);
+    DCHECK_LT(reg, 8);
+    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
+    cu->code_buffer.push_back(modrm);
+  }
+}
+
+static void EmitJcc(CompilationUnit* cu, const X86EncodingMap* entry,
+                    int rel, uint8_t cc) {
+  DCHECK_LT(cc, 16);
+  if (entry->opcode == kX86Jcc8) {
+    DCHECK(IS_SIMM8(rel));
+    cu->code_buffer.push_back(0x70 | cc);
+    cu->code_buffer.push_back(rel & 0xFF);
+  } else {
+    DCHECK(entry->opcode == kX86Jcc32);
+    cu->code_buffer.push_back(0x0F);
+    cu->code_buffer.push_back(0x80 | cc);
+    cu->code_buffer.push_back(rel & 0xFF);
+    cu->code_buffer.push_back((rel >> 8) & 0xFF);
+    cu->code_buffer.push_back((rel >> 16) & 0xFF);
+    cu->code_buffer.push_back((rel >> 24) & 0xFF);
+  }
+}
+
+static void EmitCallMem(CompilationUnit* cu, const X86EncodingMap* entry,
+                        uint8_t base, int disp) {
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
+  cu->code_buffer.push_back(modrm);
+  if (base == rX86_SP) {
+    // Special SIB for SP base
+    cu->code_buffer.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
+  }
+  EmitDisp(cu, base, disp);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+static void EmitCallThread(CompilationUnit* cu, const X86EncodingMap* entry, int disp) {
+  DCHECK_NE(entry->skeleton.prefix1, 0);
+  cu->code_buffer.push_back(entry->skeleton.prefix1);
+  if (entry->skeleton.prefix2 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix2);
+  }
+  cu->code_buffer.push_back(entry->skeleton.opcode);
+  if (entry->skeleton.opcode == 0x0F) {
+    cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
+      cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+    } else {
+      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+  }
+  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
+  cu->code_buffer.push_back(modrm);
+  cu->code_buffer.push_back(disp & 0xFF);
+  cu->code_buffer.push_back((disp >> 8) & 0xFF);
+  cu->code_buffer.push_back((disp >> 16) & 0xFF);
+  cu->code_buffer.push_back((disp >> 24) & 0xFF);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+static void EmitPcRel(CompilationUnit* cu, const X86EncodingMap* entry, uint8_t reg,
+                      int base_or_table, uint8_t index, int scale, int table_or_disp) {
+  int disp;
+  if (entry->opcode == kX86PcRelLoadRA) {
+    SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(table_or_disp);
+    disp = tab_rec->offset;
+  } else {
+    DCHECK(entry->opcode == kX86PcRelAdr);
+    FillArrayData *tab_rec = reinterpret_cast<FillArrayData*>(base_or_table);
+    disp = tab_rec->offset;
+  }
+  if (entry->skeleton.prefix1 != 0) {
+    cu->code_buffer.push_back(entry->skeleton.prefix1);
+    if (entry->skeleton.prefix2 != 0) {
+      cu->code_buffer.push_back(entry->skeleton.prefix2);
+    }
+  } else {
+    DCHECK_EQ(0, entry->skeleton.prefix2);
+  }
+  if (X86_FPREG(reg)) {
+    reg = reg & X86_FP_REG_MASK;
+  }
+  DCHECK_LT(reg, 8);
+  if (entry->opcode == kX86PcRelLoadRA) {
+    cu->code_buffer.push_back(entry->skeleton.opcode);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
+    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+    uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
+    cu->code_buffer.push_back(modrm);
+    DCHECK_LT(scale, 4);
+    DCHECK_LT(index, 8);
+    DCHECK_LT(base_or_table, 8);
+    uint8_t base = static_cast<uint8_t>(base_or_table);
+    uint8_t sib = (scale << 6) | (index << 3) | base;
+    cu->code_buffer.push_back(sib);
+    DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+  } else {
+    cu->code_buffer.push_back(entry->skeleton.opcode + reg);
+  }
+  cu->code_buffer.push_back(disp & 0xFF);
+  cu->code_buffer.push_back((disp >> 8) & 0xFF);
+  cu->code_buffer.push_back((disp >> 16) & 0xFF);
+  cu->code_buffer.push_back((disp >> 24) & 0xFF);
+  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
+  DCHECK_EQ(0, entry->skeleton.ax_opcode);
+}
+
+static void EmitMacro(CompilationUnit* cu, const X86EncodingMap* entry,
+                      uint8_t reg, int offset) {
+  DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
+  cu->code_buffer.push_back(0xE8);  // call +0
+  cu->code_buffer.push_back(0);
+  cu->code_buffer.push_back(0);
+  cu->code_buffer.push_back(0);
+  cu->code_buffer.push_back(0);
+
+  DCHECK_LT(reg, 8);
+  cu->code_buffer.push_back(0x58 + reg);  // pop reg
+
+  EmitRegImm(cu, &X86Codegen::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
+}
+
+static void EmitUnimplemented(CompilationUnit* cu, const X86EncodingMap* entry, LIR* lir) {
+  Codegen* cg = cu->cg.get();
+  UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
+                         << cg->BuildInsnString(entry->fmt, lir, 0);
+  for (int i = 0; i < cg->GetInsnSize(lir); ++i) {
+    cu->code_buffer.push_back(0xCC);  // push breakpoint instruction - int 3
+  }
+}
+
+/*
+ * Assemble the LIR into binary instruction format.  Note that we may
+ * discover that pc-relative displacements may not fit the selected
+ * instruction.  In those cases we will try to substitute a new code
+ * sequence or request that the trace be shortened and retried.
+ */
+AssemblerStatus X86Codegen::AssembleInstructions(CompilationUnit *cu, uintptr_t start_addr) {
+  LIR *lir;
+  AssemblerStatus res = kSuccess;  // Assume success
+
+  const bool kVerbosePcFixup = false;
+  for (lir = cu->first_lir_insn; lir != NULL; lir = NEXT_LIR(lir)) {
+    if (lir->opcode < 0) {
+      continue;
+    }
+
+    if (lir->flags.is_nop) {
+      continue;
+    }
+
+    if (lir->flags.pcRelFixup) {
+      switch (lir->opcode) {
+        case kX86Jcc8: {
+          LIR *target_lir = lir->target;
+          DCHECK(target_lir != NULL);
+          int delta = 0;
+          uintptr_t pc;
+          if (IS_SIMM8(lir->operands[0])) {
+            pc = lir->offset + 2 /* opcode + rel8 */;
+          } else {
+            pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
+          }
+          uintptr_t target = target_lir->offset;
+          delta = target - pc;
+          if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
+            if (kVerbosePcFixup) {
+              LOG(INFO) << "Retry for JCC growth at " << lir->offset
+                  << " delta: " << delta << " old delta: " << lir->operands[0];
+            }
+            lir->opcode = kX86Jcc32;
+            SetupResourceMasks(cu, lir);
+            res = kRetryAll;
+          }
+          if (kVerbosePcFixup) {
+            LOG(INFO) << "Source:";
+            DumpLIRInsn(cu, lir, 0);
+            LOG(INFO) << "Target:";
+            DumpLIRInsn(cu, target_lir, 0);
+            LOG(INFO) << "Delta " << delta;
+          }
+          lir->operands[0] = delta;
+          break;
+        }
+        case kX86Jcc32: {
+          LIR *target_lir = lir->target;
+          DCHECK(target_lir != NULL);
+          uintptr_t pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
+          uintptr_t target = target_lir->offset;
+          int delta = target - pc;
+          if (kVerbosePcFixup) {
+            LOG(INFO) << "Source:";
+            DumpLIRInsn(cu, lir, 0);
+            LOG(INFO) << "Target:";
+            DumpLIRInsn(cu, target_lir, 0);
+            LOG(INFO) << "Delta " << delta;
+          }
+          lir->operands[0] = delta;
+          break;
+        }
+        case kX86Jmp8: {
+          LIR *target_lir = lir->target;
+          DCHECK(target_lir != NULL);
+          int delta = 0;
+          uintptr_t pc;
+          if (IS_SIMM8(lir->operands[0])) {
+            pc = lir->offset + 2 /* opcode + rel8 */;
+          } else {
+            pc = lir->offset + 5 /* opcode + rel32 */;
+          }
+          uintptr_t target = target_lir->offset;
+          delta = target - pc;
+          if (!(cu->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
+            // Useless branch
+            lir->flags.is_nop = true;
+            if (kVerbosePcFixup) {
+              LOG(INFO) << "Retry for useless branch at " << lir->offset;
+            }
+            res = kRetryAll;
+          } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
+            if (kVerbosePcFixup) {
+              LOG(INFO) << "Retry for JMP growth at " << lir->offset;
+            }
+            lir->opcode = kX86Jmp32;
+            SetupResourceMasks(cu, lir);
+            res = kRetryAll;
+          }
+          lir->operands[0] = delta;
+          break;
+        }
+        case kX86Jmp32: {
+          LIR *target_lir = lir->target;
+          DCHECK(target_lir != NULL);
+          uintptr_t pc = lir->offset + 5 /* opcode + rel32 */;
+          uintptr_t target = target_lir->offset;
+          int delta = target - pc;
+          lir->operands[0] = delta;
+          break;
+        }
+        default:
+          break;
+      }
+    }
+
+    /*
+     * If one of the pc-relative instructions expanded we'll have
+     * to make another pass.  Don't bother to fully assemble the
+     * instruction.
+     */
+    if (res != kSuccess) {
+      continue;
+    }
+    CHECK_EQ(static_cast<size_t>(lir->offset), cu->code_buffer.size());
+    const X86EncodingMap *entry = &X86Codegen::EncodingMap[lir->opcode];
+    size_t starting_cbuf_size = cu->code_buffer.size();
+    switch (entry->kind) {
+      case kData:  // 4 bytes of data
+        cu->code_buffer.push_back(lir->operands[0]);
+        break;
+      case kNullary:  // 1 byte of opcode
+        DCHECK_EQ(0, entry->skeleton.prefix1);
+        DCHECK_EQ(0, entry->skeleton.prefix2);
+        cu->code_buffer.push_back(entry->skeleton.opcode);
+        if (entry->skeleton.extra_opcode1 != 0) {
+          cu->code_buffer.push_back(entry->skeleton.extra_opcode1);
+          if (entry->skeleton.extra_opcode2 != 0) {
+            cu->code_buffer.push_back(entry->skeleton.extra_opcode2);
+          }
+        } else {
+          DCHECK_EQ(0, entry->skeleton.extra_opcode2);
+        }
+        DCHECK_EQ(0, entry->skeleton.modrm_opcode);
+        DCHECK_EQ(0, entry->skeleton.ax_opcode);
+        DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+        break;
+      case kReg:  // lir operands - 0: reg
+        EmitOpReg(cu, entry, lir->operands[0]);
+        break;
+      case kMem:  // lir operands - 0: base, 1: disp
+        EmitOpMem(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
+        EmitMemReg(cu, entry, lir->operands[0], lir->operands[1], lir->operands[2]);
+        break;
+      case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
+        EmitArrayReg(cu, entry, lir->operands[0], lir->operands[1], lir->operands[2],
+                     lir->operands[3], lir->operands[4]);
+        break;
+      case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
+        EmitRegMem(cu, entry, lir->operands[0], lir->operands[1], lir->operands[2]);
+        break;
+      case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
+        EmitRegArray(cu, entry, lir->operands[0], lir->operands[1], lir->operands[2],
+                     lir->operands[3], lir->operands[4]);
+        break;
+      case kRegThread:  // lir operands - 0: reg, 1: disp
+        EmitRegThread(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kRegReg:  // lir operands - 0: reg1, 1: reg2
+        EmitRegReg(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
+        EmitRegReg(cu, entry, lir->operands[1], lir->operands[0]);
+        break;
+      case kRegRegImm:
+        EmitRegRegImm(cu, entry, lir->operands[0], lir->operands[1], lir->operands[2]);
+        break;
+      case kRegImm:  // lir operands - 0: reg, 1: immediate
+        EmitRegImm(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kThreadImm:  // lir operands - 0: disp, 1: immediate
+        EmitThreadImm(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kMovRegImm:  // lir operands - 0: reg, 1: immediate
+        EmitMovRegImm(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
+        EmitShiftRegImm(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kShiftRegCl: // lir operands - 0: reg, 1: cl
+        EmitShiftRegCl(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kRegCond:  // lir operands - 0: reg, 1: condition
+        EmitRegCond(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kJmp:  // lir operands - 0: rel
+        EmitJmp(cu, entry, lir->operands[0]);
+        break;
+      case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
+        EmitJcc(cu, entry, lir->operands[0], lir->operands[1]);
+        break;
+      case kCall:
+        switch (entry->opcode) {
+          case kX86CallM:  // lir operands - 0: base, 1: disp
+            EmitCallMem(cu, entry, lir->operands[0], lir->operands[1]);
+            break;
+          case kX86CallT:  // lir operands - 0: disp
+            EmitCallThread(cu, entry, lir->operands[0]);
+            break;
+          default:
+            EmitUnimplemented(cu, entry, lir);
+            break;
+        }
+        break;
+      case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
+        EmitPcRel(cu, entry, lir->operands[0], lir->operands[1], lir->operands[2],
+                  lir->operands[3], lir->operands[4]);
+        break;
+      case kMacro:
+        EmitMacro(cu, entry, lir->operands[0], lir->offset);
+        break;
+      default:
+        EmitUnimplemented(cu, entry, lir);
+        break;
+    }
+    CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
+             cu->code_buffer.size() - starting_cbuf_size)
+        << "Instruction size mismatch for entry: " << X86Codegen::EncodingMap[lir->opcode].name;
+  }
+  return res;
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/x86/call_x86.cc b/src/compiler/dex/quick/x86/call_x86.cc
new file mode 100644
index 0000000..7b1a7fb
--- /dev/null
+++ b/src/compiler/dex/quick/x86/call_x86.cc
@@ -0,0 +1,279 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This file contains codegen for the X86 ISA */
+
+#include "codegen_x86.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "x86_lir.h"
+
+namespace art {
+
+void X86Codegen::GenSpecialCase(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                                SpecialCaseHandler special_case)
+{
+  // TODO
+}
+
+/*
+ * The sparse table in the literal pool is an array of <key,displacement>
+ * pairs.
+ */
+void X86Codegen::GenSparseSwitch(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
+{
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  if (cu->verbose) {
+    DumpSparseSwitchTable(table);
+  }
+  int entries = table[1];
+  const int* keys = reinterpret_cast<const int*>(&table[2]);
+  const int* targets = &keys[entries];
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  for (int i = 0; i < entries; i++) {
+    int key = keys[i];
+    BasicBlock* case_block = FindBlock(cu, cu->current_dalvik_offset + targets[i]);
+    LIR* label_list = cu->block_label_list;
+    OpCmpImmBranch(cu, kCondEq, rl_src.low_reg, key,
+                   &label_list[case_block->id]);
+  }
+}
+
+/*
+ * Code pattern will look something like:
+ *
+ * mov  r_val, ..
+ * call 0
+ * pop  r_start_of_method
+ * sub  r_start_of_method, ..
+ * mov  r_key_reg, r_val
+ * sub  r_key_reg, low_key
+ * cmp  r_key_reg, size-1  ; bound check
+ * ja   done
+ * mov  r_disp, [r_start_of_method + r_key_reg * 4 + table_offset]
+ * add  r_start_of_method, r_disp
+ * jmp  r_start_of_method
+ * done:
+ */
+void X86Codegen::GenPackedSwitch(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
+{
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  if (cu->verbose) {
+    DumpPackedSwitchTable(table);
+  }
+  // Add the table to the list - we'll process it later
+  SwitchTable *tab_rec =
+      static_cast<SwitchTable *>(NewMem(cu, sizeof(SwitchTable), true, kAllocData));
+  tab_rec->table = table;
+  tab_rec->vaddr = cu->current_dalvik_offset;
+  int size = table[1];
+  tab_rec->targets = static_cast<LIR**>(NewMem(cu, size * sizeof(LIR*), true, kAllocLIR));
+  InsertGrowableList(cu, &cu->switch_tables, reinterpret_cast<uintptr_t>(tab_rec));
+
+  // Get the switch value
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  int start_of_method_reg = AllocTemp(cu);
+  // Materialize a pointer to the switch table
+  //NewLIR0(cu, kX86Bkpt);
+  NewLIR1(cu, kX86StartOfMethod, start_of_method_reg);
+  int low_key = s4FromSwitchData(&table[2]);
+  int keyReg;
+  // Remove the bias, if necessary
+  if (low_key == 0) {
+    keyReg = rl_src.low_reg;
+  } else {
+    keyReg = AllocTemp(cu);
+    OpRegRegImm(cu, kOpSub, keyReg, rl_src.low_reg, low_key);
+  }
+  // Bounds check - if < 0 or >= size continue following switch
+  OpRegImm(cu, kOpCmp, keyReg, size-1);
+  LIR* branch_over = OpCondBranch(cu, kCondHi, NULL);
+
+  // Load the displacement from the switch table
+  int disp_reg = AllocTemp(cu);
+  NewLIR5(cu, kX86PcRelLoadRA, disp_reg, start_of_method_reg, keyReg, 2,
+          reinterpret_cast<uintptr_t>(tab_rec));
+  // Add displacement to start of method
+  OpRegReg(cu, kOpAdd, start_of_method_reg, disp_reg);
+  // ..and go!
+  LIR* switch_branch = NewLIR1(cu, kX86JmpR, start_of_method_reg);
+  tab_rec->anchor = switch_branch;
+
+  /* branch_over target here */
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch_over->target = target;
+}
+
+/*
+ * Array data table format:
+ *  ushort ident = 0x0300   magic value
+ *  ushort width            width of each element in the table
+ *  uint   size             number of elements in the table
+ *  ubyte  data[size*width] table of data values (may contain a single-byte
+ *                          padding at the end)
+ *
+ * Total size is 4+(width * size + 1)/2 16-bit code units.
+ */
+void X86Codegen::GenFillArrayData(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
+{
+  const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
+  // Add the table to the list - we'll process it later
+  FillArrayData *tab_rec =
+      static_cast<FillArrayData*>(NewMem(cu, sizeof(FillArrayData), true, kAllocData));
+  tab_rec->table = table;
+  tab_rec->vaddr = cu->current_dalvik_offset;
+  uint16_t width = tab_rec->table[1];
+  uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
+  tab_rec->size = (size * width) + 8;
+
+  InsertGrowableList(cu, &cu->fill_array_data, reinterpret_cast<uintptr_t>(tab_rec));
+
+  // Making a call - use explicit registers
+  FlushAllRegs(cu);   /* Everything to home location */
+  LoadValueDirectFixed(cu, rl_src, rX86_ARG0);
+  // Materialize a pointer to the fill data image
+  NewLIR1(cu, kX86StartOfMethod, rX86_ARG2);
+  NewLIR2(cu, kX86PcRelAdr, rX86_ARG1, reinterpret_cast<uintptr_t>(tab_rec));
+  NewLIR2(cu, kX86Add32RR, rX86_ARG1, rX86_ARG2);
+  CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode), rX86_ARG0,
+                          rX86_ARG1, true);
+}
+
+void X86Codegen::GenMonitorEnter(CompilationUnit* cu, int opt_flags, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  LoadValueDirectFixed(cu, rl_src, rCX);  // Get obj
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  GenNullCheck(cu, rl_src.s_reg_low, rCX, opt_flags);
+  // If lock is unheld, try to grab it quickly with compare and exchange
+  // TODO: copy and clear hash state?
+  NewLIR2(cu, kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value());
+  NewLIR2(cu, kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT);
+  NewLIR2(cu, kX86Xor32RR, rAX, rAX);
+  NewLIR3(cu, kX86LockCmpxchgMR, rCX, mirror::Object::MonitorOffset().Int32Value(), rDX);
+  LIR* branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondEq);
+  // If lock is held, go the expensive route - artLockObjectFromCode(self, obj);
+  CallRuntimeHelperReg(cu, ENTRYPOINT_OFFSET(pLockObjectFromCode), rCX, true);
+  branch->target = NewLIR0(cu, kPseudoTargetLabel);
+}
+
+void X86Codegen::GenMonitorExit(CompilationUnit* cu, int opt_flags, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  LoadValueDirectFixed(cu, rl_src, rAX);  // Get obj
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  GenNullCheck(cu, rl_src.s_reg_low, rAX, opt_flags);
+  // If lock is held by the current thread, clear it to quickly release it
+  // TODO: clear hash state?
+  NewLIR2(cu, kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value());
+  NewLIR2(cu, kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT);
+  NewLIR3(cu, kX86Mov32RM, rCX, rAX, mirror::Object::MonitorOffset().Int32Value());
+  OpRegReg(cu, kOpSub, rCX, rDX);
+  LIR* branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondNe);
+  NewLIR3(cu, kX86Mov32MR, rAX, mirror::Object::MonitorOffset().Int32Value(), rCX);
+  LIR* branch2 = NewLIR1(cu, kX86Jmp8, 0);
+  branch->target = NewLIR0(cu, kPseudoTargetLabel);
+  // Otherwise, go the expensive route - UnlockObjectFromCode(obj);
+  CallRuntimeHelperReg(cu, ENTRYPOINT_OFFSET(pUnlockObjectFromCode), rAX, true);
+  branch2->target = NewLIR0(cu, kPseudoTargetLabel);
+}
+
+void X86Codegen::GenMoveException(CompilationUnit* cu, RegLocation rl_dest)
+{
+  int ex_offset = Thread::ExceptionOffset().Int32Value();
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  NewLIR2(cu, kX86Mov32RT, rl_result.low_reg, ex_offset);
+  NewLIR2(cu, kX86Mov32TI, ex_offset, 0);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+/*
+ * Mark garbage collection card. Skip if the value we're storing is null.
+ */
+void X86Codegen::MarkGCCard(CompilationUnit* cu, int val_reg, int tgt_addr_reg)
+{
+  int reg_card_base = AllocTemp(cu);
+  int reg_card_no = AllocTemp(cu);
+  LIR* branch_over = OpCmpImmBranch(cu, kCondEq, val_reg, 0, NULL);
+  NewLIR2(cu, kX86Mov32RT, reg_card_base, Thread::CardTableOffset().Int32Value());
+  OpRegRegImm(cu, kOpLsr, reg_card_no, tgt_addr_reg, CardTable::kCardShift);
+  StoreBaseIndexed(cu, reg_card_base, reg_card_no, reg_card_base, 0,
+                   kUnsignedByte);
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch_over->target = target;
+  FreeTemp(cu, reg_card_base);
+  FreeTemp(cu, reg_card_no);
+}
+
+void X86Codegen::GenEntrySequence(CompilationUnit* cu, RegLocation* ArgLocs, RegLocation rl_method)
+{
+  /*
+   * On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live.  Let the register
+   * allocation mechanism know so it doesn't try to use any of them when
+   * expanding the frame or flushing.  This leaves the utility
+   * code with no spare temps.
+   */
+  LockTemp(cu, rX86_ARG0);
+  LockTemp(cu, rX86_ARG1);
+  LockTemp(cu, rX86_ARG2);
+
+  /* Build frame, return address already on stack */
+  OpRegImm(cu, kOpSub, rX86_SP, cu->frame_size - 4);
+
+  /*
+   * We can safely skip the stack overflow check if we're
+   * a leaf *and* our frame size < fudge factor.
+   */
+  bool skip_overflow_check = ((cu->attrs & METHOD_IS_LEAF) &&
+                (static_cast<size_t>(cu->frame_size) <
+                Thread::kStackOverflowReservedBytes));
+  NewLIR0(cu, kPseudoMethodEntry);
+  /* Spill core callee saves */
+  SpillCoreRegs(cu);
+  /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
+  DCHECK_EQ(cu->num_fp_spills, 0);
+  if (!skip_overflow_check) {
+    // cmp rX86_SP, fs:[stack_end_]; jcc throw_launchpad
+    LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kThrowStackOverflow, 0, 0, 0, 0);
+    OpRegThreadMem(cu, kOpCmp, rX86_SP, Thread::StackEndOffset().Int32Value());
+    OpCondBranch(cu, kCondUlt, tgt);
+    // Remember branch target - will process later
+    InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
+  }
+
+  FlushIns(cu, ArgLocs, rl_method);
+
+  FreeTemp(cu, rX86_ARG0);
+  FreeTemp(cu, rX86_ARG1);
+  FreeTemp(cu, rX86_ARG2);
+}
+
+void X86Codegen::GenExitSequence(CompilationUnit* cu) {
+  /*
+   * In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't
+   * allocated by the register utilities as temps.
+   */
+  LockTemp(cu, rX86_RET0);
+  LockTemp(cu, rX86_RET1);
+
+  NewLIR0(cu, kPseudoMethodExit);
+  UnSpillCoreRegs(cu);
+  /* Remove frame except for return address */
+  OpRegImm(cu, kOpAdd, rX86_SP, cu->frame_size - 4);
+  NewLIR0(cu, kX86Ret);
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/x86/codegen_x86.h b/src/compiler/dex/quick/x86/codegen_x86.h
new file mode 100644
index 0000000..c1e8fb3
--- /dev/null
+++ b/src/compiler/dex/quick/x86/codegen_x86.h
@@ -0,0 +1,205 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_X86_CODEGENX86_H_
+#define ART_SRC_COMPILER_DEX_QUICK_X86_CODEGENX86_H_
+
+#include "compiler/dex/compiler_internals.h"
+#include "x86_lir.h"
+
+namespace art {
+
+class X86Codegen : public Codegen {
+  public:
+    // Required for target - codegen helpers.
+    virtual bool SmallLiteralDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
+                                    RegLocation rl_src, RegLocation rl_dest, int lit);
+    virtual int LoadHelper(CompilationUnit* cu, int offset);
+    virtual LIR* LoadBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_dest,
+                              OpSize size, int s_reg);
+    virtual LIR* LoadBaseDispWide(CompilationUnit* cu, int rBase, int displacement, int r_dest_lo,
+                                  int r_dest_hi, int s_reg);
+    virtual LIR* LoadBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_dest, int scale,
+                                 OpSize size);
+    virtual LIR* LoadBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                     int displacement, int r_dest, int r_dest_hi, OpSize size,
+                                     int s_reg);
+    virtual LIR* LoadConstantNoClobber(CompilationUnit* cu, int r_dest, int value);
+    virtual LIR* LoadConstantWide(CompilationUnit* cu, int r_dest_lo, int r_dest_hi, int64_t value);
+    virtual LIR* StoreBaseDisp(CompilationUnit* cu, int rBase, int displacement, int r_src,
+                               OpSize size);
+    virtual LIR* StoreBaseDispWide(CompilationUnit* cu, int rBase, int displacement, int r_src_lo,
+                                   int r_src_hi);
+    virtual LIR* StoreBaseIndexed(CompilationUnit* cu, int rBase, int r_index, int r_src, int scale,
+                                 OpSize size);
+    virtual LIR* StoreBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                      int displacement, int r_src, int r_src_hi, OpSize size,
+                                      int s_reg);
+    virtual void MarkGCCard(CompilationUnit* cu, int val_reg, int tgt_addr_reg);
+
+    // Required for target - register utilities.
+    virtual bool IsFpReg(int reg);
+    virtual bool SameRegType(int reg1, int reg2);
+    virtual int AllocTypedTemp(CompilationUnit* cu, bool fp_hint, int reg_class);
+    virtual int AllocTypedTempPair(CompilationUnit* cu, bool fp_hint, int reg_class);
+    virtual int S2d(int low_reg, int high_reg);
+    virtual int TargetReg(SpecialTargetRegister reg);
+    virtual RegisterInfo* GetRegInfo(CompilationUnit* cu, int reg);
+    virtual RegLocation GetReturnAlt(CompilationUnit* cu);
+    virtual RegLocation GetReturnWideAlt(CompilationUnit* cu);
+    virtual RegLocation LocCReturn();
+    virtual RegLocation LocCReturnDouble();
+    virtual RegLocation LocCReturnFloat();
+    virtual RegLocation LocCReturnWide();
+    virtual uint32_t FpRegMask();
+    virtual uint64_t GetRegMaskCommon(CompilationUnit* cu, int reg);
+    virtual void AdjustSpillMask(CompilationUnit* cu);
+    virtual void ClobberCalleeSave(CompilationUnit *cu);
+    virtual void FlushReg(CompilationUnit* cu, int reg);
+    virtual void FlushRegWide(CompilationUnit* cu, int reg1, int reg2);
+    virtual void FreeCallTemps(CompilationUnit* cu);
+    virtual void FreeRegLocTemps(CompilationUnit* cu, RegLocation rl_keep, RegLocation rl_free);
+    virtual void LockCallTemps(CompilationUnit* cu);
+    virtual void MarkPreservedSingle(CompilationUnit* cu, int v_reg, int reg);
+    virtual void CompilerInitializeRegAlloc(CompilationUnit* cu);
+
+    // Required for target - miscellaneous.
+    virtual AssemblerStatus AssembleInstructions(CompilationUnit* cu, uintptr_t start_addr);
+    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix);
+    virtual void SetupTargetResourceMasks(CompilationUnit* cu, LIR* lir);
+    virtual const char* GetTargetInstFmt(int opcode);
+    virtual const char* GetTargetInstName(int opcode);
+    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
+    virtual uint64_t GetPCUseDefEncoding();
+    virtual uint64_t GetTargetInstFlags(int opcode);
+    virtual int GetInsnSize(LIR* lir);
+    virtual bool IsUnconditionalBranch(LIR* lir);
+
+    // Required for target - Dalvik-level generators.
+    virtual void GenArithImmOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                                   RegLocation rl_src1, RegLocation rl_src2);
+    virtual void GenArrayObjPut(CompilationUnit* cu, int opt_flags, RegLocation rl_array,
+                                RegLocation rl_index, RegLocation rl_src, int scale);
+    virtual void GenArrayGet(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_dest, int scale);
+    virtual void GenArrayPut(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_src, int scale);
+    virtual void GenShiftImmOpLong(CompilationUnit* cu, Instruction::Code opcode,
+                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_shift);
+    virtual void GenMulLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenAddLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenAndLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenArithOpDouble(CompilationUnit* cu, Instruction::Code opcode,
+                                  RegLocation rl_dest, RegLocation rl_src1,
+                                  RegLocation rl_src2);
+    virtual void GenArithOpFloat(CompilationUnit *cu, Instruction::Code opcode, RegLocation rl_dest,
+                                 RegLocation rl_src1, RegLocation rl_src2);
+    virtual void GenCmpFP(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                          RegLocation rl_src1, RegLocation rl_src2);
+    virtual void GenConversion(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                               RegLocation rl_src);
+    virtual bool GenInlinedCas32(CompilationUnit* cu, CallInfo* info, bool need_write_barrier);
+    virtual bool GenInlinedMinMaxInt(CompilationUnit *cu, CallInfo* info, bool is_min);
+    virtual bool GenInlinedSqrt(CompilationUnit* cu, CallInfo* info);
+    virtual void GenNegLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    virtual void GenOrLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                           RegLocation rl_src2);
+    virtual void GenSubLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenXorLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual LIR* GenRegMemCheck(CompilationUnit* cu, ConditionCode c_code, int reg1, int base,
+                                int offset, ThrowKind kind);
+    virtual RegLocation GenDivRem(CompilationUnit* cu, RegLocation rl_dest, int reg_lo, int reg_hi,
+                                  bool is_div);
+    virtual RegLocation GenDivRemLit(CompilationUnit* cu, RegLocation rl_dest, int reg_lo, int lit,
+                                     bool is_div);
+    virtual void GenCmpLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2);
+    virtual void GenDivZeroCheck(CompilationUnit* cu, int reg_lo, int reg_hi);
+    virtual void GenEntrySequence(CompilationUnit* cu, RegLocation* ArgLocs,
+                                  RegLocation rl_method);
+    virtual void GenExitSequence(CompilationUnit* cu);
+    virtual void GenFillArrayData(CompilationUnit* cu, uint32_t table_offset,
+                                  RegLocation rl_src);
+    virtual void GenFusedFPCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir, bool gt_bias,
+                                     bool is_double);
+    virtual void GenFusedLongCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir);
+    virtual void GenSelect(CompilationUnit* cu, BasicBlock* bb, MIR* mir);
+    virtual void GenMemBarrier(CompilationUnit* cu, MemBarrierKind barrier_kind);
+    virtual void GenMonitorEnter(CompilationUnit* cu, int opt_flags, RegLocation rl_src);
+    virtual void GenMonitorExit(CompilationUnit* cu, int opt_flags, RegLocation rl_src);
+    virtual void GenMoveException(CompilationUnit* cu, RegLocation rl_dest);
+    virtual void GenMultiplyByTwoBitMultiplier(CompilationUnit* cu, RegLocation rl_src,
+                                               RegLocation rl_result, int lit, int first_bit,
+                                               int second_bit);
+    virtual void GenNegDouble(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    virtual void GenNegFloat(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src);
+    virtual void GenPackedSwitch(CompilationUnit* cu, uint32_t table_offset,
+                                 RegLocation rl_src);
+    virtual void GenSparseSwitch(CompilationUnit* cu, uint32_t table_offset,
+                                 RegLocation rl_src);
+    virtual void GenSpecialCase(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
+                                SpecialCaseHandler special_case);
+
+    // Single operation generators.
+    virtual LIR* OpUnconditionalBranch(CompilationUnit* cu, LIR* target);
+    virtual LIR* OpCmpBranch(CompilationUnit* cu, ConditionCode cond, int src1, int src2,
+                             LIR* target);
+    virtual LIR* OpCmpImmBranch(CompilationUnit* cu, ConditionCode cond, int reg, int check_value,
+                                LIR* target);
+    virtual LIR* OpCondBranch(CompilationUnit* cu, ConditionCode cc, LIR* target);
+    virtual LIR* OpDecAndBranch(CompilationUnit* cu, ConditionCode c_code, int reg,
+                                LIR* target);
+    virtual LIR* OpFpRegCopy(CompilationUnit* cu, int r_dest, int r_src);
+    virtual LIR* OpIT(CompilationUnit* cu, ConditionCode cond, const char* guide);
+    virtual LIR* OpMem(CompilationUnit* cu, OpKind op, int rBase, int disp);
+    virtual LIR* OpPcRelLoad(CompilationUnit* cu, int reg, LIR* target);
+    virtual LIR* OpReg(CompilationUnit* cu, OpKind op, int r_dest_src);
+    virtual LIR* OpRegCopy(CompilationUnit* cu, int r_dest, int r_src);
+    virtual LIR* OpRegCopyNoInsert(CompilationUnit* cu, int r_dest, int r_src);
+    virtual LIR* OpRegImm(CompilationUnit* cu, OpKind op, int r_dest_src1, int value);
+    virtual LIR* OpRegMem(CompilationUnit* cu, OpKind op, int r_dest, int rBase, int offset);
+    virtual LIR* OpRegReg(CompilationUnit* cu, OpKind op, int r_dest_src1, int r_src2);
+    virtual LIR* OpRegRegImm(CompilationUnit* cu, OpKind op, int r_dest, int r_src1, int value);
+    virtual LIR* OpRegRegReg(CompilationUnit* cu, OpKind op, int r_dest, int r_src1,
+                             int r_src2);
+    virtual LIR* OpTestSuspend(CompilationUnit* cu, LIR* target);
+    virtual LIR* OpThreadMem(CompilationUnit* cu, OpKind op, int thread_offset);
+    virtual LIR* OpVldm(CompilationUnit* cu, int rBase, int count);
+    virtual LIR* OpVstm(CompilationUnit* cu, int rBase, int count);
+    virtual void OpLea(CompilationUnit* cu, int rBase, int reg1, int reg2, int scale,
+                       int offset);
+    virtual void OpRegCopyWide(CompilationUnit* cu, int dest_lo, int dest_hi, int src_lo,
+                               int src_hi);
+    virtual void OpTlsCmp(CompilationUnit* cu, int offset, int val);
+
+    void OpRegThreadMem(CompilationUnit* cu, OpKind op, int r_dest, int thread_offset);
+    void SpillCoreRegs(CompilationUnit* cu);
+    void UnSpillCoreRegs(CompilationUnit* cu);
+    static const X86EncodingMap EncodingMap[kX86Last];
+    bool InexpensiveConstantInt(int32_t value);
+    bool InexpensiveConstantFloat(int32_t value);
+    bool InexpensiveConstantLong(int64_t value);
+    bool InexpensiveConstantDouble(int64_t value);
+};
+
+}  // namespace art
+
+#endif  // ART_SRC_COMPILER_DEX_QUICK_X86_CODEGENX86_H_
diff --git a/src/compiler/dex/quick/x86/fp_x86.cc b/src/compiler/dex/quick/x86/fp_x86.cc
new file mode 100644
index 0000000..888a4a6
--- /dev/null
+++ b/src/compiler/dex/quick/x86/fp_x86.cc
@@ -0,0 +1,380 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_x86.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "x86_lir.h"
+
+namespace art {
+
+void X86Codegen::GenArithOpFloat(CompilationUnit *cu, Instruction::Code opcode,
+                                 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
+  X86OpCode op = kX86Nop;
+  RegLocation rl_result;
+
+  /*
+   * Don't attempt to optimize register usage since these opcodes call out to
+   * the handlers.
+   */
+  switch (opcode) {
+    case Instruction::ADD_FLOAT_2ADDR:
+    case Instruction::ADD_FLOAT:
+      op = kX86AddssRR;
+      break;
+    case Instruction::SUB_FLOAT_2ADDR:
+    case Instruction::SUB_FLOAT:
+      op = kX86SubssRR;
+      break;
+    case Instruction::DIV_FLOAT_2ADDR:
+    case Instruction::DIV_FLOAT:
+      op = kX86DivssRR;
+      break;
+    case Instruction::MUL_FLOAT_2ADDR:
+    case Instruction::MUL_FLOAT:
+      op = kX86MulssRR;
+      break;
+    case Instruction::REM_FLOAT_2ADDR:
+    case Instruction::REM_FLOAT:
+      FlushAllRegs(cu);   // Send everything to home location
+      CallRuntimeHelperRegLocationRegLocation(cu, ENTRYPOINT_OFFSET(pFmodf), rl_src1, rl_src2, false);
+      rl_result = GetReturn(cu, true);
+      StoreValue(cu, rl_dest, rl_result);
+      return;
+    case Instruction::NEG_FLOAT:
+      GenNegFloat(cu, rl_dest, rl_src1);
+      return;
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+  rl_src1 = LoadValue(cu, rl_src1, kFPReg);
+  rl_src2 = LoadValue(cu, rl_src2, kFPReg);
+  rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+  int r_dest = rl_result.low_reg;
+  int r_src1 = rl_src1.low_reg;
+  int r_src2 = rl_src2.low_reg;
+  if (r_dest == r_src2) {
+    r_src2 = AllocTempFloat(cu);
+    OpRegCopy(cu, r_src2, r_dest);
+  }
+  OpRegCopy(cu, r_dest, r_src1);
+  NewLIR2(cu, op, r_dest, r_src2);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::GenArithOpDouble(CompilationUnit *cu, Instruction::Code opcode,
+                                  RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
+  X86OpCode op = kX86Nop;
+  RegLocation rl_result;
+
+  switch (opcode) {
+    case Instruction::ADD_DOUBLE_2ADDR:
+    case Instruction::ADD_DOUBLE:
+      op = kX86AddsdRR;
+      break;
+    case Instruction::SUB_DOUBLE_2ADDR:
+    case Instruction::SUB_DOUBLE:
+      op = kX86SubsdRR;
+      break;
+    case Instruction::DIV_DOUBLE_2ADDR:
+    case Instruction::DIV_DOUBLE:
+      op = kX86DivsdRR;
+      break;
+    case Instruction::MUL_DOUBLE_2ADDR:
+    case Instruction::MUL_DOUBLE:
+      op = kX86MulsdRR;
+      break;
+    case Instruction::REM_DOUBLE_2ADDR:
+    case Instruction::REM_DOUBLE:
+      FlushAllRegs(cu);   // Send everything to home location
+      CallRuntimeHelperRegLocationRegLocation(cu, ENTRYPOINT_OFFSET(pFmod), rl_src1, rl_src2, false);
+      rl_result = GetReturnWide(cu, true);
+      StoreValueWide(cu, rl_dest, rl_result);
+      return;
+    case Instruction::NEG_DOUBLE:
+      GenNegDouble(cu, rl_dest, rl_src1);
+      return;
+    default:
+      LOG(FATAL) << "Unexpected opcode: " << opcode;
+  }
+  rl_src1 = LoadValueWide(cu, rl_src1, kFPReg);
+  DCHECK(rl_src1.wide);
+  rl_src2 = LoadValueWide(cu, rl_src2, kFPReg);
+  DCHECK(rl_src2.wide);
+  rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+  DCHECK(rl_dest.wide);
+  DCHECK(rl_result.wide);
+  int r_dest = S2d(rl_result.low_reg, rl_result.high_reg);
+  int r_src1 = S2d(rl_src1.low_reg, rl_src1.high_reg);
+  int r_src2 = S2d(rl_src2.low_reg, rl_src2.high_reg);
+  if (r_dest == r_src2) {
+    r_src2 = AllocTempDouble(cu) | X86_FP_DOUBLE;
+    OpRegCopy(cu, r_src2, r_dest);
+  }
+  OpRegCopy(cu, r_dest, r_src1);
+  NewLIR2(cu, op, r_dest, r_src2);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::GenConversion(CompilationUnit *cu, Instruction::Code opcode, RegLocation rl_dest,
+                               RegLocation rl_src) {
+  RegisterClass rcSrc = kFPReg;
+  X86OpCode op = kX86Nop;
+  int src_reg;
+  RegLocation rl_result;
+  switch (opcode) {
+    case Instruction::INT_TO_FLOAT:
+      rcSrc = kCoreReg;
+      op = kX86Cvtsi2ssRR;
+      break;
+    case Instruction::DOUBLE_TO_FLOAT:
+      rcSrc = kFPReg;
+      op = kX86Cvtsd2ssRR;
+      break;
+    case Instruction::FLOAT_TO_DOUBLE:
+      rcSrc = kFPReg;
+      op = kX86Cvtss2sdRR;
+      break;
+    case Instruction::INT_TO_DOUBLE:
+      rcSrc = kCoreReg;
+      op = kX86Cvtsi2sdRR;
+      break;
+    case Instruction::FLOAT_TO_INT: {
+      rl_src = LoadValue(cu, rl_src, kFPReg);
+      src_reg = rl_src.low_reg;
+      // In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
+      ClobberSReg(cu, rl_dest.s_reg_low);
+      rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+      int temp_reg = AllocTempFloat(cu);
+
+      LoadConstant(cu, rl_result.low_reg, 0x7fffffff);
+      NewLIR2(cu, kX86Cvtsi2ssRR, temp_reg, rl_result.low_reg);
+      NewLIR2(cu, kX86ComissRR, src_reg, temp_reg);
+      LIR* branch_pos_overflow = NewLIR2(cu, kX86Jcc8, 0, kX86CondA);
+      LIR* branch_na_n = NewLIR2(cu, kX86Jcc8, 0, kX86CondP);
+      NewLIR2(cu, kX86Cvttss2siRR, rl_result.low_reg, src_reg);
+      LIR* branch_normal = NewLIR1(cu, kX86Jmp8, 0);
+      branch_na_n->target = NewLIR0(cu, kPseudoTargetLabel);
+      NewLIR2(cu, kX86Xor32RR, rl_result.low_reg, rl_result.low_reg);
+      branch_pos_overflow->target = NewLIR0(cu, kPseudoTargetLabel);
+      branch_normal->target = NewLIR0(cu, kPseudoTargetLabel);
+      StoreValue(cu, rl_dest, rl_result);
+      return;
+    }
+    case Instruction::DOUBLE_TO_INT: {
+      rl_src = LoadValueWide(cu, rl_src, kFPReg);
+      src_reg = rl_src.low_reg;
+      // In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
+      ClobberSReg(cu, rl_dest.s_reg_low);
+      rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+      int temp_reg = AllocTempDouble(cu) | X86_FP_DOUBLE;
+
+      LoadConstant(cu, rl_result.low_reg, 0x7fffffff);
+      NewLIR2(cu, kX86Cvtsi2sdRR, temp_reg, rl_result.low_reg);
+      NewLIR2(cu, kX86ComisdRR, src_reg, temp_reg);
+      LIR* branch_pos_overflow = NewLIR2(cu, kX86Jcc8, 0, kX86CondA);
+      LIR* branch_na_n = NewLIR2(cu, kX86Jcc8, 0, kX86CondP);
+      NewLIR2(cu, kX86Cvttsd2siRR, rl_result.low_reg, src_reg);
+      LIR* branch_normal = NewLIR1(cu, kX86Jmp8, 0);
+      branch_na_n->target = NewLIR0(cu, kPseudoTargetLabel);
+      NewLIR2(cu, kX86Xor32RR, rl_result.low_reg, rl_result.low_reg);
+      branch_pos_overflow->target = NewLIR0(cu, kPseudoTargetLabel);
+      branch_normal->target = NewLIR0(cu, kPseudoTargetLabel);
+      StoreValue(cu, rl_dest, rl_result);
+      return;
+    }
+    case Instruction::LONG_TO_DOUBLE:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pL2d), rl_dest, rl_src);
+      return;
+    case Instruction::LONG_TO_FLOAT:
+      // TODO: inline by using memory as a 64-bit source. Be careful about promoted registers.
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pL2f), rl_dest, rl_src);
+      return;
+    case Instruction::FLOAT_TO_LONG:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pF2l), rl_dest, rl_src);
+      return;
+    case Instruction::DOUBLE_TO_LONG:
+      GenConversionCall(cu, ENTRYPOINT_OFFSET(pD2l), rl_dest, rl_src);
+      return;
+    default:
+      LOG(INFO) << "Unexpected opcode: " << opcode;
+  }
+  if (rl_src.wide) {
+    rl_src = LoadValueWide(cu, rl_src, rcSrc);
+    src_reg = S2d(rl_src.low_reg, rl_src.high_reg);
+  } else {
+    rl_src = LoadValue(cu, rl_src, rcSrc);
+    src_reg = rl_src.low_reg;
+  }
+  if (rl_dest.wide) {
+    rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+    NewLIR2(cu, op, S2d(rl_result.low_reg, rl_result.high_reg), src_reg);
+    StoreValueWide(cu, rl_dest, rl_result);
+  } else {
+    rl_result = EvalLoc(cu, rl_dest, kFPReg, true);
+    NewLIR2(cu, op, rl_result.low_reg, src_reg);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+void X86Codegen::GenCmpFP(CompilationUnit *cu, Instruction::Code code, RegLocation rl_dest,
+                          RegLocation rl_src1, RegLocation rl_src2) {
+  bool single = (code == Instruction::CMPL_FLOAT) || (code == Instruction::CMPG_FLOAT);
+  bool unordered_gt = (code == Instruction::CMPG_DOUBLE) || (code == Instruction::CMPG_FLOAT);
+  int src_reg1;
+  int src_reg2;
+  if (single) {
+    rl_src1 = LoadValue(cu, rl_src1, kFPReg);
+    src_reg1 = rl_src1.low_reg;
+    rl_src2 = LoadValue(cu, rl_src2, kFPReg);
+    src_reg2 = rl_src2.low_reg;
+  } else {
+    rl_src1 = LoadValueWide(cu, rl_src1, kFPReg);
+    src_reg1 = S2d(rl_src1.low_reg, rl_src1.high_reg);
+    rl_src2 = LoadValueWide(cu, rl_src2, kFPReg);
+    src_reg2 = S2d(rl_src2.low_reg, rl_src2.high_reg);
+  }
+  // In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
+  ClobberSReg(cu, rl_dest.s_reg_low);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  LoadConstantNoClobber(cu, rl_result.low_reg, unordered_gt ? 1 : 0);
+  if (single) {
+    NewLIR2(cu, kX86UcomissRR, src_reg1, src_reg2);
+  } else {
+    NewLIR2(cu, kX86UcomisdRR, src_reg1, src_reg2);
+  }
+  LIR* branch = NULL;
+  if (unordered_gt) {
+    branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondPE);
+  }
+  // If the result reg can't be byte accessed, use a jump and move instead of a set.
+  if (rl_result.low_reg >= 4) {
+    LIR* branch2 = NULL;
+    if (unordered_gt) {
+      branch2 = NewLIR2(cu, kX86Jcc8, 0, kX86CondA);
+      NewLIR2(cu, kX86Mov32RI, rl_result.low_reg, 0x0);
+    } else {
+      branch2 = NewLIR2(cu, kX86Jcc8, 0, kX86CondBe);
+      NewLIR2(cu, kX86Mov32RI, rl_result.low_reg, 0x1);
+    }
+    branch2->target = NewLIR0(cu, kPseudoTargetLabel);
+  } else {
+    NewLIR2(cu, kX86Set8R, rl_result.low_reg, kX86CondA /* above - unsigned > */);
+  }
+  NewLIR2(cu, kX86Sbb32RI, rl_result.low_reg, 0);
+  if (unordered_gt) {
+    branch->target = NewLIR0(cu, kPseudoTargetLabel);
+  }
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::GenFusedFPCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir, bool gt_bias,
+                                     bool is_double) {
+  LIR* label_list = cu->block_label_list;
+  LIR* taken = &label_list[bb->taken->id];
+  LIR* not_taken = &label_list[bb->fall_through->id];
+  LIR* branch = NULL;
+  RegLocation rl_src1;
+  RegLocation rl_src2;
+  if (is_double) {
+    rl_src1 = GetSrcWide(cu, mir, 0);
+    rl_src2 = GetSrcWide(cu, mir, 2);
+    rl_src1 = LoadValueWide(cu, rl_src1, kFPReg);
+    rl_src2 = LoadValueWide(cu, rl_src2, kFPReg);
+    NewLIR2(cu, kX86UcomisdRR, S2d(rl_src1.low_reg, rl_src1.high_reg),
+            S2d(rl_src2.low_reg, rl_src2.high_reg));
+  } else {
+    rl_src1 = GetSrc(cu, mir, 0);
+    rl_src2 = GetSrc(cu, mir, 1);
+    rl_src1 = LoadValue(cu, rl_src1, kFPReg);
+    rl_src2 = LoadValue(cu, rl_src2, kFPReg);
+    NewLIR2(cu, kX86UcomissRR, rl_src1.low_reg, rl_src2.low_reg);
+  }
+  ConditionCode ccode = static_cast<ConditionCode>(mir->dalvikInsn.arg[0]);
+  switch (ccode) {
+    case kCondEq:
+      if (!gt_bias) {
+        branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondPE);
+        branch->target = not_taken;
+      }
+      break;
+    case kCondNe:
+      if (!gt_bias) {
+        branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondPE);
+        branch->target = taken;
+      }
+      break;
+    case kCondLt:
+      if (gt_bias) {
+        branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondPE);
+        branch->target = not_taken;
+      }
+      ccode = kCondCs;
+      break;
+    case kCondLe:
+      if (gt_bias) {
+        branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondPE);
+        branch->target = not_taken;
+      }
+      ccode = kCondLs;
+      break;
+    case kCondGt:
+      if (gt_bias) {
+        branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondPE);
+        branch->target = taken;
+      }
+      ccode = kCondHi;
+      break;
+    case kCondGe:
+      if (gt_bias) {
+        branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondPE);
+        branch->target = taken;
+      }
+      ccode = kCondCc;
+      break;
+    default:
+      LOG(FATAL) << "Unexpected ccode: " << ccode;
+  }
+  OpCondBranch(cu, ccode, taken);
+}
+
+void X86Codegen::GenNegFloat(CompilationUnit *cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  RegLocation rl_result;
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  OpRegRegImm(cu, kOpAdd, rl_result.low_reg, rl_src.low_reg, 0x80000000);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::GenNegDouble(CompilationUnit *cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  RegLocation rl_result;
+  rl_src = LoadValueWide(cu, rl_src, kCoreReg);
+  rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  OpRegRegImm(cu, kOpAdd, rl_result.high_reg, rl_src.high_reg, 0x80000000);
+  OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+bool X86Codegen::GenInlinedSqrt(CompilationUnit* cu, CallInfo* info) {
+  DCHECK_NE(cu->instruction_set, kThumb2);
+  return false;
+}
+
+
+
+} //  namespace art
diff --git a/src/compiler/dex/quick/x86/int_x86.cc b/src/compiler/dex/quick/x86/int_x86.cc
new file mode 100644
index 0000000..81b1d72
--- /dev/null
+++ b/src/compiler/dex/quick/x86/int_x86.cc
@@ -0,0 +1,607 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This file contains codegen for the X86 ISA */
+
+#include "codegen_x86.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "x86_lir.h"
+
+namespace art {
+
+/*
+ * Perform register memory operation.
+ */
+LIR* X86Codegen::GenRegMemCheck(CompilationUnit* cu, ConditionCode c_code,
+                                int reg1, int base, int offset, ThrowKind kind)
+{
+  LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
+                    cu->current_dalvik_offset, reg1, base, offset);
+  OpRegMem(cu, kOpCmp, reg1, base, offset);
+  LIR* branch = OpCondBranch(cu, c_code, tgt);
+  // Remember branch target - will process later
+  InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
+  return branch;
+}
+
+/*
+ * Compare two 64-bit values
+ *    x = y     return  0
+ *    x < y     return -1
+ *    x > y     return  1
+ */
+void X86Codegen::GenCmpLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  FlushAllRegs(cu);
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  LoadValueDirectWideFixed(cu, rl_src1, r0, r1);
+  LoadValueDirectWideFixed(cu, rl_src2, r2, r3);
+  // Compute (r1:r0) = (r1:r0) - (r3:r2)
+  OpRegReg(cu, kOpSub, r0, r2);  // r0 = r0 - r2
+  OpRegReg(cu, kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
+  NewLIR2(cu, kX86Set8R, r2, kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
+  NewLIR2(cu, kX86Movzx8RR, r2, r2);
+  OpReg(cu, kOpNeg, r2);         // r2 = -r2
+  OpRegReg(cu, kOpOr, r0, r1);   // r0 = high | low - sets ZF
+  NewLIR2(cu, kX86Set8R, r0, kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
+  NewLIR2(cu, kX86Movzx8RR, r0, r0);
+  OpRegReg(cu, kOpOr, r0, r2);   // r0 = r0 | r2
+  RegLocation rl_result = LocCReturn();
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
+  switch (cond) {
+    case kCondEq: return kX86CondEq;
+    case kCondNe: return kX86CondNe;
+    case kCondCs: return kX86CondC;
+    case kCondCc: return kX86CondNc;
+    case kCondMi: return kX86CondS;
+    case kCondPl: return kX86CondNs;
+    case kCondVs: return kX86CondO;
+    case kCondVc: return kX86CondNo;
+    case kCondHi: return kX86CondA;
+    case kCondLs: return kX86CondBe;
+    case kCondGe: return kX86CondGe;
+    case kCondLt: return kX86CondL;
+    case kCondGt: return kX86CondG;
+    case kCondLe: return kX86CondLe;
+    case kCondAl:
+    case kCondNv: LOG(FATAL) << "Should not reach here";
+  }
+  return kX86CondO;
+}
+
+LIR* X86Codegen::OpCmpBranch(CompilationUnit* cu, ConditionCode cond, int src1, int src2,
+                             LIR* target)
+{
+  NewLIR2(cu, kX86Cmp32RR, src1, src2);
+  X86ConditionCode cc = X86ConditionEncoding(cond);
+  LIR* branch = NewLIR2(cu, kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
+                        cc);
+  branch->target = target;
+  return branch;
+}
+
+LIR* X86Codegen::OpCmpImmBranch(CompilationUnit* cu, ConditionCode cond, int reg,
+                                int check_value, LIR* target)
+{
+  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
+    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
+    NewLIR2(cu, kX86Test32RR, reg, reg);
+  } else {
+    NewLIR2(cu, IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
+  }
+  X86ConditionCode cc = X86ConditionEncoding(cond);
+  LIR* branch = NewLIR2(cu, kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
+  branch->target = target;
+  return branch;
+}
+
+LIR* X86Codegen::OpRegCopyNoInsert(CompilationUnit *cu, int r_dest, int r_src)
+{
+  if (X86_FPREG(r_dest) || X86_FPREG(r_src))
+    return OpFpRegCopy(cu, r_dest, r_src);
+  LIR* res = RawLIR(cu, cu->current_dalvik_offset, kX86Mov32RR,
+                    r_dest, r_src);
+  if (r_dest == r_src) {
+    res->flags.is_nop = true;
+  }
+  return res;
+}
+
+LIR* X86Codegen::OpRegCopy(CompilationUnit *cu, int r_dest, int r_src)
+{
+  LIR *res = OpRegCopyNoInsert(cu, r_dest, r_src);
+  AppendLIR(cu, res);
+  return res;
+}
+
+void X86Codegen::OpRegCopyWide(CompilationUnit *cu, int dest_lo, int dest_hi,
+                               int src_lo, int src_hi)
+{
+  bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
+  bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
+  assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
+  assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
+  if (dest_fp) {
+    if (src_fp) {
+      OpRegCopy(cu, S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
+    } else {
+      // TODO: Prevent this from happening in the code. The result is often
+      // unused or could have been loaded more easily from memory.
+      NewLIR2(cu, kX86MovdxrRR, dest_lo, src_lo);
+      NewLIR2(cu, kX86MovdxrRR, dest_hi, src_hi);
+      NewLIR2(cu, kX86PsllqRI, dest_hi, 32);
+      NewLIR2(cu, kX86OrpsRR, dest_lo, dest_hi);
+    }
+  } else {
+    if (src_fp) {
+      NewLIR2(cu, kX86MovdrxRR, dest_lo, src_lo);
+      NewLIR2(cu, kX86PsrlqRI, src_lo, 32);
+      NewLIR2(cu, kX86MovdrxRR, dest_hi, src_lo);
+    } else {
+      // Handle overlap
+      if (src_hi == dest_lo) {
+        OpRegCopy(cu, dest_hi, src_hi);
+        OpRegCopy(cu, dest_lo, src_lo);
+      } else {
+        OpRegCopy(cu, dest_lo, src_lo);
+        OpRegCopy(cu, dest_hi, src_hi);
+      }
+    }
+  }
+}
+
+void X86Codegen::GenSelect(CompilationUnit* cu, BasicBlock* bb, MIR* mir)
+{
+  UNIMPLEMENTED(FATAL) << "Need codegen for GenSelect";
+}
+
+void X86Codegen::GenFusedLongCmpBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir) {
+  LIR* label_list = cu->block_label_list;
+  LIR* taken = &label_list[bb->taken->id];
+  RegLocation rl_src1 = GetSrcWide(cu, mir, 0);
+  RegLocation rl_src2 = GetSrcWide(cu, mir, 2);
+  FlushAllRegs(cu);
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  LoadValueDirectWideFixed(cu, rl_src1, r0, r1);
+  LoadValueDirectWideFixed(cu, rl_src2, r2, r3);
+  ConditionCode ccode = static_cast<ConditionCode>(mir->dalvikInsn.arg[0]);
+  // Swap operands and condition code to prevent use of zero flag.
+  if (ccode == kCondLe || ccode == kCondGt) {
+    // Compute (r3:r2) = (r3:r2) - (r1:r0)
+    OpRegReg(cu, kOpSub, r2, r0);  // r2 = r2 - r0
+    OpRegReg(cu, kOpSbc, r3, r1);  // r3 = r3 - r1 - CF
+  } else {
+    // Compute (r1:r0) = (r1:r0) - (r3:r2)
+    OpRegReg(cu, kOpSub, r0, r2);  // r0 = r0 - r2
+    OpRegReg(cu, kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
+  }
+  switch (ccode) {
+    case kCondEq:
+    case kCondNe:
+      OpRegReg(cu, kOpOr, r0, r1);  // r0 = r0 | r1
+      break;
+    case kCondLe:
+      ccode = kCondGe;
+      break;
+    case kCondGt:
+      ccode = kCondLt;
+      break;
+    case kCondLt:
+    case kCondGe:
+      break;
+    default:
+      LOG(FATAL) << "Unexpected ccode: " << ccode;
+  }
+  OpCondBranch(cu, ccode, taken);
+}
+
+RegLocation X86Codegen::GenDivRemLit(CompilationUnit* cu, RegLocation rl_dest, int reg_lo,
+                                     int lit, bool is_div)
+{
+  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
+  return rl_dest;
+}
+
+RegLocation X86Codegen::GenDivRem(CompilationUnit* cu, RegLocation rl_dest, int reg_lo,
+                                  int reg_hi, bool is_div)
+{
+  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
+  return rl_dest;
+}
+
+bool X86Codegen::GenInlinedMinMaxInt(CompilationUnit *cu, CallInfo* info, bool is_min)
+{
+  DCHECK_EQ(cu->instruction_set, kX86);
+  RegLocation rl_src1 = info->args[0];
+  RegLocation rl_src2 = info->args[1];
+  rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+  rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+  RegLocation rl_dest = InlineTarget(cu, info);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  OpRegReg(cu, kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
+  DCHECK_EQ(cu->instruction_set, kX86);
+  LIR* branch = NewLIR2(cu, kX86Jcc8, 0, is_min ? kX86CondG : kX86CondL);
+  OpRegReg(cu, kOpMov, rl_result.low_reg, rl_src1.low_reg);
+  LIR* branch2 = NewLIR1(cu, kX86Jmp8, 0);
+  branch->target = NewLIR0(cu, kPseudoTargetLabel);
+  OpRegReg(cu, kOpMov, rl_result.low_reg, rl_src2.low_reg);
+  branch2->target = NewLIR0(cu, kPseudoTargetLabel);
+  StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+void X86Codegen::OpLea(CompilationUnit* cu, int rBase, int reg1, int reg2, int scale, int offset)
+{
+  NewLIR5(cu, kX86Lea32RA, rBase, reg1, reg2, scale, offset);
+}
+
+void X86Codegen::OpTlsCmp(CompilationUnit* cu, int offset, int val)
+{
+  NewLIR2(cu, kX86Cmp16TI8, offset, val);
+}
+
+bool X86Codegen::GenInlinedCas32(CompilationUnit* cu, CallInfo* info, bool need_write_barrier) {
+  DCHECK_NE(cu->instruction_set, kThumb2);
+  return false;
+}
+
+LIR* X86Codegen::OpPcRelLoad(CompilationUnit* cu, int reg, LIR* target) {
+  LOG(FATAL) << "Unexpected use of OpPcRelLoad for x86";
+  return NULL;
+}
+
+LIR* X86Codegen::OpVldm(CompilationUnit* cu, int rBase, int count)
+{
+  LOG(FATAL) << "Unexpected use of OpVldm for x86";
+  return NULL;
+}
+
+LIR* X86Codegen::OpVstm(CompilationUnit* cu, int rBase, int count)
+{
+  LOG(FATAL) << "Unexpected use of OpVstm for x86";
+  return NULL;
+}
+
+void X86Codegen::GenMultiplyByTwoBitMultiplier(CompilationUnit* cu, RegLocation rl_src,
+                                               RegLocation rl_result, int lit,
+                                               int first_bit, int second_bit)
+{
+  int t_reg = AllocTemp(cu);
+  OpRegRegImm(cu, kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
+  OpRegRegReg(cu, kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
+  FreeTemp(cu, t_reg);
+  if (first_bit != 0) {
+    OpRegRegImm(cu, kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
+  }
+}
+
+void X86Codegen::GenDivZeroCheck(CompilationUnit* cu, int reg_lo, int reg_hi)
+{
+  int t_reg = AllocTemp(cu);
+  OpRegRegReg(cu, kOpOr, t_reg, reg_lo, reg_hi);
+  GenImmedCheck(cu, kCondEq, t_reg, 0, kThrowDivZero);
+  FreeTemp(cu, t_reg);
+}
+
+// Test suspend flag, return target of taken suspend branch
+LIR* X86Codegen::OpTestSuspend(CompilationUnit* cu, LIR* target)
+{
+  OpTlsCmp(cu, Thread::ThreadFlagsOffset().Int32Value(), 0);
+  return OpCondBranch(cu, (target == NULL) ? kCondNe : kCondEq, target);
+}
+
+// Decrement register and branch on condition
+LIR* X86Codegen::OpDecAndBranch(CompilationUnit* cu, ConditionCode c_code, int reg, LIR* target)
+{
+  OpRegImm(cu, kOpSub, reg, 1);
+  return OpCmpImmBranch(cu, c_code, reg, 0, target);
+}
+
+bool X86Codegen::SmallLiteralDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
+                                    RegLocation rl_src, RegLocation rl_dest, int lit)
+{
+  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
+  return false;
+}
+
+LIR* X86Codegen::OpIT(CompilationUnit* cu, ConditionCode cond, const char* guide)
+{
+  LOG(FATAL) << "Unexpected use of OpIT in x86";
+  return NULL;
+}
+
+void X86Codegen::GenMulLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  LOG(FATAL) << "Unexpected use of GenX86Long for x86";
+}
+void X86Codegen::GenAddLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                         RegLocation rl_src2)
+{
+  // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart
+  // enough.
+  FlushAllRegs(cu);
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  LoadValueDirectWideFixed(cu, rl_src1, r0, r1);
+  LoadValueDirectWideFixed(cu, rl_src2, r2, r3);
+  // Compute (r1:r0) = (r1:r0) + (r2:r3)
+  OpRegReg(cu, kOpAdd, r0, r2);  // r0 = r0 + r2
+  OpRegReg(cu, kOpAdc, r1, r3);  // r1 = r1 + r3 + CF
+  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1,
+                          INVALID_SREG, INVALID_SREG};
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::GenSubLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart
+  // enough.
+  FlushAllRegs(cu);
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  LoadValueDirectWideFixed(cu, rl_src1, r0, r1);
+  LoadValueDirectWideFixed(cu, rl_src2, r2, r3);
+  // Compute (r1:r0) = (r1:r0) + (r2:r3)
+  OpRegReg(cu, kOpSub, r0, r2);  // r0 = r0 - r2
+  OpRegReg(cu, kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
+  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1,
+                          INVALID_SREG, INVALID_SREG};
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::GenAndLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src1,
+                            RegLocation rl_src2)
+{
+  // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart
+  // enough.
+  FlushAllRegs(cu);
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  LoadValueDirectWideFixed(cu, rl_src1, r0, r1);
+  LoadValueDirectWideFixed(cu, rl_src2, r2, r3);
+  // Compute (r1:r0) = (r1:r0) & (r2:r3)
+  OpRegReg(cu, kOpAnd, r0, r2);  // r0 = r0 & r2
+  OpRegReg(cu, kOpAnd, r1, r3);  // r1 = r1 & r3
+  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1,
+                          INVALID_SREG, INVALID_SREG};
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::GenOrLong(CompilationUnit* cu, RegLocation rl_dest,
+                           RegLocation rl_src1, RegLocation rl_src2)
+{
+  // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart
+  // enough.
+  FlushAllRegs(cu);
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  LoadValueDirectWideFixed(cu, rl_src1, r0, r1);
+  LoadValueDirectWideFixed(cu, rl_src2, r2, r3);
+  // Compute (r1:r0) = (r1:r0) | (r2:r3)
+  OpRegReg(cu, kOpOr, r0, r2);  // r0 = r0 | r2
+  OpRegReg(cu, kOpOr, r1, r3);  // r1 = r1 | r3
+  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1,
+                          INVALID_SREG, INVALID_SREG};
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::GenXorLong(CompilationUnit* cu, RegLocation rl_dest,
+                            RegLocation rl_src1, RegLocation rl_src2)
+{
+  // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart
+  // enough.
+  FlushAllRegs(cu);
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  LoadValueDirectWideFixed(cu, rl_src1, r0, r1);
+  LoadValueDirectWideFixed(cu, rl_src2, r2, r3);
+  // Compute (r1:r0) = (r1:r0) ^ (r2:r3)
+  OpRegReg(cu, kOpXor, r0, r2);  // r0 = r0 ^ r2
+  OpRegReg(cu, kOpXor, r1, r3);  // r1 = r1 ^ r3
+  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1,
+                          INVALID_SREG, INVALID_SREG};
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::GenNegLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  LockCallTemps(cu);  // Prepare for explicit register usage
+  LoadValueDirectWideFixed(cu, rl_src, r0, r1);
+  // Compute (r1:r0) = -(r1:r0)
+  OpRegReg(cu, kOpNeg, r0, r0);  // r0 = -r0
+  OpRegImm(cu, kOpAdc, r1, 0);   // r1 = r1 + CF
+  OpRegReg(cu, kOpNeg, r1, r1);  // r1 = -r1
+  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1,
+                          INVALID_SREG, INVALID_SREG};
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void X86Codegen::OpRegThreadMem(CompilationUnit* cu, OpKind op, int r_dest, int thread_offset) {
+  X86OpCode opcode = kX86Bkpt;
+  switch (op) {
+  case kOpCmp: opcode = kX86Cmp32RT;  break;
+  case kOpMov: opcode = kX86Mov32RT;  break;
+  default:
+    LOG(FATAL) << "Bad opcode: " << op;
+    break;
+  }
+  NewLIR2(cu, opcode, r_dest, thread_offset);
+}
+
+/*
+ * Generate array load
+ */
+void X86Codegen::GenArrayGet(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                          RegLocation rl_index, RegLocation rl_dest, int scale)
+{
+  RegisterClass reg_class = oat_reg_class_by_size(size);
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  int data_offset;
+  RegLocation rl_result;
+  rl_array = LoadValue(cu, rl_array, kCoreReg);
+  rl_index = LoadValue(cu, rl_index, kCoreReg);
+
+  if (size == kLong || size == kDouble) {
+    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
+  } else {
+    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
+  }
+
+  /* null object? */
+  GenNullCheck(cu, rl_array.s_reg_low, rl_array.low_reg, opt_flags);
+
+  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
+    /* if (rl_index >= [rl_array + len_offset]) goto kThrowArrayBounds */
+    GenRegMemCheck(cu, kCondUge, rl_index.low_reg, rl_array.low_reg,
+                   len_offset, kThrowArrayBounds);
+  }
+  if ((size == kLong) || (size == kDouble)) {
+    int reg_addr = AllocTemp(cu);
+    OpLea(cu, reg_addr, rl_array.low_reg, rl_index.low_reg, scale, data_offset);
+    FreeTemp(cu, rl_array.low_reg);
+    FreeTemp(cu, rl_index.low_reg);
+    rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+    LoadBaseIndexedDisp(cu, reg_addr, INVALID_REG, 0, 0, rl_result.low_reg,
+                        rl_result.high_reg, size, INVALID_SREG);
+    StoreValueWide(cu, rl_dest, rl_result);
+  } else {
+    rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+
+    LoadBaseIndexedDisp(cu, rl_array.low_reg, rl_index.low_reg, scale,
+                        data_offset, rl_result.low_reg, INVALID_REG, size,
+                        INVALID_SREG);
+
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+/*
+ * Generate array store
+ *
+ */
+void X86Codegen::GenArrayPut(CompilationUnit* cu, int opt_flags, OpSize size, RegLocation rl_array,
+                          RegLocation rl_index, RegLocation rl_src, int scale)
+{
+  RegisterClass reg_class = oat_reg_class_by_size(size);
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  int data_offset;
+
+  if (size == kLong || size == kDouble) {
+    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
+  } else {
+    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
+  }
+
+  rl_array = LoadValue(cu, rl_array, kCoreReg);
+  rl_index = LoadValue(cu, rl_index, kCoreReg);
+
+  /* null object? */
+  GenNullCheck(cu, rl_array.s_reg_low, rl_array.low_reg, opt_flags);
+
+  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
+    /* if (rl_index >= [rl_array + len_offset]) goto kThrowArrayBounds */
+    GenRegMemCheck(cu, kCondUge, rl_index.low_reg, rl_array.low_reg, len_offset, kThrowArrayBounds);
+  }
+  if ((size == kLong) || (size == kDouble)) {
+    rl_src = LoadValueWide(cu, rl_src, reg_class);
+  } else {
+    rl_src = LoadValue(cu, rl_src, reg_class);
+  }
+  // If the src reg can't be byte accessed, move it to a temp first.
+  if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
+    int temp = AllocTemp(cu);
+    OpRegCopy(cu, temp, rl_src.low_reg);
+    StoreBaseIndexedDisp(cu, rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
+                         INVALID_REG, size, INVALID_SREG);
+  } else {
+    StoreBaseIndexedDisp(cu, rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
+                         rl_src.high_reg, size, INVALID_SREG);
+  }
+}
+
+/*
+ * Generate array store
+ *
+ */
+void X86Codegen::GenArrayObjPut(CompilationUnit* cu, int opt_flags, RegLocation rl_array,
+                             RegLocation rl_index, RegLocation rl_src, int scale)
+{
+  int len_offset = mirror::Array::LengthOffset().Int32Value();
+  int data_offset = mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value();
+
+  FlushAllRegs(cu);  // Use explicit registers
+  LockCallTemps(cu);
+
+  int r_value = TargetReg(kArg0);  // Register holding value
+  int r_array_class = TargetReg(kArg1);  // Register holding array's Class
+  int r_array = TargetReg(kArg2);  // Register holding array
+  int r_index = TargetReg(kArg3);  // Register holding index into array
+
+  LoadValueDirectFixed(cu, rl_array, r_array);  // Grab array
+  LoadValueDirectFixed(cu, rl_src, r_value);  // Grab value
+  LoadValueDirectFixed(cu, rl_index, r_index);  // Grab index
+
+  GenNullCheck(cu, rl_array.s_reg_low, r_array, opt_flags);  // NPE?
+
+  // Store of null?
+  LIR* null_value_check = OpCmpImmBranch(cu, kCondEq, r_value, 0, NULL);
+
+  // Get the array's class.
+  LoadWordDisp(cu, r_array, mirror::Object::ClassOffset().Int32Value(), r_array_class);
+  CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pCanPutArrayElementFromCode), r_value,
+                          r_array_class, true);
+  // Redo LoadValues in case they didn't survive the call.
+  LoadValueDirectFixed(cu, rl_array, r_array);  // Reload array
+  LoadValueDirectFixed(cu, rl_index, r_index);  // Reload index
+  LoadValueDirectFixed(cu, rl_src, r_value);  // Reload value
+  r_array_class = INVALID_REG;
+
+  // Branch here if value to be stored == null
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  null_value_check->target = target;
+
+  // make an extra temp available for card mark below
+  FreeTemp(cu, TargetReg(kArg1));
+  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
+    /* if (rl_index >= [rl_array + len_offset]) goto kThrowArrayBounds */
+    GenRegMemCheck(cu, kCondUge, r_index, r_array, len_offset, kThrowArrayBounds);
+  }
+  StoreBaseIndexedDisp(cu, r_array, r_index, scale,
+                       data_offset, r_value, INVALID_REG, kWord, INVALID_SREG);
+  FreeTemp(cu, r_index);
+  if (!IsConstantNullRef(cu, rl_src)) {
+    MarkGCCard(cu, r_value, r_array);
+  }
+}
+
+void X86Codegen::GenShiftImmOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                                   RegLocation rl_src1, RegLocation rl_shift)
+{
+  // Default implementation is just to ignore the constant case.
+  GenShiftOpLong(cu, opcode, rl_dest, rl_src1, rl_shift);
+}
+
+void X86Codegen::GenArithImmOpLong(CompilationUnit* cu, Instruction::Code opcode,
+                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
+{
+  // Default - bail to non-const handler.
+  GenArithOpLong(cu, opcode, rl_dest, rl_src1, rl_src2);
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/x86/target_x86.cc b/src/compiler/dex/quick/x86/target_x86.cc
new file mode 100644
index 0000000..cb41fde
--- /dev/null
+++ b/src/compiler/dex/quick/x86/target_x86.cc
@@ -0,0 +1,570 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_x86.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/compiler_internals.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "x86_lir.h"
+
+#include <string>
+
+namespace art {
+
+//FIXME: restore "static" when usage uncovered
+/*static*/ int core_regs[] = {
+  rAX, rCX, rDX, rBX, rX86_SP, rBP, rSI, rDI
+#ifdef TARGET_REX_SUPPORT
+  r8, r9, r10, r11, r12, r13, r14, 15
+#endif
+};
+/*static*/ int ReservedRegs[] = {rX86_SP};
+/*static*/ int core_temps[] = {rAX, rCX, rDX, rBX};
+/*static*/ int FpRegs[] = {
+  fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
+#ifdef TARGET_REX_SUPPORT
+  fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
+#endif
+};
+/*static*/ int fp_temps[] = {
+  fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
+#ifdef TARGET_REX_SUPPORT
+  fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
+#endif
+};
+
+RegLocation X86Codegen::LocCReturn()
+{
+  RegLocation res = X86_LOC_C_RETURN;
+  return res;
+}
+
+RegLocation X86Codegen::LocCReturnWide()
+{
+  RegLocation res = X86_LOC_C_RETURN_WIDE;
+  return res;
+}
+
+RegLocation X86Codegen::LocCReturnFloat()
+{
+  RegLocation res = X86_LOC_C_RETURN_FLOAT;
+  return res;
+}
+
+RegLocation X86Codegen::LocCReturnDouble()
+{
+  RegLocation res = X86_LOC_C_RETURN_DOUBLE;
+  return res;
+}
+
+// Return a target-dependent special register.
+int X86Codegen::TargetReg(SpecialTargetRegister reg) {
+  int res = INVALID_REG;
+  switch (reg) {
+    case kSelf: res = rX86_SELF; break;
+    case kSuspend: res =  rX86_SUSPEND; break;
+    case kLr: res =  rX86_LR; break;
+    case kPc: res =  rX86_PC; break;
+    case kSp: res =  rX86_SP; break;
+    case kArg0: res = rX86_ARG0; break;
+    case kArg1: res = rX86_ARG1; break;
+    case kArg2: res = rX86_ARG2; break;
+    case kArg3: res = rX86_ARG3; break;
+    case kFArg0: res = rX86_FARG0; break;
+    case kFArg1: res = rX86_FARG1; break;
+    case kFArg2: res = rX86_FARG2; break;
+    case kFArg3: res = rX86_FARG3; break;
+    case kRet0: res = rX86_RET0; break;
+    case kRet1: res = rX86_RET1; break;
+    case kInvokeTgt: res = rX86_INVOKE_TGT; break;
+    case kCount: res = rX86_COUNT; break;
+  }
+  return res;
+}
+
+// Create a double from a pair of singles.
+int X86Codegen::S2d(int low_reg, int high_reg)
+{
+  return X86_S2D(low_reg, high_reg);
+}
+
+// Return mask to strip off fp reg flags and bias.
+uint32_t X86Codegen::FpRegMask()
+{
+  return X86_FP_REG_MASK;
+}
+
+// True if both regs single, both core or both double.
+bool X86Codegen::SameRegType(int reg1, int reg2)
+{
+  return (X86_REGTYPE(reg1) == X86_REGTYPE(reg2));
+}
+
+/*
+ * Decode the register id.
+ */
+uint64_t X86Codegen::GetRegMaskCommon(CompilationUnit* cu, int reg)
+{
+  uint64_t seed;
+  int shift;
+  int reg_id;
+
+  reg_id = reg & 0xf;
+  /* Double registers in x86 are just a single FP register */
+  seed = 1;
+  /* FP register starts at bit position 16 */
+  shift = X86_FPREG(reg) ? kX86FPReg0 : 0;
+  /* Expand the double register id into single offset */
+  shift += reg_id;
+  return (seed << shift);
+}
+
+uint64_t X86Codegen::GetPCUseDefEncoding()
+{
+  /*
+   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
+   * able to clean up some of the x86/Arm_Mips differences
+   */
+  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
+  return 0ULL;
+}
+
+void X86Codegen::SetupTargetResourceMasks(CompilationUnit* cu, LIR* lir)
+{
+  DCHECK_EQ(cu->instruction_set, kX86);
+
+  // X86-specific resource map setup here.
+  uint64_t flags = X86Codegen::EncodingMap[lir->opcode].flags;
+
+  if (flags & REG_USE_SP) {
+    lir->use_mask |= ENCODE_X86_REG_SP;
+  }
+
+  if (flags & REG_DEF_SP) {
+    lir->def_mask |= ENCODE_X86_REG_SP;
+  }
+
+  if (flags & REG_DEFA) {
+    SetupRegMask(cu, &lir->def_mask, rAX);
+  }
+
+  if (flags & REG_DEFD) {
+    SetupRegMask(cu, &lir->def_mask, rDX);
+  }
+  if (flags & REG_USEA) {
+    SetupRegMask(cu, &lir->use_mask, rAX);
+  }
+
+  if (flags & REG_USEC) {
+    SetupRegMask(cu, &lir->use_mask, rCX);
+  }
+
+  if (flags & REG_USED) {
+    SetupRegMask(cu, &lir->use_mask, rDX);
+  }
+}
+
+/* For dumping instructions */
+static const char* x86RegName[] = {
+  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
+  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+};
+
+static const char* x86CondName[] = {
+  "O",
+  "NO",
+  "B/NAE/C",
+  "NB/AE/NC",
+  "Z/EQ",
+  "NZ/NE",
+  "BE/NA",
+  "NBE/A",
+  "S",
+  "NS",
+  "P/PE",
+  "NP/PO",
+  "L/NGE",
+  "NL/GE",
+  "LE/NG",
+  "NLE/G"
+};
+
+/*
+ * Interpret a format string and build a string no longer than size
+ * See format key in Assemble.cc.
+ */
+std::string X86Codegen::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
+  std::string buf;
+  size_t i = 0;
+  size_t fmt_len = strlen(fmt);
+  while (i < fmt_len) {
+    if (fmt[i] != '!') {
+      buf += fmt[i];
+      i++;
+    } else {
+      i++;
+      DCHECK_LT(i, fmt_len);
+      char operand_number_ch = fmt[i];
+      i++;
+      if (operand_number_ch == '!') {
+        buf += "!";
+      } else {
+        int operand_number = operand_number_ch - '0';
+        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
+        DCHECK_LT(i, fmt_len);
+        int operand = lir->operands[operand_number];
+        switch (fmt[i]) {
+          case 'c':
+            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
+            buf += x86CondName[operand];
+            break;
+          case 'd':
+            buf += StringPrintf("%d", operand);
+            break;
+          case 'p': {
+            SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(operand);
+            buf += StringPrintf("0x%08x", tab_rec->offset);
+            break;
+          }
+          case 'r':
+            if (X86_FPREG(operand) || X86_DOUBLEREG(operand)) {
+              int fp_reg = operand & X86_FP_REG_MASK;
+              buf += StringPrintf("xmm%d", fp_reg);
+            } else {
+              DCHECK_LT(static_cast<size_t>(operand), sizeof(x86RegName));
+              buf += x86RegName[operand];
+            }
+            break;
+          case 't':
+            buf += StringPrintf("0x%08x (L%p)",
+                                reinterpret_cast<uint32_t>(base_addr)
+                                + lir->offset + operand, lir->target);
+            break;
+          default:
+            buf += StringPrintf("DecodeError '%c'", fmt[i]);
+            break;
+        }
+        i++;
+      }
+    }
+  }
+  return buf;
+}
+
+void X86Codegen::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix)
+{
+  char buf[256];
+  buf[0] = 0;
+
+  if (mask == ENCODE_ALL) {
+    strcpy(buf, "all");
+  } else {
+    char num[8];
+    int i;
+
+    for (i = 0; i < kX86RegEnd; i++) {
+      if (mask & (1ULL << i)) {
+        sprintf(num, "%d ", i);
+        strcat(buf, num);
+      }
+    }
+
+    if (mask & ENCODE_CCODE) {
+      strcat(buf, "cc ");
+    }
+    /* Memory bits */
+    if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
+      sprintf(buf + strlen(buf), "dr%d%s", x86LIR->alias_info & 0xffff,
+              (x86LIR->alias_info & 0x80000000) ? "(+1)" : "");
+    }
+    if (mask & ENCODE_LITERAL) {
+      strcat(buf, "lit ");
+    }
+
+    if (mask & ENCODE_HEAP_REF) {
+      strcat(buf, "heap ");
+    }
+    if (mask & ENCODE_MUST_NOT_ALIAS) {
+      strcat(buf, "noalias ");
+    }
+  }
+  if (buf[0]) {
+    LOG(INFO) << prefix << ": " <<  buf;
+  }
+}
+
+void X86Codegen::AdjustSpillMask(CompilationUnit* cu) {
+  // Adjustment for LR spilling, x86 has no LR so nothing to do here
+  cu->core_spill_mask |= (1 << rRET);
+  cu->num_core_spills++;
+}
+
+/*
+ * Mark a callee-save fp register as promoted.  Note that
+ * vpush/vpop uses contiguous register lists so we must
+ * include any holes in the mask.  Associate holes with
+ * Dalvik register INVALID_VREG (0xFFFFU).
+ */
+void X86Codegen::MarkPreservedSingle(CompilationUnit* cu, int v_reg, int reg)
+{
+  UNIMPLEMENTED(WARNING) << "MarkPreservedSingle";
+#if 0
+  LOG(FATAL) << "No support yet for promoted FP regs";
+#endif
+}
+
+void X86Codegen::FlushRegWide(CompilationUnit* cu, int reg1, int reg2)
+{
+  RegisterInfo* info1 = GetRegInfo(cu, reg1);
+  RegisterInfo* info2 = GetRegInfo(cu, reg2);
+  DCHECK(info1 && info2 && info1->pair && info2->pair &&
+         (info1->partner == info2->reg) &&
+         (info2->partner == info1->reg));
+  if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
+    if (!(info1->is_temp && info2->is_temp)) {
+      /* Should not happen.  If it does, there's a problem in eval_loc */
+      LOG(FATAL) << "Long half-temp, half-promoted";
+    }
+
+    info1->dirty = false;
+    info2->dirty = false;
+    if (SRegToVReg(cu, info2->s_reg) < SRegToVReg(cu, info1->s_reg))
+      info1 = info2;
+    int v_reg = SRegToVReg(cu, info1->s_reg);
+    StoreBaseDispWide(cu, rX86_SP, VRegOffset(cu, v_reg), info1->reg, info1->partner);
+  }
+}
+
+void X86Codegen::FlushReg(CompilationUnit* cu, int reg)
+{
+  RegisterInfo* info = GetRegInfo(cu, reg);
+  if (info->live && info->dirty) {
+    info->dirty = false;
+    int v_reg = SRegToVReg(cu, info->s_reg);
+    StoreBaseDisp(cu, rX86_SP, VRegOffset(cu, v_reg), reg, kWord);
+  }
+}
+
+/* Give access to the target-dependent FP register encoding to common code */
+bool X86Codegen::IsFpReg(int reg) {
+  return X86_FPREG(reg);
+}
+
+/* Clobber all regs that might be used by an external C call */
+void X86Codegen::ClobberCalleeSave(CompilationUnit *cu)
+{
+  Clobber(cu, rAX);
+  Clobber(cu, rCX);
+  Clobber(cu, rDX);
+}
+
+RegLocation X86Codegen::GetReturnWideAlt(CompilationUnit* cu) {
+  RegLocation res = LocCReturnWide();
+  CHECK(res.low_reg == rAX);
+  CHECK(res.high_reg == rDX);
+  Clobber(cu, rAX);
+  Clobber(cu, rDX);
+  MarkInUse(cu, rAX);
+  MarkInUse(cu, rDX);
+  MarkPair(cu, res.low_reg, res.high_reg);
+  return res;
+}
+
+RegLocation X86Codegen::GetReturnAlt(CompilationUnit* cu)
+{
+  RegLocation res = LocCReturn();
+  res.low_reg = rDX;
+  Clobber(cu, rDX);
+  MarkInUse(cu, rDX);
+  return res;
+}
+
+RegisterInfo* X86Codegen::GetRegInfo(CompilationUnit* cu, int reg)
+{
+  return X86_FPREG(reg) ? &cu->reg_pool->FPRegs[reg & X86_FP_REG_MASK]
+                    : &cu->reg_pool->core_regs[reg];
+}
+
+/* To be used when explicitly managing register use */
+void X86Codegen::LockCallTemps(CompilationUnit* cu)
+{
+  LockTemp(cu, rX86_ARG0);
+  LockTemp(cu, rX86_ARG1);
+  LockTemp(cu, rX86_ARG2);
+  LockTemp(cu, rX86_ARG3);
+}
+
+/* To be used when explicitly managing register use */
+void X86Codegen::FreeCallTemps(CompilationUnit* cu)
+{
+  FreeTemp(cu, rX86_ARG0);
+  FreeTemp(cu, rX86_ARG1);
+  FreeTemp(cu, rX86_ARG2);
+  FreeTemp(cu, rX86_ARG3);
+}
+
+void X86Codegen::GenMemBarrier(CompilationUnit *cu, MemBarrierKind barrier_kind)
+{
+#if ANDROID_SMP != 0
+  // TODO: optimize fences
+  NewLIR0(cu, kX86Mfence);
+#endif
+}
+/*
+ * Alloc a pair of core registers, or a double.  Low reg in low byte,
+ * high reg in next byte.
+ */
+int X86Codegen::AllocTypedTempPair(CompilationUnit *cu, bool fp_hint,
+                          int reg_class)
+{
+  int high_reg;
+  int low_reg;
+  int res = 0;
+
+  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
+    low_reg = AllocTempDouble(cu);
+    high_reg = low_reg + 1;
+    res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
+    return res;
+  }
+
+  low_reg = AllocTemp(cu);
+  high_reg = AllocTemp(cu);
+  res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
+  return res;
+}
+
+int X86Codegen::AllocTypedTemp(CompilationUnit *cu, bool fp_hint, int reg_class) {
+  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
+    return AllocTempFloat(cu);
+  }
+  return AllocTemp(cu);
+}
+
+void X86Codegen::CompilerInitializeRegAlloc(CompilationUnit* cu) {
+  int num_regs = sizeof(core_regs)/sizeof(*core_regs);
+  int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
+  int num_temps = sizeof(core_temps)/sizeof(*core_temps);
+  int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
+  int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
+  RegisterPool *pool =
+      static_cast<RegisterPool*>(NewMem(cu, sizeof(*pool), true, kAllocRegAlloc));
+  cu->reg_pool = pool;
+  pool->num_core_regs = num_regs;
+  pool->core_regs =
+      static_cast<RegisterInfo*>(NewMem(cu, num_regs * sizeof(*cu->reg_pool->core_regs),
+                                             true, kAllocRegAlloc));
+  pool->num_fp_regs = num_fp_regs;
+  pool->FPRegs =
+      static_cast<RegisterInfo *>(NewMem(cu, num_fp_regs * sizeof(*cu->reg_pool->FPRegs),
+                                              true, kAllocRegAlloc));
+  CompilerInitPool(pool->core_regs, core_regs, pool->num_core_regs);
+  CompilerInitPool(pool->FPRegs, FpRegs, pool->num_fp_regs);
+  // Keep special registers from being allocated
+  for (int i = 0; i < num_reserved; i++) {
+    MarkInUse(cu, ReservedRegs[i]);
+  }
+  // Mark temp regs - all others not in use can be used for promotion
+  for (int i = 0; i < num_temps; i++) {
+    MarkTemp(cu, core_temps[i]);
+  }
+  for (int i = 0; i < num_fp_temps; i++) {
+    MarkTemp(cu, fp_temps[i]);
+  }
+}
+
+void X86Codegen::FreeRegLocTemps(CompilationUnit* cu, RegLocation rl_keep,
+                     RegLocation rl_free)
+{
+  if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) &&
+      (rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) {
+    // No overlap, free both
+    FreeTemp(cu, rl_free.low_reg);
+    FreeTemp(cu, rl_free.high_reg);
+  }
+}
+
+void X86Codegen::SpillCoreRegs(CompilationUnit* cu) {
+  if (cu->num_core_spills == 0) {
+    return;
+  }
+  // Spill mask not including fake return address register
+  uint32_t mask = cu->core_spill_mask & ~(1 << rRET);
+  int offset = cu->frame_size - (4 * cu->num_core_spills);
+  for (int reg = 0; mask; mask >>= 1, reg++) {
+    if (mask & 0x1) {
+      StoreWordDisp(cu, rX86_SP, offset, reg);
+      offset += 4;
+    }
+  }
+}
+
+void X86Codegen::UnSpillCoreRegs(CompilationUnit* cu) {
+  if (cu->num_core_spills == 0) {
+    return;
+  }
+  // Spill mask not including fake return address register
+  uint32_t mask = cu->core_spill_mask & ~(1 << rRET);
+  int offset = cu->frame_size - (4 * cu->num_core_spills);
+  for (int reg = 0; mask; mask >>= 1, reg++) {
+    if (mask & 0x1) {
+      LoadWordDisp(cu, rX86_SP, offset, reg);
+      offset += 4;
+    }
+  }
+}
+
+bool X86Codegen::IsUnconditionalBranch(LIR* lir)
+{
+  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
+}
+
+/* Common initialization routine for an architecture family */
+bool InitX86Codegen(CompilationUnit* cu) {
+  cu->cg.reset(new X86Codegen());
+  for (int i = 0; i < kX86Last; i++) {
+    if (X86Codegen::EncodingMap[i].opcode != i) {
+      LOG(FATAL) << "Encoding order for " << X86Codegen::EncodingMap[i].name
+                 << " is wrong: expecting " << i << ", seeing "
+                 << static_cast<int>(X86Codegen::EncodingMap[i].opcode);
+    }
+  }
+  return true;
+}
+
+// Not used in x86
+int X86Codegen::LoadHelper(CompilationUnit* cu, int offset)
+{
+  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
+  return INVALID_REG;
+}
+
+uint64_t X86Codegen::GetTargetInstFlags(int opcode)
+{
+  return X86Codegen::EncodingMap[opcode].flags;
+}
+
+const char* X86Codegen::GetTargetInstName(int opcode)
+{
+  return X86Codegen::EncodingMap[opcode].name;
+}
+
+const char* X86Codegen::GetTargetInstFmt(int opcode)
+{
+  return X86Codegen::EncodingMap[opcode].fmt;
+}
+
+} // namespace art
diff --git a/src/compiler/dex/quick/x86/utility_x86.cc b/src/compiler/dex/quick/x86/utility_x86.cc
new file mode 100644
index 0000000..fa40635
--- /dev/null
+++ b/src/compiler/dex/quick/x86/utility_x86.cc
@@ -0,0 +1,583 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_x86.h"
+#include "compiler/dex/quick/codegen_util.h"
+#include "compiler/dex/quick/ralloc_util.h"
+#include "x86_lir.h"
+
+namespace art {
+
+/* This file contains codegen for the X86 ISA */
+
+LIR* X86Codegen::OpFpRegCopy(CompilationUnit *cu, int r_dest, int r_src)
+{
+  int opcode;
+  /* must be both DOUBLE or both not DOUBLE */
+  DCHECK_EQ(X86_DOUBLEREG(r_dest), X86_DOUBLEREG(r_src));
+  if (X86_DOUBLEREG(r_dest)) {
+    opcode = kX86MovsdRR;
+  } else {
+    if (X86_SINGLEREG(r_dest)) {
+      if (X86_SINGLEREG(r_src)) {
+        opcode = kX86MovssRR;
+      } else {  // Fpr <- Gpr
+        opcode = kX86MovdxrRR;
+      }
+    } else {  // Gpr <- Fpr
+      DCHECK(X86_SINGLEREG(r_src));
+      opcode = kX86MovdrxRR;
+    }
+  }
+  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
+  LIR* res = RawLIR(cu, cu->current_dalvik_offset, opcode, r_dest, r_src);
+  if (r_dest == r_src) {
+    res->flags.is_nop = true;
+  }
+  return res;
+}
+
+bool X86Codegen::InexpensiveConstantInt(int32_t value)
+{
+  return true;
+}
+
+bool X86Codegen::InexpensiveConstantFloat(int32_t value)
+{
+  return false;
+}
+
+bool X86Codegen::InexpensiveConstantLong(int64_t value)
+{
+  return true;
+}
+
+bool X86Codegen::InexpensiveConstantDouble(int64_t value)
+{
+  return false; // TUNING
+}
+
+/*
+ * Load a immediate using a shortcut if possible; otherwise
+ * grab from the per-translation literal pool.  If target is
+ * a high register, build constant into a low register and copy.
+ *
+ * No additional register clobbering operation performed. Use this version when
+ * 1) r_dest is freshly returned from AllocTemp or
+ * 2) The codegen is under fixed register usage
+ */
+LIR* X86Codegen::LoadConstantNoClobber(CompilationUnit *cu, int r_dest, int value)
+{
+  int r_dest_save = r_dest;
+  if (X86_FPREG(r_dest)) {
+    if (value == 0) {
+      return NewLIR2(cu, kX86XorpsRR, r_dest, r_dest);
+    }
+    DCHECK(X86_SINGLEREG(r_dest));
+    r_dest = AllocTemp(cu);
+  }
+
+  LIR *res;
+  if (value == 0) {
+    res = NewLIR2(cu, kX86Xor32RR, r_dest, r_dest);
+  } else {
+    // Note, there is no byte immediate form of a 32 bit immediate move.
+    res = NewLIR2(cu, kX86Mov32RI, r_dest, value);
+  }
+
+  if (X86_FPREG(r_dest_save)) {
+    NewLIR2(cu, kX86MovdxrRR, r_dest_save, r_dest);
+    FreeTemp(cu, r_dest);
+  }
+
+  return res;
+}
+
+LIR* X86Codegen::OpUnconditionalBranch(CompilationUnit* cu, LIR* target)
+{
+  LIR* res = NewLIR1(cu, kX86Jmp8, 0 /* offset to be patched during assembly*/ );
+  res->target = target;
+  return res;
+}
+
+LIR* X86Codegen::OpCondBranch(CompilationUnit* cu, ConditionCode cc, LIR* target)
+{
+  LIR* branch = NewLIR2(cu, kX86Jcc8, 0 /* offset to be patched */,
+                        X86ConditionEncoding(cc));
+  branch->target = target;
+  return branch;
+}
+
+LIR* X86Codegen::OpReg(CompilationUnit *cu, OpKind op, int r_dest_src)
+{
+  X86OpCode opcode = kX86Bkpt;
+  switch (op) {
+    case kOpNeg: opcode = kX86Neg32R; break;
+    case kOpNot: opcode = kX86Not32R; break;
+    case kOpBlx: opcode = kX86CallR; break;
+    default:
+      LOG(FATAL) << "Bad case in OpReg " << op;
+  }
+  return NewLIR1(cu, opcode, r_dest_src);
+}
+
+LIR* X86Codegen::OpRegImm(CompilationUnit *cu, OpKind op, int r_dest_src1, int value)
+{
+  X86OpCode opcode = kX86Bkpt;
+  bool byte_imm = IS_SIMM8(value);
+  DCHECK(!X86_FPREG(r_dest_src1));
+  switch (op) {
+    case kOpLsl: opcode = kX86Sal32RI; break;
+    case kOpLsr: opcode = kX86Shr32RI; break;
+    case kOpAsr: opcode = kX86Sar32RI; break;
+    case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
+    case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
+    case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
+    //case kOpSbb: opcode = kX86Sbb32RI; break;
+    case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
+    case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
+    case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
+    case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
+    case kOpMov: return LoadConstantNoClobber(cu, r_dest_src1, value);
+    case kOpMul:
+      opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
+      return NewLIR3(cu, opcode, r_dest_src1, r_dest_src1, value);
+    default:
+      LOG(FATAL) << "Bad case in OpRegImm " << op;
+  }
+  return NewLIR2(cu, opcode, r_dest_src1, value);
+}
+
+LIR* X86Codegen::OpRegReg(CompilationUnit *cu, OpKind op, int r_dest_src1, int r_src2)
+{
+    X86OpCode opcode = kX86Nop;
+    bool src2_must_be_cx = false;
+    switch (op) {
+        // X86 unary opcodes
+      case kOpMvn:
+        OpRegCopy(cu, r_dest_src1, r_src2);
+        return OpReg(cu, kOpNot, r_dest_src1);
+      case kOpNeg:
+        OpRegCopy(cu, r_dest_src1, r_src2);
+        return OpReg(cu, kOpNeg, r_dest_src1);
+        // X86 binary opcodes
+      case kOpSub: opcode = kX86Sub32RR; break;
+      case kOpSbc: opcode = kX86Sbb32RR; break;
+      case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
+      case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
+      case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
+      case kOpMov: opcode = kX86Mov32RR; break;
+      case kOpCmp: opcode = kX86Cmp32RR; break;
+      case kOpAdd: opcode = kX86Add32RR; break;
+      case kOpAdc: opcode = kX86Adc32RR; break;
+      case kOpAnd: opcode = kX86And32RR; break;
+      case kOpOr:  opcode = kX86Or32RR; break;
+      case kOpXor: opcode = kX86Xor32RR; break;
+      case kOp2Byte:
+        // Use shifts instead of a byte operand if the source can't be byte accessed.
+        if (r_src2 >= 4) {
+          NewLIR2(cu, kX86Mov32RR, r_dest_src1, r_src2);
+          NewLIR2(cu, kX86Sal32RI, r_dest_src1, 24);
+          return NewLIR2(cu, kX86Sar32RI, r_dest_src1, 24);
+        } else {
+          opcode = kX86Movsx8RR;
+        }
+        break;
+      case kOp2Short: opcode = kX86Movsx16RR; break;
+      case kOp2Char: opcode = kX86Movzx16RR; break;
+      case kOpMul: opcode = kX86Imul32RR; break;
+      default:
+        LOG(FATAL) << "Bad case in OpRegReg " << op;
+        break;
+    }
+    CHECK(!src2_must_be_cx || r_src2 == rCX);
+    return NewLIR2(cu, opcode, r_dest_src1, r_src2);
+}
+
+LIR* X86Codegen::OpRegMem(CompilationUnit *cu, OpKind op, int r_dest, int rBase,
+              int offset)
+{
+  X86OpCode opcode = kX86Nop;
+  switch (op) {
+      // X86 binary opcodes
+    case kOpSub: opcode = kX86Sub32RM; break;
+    case kOpMov: opcode = kX86Mov32RM; break;
+    case kOpCmp: opcode = kX86Cmp32RM; break;
+    case kOpAdd: opcode = kX86Add32RM; break;
+    case kOpAnd: opcode = kX86And32RM; break;
+    case kOpOr:  opcode = kX86Or32RM; break;
+    case kOpXor: opcode = kX86Xor32RM; break;
+    case kOp2Byte: opcode = kX86Movsx8RM; break;
+    case kOp2Short: opcode = kX86Movsx16RM; break;
+    case kOp2Char: opcode = kX86Movzx16RM; break;
+    case kOpMul:
+    default:
+      LOG(FATAL) << "Bad case in OpRegMem " << op;
+      break;
+  }
+  return NewLIR3(cu, opcode, r_dest, rBase, offset);
+}
+
+LIR* X86Codegen::OpRegRegReg(CompilationUnit *cu, OpKind op, int r_dest, int r_src1,
+                 int r_src2)
+{
+  if (r_dest != r_src1 && r_dest != r_src2) {
+    if (op == kOpAdd) { // lea special case, except can't encode rbp as base
+      if (r_src1 == r_src2) {
+        OpRegCopy(cu, r_dest, r_src1);
+        return OpRegImm(cu, kOpLsl, r_dest, 1);
+      } else if (r_src1 != rBP) {
+        return NewLIR5(cu, kX86Lea32RA, r_dest, r_src1 /* base */,
+                       r_src2 /* index */, 0 /* scale */, 0 /* disp */);
+      } else {
+        return NewLIR5(cu, kX86Lea32RA, r_dest, r_src2 /* base */,
+                       r_src1 /* index */, 0 /* scale */, 0 /* disp */);
+      }
+    } else {
+      OpRegCopy(cu, r_dest, r_src1);
+      return OpRegReg(cu, op, r_dest, r_src2);
+    }
+  } else if (r_dest == r_src1) {
+    return OpRegReg(cu, op, r_dest, r_src2);
+  } else {  // r_dest == r_src2
+    switch (op) {
+      case kOpSub:  // non-commutative
+        OpReg(cu, kOpNeg, r_dest);
+        op = kOpAdd;
+        break;
+      case kOpSbc:
+      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
+        int t_reg = AllocTemp(cu);
+        OpRegCopy(cu, t_reg, r_src1);
+        OpRegReg(cu, op, t_reg, r_src2);
+        LIR* res = OpRegCopy(cu, r_dest, t_reg);
+        FreeTemp(cu, t_reg);
+        return res;
+      }
+      case kOpAdd:  // commutative
+      case kOpOr:
+      case kOpAdc:
+      case kOpAnd:
+      case kOpXor:
+        break;
+      default:
+        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
+    }
+    return OpRegReg(cu, op, r_dest, r_src1);
+  }
+}
+
+LIR* X86Codegen::OpRegRegImm(CompilationUnit *cu, OpKind op, int r_dest, int r_src,
+                 int value)
+{
+  if (op == kOpMul) {
+    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
+    return NewLIR3(cu, opcode, r_dest, r_src, value);
+  } else if (op == kOpAnd) {
+    if (value == 0xFF && r_src < 4) {
+      return NewLIR2(cu, kX86Movzx8RR, r_dest, r_src);
+    } else if (value == 0xFFFF) {
+      return NewLIR2(cu, kX86Movzx16RR, r_dest, r_src);
+    }
+  }
+  if (r_dest != r_src) {
+    if (false && op == kOpLsl && value >= 0 && value <= 3) { // lea shift special case
+      // TODO: fix bug in LEA encoding when disp == 0
+      return NewLIR5(cu, kX86Lea32RA, r_dest,  r5sib_no_base /* base */,
+                     r_src /* index */, value /* scale */, 0 /* disp */);
+    } else if (op == kOpAdd) { // lea add special case
+      return NewLIR5(cu, kX86Lea32RA, r_dest, r_src /* base */,
+                     r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
+    }
+    OpRegCopy(cu, r_dest, r_src);
+  }
+  return OpRegImm(cu, op, r_dest, value);
+}
+
+LIR* X86Codegen::OpThreadMem(CompilationUnit* cu, OpKind op, int thread_offset)
+{
+  X86OpCode opcode = kX86Bkpt;
+  switch (op) {
+    case kOpBlx: opcode = kX86CallT;  break;
+    default:
+      LOG(FATAL) << "Bad opcode: " << op;
+      break;
+  }
+  return NewLIR1(cu, opcode, thread_offset);
+}
+
+LIR* X86Codegen::OpMem(CompilationUnit* cu, OpKind op, int rBase, int disp)
+{
+  X86OpCode opcode = kX86Bkpt;
+  switch (op) {
+    case kOpBlx: opcode = kX86CallM;  break;
+    default:
+      LOG(FATAL) << "Bad opcode: " << op;
+      break;
+  }
+  return NewLIR2(cu, opcode, rBase, disp);
+}
+
+LIR* X86Codegen::LoadConstantWide(CompilationUnit *cu, int r_dest_lo, int r_dest_hi, int64_t value)
+{
+    int32_t val_lo = Low32Bits(value);
+    int32_t val_hi = High32Bits(value);
+    LIR *res;
+    if (X86_FPREG(r_dest_lo)) {
+      DCHECK(X86_FPREG(r_dest_hi));  // ignore r_dest_hi
+      if (value == 0) {
+        return NewLIR2(cu, kX86XorpsRR, r_dest_lo, r_dest_lo);
+      } else {
+        if (val_lo == 0) {
+          res = NewLIR2(cu, kX86XorpsRR, r_dest_lo, r_dest_lo);
+        } else {
+          res = LoadConstantNoClobber(cu, r_dest_lo, val_lo);
+        }
+        if (val_hi != 0) {
+          LoadConstantNoClobber(cu, r_dest_hi, val_hi);
+          NewLIR2(cu, kX86PsllqRI, r_dest_hi, 32);
+          NewLIR2(cu, kX86OrpsRR, r_dest_lo, r_dest_hi);
+        }
+      }
+    } else {
+      res = LoadConstantNoClobber(cu, r_dest_lo, val_lo);
+      LoadConstantNoClobber(cu, r_dest_hi, val_hi);
+    }
+    return res;
+}
+
+LIR* X86Codegen::LoadBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                     int displacement, int r_dest, int r_dest_hi, OpSize size,
+                                     int s_reg) {
+  LIR *load = NULL;
+  LIR *load2 = NULL;
+  bool is_array = r_index != INVALID_REG;
+  bool pair = false;
+  bool is64bit = false;
+  X86OpCode opcode = kX86Nop;
+  switch (size) {
+    case kLong:
+    case kDouble:
+      is64bit = true;
+      if (X86_FPREG(r_dest)) {
+        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
+        if (X86_SINGLEREG(r_dest)) {
+          DCHECK(X86_FPREG(r_dest_hi));
+          DCHECK_EQ(r_dest, (r_dest_hi - 1));
+          r_dest = S2d(r_dest, r_dest_hi);
+        }
+        r_dest_hi = r_dest + 1;
+      } else {
+        pair = true;
+        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
+      }
+      // TODO: double store is to unaligned address
+      DCHECK_EQ((displacement & 0x3), 0);
+      break;
+    case kWord:
+    case kSingle:
+      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
+      if (X86_FPREG(r_dest)) {
+        opcode = is_array ? kX86MovssRA : kX86MovssRM;
+        DCHECK(X86_SINGLEREG(r_dest));
+      }
+      DCHECK_EQ((displacement & 0x3), 0);
+      break;
+    case kUnsignedHalf:
+      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
+      DCHECK_EQ((displacement & 0x1), 0);
+      break;
+    case kSignedHalf:
+      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
+      DCHECK_EQ((displacement & 0x1), 0);
+      break;
+    case kUnsignedByte:
+      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
+      break;
+    case kSignedByte:
+      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
+      break;
+    default:
+      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
+  }
+
+  if (!is_array) {
+    if (!pair) {
+      load = NewLIR3(cu, opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
+    } else {
+      if (rBase == r_dest) {
+        load2 = NewLIR3(cu, opcode, r_dest_hi, rBase,
+                        displacement + HIWORD_OFFSET);
+        load = NewLIR3(cu, opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
+      } else {
+        load = NewLIR3(cu, opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
+        load2 = NewLIR3(cu, opcode, r_dest_hi, rBase,
+                        displacement + HIWORD_OFFSET);
+      }
+    }
+    if (rBase == rX86_SP) {
+      AnnotateDalvikRegAccess(cu, load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
+                              true /* is_load */, is64bit);
+      if (pair) {
+        AnnotateDalvikRegAccess(cu, load2, (displacement + HIWORD_OFFSET) >> 2,
+                                true /* is_load */, is64bit);
+      }
+    }
+  } else {
+    if (!pair) {
+      load = NewLIR5(cu, opcode, r_dest, rBase, r_index, scale,
+                     displacement + LOWORD_OFFSET);
+    } else {
+      if (rBase == r_dest) {
+        load2 = NewLIR5(cu, opcode, r_dest_hi, rBase, r_index, scale,
+                        displacement + HIWORD_OFFSET);
+        load = NewLIR5(cu, opcode, r_dest, rBase, r_index, scale,
+                       displacement + LOWORD_OFFSET);
+      } else {
+        load = NewLIR5(cu, opcode, r_dest, rBase, r_index, scale,
+                       displacement + LOWORD_OFFSET);
+        load2 = NewLIR5(cu, opcode, r_dest_hi, rBase, r_index, scale,
+                        displacement + HIWORD_OFFSET);
+      }
+    }
+  }
+
+  return load;
+}
+
+/* Load value from base + scaled index. */
+LIR* X86Codegen::LoadBaseIndexed(CompilationUnit *cu, int rBase,
+                     int r_index, int r_dest, int scale, OpSize size) {
+  return LoadBaseIndexedDisp(cu, rBase, r_index, scale, 0,
+                             r_dest, INVALID_REG, size, INVALID_SREG);
+}
+
+LIR* X86Codegen::LoadBaseDisp(CompilationUnit *cu, int rBase, int displacement,
+                  int r_dest, OpSize size, int s_reg) {
+  return LoadBaseIndexedDisp(cu, rBase, INVALID_REG, 0, displacement,
+                             r_dest, INVALID_REG, size, s_reg);
+}
+
+LIR* X86Codegen::LoadBaseDispWide(CompilationUnit *cu, int rBase, int displacement,
+                      int r_dest_lo, int r_dest_hi, int s_reg) {
+  return LoadBaseIndexedDisp(cu, rBase, INVALID_REG, 0, displacement,
+                             r_dest_lo, r_dest_hi, kLong, s_reg);
+}
+
+LIR* X86Codegen::StoreBaseIndexedDisp(CompilationUnit *cu, int rBase, int r_index, int scale,
+                                      int displacement, int r_src, int r_src_hi, OpSize size,
+                                      int s_reg) {
+  LIR *store = NULL;
+  LIR *store2 = NULL;
+  bool is_array = r_index != INVALID_REG;
+  bool pair = false;
+  bool is64bit = false;
+  X86OpCode opcode = kX86Nop;
+  switch (size) {
+    case kLong:
+    case kDouble:
+      is64bit = true;
+      if (X86_FPREG(r_src)) {
+        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
+        if (X86_SINGLEREG(r_src)) {
+          DCHECK(X86_FPREG(r_src_hi));
+          DCHECK_EQ(r_src, (r_src_hi - 1));
+          r_src = S2d(r_src, r_src_hi);
+        }
+        r_src_hi = r_src + 1;
+      } else {
+        pair = true;
+        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
+      }
+      // TODO: double store is to unaligned address
+      DCHECK_EQ((displacement & 0x3), 0);
+      break;
+    case kWord:
+    case kSingle:
+      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
+      if (X86_FPREG(r_src)) {
+        opcode = is_array ? kX86MovssAR : kX86MovssMR;
+        DCHECK(X86_SINGLEREG(r_src));
+      }
+      DCHECK_EQ((displacement & 0x3), 0);
+      break;
+    case kUnsignedHalf:
+    case kSignedHalf:
+      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
+      DCHECK_EQ((displacement & 0x1), 0);
+      break;
+    case kUnsignedByte:
+    case kSignedByte:
+      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
+      break;
+    default:
+      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
+  }
+
+  if (!is_array) {
+    if (!pair) {
+      store = NewLIR3(cu, opcode, rBase, displacement + LOWORD_OFFSET, r_src);
+    } else {
+      store = NewLIR3(cu, opcode, rBase, displacement + LOWORD_OFFSET, r_src);
+      store2 = NewLIR3(cu, opcode, rBase, displacement + HIWORD_OFFSET, r_src_hi);
+    }
+    if (rBase == rX86_SP) {
+      AnnotateDalvikRegAccess(cu, store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
+                              false /* is_load */, is64bit);
+      if (pair) {
+        AnnotateDalvikRegAccess(cu, store2, (displacement + HIWORD_OFFSET) >> 2,
+                                false /* is_load */, is64bit);
+      }
+    }
+  } else {
+    if (!pair) {
+      store = NewLIR5(cu, opcode, rBase, r_index, scale,
+                      displacement + LOWORD_OFFSET, r_src);
+    } else {
+      store = NewLIR5(cu, opcode, rBase, r_index, scale,
+                      displacement + LOWORD_OFFSET, r_src);
+      store2 = NewLIR5(cu, opcode, rBase, r_index, scale,
+                       displacement + HIWORD_OFFSET, r_src_hi);
+    }
+  }
+
+  return store;
+}
+
+/* store value base base + scaled index. */
+LIR* X86Codegen::StoreBaseIndexed(CompilationUnit *cu, int rBase, int r_index, int r_src,
+                      int scale, OpSize size)
+{
+  return StoreBaseIndexedDisp(cu, rBase, r_index, scale, 0,
+                              r_src, INVALID_REG, size, INVALID_SREG);
+}
+
+LIR* X86Codegen::StoreBaseDisp(CompilationUnit *cu, int rBase, int displacement,
+                               int r_src, OpSize size)
+{
+    return StoreBaseIndexedDisp(cu, rBase, INVALID_REG, 0,
+                                displacement, r_src, INVALID_REG, size,
+                                INVALID_SREG);
+}
+
+LIR* X86Codegen::StoreBaseDispWide(CompilationUnit *cu, int rBase, int displacement,
+                                   int r_src_lo, int r_src_hi)
+{
+  return StoreBaseIndexedDisp(cu, rBase, INVALID_REG, 0, displacement,
+                              r_src_lo, r_src_hi, kLong, INVALID_SREG);
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/quick/x86/x86_lir.h b/src/compiler/dex/quick/x86/x86_lir.h
new file mode 100644
index 0000000..7e9e56e
--- /dev/null
+++ b/src/compiler/dex/quick/x86/x86_lir.h
@@ -0,0 +1,442 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_QUICK_X86_X86LIR_H_
+#define ART_SRC_COMPILER_DEX_QUICK_X86_X86LIR_H_
+
+#include "compiler/dex/compiler_internals.h"
+
+namespace art {
+
+/*
+ * Runtime register conventions. We consider both x86, x86-64 and x32 (32bit mode x86-64), although
+ * we currently only target x86. The ABI has different conventions and we hope to have a single
+ * convention to simplify code generation. Changing something that is callee save and making it
+ * caller save places a burden on up-calls to save/restore the callee save register, however, there
+ * are few registers that are callee save in the ABI. Changing something that is caller save and
+ * making it callee save places a burden on down-calls to save/restore the callee save register.
+ * For these reasons we aim to match native conventions for caller and callee save. The first 4
+ * registers can be used for byte operations, for this reason they are preferred for temporary
+ * scratch registers.
+ *
+ * General Purpose Register:
+ *  Native: x86         | x86-64 / x32      | ART
+ *  r0/eax: caller save | caller save       | caller, Method*, scratch, return value
+ *  r1/ecx: caller save | caller save, arg4 | caller, arg1, scratch
+ *  r2/edx: caller save | caller save, arg3 | caller, arg2, scratch, high half of long return
+ *  r3/ebx: callEE save | callEE save       | callER, arg3, scratch
+ *  r4/esp: stack pointer
+ *  r5/ebp: callee save | callee save       | callee, available for dalvik register promotion
+ *  r6/esi: callEE save | callER save, arg2 | callee, available for dalvik register promotion
+ *  r7/edi: callEE save | callER save, arg1 | callee, available for dalvik register promotion
+ *  ---  x86-64/x32 registers
+ *  Native: x86-64 / x32      | ART
+ *  r8:     caller save, arg5 | caller, scratch
+ *  r9:     caller save, arg6 | caller, scratch
+ *  r10:    caller save       | caller, scratch
+ *  r11:    caller save       | caller, scratch
+ *  r12:    callee save       | callee, available for dalvik register promotion
+ *  r13:    callee save       | callee, available for dalvik register promotion
+ *  r14:    callee save       | callee, available for dalvik register promotion
+ *  r15:    callee save       | callee, available for dalvik register promotion
+ *
+ * There is no rSELF, instead on x86 fs: has a base address of Thread::Current, whereas on
+ * x86-64/x32 gs: holds it.
+ *
+ * For floating point we don't support CPUs without SSE2 support (ie newer than PIII):
+ *  Native: x86       | x86-64 / x32     | ART
+ *  XMM0: caller save |caller save, arg1 | caller, float/double return value (except for native x86 code)
+ *  XMM1: caller save |caller save, arg2 | caller, scratch
+ *  XMM2: caller save |caller save, arg3 | caller, scratch
+ *  XMM3: caller save |caller save, arg4 | caller, scratch
+ *  XMM4: caller save |caller save, arg5 | caller, scratch
+ *  XMM5: caller save |caller save, arg6 | caller, scratch
+ *  XMM6: caller save |caller save, arg7 | caller, scratch
+ *  XMM7: caller save |caller save, arg8 | caller, scratch
+ *  ---  x86-64/x32 registers
+ *  XMM8 .. 15: caller save
+ *
+ * X87 is a necessary evil outside of ART code:
+ *  ST0:  x86 float/double native return value, caller save
+ *  ST1 .. ST7: caller save
+ *
+ *  Stack frame diagram (stack grows down, higher addresses at top):
+ *
+ * +------------------------+
+ * | IN[ins-1]              |  {Note: resides in caller's frame}
+ * |       .                |
+ * | IN[0]                  |
+ * | caller's Method*       |
+ * +========================+  {Note: start of callee's frame}
+ * | return address         |  {pushed by call}
+ * | spill region           |  {variable sized}
+ * +------------------------+
+ * | ...filler word...      |  {Note: used as 2nd word of V[locals-1] if long]
+ * +------------------------+
+ * | V[locals-1]            |
+ * | V[locals-2]            |
+ * |      .                 |
+ * |      .                 |
+ * | V[1]                   |
+ * | V[0]                   |
+ * +------------------------+
+ * |  0 to 3 words padding  |
+ * +------------------------+
+ * | OUT[outs-1]            |
+ * | OUT[outs-2]            |
+ * |       .                |
+ * | OUT[0]                 |
+ * | cur_method*            | <<== sp w/ 16-byte alignment
+ * +========================+
+ */
+
+// Offset to distingish FP regs.
+#define X86_FP_REG_OFFSET 32
+// Offset to distinguish DP FP regs.
+#define X86_FP_DOUBLE (X86_FP_REG_OFFSET + 16)
+// Offset to distingish the extra regs.
+#define X86_EXTRA_REG_OFFSET (X86_FP_DOUBLE + 16)
+// Reg types.
+#define X86_REGTYPE(x) (x & (X86_FP_REG_OFFSET | X86_FP_DOUBLE))
+#define X86_FPREG(x) ((x & X86_FP_REG_OFFSET) == X86_FP_REG_OFFSET)
+#define X86_EXTRAREG(x) ((x & X86_EXTRA_REG_OFFSET) == X86_EXTRA_REG_OFFSET)
+#define X86_DOUBLEREG(x) ((x & X86_FP_DOUBLE) == X86_FP_DOUBLE)
+#define X86_SINGLEREG(x) (X86_FPREG(x) && !X86_DOUBLEREG(x))
+
+/*
+ * Note: the low register of a floating point pair is sufficient to
+ * create the name of a double, but require both names to be passed to
+ * allow for asserts to verify that the pair is consecutive if significant
+ * rework is done in this area.  Also, it is a good reminder in the calling
+ * code that reg locations always describe doubles as a pair of singles.
+ */
+#define X86_S2D(x,y) ((x) | X86_FP_DOUBLE)
+/* Mask to strip off fp flags */
+#define X86_FP_REG_MASK 0xF
+
+// RegisterLocation templates return values (rAX, rAX/rDX or XMM0).
+//                               location,     wide, defined, const, fp, core, ref, high_word, home, low_reg, high_reg,     s_reg_low
+#define X86_LOC_C_RETURN             {kLocPhysReg, 0,    0,       0,     0,  0,    0,   0,        1,    rAX,    INVALID_REG, INVALID_SREG, INVALID_SREG}
+#define X86_LOC_C_RETURN_WIDE        {kLocPhysReg, 1,    0,       0,     0,  0,    0,   0,        1,    rAX,    rDX,         INVALID_SREG, INVALID_SREG}
+#define X86_LOC_C_RETURN_FLOAT       {kLocPhysReg, 0,    0,       0,     1,  0,    0,   0,        1,    fr0,    INVALID_REG, INVALID_SREG, INVALID_SREG}
+#define X86_LOC_C_RETURN_DOUBLE      {kLocPhysReg, 1,    0,       0,     1,  0,    0,   0,        1,    fr0,    fr1,         INVALID_SREG, INVALID_SREG}
+
+enum X86ResourceEncodingPos {
+  kX86GPReg0   = 0,
+  kX86RegSP    = 4,
+  kX86FPReg0   = 16,  // xmm0 .. xmm7/xmm15.
+  kX86FPRegEnd   = 32,
+  kX86RegEnd   = kX86FPRegEnd,
+};
+
+#define ENCODE_X86_REG_LIST(N)      (static_cast<uint64_t>(N))
+#define ENCODE_X86_REG_SP           (1ULL << kX86RegSP)
+
+enum X86NativeRegisterPool {
+  r0     = 0,
+  rAX    = r0,
+  r1     = 1,
+  rCX    = r1,
+  r2     = 2,
+  rDX    = r2,
+  r3     = 3,
+  rBX    = r3,
+  r4sp   = 4,
+  rX86_SP    = r4sp,
+  r4sib_no_index = r4sp,
+  r5     = 5,
+  rBP    = r5,
+  r5sib_no_base = r5,
+  r6     = 6,
+  rSI    = r6,
+  r7     = 7,
+  rDI    = r7,
+#ifndef TARGET_REX_SUPPORT
+  rRET   = 8,  // fake return address register for core spill mask.
+#else
+  r8     = 8,
+  r9     = 9,
+  r10    = 10,
+  r11    = 11,
+  r12    = 12,
+  r13    = 13,
+  r14    = 14,
+  r15    = 15,
+  rRET   = 16,  // fake return address register for core spill mask.
+#endif
+  fr0  =  0 + X86_FP_REG_OFFSET,
+  fr1  =  1 + X86_FP_REG_OFFSET,
+  fr2  =  2 + X86_FP_REG_OFFSET,
+  fr3  =  3 + X86_FP_REG_OFFSET,
+  fr4  =  4 + X86_FP_REG_OFFSET,
+  fr5  =  5 + X86_FP_REG_OFFSET,
+  fr6  =  6 + X86_FP_REG_OFFSET,
+  fr7  =  7 + X86_FP_REG_OFFSET,
+  fr8  =  8 + X86_FP_REG_OFFSET,
+  fr9  =  9 + X86_FP_REG_OFFSET,
+  fr10 = 10 + X86_FP_REG_OFFSET,
+  fr11 = 11 + X86_FP_REG_OFFSET,
+  fr12 = 12 + X86_FP_REG_OFFSET,
+  fr13 = 13 + X86_FP_REG_OFFSET,
+  fr14 = 14 + X86_FP_REG_OFFSET,
+  fr15 = 15 + X86_FP_REG_OFFSET,
+};
+
+#define rX86_ARG0 rAX
+#define rX86_ARG1 rCX
+#define rX86_ARG2 rDX
+#define rX86_ARG3 rBX
+#define rX86_FARG0 rAX
+#define rX86_FARG1 rCX
+#define rX86_FARG2 rDX
+#define rX86_FARG3 rBX
+#define rX86_RET0 rAX
+#define rX86_RET1 rDX
+#define rX86_INVOKE_TGT rAX
+#define rX86_LR INVALID_REG
+#define rX86_SUSPEND INVALID_REG
+#define rX86_SELF INVALID_REG
+#define rX86_COUNT rCX
+#define rX86_PC INVALID_REG
+
+/*
+ * The following enum defines the list of supported X86 instructions by the
+ * assembler. Their corresponding EncodingMap positions will be defined in
+ * Assemble.cc.
+ */
+enum X86OpCode {
+  kX86First = 0,
+  kX8632BitData = kX86First, // data [31..0].
+  kX86Bkpt,
+  kX86Nop,
+  // Define groups of binary operations
+  // MR - Memory Register  - opcode [base + disp], reg
+  //             - lir operands - 0: base, 1: disp, 2: reg
+  // AR - Array Register   - opcode [base + index * scale + disp], reg
+  //             - lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
+  // TR - Thread Register  - opcode fs:[disp], reg - where fs: is equal to Thread::Current()
+  //             - lir operands - 0: disp, 1: reg
+  // RR - Register Register  - opcode reg1, reg2
+  //             - lir operands - 0: reg1, 1: reg2
+  // RM - Register Memory  - opcode reg, [base + disp]
+  //             - lir operands - 0: reg, 1: base, 2: disp
+  // RA - Register Array   - opcode reg, [base + index * scale + disp]
+  //             - lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
+  // RT - Register Thread  - opcode reg, fs:[disp] - where fs: is equal to Thread::Current()
+  //             - lir operands - 0: reg, 1: disp
+  // RI - Register Immediate - opcode reg, #immediate
+  //             - lir operands - 0: reg, 1: immediate
+  // MI - Memory Immediate   - opcode [base + disp], #immediate
+  //             - lir operands - 0: base, 1: disp, 2: immediate
+  // AI - Array Immediate  - opcode [base + index * scale + disp], #immediate
+  //             - lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
+  // TI - Thread Register  - opcode fs:[disp], imm - where fs: is equal to Thread::Current()
+  //             - lir operands - 0: disp, 1: imm
+#define BinaryOpCode(opcode) \
+  opcode ## 8MR, opcode ## 8AR, opcode ## 8TR, \
+  opcode ## 8RR, opcode ## 8RM, opcode ## 8RA, opcode ## 8RT, \
+  opcode ## 8RI, opcode ## 8MI, opcode ## 8AI, opcode ## 8TI, \
+  opcode ## 16MR, opcode ## 16AR, opcode ## 16TR, \
+  opcode ## 16RR, opcode ## 16RM, opcode ## 16RA, opcode ## 16RT, \
+  opcode ## 16RI, opcode ## 16MI, opcode ## 16AI, opcode ## 16TI, \
+  opcode ## 16RI8, opcode ## 16MI8, opcode ## 16AI8, opcode ## 16TI8, \
+  opcode ## 32MR, opcode ## 32AR, opcode ## 32TR,  \
+  opcode ## 32RR, opcode ## 32RM, opcode ## 32RA, opcode ## 32RT, \
+  opcode ## 32RI, opcode ## 32MI, opcode ## 32AI, opcode ## 32TI, \
+  opcode ## 32RI8, opcode ## 32MI8, opcode ## 32AI8, opcode ## 32TI8
+  BinaryOpCode(kX86Add),
+  BinaryOpCode(kX86Or),
+  BinaryOpCode(kX86Adc),
+  BinaryOpCode(kX86Sbb),
+  BinaryOpCode(kX86And),
+  BinaryOpCode(kX86Sub),
+  BinaryOpCode(kX86Xor),
+  BinaryOpCode(kX86Cmp),
+#undef BinaryOpCode
+  kX86Imul16RRI, kX86Imul16RMI, kX86Imul16RAI,
+  kX86Imul32RRI, kX86Imul32RMI, kX86Imul32RAI,
+  kX86Imul32RRI8, kX86Imul32RMI8, kX86Imul32RAI8,
+  kX86Mov8MR, kX86Mov8AR, kX86Mov8TR,
+  kX86Mov8RR, kX86Mov8RM, kX86Mov8RA, kX86Mov8RT,
+  kX86Mov8RI, kX86Mov8MI, kX86Mov8AI, kX86Mov8TI,
+  kX86Mov16MR, kX86Mov16AR, kX86Mov16TR,
+  kX86Mov16RR, kX86Mov16RM, kX86Mov16RA, kX86Mov16RT,
+  kX86Mov16RI, kX86Mov16MI, kX86Mov16AI, kX86Mov16TI,
+  kX86Mov32MR, kX86Mov32AR, kX86Mov32TR,
+  kX86Mov32RR, kX86Mov32RM, kX86Mov32RA, kX86Mov32RT,
+  kX86Mov32RI, kX86Mov32MI, kX86Mov32AI, kX86Mov32TI,
+  kX86Lea32RA,
+  // RC - Register CL - opcode reg, CL
+  //          - lir operands - 0: reg, 1: CL
+  // MC - Memory CL   - opcode [base + disp], CL
+  //          - lir operands - 0: base, 1: disp, 2: CL
+  // AC - Array CL  - opcode [base + index * scale + disp], CL
+  //          - lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: CL
+#define BinaryShiftOpCode(opcode) \
+  opcode ## 8RI, opcode ## 8MI, opcode ## 8AI, \
+  opcode ## 8RC, opcode ## 8MC, opcode ## 8AC, \
+  opcode ## 16RI, opcode ## 16MI, opcode ## 16AI, \
+  opcode ## 16RC, opcode ## 16MC, opcode ## 16AC, \
+  opcode ## 32RI, opcode ## 32MI, opcode ## 32AI, \
+  opcode ## 32RC, opcode ## 32MC, opcode ## 32AC
+  BinaryShiftOpCode(kX86Rol),
+  BinaryShiftOpCode(kX86Ror),
+  BinaryShiftOpCode(kX86Rcl),
+  BinaryShiftOpCode(kX86Rcr),
+  BinaryShiftOpCode(kX86Sal),
+  BinaryShiftOpCode(kX86Shr),
+  BinaryShiftOpCode(kX86Sar),
+#undef BinaryShiftOpcode
+  kX86Cmc,
+#define UnaryOpcode(opcode, reg, mem, array) \
+  opcode ## 8 ## reg, opcode ## 8 ## mem, opcode ## 8 ## array, \
+  opcode ## 16 ## reg, opcode ## 16 ## mem, opcode ## 16 ## array, \
+  opcode ## 32 ## reg, opcode ## 32 ## mem, opcode ## 32 ## array
+  UnaryOpcode(kX86Test, RI, MI, AI),
+  kX86Test32RR,
+  UnaryOpcode(kX86Not, R, M, A),
+  UnaryOpcode(kX86Neg, R, M, A),
+  UnaryOpcode(kX86Mul,  DaR, DaM, DaA),
+  UnaryOpcode(kX86Imul, DaR, DaM, DaA),
+  UnaryOpcode(kX86Divmod,  DaR, DaM, DaA),
+  UnaryOpcode(kX86Idivmod, DaR, DaM, DaA),
+#undef UnaryOpcode
+#define Binary0fOpCode(opcode) \
+  opcode ## RR, opcode ## RM, opcode ## RA
+  Binary0fOpCode(kX86Movsd),
+  kX86MovsdMR,
+  kX86MovsdAR,
+  Binary0fOpCode(kX86Movss),
+  kX86MovssMR,
+  kX86MovssAR,
+  Binary0fOpCode(kX86Cvtsi2sd), // int to double
+  Binary0fOpCode(kX86Cvtsi2ss), // int to float
+  Binary0fOpCode(kX86Cvttsd2si),// truncating double to int
+  Binary0fOpCode(kX86Cvttss2si),// truncating float to int
+  Binary0fOpCode(kX86Cvtsd2si), // rounding double to int
+  Binary0fOpCode(kX86Cvtss2si), // rounding float to int
+  Binary0fOpCode(kX86Ucomisd),  // unordered double compare
+  Binary0fOpCode(kX86Ucomiss),  // unordered float compare
+  Binary0fOpCode(kX86Comisd),   // double compare
+  Binary0fOpCode(kX86Comiss),   // float compare
+  Binary0fOpCode(kX86Orps),     // or of floating point registers
+  Binary0fOpCode(kX86Xorps),    // xor of floating point registers
+  Binary0fOpCode(kX86Addsd),    // double add
+  Binary0fOpCode(kX86Addss),    // float add
+  Binary0fOpCode(kX86Mulsd),    // double multiply
+  Binary0fOpCode(kX86Mulss),    // float multiply
+  Binary0fOpCode(kX86Cvtsd2ss), // double to float
+  Binary0fOpCode(kX86Cvtss2sd), // float to double
+  Binary0fOpCode(kX86Subsd),    // double subtract
+  Binary0fOpCode(kX86Subss),    // float subtract
+  Binary0fOpCode(kX86Divsd),    // double divide
+  Binary0fOpCode(kX86Divss),    // float divide
+  kX86PsrlqRI,                  // right shift of floating point registers
+  kX86PsllqRI,                  // left shift of floating point registers
+  Binary0fOpCode(kX86Movdxr),   // move into xmm from gpr
+  kX86MovdrxRR, kX86MovdrxMR, kX86MovdrxAR,// move into reg from xmm
+  kX86Set8R, kX86Set8M, kX86Set8A,// set byte depending on condition operand
+  kX86Mfence,                   // memory barrier
+  Binary0fOpCode(kX86Imul16),   // 16bit multiply
+  Binary0fOpCode(kX86Imul32),   // 32bit multiply
+  kX86CmpxchgRR, kX86CmpxchgMR, kX86CmpxchgAR,// compare and exchange
+  kX86LockCmpxchgRR, kX86LockCmpxchgMR, kX86LockCmpxchgAR,// locked compare and exchange
+  Binary0fOpCode(kX86Movzx8),   // zero-extend 8-bit value
+  Binary0fOpCode(kX86Movzx16),  // zero-extend 16-bit value
+  Binary0fOpCode(kX86Movsx8),   // sign-extend 8-bit value
+  Binary0fOpCode(kX86Movsx16),  // sign-extend 16-bit value
+#undef Binary0fOpCode
+  kX86Jcc8, kX86Jcc32,  // jCC rel8/32; lir operands - 0: rel, 1: CC, target assigned
+  kX86Jmp8, kX86Jmp32,  // jmp rel8/32; lir operands - 0: rel, target assigned
+  kX86JmpR,             // jmp reg; lir operands - 0: reg
+  kX86CallR,            // call reg; lir operands - 0: reg
+  kX86CallM,            // call [base + disp]; lir operands - 0: base, 1: disp
+  kX86CallA,            // call [base + index * scale + disp]
+                        // lir operands - 0: base, 1: index, 2: scale, 3: disp
+  kX86CallT,            // call fs:[disp]; fs: is equal to Thread::Current(); lir operands - 0: disp
+  kX86Ret,              // ret; no lir operands
+  kX86StartOfMethod,    // call 0; pop reg; sub reg, # - generate start of method into reg
+                        // lir operands - 0: reg
+  kX86PcRelLoadRA,      // mov reg, [base + index * scale + PC relative displacement]
+                        // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
+  kX86PcRelAdr,         // mov reg, PC relative displacement; lir operands - 0: reg, 1: table
+  kX86Last
+};
+
+/* Instruction assembly field_loc kind */
+enum X86EncodingKind {
+  kData,                                   // Special case for raw data.
+  kNop,                                    // Special case for variable length nop.
+  kNullary,                                // Opcode that takes no arguments.
+  kReg, kMem, kArray,                      // R, M and A instruction kinds.
+  kMemReg, kArrayReg, kThreadReg,          // MR, AR and TR instruction kinds.
+  kRegReg, kRegMem, kRegArray, kRegThread, // RR, RM, RA and RT instruction kinds.
+  kRegRegStore,                            // RR following the store modrm reg-reg encoding rather than the load.
+  kRegImm, kMemImm, kArrayImm, kThreadImm, // RI, MI, AI and TI instruction kinds.
+  kRegRegImm, kRegMemImm, kRegArrayImm,    // RRI, RMI and RAI instruction kinds.
+  kMovRegImm,                              // Shorter form move RI.
+  kShiftRegImm, kShiftMemImm, kShiftArrayImm,  // Shift opcode with immediate.
+  kShiftRegCl, kShiftMemCl, kShiftArrayCl,     // Shift opcode with register CL.
+  kRegRegReg, kRegRegMem, kRegRegArray,    // RRR, RRM, RRA instruction kinds.
+  kRegCond, kMemCond, kArrayCond,          // R, M, A instruction kinds following by a condition.
+  kJmp, kJcc, kCall,                       // Branch instruction kinds.
+  kPcRel,                                  // Operation with displacement that is PC relative
+  kMacro,                                  // An instruction composing multiple others
+  kUnimplemented                           // Encoding used when an instruction isn't yet implemented.
+};
+
+/* Struct used to define the EncodingMap positions for each X86 opcode */
+struct X86EncodingMap {
+  X86OpCode opcode;      // e.g. kOpAddRI
+  X86EncodingKind kind;  // Used to discriminate in the union below
+  uint64_t flags;
+  struct {
+  uint8_t prefix1;       // non-zero => a prefix byte
+  uint8_t prefix2;       // non-zero => a second prefix byte
+  uint8_t opcode;        // 1 byte opcode
+  uint8_t extra_opcode1; // possible extra opcode byte
+  uint8_t extra_opcode2; // possible second extra opcode byte
+  // 3bit opcode that gets encoded in the register bits of the modrm byte, use determined by the
+  // encoding kind
+  uint8_t modrm_opcode;
+  uint8_t ax_opcode;  // non-zero => shorter encoding for AX as a destination
+  uint8_t immediate_bytes; // number of bytes of immediate
+  } skeleton;
+  const char *name;
+  const char* fmt;
+};
+
+
+// FIXME: mem barrier type - what do we do for x86?
+#define kSY 0
+#define kST 0
+
+// Offsets of high and low halves of a 64bit value.
+#define LOWORD_OFFSET 0
+#define HIWORD_OFFSET 4
+
+// Segment override instruction prefix used for quick TLS access to Thread::Current().
+#define THREAD_PREFIX 0x64
+
+#define IS_SIMM8(v) ((-128 <= (v)) && ((v) <= 127))
+#define IS_SIMM16(v) ((-32768 <= (v)) && ((v) <= 32767))
+
+extern X86EncodingMap EncodingMap[kX86Last];
+extern X86ConditionCode X86ConditionEncoding(ConditionCode cond);
+
+}  // namespace art
+
+#endif  // ART_SRC_COMPILER_DEX_QUICK_X86_X86LIR_H_
diff --git a/src/compiler/dex/ralloc.cc b/src/compiler/dex/ralloc.cc
new file mode 100644
index 0000000..9163cd9
--- /dev/null
+++ b/src/compiler/dex/ralloc.cc
@@ -0,0 +1,533 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler_internals.h"
+#include "dataflow.h"
+#include "quick/ralloc_util.h"
+
+namespace art {
+
+static bool SetFp(CompilationUnit* cu, int index, bool is_fp) {
+  bool change = false;
+  if (is_fp && !cu->reg_location[index].fp) {
+    cu->reg_location[index].fp = true;
+    cu->reg_location[index].defined = true;
+    change = true;
+  }
+  return change;
+}
+
+static bool SetCore(CompilationUnit* cu, int index, bool is_core) {
+  bool change = false;
+  if (is_core && !cu->reg_location[index].defined) {
+    cu->reg_location[index].core = true;
+    cu->reg_location[index].defined = true;
+    change = true;
+  }
+  return change;
+}
+
+static bool SetRef(CompilationUnit* cu, int index, bool is_ref) {
+  bool change = false;
+  if (is_ref && !cu->reg_location[index].defined) {
+    cu->reg_location[index].ref = true;
+    cu->reg_location[index].defined = true;
+    change = true;
+  }
+  return change;
+}
+
+static bool SetWide(CompilationUnit* cu, int index, bool is_wide) {
+  bool change = false;
+  if (is_wide && !cu->reg_location[index].wide) {
+    cu->reg_location[index].wide = true;
+    change = true;
+  }
+  return change;
+}
+
+static bool SetHigh(CompilationUnit* cu, int index, bool is_high) {
+  bool change = false;
+  if (is_high && !cu->reg_location[index].high_word) {
+    cu->reg_location[index].high_word = true;
+    change = true;
+  }
+  return change;
+}
+
+/*
+ * Infer types and sizes.  We don't need to track change on sizes,
+ * as it doesn't propagate.  We're guaranteed at least one pass through
+ * the cfg.
+ */
+static bool InferTypeAndSize(CompilationUnit* cu, BasicBlock* bb)
+{
+  MIR *mir;
+  bool changed = false;   // Did anything change?
+
+  if (bb->data_flow_info == NULL) return false;
+  if (bb->block_type != kDalvikByteCode && bb->block_type != kEntryBlock)
+    return false;
+
+  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    SSARepresentation *ssa_rep = mir->ssa_rep;
+    if (ssa_rep) {
+      int attrs = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+
+      // Handle defs
+      if (attrs & DF_DA) {
+        if (attrs & DF_CORE_A) {
+          changed |= SetCore(cu, ssa_rep->defs[0], true);
+        }
+        if (attrs & DF_REF_A) {
+          changed |= SetRef(cu, ssa_rep->defs[0], true);
+        }
+        if (attrs & DF_A_WIDE) {
+          cu->reg_location[ssa_rep->defs[0]].wide = true;
+          cu->reg_location[ssa_rep->defs[1]].wide = true;
+          cu->reg_location[ssa_rep->defs[1]].high_word = true;
+          DCHECK_EQ(SRegToVReg(cu, ssa_rep->defs[0])+1,
+          SRegToVReg(cu, ssa_rep->defs[1]));
+        }
+      }
+
+      // Handles uses
+      int next = 0;
+      if (attrs & DF_UA) {
+        if (attrs & DF_CORE_A) {
+          changed |= SetCore(cu, ssa_rep->uses[next], true);
+        }
+        if (attrs & DF_REF_A) {
+          changed |= SetRef(cu, ssa_rep->uses[next], true);
+        }
+        if (attrs & DF_A_WIDE) {
+          cu->reg_location[ssa_rep->uses[next]].wide = true;
+          cu->reg_location[ssa_rep->uses[next + 1]].wide = true;
+          cu->reg_location[ssa_rep->uses[next + 1]].high_word = true;
+          DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[next])+1,
+          SRegToVReg(cu, ssa_rep->uses[next + 1]));
+          next += 2;
+        } else {
+          next++;
+        }
+      }
+      if (attrs & DF_UB) {
+        if (attrs & DF_CORE_B) {
+          changed |= SetCore(cu, ssa_rep->uses[next], true);
+        }
+        if (attrs & DF_REF_B) {
+          changed |= SetRef(cu, ssa_rep->uses[next], true);
+        }
+        if (attrs & DF_B_WIDE) {
+          cu->reg_location[ssa_rep->uses[next]].wide = true;
+          cu->reg_location[ssa_rep->uses[next + 1]].wide = true;
+          cu->reg_location[ssa_rep->uses[next + 1]].high_word = true;
+          DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[next])+1,
+                               SRegToVReg(cu, ssa_rep->uses[next + 1]));
+          next += 2;
+        } else {
+          next++;
+        }
+      }
+      if (attrs & DF_UC) {
+        if (attrs & DF_CORE_C) {
+          changed |= SetCore(cu, ssa_rep->uses[next], true);
+        }
+        if (attrs & DF_REF_C) {
+          changed |= SetRef(cu, ssa_rep->uses[next], true);
+        }
+        if (attrs & DF_C_WIDE) {
+          cu->reg_location[ssa_rep->uses[next]].wide = true;
+          cu->reg_location[ssa_rep->uses[next + 1]].wide = true;
+          cu->reg_location[ssa_rep->uses[next + 1]].high_word = true;
+          DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[next])+1,
+          SRegToVReg(cu, ssa_rep->uses[next + 1]));
+        }
+      }
+
+      // Special-case return handling
+      if ((mir->dalvikInsn.opcode == Instruction::RETURN) ||
+          (mir->dalvikInsn.opcode == Instruction::RETURN_WIDE) ||
+          (mir->dalvikInsn.opcode == Instruction::RETURN_OBJECT)) {
+        switch(cu->shorty[0]) {
+            case 'I':
+              changed |= SetCore(cu, ssa_rep->uses[0], true);
+              break;
+            case 'J':
+              changed |= SetCore(cu, ssa_rep->uses[0], true);
+              changed |= SetCore(cu, ssa_rep->uses[1], true);
+              cu->reg_location[ssa_rep->uses[0]].wide = true;
+              cu->reg_location[ssa_rep->uses[1]].wide = true;
+              cu->reg_location[ssa_rep->uses[1]].high_word = true;
+              break;
+            case 'F':
+              changed |= SetFp(cu, ssa_rep->uses[0], true);
+              break;
+            case 'D':
+              changed |= SetFp(cu, ssa_rep->uses[0], true);
+              changed |= SetFp(cu, ssa_rep->uses[1], true);
+              cu->reg_location[ssa_rep->uses[0]].wide = true;
+              cu->reg_location[ssa_rep->uses[1]].wide = true;
+              cu->reg_location[ssa_rep->uses[1]].high_word = true;
+              break;
+            case 'L':
+              changed |= SetRef(cu, ssa_rep->uses[0], true);
+              break;
+            default: break;
+        }
+      }
+
+      // Special-case handling for format 35c/3rc invokes
+      Instruction::Code opcode = mir->dalvikInsn.opcode;
+      int flags = (static_cast<int>(opcode) >= kNumPackedOpcodes)
+          ? 0 : Instruction::FlagsOf(mir->dalvikInsn.opcode);
+      if ((flags & Instruction::kInvoke) &&
+          (attrs & (DF_FORMAT_35C | DF_FORMAT_3RC))) {
+        DCHECK_EQ(next, 0);
+        int target_idx = mir->dalvikInsn.vB;
+        const char* shorty = GetShortyFromTargetIdx(cu, target_idx);
+        // Handle result type if floating point
+        if ((shorty[0] == 'F') || (shorty[0] == 'D')) {
+          MIR* move_result_mir = FindMoveResult(cu, bb, mir);
+          // Result might not be used at all, so no move-result
+          if (move_result_mir && (move_result_mir->dalvikInsn.opcode !=
+              Instruction::MOVE_RESULT_OBJECT)) {
+            SSARepresentation* tgt_rep = move_result_mir->ssa_rep;
+            DCHECK(tgt_rep != NULL);
+            tgt_rep->fp_def[0] = true;
+            changed |= SetFp(cu, tgt_rep->defs[0], true);
+            if (shorty[0] == 'D') {
+              tgt_rep->fp_def[1] = true;
+              changed |= SetFp(cu, tgt_rep->defs[1], true);
+            }
+          }
+        }
+        int num_uses = mir->dalvikInsn.vA;
+        // If this is a non-static invoke, mark implicit "this"
+        if (((mir->dalvikInsn.opcode != Instruction::INVOKE_STATIC) &&
+            (mir->dalvikInsn.opcode != Instruction::INVOKE_STATIC_RANGE))) {
+          cu->reg_location[ssa_rep->uses[next]].defined = true;
+          cu->reg_location[ssa_rep->uses[next]].ref = true;
+          next++;
+        }
+        uint32_t cpos = 1;
+        if (strlen(shorty) > 1) {
+          for (int i = next; i < num_uses;) {
+            DCHECK_LT(cpos, strlen(shorty));
+            switch (shorty[cpos++]) {
+              case 'D':
+                ssa_rep->fp_use[i] = true;
+                ssa_rep->fp_use[i+1] = true;
+                cu->reg_location[ssa_rep->uses[i]].wide = true;
+                cu->reg_location[ssa_rep->uses[i+1]].wide = true;
+                cu->reg_location[ssa_rep->uses[i+1]].high_word = true;
+                DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[i])+1,
+                                     SRegToVReg(cu, ssa_rep->uses[i+1]));
+                i++;
+                break;
+              case 'J':
+                cu->reg_location[ssa_rep->uses[i]].wide = true;
+                cu->reg_location[ssa_rep->uses[i+1]].wide = true;
+                cu->reg_location[ssa_rep->uses[i+1]].high_word = true;
+                DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[i])+1,
+                                     SRegToVReg(cu, ssa_rep->uses[i+1]));
+                changed |= SetCore(cu, ssa_rep->uses[i],true);
+                i++;
+                break;
+              case 'F':
+                ssa_rep->fp_use[i] = true;
+                break;
+              case 'L':
+                changed |= SetRef(cu,ssa_rep->uses[i], true);
+                break;
+              default:
+                changed |= SetCore(cu,ssa_rep->uses[i], true);
+                break;
+            }
+            i++;
+          }
+        }
+      }
+
+      for (int i=0; ssa_rep->fp_use && i< ssa_rep->num_uses; i++) {
+        if (ssa_rep->fp_use[i])
+          changed |= SetFp(cu, ssa_rep->uses[i], true);
+        }
+      for (int i=0; ssa_rep->fp_def && i< ssa_rep->num_defs; i++) {
+        if (ssa_rep->fp_def[i])
+          changed |= SetFp(cu, ssa_rep->defs[i], true);
+        }
+      // Special-case handling for moves & Phi
+      if (attrs & (DF_IS_MOVE | DF_NULL_TRANSFER_N)) {
+        /*
+         * If any of our inputs or outputs is defined, set all.
+         * Some ugliness related to Phi nodes and wide values.
+         * The Phi set will include all low words or all high
+         * words, so we have to treat them specially.
+         */
+        bool is_phi = (static_cast<int>(mir->dalvikInsn.opcode) ==
+                      kMirOpPhi);
+        RegLocation rl_temp = cu->reg_location[ssa_rep->defs[0]];
+        bool defined_fp = rl_temp.defined && rl_temp.fp;
+        bool defined_core = rl_temp.defined && rl_temp.core;
+        bool defined_ref = rl_temp.defined && rl_temp.ref;
+        bool is_wide = rl_temp.wide || ((attrs & DF_A_WIDE) != 0);
+        bool is_high = is_phi && rl_temp.wide && rl_temp.high_word;
+        for (int i = 0; i < ssa_rep->num_uses;i++) {
+          rl_temp = cu->reg_location[ssa_rep->uses[i]];
+          defined_fp |= rl_temp.defined && rl_temp.fp;
+          defined_core |= rl_temp.defined && rl_temp.core;
+          defined_ref |= rl_temp.defined && rl_temp.ref;
+          is_wide |= rl_temp.wide;
+          is_high |= is_phi && rl_temp.wide && rl_temp.high_word;
+        }
+        /*
+         * TODO: cleaner fix
+         * We don't normally expect to see a Dalvik register
+         * definition used both as a floating point and core
+         * value.  However, the instruction rewriting that occurs
+         * during verification can eliminate some type information,
+         * leaving us confused.  The real fix here is either to
+         * add explicit type information to Dalvik byte codes,
+         * or to recognize THROW_VERIFICATION_ERROR as
+         * an unconditional branch and support dead code elimination.
+         * As a workaround we can detect this situation and
+         * disable register promotion (which is the only thing that
+         * relies on distinctions between core and fp usages.
+         */
+        if ((defined_fp && (defined_core | defined_ref)) &&
+            ((cu->disable_opt & (1 << kPromoteRegs)) == 0)) {
+          LOG(WARNING) << PrettyMethod(cu->method_idx, *cu->dex_file)
+                       << " op at block " << bb->id
+                       << " has both fp and core/ref uses for same def.";
+          cu->disable_opt |= (1 << kPromoteRegs);
+        }
+        changed |= SetFp(cu, ssa_rep->defs[0], defined_fp);
+        changed |= SetCore(cu, ssa_rep->defs[0], defined_core);
+        changed |= SetRef(cu, ssa_rep->defs[0], defined_ref);
+        changed |= SetWide(cu, ssa_rep->defs[0], is_wide);
+        changed |= SetHigh(cu, ssa_rep->defs[0], is_high);
+        if (attrs & DF_A_WIDE) {
+          changed |= SetWide(cu, ssa_rep->defs[1], true);
+          changed |= SetHigh(cu, ssa_rep->defs[1], true);
+        }
+        for (int i = 0; i < ssa_rep->num_uses; i++) {
+          changed |= SetFp(cu, ssa_rep->uses[i], defined_fp);
+          changed |= SetCore(cu, ssa_rep->uses[i], defined_core);
+          changed |= SetRef(cu, ssa_rep->uses[i], defined_ref);
+          changed |= SetWide(cu, ssa_rep->uses[i], is_wide);
+          changed |= SetHigh(cu, ssa_rep->uses[i], is_high);
+        }
+        if (attrs & DF_A_WIDE) {
+          DCHECK_EQ(ssa_rep->num_uses, 2);
+          changed |= SetWide(cu, ssa_rep->uses[1], true);
+          changed |= SetHigh(cu, ssa_rep->uses[1], true);
+        }
+      }
+    }
+  }
+  return changed;
+}
+
+static const char* storage_name[] = {" Frame ", "PhysReg", " Spill "};
+
+static void DumpRegLocTable(CompilationUnit* cu, RegLocation* table, int count)
+{
+  Codegen* cg = cu->cg.get();
+  for (int i = 0; i < count; i++) {
+    LOG(INFO) << StringPrintf("Loc[%02d] : %s, %c %c %c %c %c %c %c%d %c%d S%d",
+        table[i].orig_sreg, storage_name[table[i].location],
+        table[i].wide ? 'W' : 'N', table[i].defined ? 'D' : 'U',
+        table[i].fp ? 'F' : table[i].ref ? 'R' :'C',
+        table[i].is_const ? 'c' : 'n',
+        table[i].high_word ? 'H' : 'L', table[i].home ? 'h' : 't',
+        cg->IsFpReg(table[i].low_reg) ? 's' : 'r',
+        table[i].low_reg & cg->FpRegMask(),
+        cg->IsFpReg(table[i].high_reg) ? 's' : 'r',
+        table[i].high_reg & cg->FpRegMask(), table[i].s_reg_low);
+  }
+}
+
+static const RegLocation fresh_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0,
+                                     INVALID_REG, INVALID_REG, INVALID_SREG,
+                                     INVALID_SREG};
+
+int ComputeFrameSize(CompilationUnit* cu) {
+  /* Figure out the frame size */
+  static const uint32_t kAlignMask = kStackAlignment - 1;
+  uint32_t size = (cu->num_core_spills + cu->num_fp_spills +
+                   1 /* filler word */ + cu->num_regs + cu->num_outs +
+                   cu->num_compiler_temps + 1 /* cur_method* */)
+                   * sizeof(uint32_t);
+  /* Align and set */
+  return (size + kAlignMask) & ~(kAlignMask);
+}
+
+/*
+ * Simple register allocation.  Some Dalvik virtual registers may
+ * be promoted to physical registers.  Most of the work for temp
+ * allocation is done on the fly.  We also do some initialization and
+ * type inference here.
+ */
+void SimpleRegAlloc(CompilationUnit* cu)
+{
+  int i;
+  RegLocation* loc;
+
+  /* Allocate the location map */
+  loc = static_cast<RegLocation*>(NewMem(cu, cu->num_ssa_regs * sizeof(*loc),
+                                  true, kAllocRegAlloc));
+  for (i=0; i< cu->num_ssa_regs; i++) {
+    loc[i] = fresh_loc;
+    loc[i].s_reg_low = i;
+    loc[i].is_const = IsBitSet(cu->is_constant_v, i);
+  }
+
+  /* Patch up the locations for Method* and the compiler temps */
+  loc[cu->method_sreg].location = kLocCompilerTemp;
+  loc[cu->method_sreg].defined = true;
+  for (i = 0; i < cu->num_compiler_temps; i++) {
+    CompilerTemp* ct = reinterpret_cast<CompilerTemp*>(cu->compiler_temps.elem_list[i]);
+    loc[ct->s_reg].location = kLocCompilerTemp;
+    loc[ct->s_reg].defined = true;
+  }
+
+  cu->reg_location = loc;
+
+  /* Allocation the promotion map */
+  int num_regs = cu->num_dalvik_registers;
+  cu->promotion_map = static_cast<PromotionMap*>
+      (NewMem(cu, (num_regs + cu->num_compiler_temps + 1) * sizeof(cu->promotion_map[0]),
+              true, kAllocRegAlloc));
+
+  /* Add types of incoming arguments based on signature */
+  int num_ins = cu->num_ins;
+  if (num_ins > 0) {
+    int s_reg = num_regs - num_ins;
+    if ((cu->access_flags & kAccStatic) == 0) {
+      // For non-static, skip past "this"
+      cu->reg_location[s_reg].defined = true;
+      cu->reg_location[s_reg].ref = true;
+      s_reg++;
+    }
+    const char* shorty = cu->shorty;
+    int shorty_len = strlen(shorty);
+    for (int i = 1; i < shorty_len; i++) {
+      switch (shorty[i]) {
+        case 'D':
+          cu->reg_location[s_reg].wide = true;
+          cu->reg_location[s_reg+1].high_word = true;
+          cu->reg_location[s_reg+1].fp = true;
+          DCHECK_EQ(SRegToVReg(cu, s_reg)+1, SRegToVReg(cu, s_reg+1));
+          cu->reg_location[s_reg].fp = true;
+          cu->reg_location[s_reg].defined = true;
+          s_reg++;
+          break;
+        case 'J':
+          cu->reg_location[s_reg].wide = true;
+          cu->reg_location[s_reg+1].high_word = true;
+          DCHECK_EQ(SRegToVReg(cu, s_reg)+1, SRegToVReg(cu, s_reg+1));
+          cu->reg_location[s_reg].core = true;
+          cu->reg_location[s_reg].defined = true;
+          s_reg++;
+          break;
+        case 'F':
+          cu->reg_location[s_reg].fp = true;
+          cu->reg_location[s_reg].defined = true;
+          break;
+        case 'L':
+          cu->reg_location[s_reg].ref = true;
+          cu->reg_location[s_reg].defined = true;
+          break;
+        default:
+          cu->reg_location[s_reg].core = true;
+          cu->reg_location[s_reg].defined = true;
+          break;
+        }
+        s_reg++;
+      }
+  }
+
+  /* Do type & size inference pass */
+  DataFlowAnalysisDispatcher(cu, InferTypeAndSize,
+                                kPreOrderDFSTraversal,
+                                true /* is_iterative */);
+
+  /*
+   * Set the s_reg_low field to refer to the pre-SSA name of the
+   * base Dalvik virtual register.  Once we add a better register
+   * allocator, remove this remapping.
+   */
+  for (i=0; i < cu->num_ssa_regs; i++) {
+    if (cu->reg_location[i].location != kLocCompilerTemp) {
+      int orig_sreg = cu->reg_location[i].s_reg_low;
+      cu->reg_location[i].orig_sreg = orig_sreg;
+      cu->reg_location[i].s_reg_low = SRegToVReg(cu, orig_sreg);
+    }
+  }
+
+  /*
+   * Now that everything is typed and constants propagated, identify those constants
+   * that can be cheaply materialized and don't need to be flushed to a home location.
+   * The default is to not flush, and some have already been marked as must flush.
+   */
+  for (i=0; i < cu->num_ssa_regs; i++) {
+    if (IsBitSet(cu->is_constant_v, i)) {
+      bool flush = false;
+      RegLocation loc = cu->reg_location[i];
+      if (loc.wide) {
+        int64_t value = ConstantValueWide(cu, loc);
+        if (loc.fp) {
+          flush = !cu->cg->InexpensiveConstantDouble(value);
+        } else {
+          flush = !cu->cg->InexpensiveConstantLong(value);
+        }
+      } else {
+        int32_t value = ConstantValue(cu, loc);
+        if (loc.fp) {
+          flush = !cu->cg->InexpensiveConstantFloat(value);
+        } else {
+          flush = !cu->cg->InexpensiveConstantInt(value);
+        }
+      }
+      if (flush) {
+        SetBit(cu, cu->must_flush_constant_v, i);
+      }
+      if (loc.wide) {
+        i++;  // Skip the high word
+      }
+    }
+  }
+
+  cu->core_spill_mask = 0;
+  cu->fp_spill_mask = 0;
+  cu->num_core_spills = 0;
+
+  DoPromotion(cu);
+
+  /* Get easily-accessable post-promotion copy of RegLocation for Method* */
+  cu->method_loc = cu->reg_location[cu->method_sreg];
+
+  if (cu->verbose && !(cu->disable_opt & (1 << kPromoteRegs))) {
+    LOG(INFO) << "After Promotion";
+    DumpRegLocTable(cu, cu->reg_location, cu->num_ssa_regs);
+  }
+
+  /* Set the frame size */
+  cu->frame_size = ComputeFrameSize(cu);
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/ralloc.h b/src/compiler/dex/ralloc.h
new file mode 100644
index 0000000..cd25b1c
--- /dev/null
+++ b/src/compiler/dex/ralloc.h
@@ -0,0 +1,28 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_RALLOC_H_
+#define ART_SRC_COMPILER_DEX_RALLOC_H_
+
+#include "compiler_internals.h"
+
+namespace art {
+
+void SimpleRegAlloc(CompilationUnit* cu);
+
+}  // namespace art
+
+#endif  // ART_SRC_COMPILER_DEX_RALLOC_H_
diff --git a/src/compiler/dex/ssa_transformation.cc b/src/compiler/dex/ssa_transformation.cc
new file mode 100644
index 0000000..5d787c4
--- /dev/null
+++ b/src/compiler/dex/ssa_transformation.cc
@@ -0,0 +1,932 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler_internals.h"
+#include "dataflow.h"
+
+namespace art {
+
+// Make sure iterative dfs recording matches old recursive version
+//#define TEST_DFS
+
+static BasicBlock* NeedsVisit(BasicBlock* bb) {
+  if (bb != NULL) {
+    if (bb->visited || bb->hidden) {
+      bb = NULL;
+    }
+  }
+  return bb;
+}
+
+static BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb)
+{
+  BasicBlock* res = NeedsVisit(bb->fall_through);
+  if (res == NULL) {
+    res = NeedsVisit(bb->taken);
+    if (res == NULL) {
+      if (bb->successor_block_list.block_list_type != kNotUsed) {
+        GrowableListIterator iterator;
+        GrowableListIteratorInit(&bb->successor_block_list.blocks,
+                                    &iterator);
+        while (true) {
+          SuccessorBlockInfo *sbi = reinterpret_cast<SuccessorBlockInfo*>
+              (GrowableListIteratorNext(&iterator));
+          if (sbi == NULL) break;
+          res = NeedsVisit(sbi->block);
+          if (res != NULL) break;
+        }
+      }
+    }
+  }
+  return res;
+}
+
+static void MarkPreOrder(CompilationUnit* cu, BasicBlock* block)
+{
+  block->visited = true;
+  /* Enqueue the pre_order block id */
+  InsertGrowableList(cu, &cu->dfs_order, block->id);
+}
+
+static void RecordDFSOrders(CompilationUnit* cu, BasicBlock* block)
+{
+  std::vector<BasicBlock*> succ;
+  MarkPreOrder(cu, block);
+  succ.push_back(block);
+  while (!succ.empty()) {
+    BasicBlock* curr = succ.back();
+    BasicBlock* next_successor = NextUnvisitedSuccessor(curr);
+    if (next_successor != NULL) {
+      MarkPreOrder(cu, next_successor);
+      succ.push_back(next_successor);
+      continue;
+    }
+    curr->dfs_id = cu->dfs_post_order.num_used;
+    InsertGrowableList(cu, &cu->dfs_post_order, curr->id);
+    succ.pop_back();
+  }
+}
+
+#if defined(TEST_DFS)
+/* Enter the node to the dfs_order list then visit its successors */
+static void RecursiveRecordDFSOrders(CompilationUnit* cu, BasicBlock* block)
+{
+
+  if (block->visited || block->hidden) return;
+  block->visited = true;
+
+  // Can this block be reached only via previous block fallthrough?
+  if ((block->block_type == kDalvikByteCode) &&
+      (block->predecessors->num_used == 1)) {
+    DCHECK_GE(cu->dfs_order.num_used, 1U);
+    int prev_idx = cu->dfs_order.num_used - 1;
+    int prev_id = cu->dfs_order.elem_list[prev_idx];
+    BasicBlock* pred_bb = (BasicBlock*)block->predecessors->elem_list[0];
+  }
+
+  /* Enqueue the pre_order block id */
+  InsertGrowableList(cu, &cu->dfs_order, block->id);
+
+  if (block->fall_through) {
+    RecursiveRecordDFSOrders(cu, block->fall_through);
+  }
+  if (block->taken) RecursiveRecordDFSOrders(cu, block->taken);
+  if (block->successor_block_list.block_list_type != kNotUsed) {
+    GrowableListIterator iterator;
+    GrowableListIteratorInit(&block->successor_block_list.blocks,
+                                &iterator);
+    while (true) {
+      SuccessorBlockInfo *successor_block_info =
+          (SuccessorBlockInfo *) GrowableListIteratorNext(&iterator);
+      if (successor_block_info == NULL) break;
+      BasicBlock* succ_bb = successor_block_info->block;
+      RecursiveRecordDFSOrders(cu, succ_bb);
+    }
+  }
+
+  /* Record postorder in basic block and enqueue normal id in dfs_post_order */
+  block->dfs_id = cu->dfs_post_order.num_used;
+  InsertGrowableList(cu, &cu->dfs_post_order, block->id);
+  return;
+}
+#endif
+
+/* Sort the blocks by the Depth-First-Search */
+static void ComputeDFSOrders(CompilationUnit* cu)
+{
+  /* Initialize or reset the DFS pre_order list */
+  if (cu->dfs_order.elem_list == NULL) {
+    CompilerInitGrowableList(cu, &cu->dfs_order, cu->num_blocks,
+                        kListDfsOrder);
+  } else {
+    /* Just reset the used length on the counter */
+    cu->dfs_order.num_used = 0;
+  }
+
+  /* Initialize or reset the DFS post_order list */
+  if (cu->dfs_post_order.elem_list == NULL) {
+    CompilerInitGrowableList(cu, &cu->dfs_post_order, cu->num_blocks,
+                        kListDfsPostOrder);
+  } else {
+    /* Just reset the used length on the counter */
+    cu->dfs_post_order.num_used = 0;
+  }
+
+#if defined(TEST_DFS)
+  // Reset visited flags
+  DataFlowAnalysisDispatcher(cu, ClearVisitedFlag,
+                                kAllNodes, false /* is_iterative */);
+  // Record pre and post order dfs
+  RecursiveRecordDFSOrders(cu, cu->entry_block);
+  // Copy the results for later comparison and reset the lists
+  GrowableList recursive_dfs_order;
+  GrowableList recursive_dfs_post_order;
+  CompilerInitGrowableList(cu, &recursive_dfs_order, cu->dfs_order.num_used,
+                      kListDfsOrder);
+  for (unsigned int i = 0; i < cu->dfs_order.num_used; i++) {
+    InsertGrowableList(cu, &recursive_dfs_order,
+                          cu->dfs_order.elem_list[i]);
+  }
+  cu->dfs_order.num_used = 0;
+  CompilerInitGrowableList(cu, &recursive_dfs_post_order,
+                      cu->dfs_post_order.num_used, kListDfsOrder);
+  for (unsigned int i = 0; i < cu->dfs_post_order.num_used; i++) {
+    InsertGrowableList(cu, &recursive_dfs_post_order,
+                          cu->dfs_post_order.elem_list[i]);
+  }
+  cu->dfs_post_order.num_used = 0;
+#endif
+
+  // Reset visited flags from all nodes
+  DataFlowAnalysisDispatcher(cu, ClearVisitedFlag,
+                                kAllNodes, false /* is_iterative */);
+  // Record dfs orders
+  RecordDFSOrders(cu, cu->entry_block);
+
+#if defined(TEST_DFS)
+  bool mismatch = false;
+  mismatch |= (cu->dfs_order.num_used != recursive_dfs_order.num_used);
+  for (unsigned int i = 0; i < cu->dfs_order.num_used; i++) {
+    mismatch |= (cu->dfs_order.elem_list[i] !=
+                 recursive_dfs_order.elem_list[i]);
+  }
+  mismatch |= (cu->dfs_post_order.num_used != recursive_dfs_post_order.num_used);
+  for (unsigned int i = 0; i < cu->dfs_post_order.num_used; i++) {
+    mismatch |= (cu->dfs_post_order.elem_list[i] !=
+                 recursive_dfs_post_order.elem_list[i]);
+  }
+  if (mismatch) {
+    LOG(INFO) << "Mismatch for "
+              << PrettyMethod(cu->method_idx, *cu->dex_file);
+    LOG(INFO) << "New dfs";
+    for (unsigned int i = 0; i < cu->dfs_order.num_used; i++) {
+      LOG(INFO) << i << " - " << cu->dfs_order.elem_list[i];
+    }
+    LOG(INFO) << "Recursive dfs";
+    for (unsigned int i = 0; i < recursive_dfs_order.num_used; i++) {
+      LOG(INFO) << i << " - " << recursive_dfs_order.elem_list[i];
+    }
+    LOG(INFO) << "New post dfs";
+    for (unsigned int i = 0; i < cu->dfs_post_order.num_used; i++) {
+      LOG(INFO) << i << " - " << cu->dfs_post_order.elem_list[i];
+    }
+    LOG(INFO) << "Recursive post dfs";
+    for (unsigned int i = 0; i < recursive_dfs_post_order.num_used; i++) {
+      LOG(INFO) << i << " - " << recursive_dfs_post_order.elem_list[i];
+    }
+  }
+  CHECK_EQ(cu->dfs_order.num_used, recursive_dfs_order.num_used);
+  for (unsigned int i = 0; i < cu->dfs_order.num_used; i++) {
+    CHECK_EQ(cu->dfs_order.elem_list[i], recursive_dfs_order.elem_list[i]);
+  }
+  CHECK_EQ(cu->dfs_post_order.num_used, recursive_dfs_post_order.num_used);
+  for (unsigned int i = 0; i < cu->dfs_post_order.num_used; i++) {
+    CHECK_EQ(cu->dfs_post_order.elem_list[i],
+             recursive_dfs_post_order.elem_list[i]);
+  }
+#endif
+
+  cu->num_reachable_blocks = cu->dfs_order.num_used;
+}
+
+/*
+ * Mark block bit on the per-Dalvik register vector to denote that Dalvik
+ * register idx is defined in BasicBlock bb.
+ */
+static bool FillDefBlockMatrix(CompilationUnit* cu, BasicBlock* bb)
+{
+  if (bb->data_flow_info == NULL) return false;
+
+  ArenaBitVectorIterator iterator;
+
+  BitVectorIteratorInit(bb->data_flow_info->def_v, &iterator);
+  while (true) {
+    int idx = BitVectorIteratorNext(&iterator);
+    if (idx == -1) break;
+    /* Block bb defines register idx */
+    SetBit(cu, cu->def_block_matrix[idx], bb->id);
+  }
+  return true;
+}
+
+static void ComputeDefBlockMatrix(CompilationUnit* cu)
+{
+  int num_registers = cu->num_dalvik_registers;
+  /* Allocate num_dalvik_registers bit vector pointers */
+  cu->def_block_matrix = static_cast<ArenaBitVector**>
+      (NewMem(cu, sizeof(ArenaBitVector *) * num_registers, true, kAllocDFInfo));
+  int i;
+
+  /* Initialize num_register vectors with num_blocks bits each */
+  for (i = 0; i < num_registers; i++) {
+    cu->def_block_matrix[i] = AllocBitVector(cu, cu->num_blocks,
+                                                 false, kBitMapBMatrix);
+  }
+  DataFlowAnalysisDispatcher(cu, FindLocalLiveIn,
+                                kAllNodes, false /* is_iterative */);
+  DataFlowAnalysisDispatcher(cu, FillDefBlockMatrix,
+                                kAllNodes, false /* is_iterative */);
+
+  /*
+   * Also set the incoming parameters as defs in the entry block.
+   * Only need to handle the parameters for the outer method.
+   */
+  int num_regs = cu->num_dalvik_registers;
+  int in_reg = num_regs - cu->num_ins;
+  for (; in_reg < num_regs; in_reg++) {
+    SetBit(cu, cu->def_block_matrix[in_reg], cu->entry_block->id);
+  }
+}
+
+/* Compute the post-order traversal of the CFG */
+static void ComputeDomPostOrderTraversal(CompilationUnit* cu, BasicBlock* bb)
+{
+  ArenaBitVectorIterator bv_iterator;
+  BitVectorIteratorInit(bb->i_dominated, &bv_iterator);
+  GrowableList* block_list = &cu->block_list;
+
+  /* Iterate through the dominated blocks first */
+  while (true) {
+    //TUNING: hot call to BitVectorIteratorNext
+    int bb_idx = BitVectorIteratorNext(&bv_iterator);
+    if (bb_idx == -1) break;
+    BasicBlock* dominated_bb =
+        reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, bb_idx));
+    ComputeDomPostOrderTraversal(cu, dominated_bb);
+  }
+
+  /* Enter the current block id */
+  InsertGrowableList(cu, &cu->dom_post_order_traversal, bb->id);
+
+  /* hacky loop detection */
+  if (bb->taken && IsBitSet(bb->dominators, bb->taken->id)) {
+    cu->has_loop = true;
+  }
+}
+
+static void CheckForDominanceFrontier(CompilationUnit* cu, BasicBlock* dom_bb,
+                                      const BasicBlock* succ_bb)
+{
+  /*
+   * TODO - evaluate whether phi will ever need to be inserted into exit
+   * blocks.
+   */
+  if (succ_bb->i_dom != dom_bb &&
+    succ_bb->block_type == kDalvikByteCode &&
+    succ_bb->hidden == false) {
+    SetBit(cu, dom_bb->dom_frontier, succ_bb->id);
+  }
+}
+
+/* Worker function to compute the dominance frontier */
+static bool ComputeDominanceFrontier(CompilationUnit* cu, BasicBlock* bb)
+{
+  GrowableList* block_list = &cu->block_list;
+
+  /* Calculate DF_local */
+  if (bb->taken) {
+    CheckForDominanceFrontier(cu, bb, bb->taken);
+  }
+  if (bb->fall_through) {
+    CheckForDominanceFrontier(cu, bb, bb->fall_through);
+  }
+  if (bb->successor_block_list.block_list_type != kNotUsed) {
+    GrowableListIterator iterator;
+    GrowableListIteratorInit(&bb->successor_block_list.blocks,
+                                  &iterator);
+      while (true) {
+        SuccessorBlockInfo *successor_block_info =
+            reinterpret_cast<SuccessorBlockInfo*>(GrowableListIteratorNext(&iterator));
+        if (successor_block_info == NULL) break;
+        BasicBlock* succ_bb = successor_block_info->block;
+        CheckForDominanceFrontier(cu, bb, succ_bb);
+      }
+  }
+
+  /* Calculate DF_up */
+  ArenaBitVectorIterator bv_iterator;
+  BitVectorIteratorInit(bb->i_dominated, &bv_iterator);
+  while (true) {
+    //TUNING: hot call to BitVectorIteratorNext
+    int dominated_idx = BitVectorIteratorNext(&bv_iterator);
+    if (dominated_idx == -1) break;
+    BasicBlock* dominated_bb =
+        reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, dominated_idx));
+    ArenaBitVectorIterator df_iterator;
+    BitVectorIteratorInit(dominated_bb->dom_frontier, &df_iterator);
+    while (true) {
+      //TUNING: hot call to BitVectorIteratorNext
+      int df_up_idx = BitVectorIteratorNext(&df_iterator);
+      if (df_up_idx == -1) break;
+      BasicBlock* df_up_block =
+          reinterpret_cast<BasicBlock*>( GrowableListGetElement(block_list, df_up_idx));
+      CheckForDominanceFrontier(cu, bb, df_up_block);
+    }
+  }
+
+  return true;
+}
+
+/* Worker function for initializing domination-related data structures */
+static bool InitializeDominationInfo(CompilationUnit* cu, BasicBlock* bb)
+{
+  int num_total_blocks = cu->block_list.num_used;
+
+  if (bb->dominators == NULL ) {
+    bb->dominators = AllocBitVector(cu, num_total_blocks,
+                                       false /* expandable */,
+                                       kBitMapDominators);
+    bb->i_dominated = AllocBitVector(cu, num_total_blocks,
+                                       false /* expandable */,
+                                       kBitMapIDominated);
+    bb->dom_frontier = AllocBitVector(cu, num_total_blocks,
+                                        false /* expandable */,
+                                        kBitMapDomFrontier);
+  } else {
+    ClearAllBits(bb->dominators);
+    ClearAllBits(bb->i_dominated);
+    ClearAllBits(bb->dom_frontier);
+  }
+  /* Set all bits in the dominator vector */
+  SetInitialBits(bb->dominators, num_total_blocks);
+
+  return true;
+}
+
+/*
+ * Worker function to compute each block's dominators.  This implementation
+ * is only used when kDebugVerifyDataflow is active and should compute
+ * the same dominator sets as ComputeBlockDominiators.
+ */
+static bool SlowComputeBlockDominators(CompilationUnit* cu, BasicBlock* bb)
+{
+  GrowableList* block_list = &cu->block_list;
+  int num_total_blocks = block_list->num_used;
+  ArenaBitVector* temp_block_v = cu->temp_block_v;
+  GrowableListIterator iter;
+
+  /*
+   * The dominator of the entry block has been preset to itself and we need
+   * to skip the calculation here.
+   */
+  if (bb == cu->entry_block) return false;
+
+  SetInitialBits(temp_block_v, num_total_blocks);
+
+  /* Iterate through the predecessors */
+  GrowableListIteratorInit(bb->predecessors, &iter);
+  while (true) {
+    BasicBlock* pred_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter));
+    if (!pred_bb) break;
+    /* temp_block_v = temp_block_v ^ dominators */
+    if (pred_bb->dominators != NULL) {
+      IntersectBitVectors(temp_block_v, temp_block_v, pred_bb->dominators);
+    }
+  }
+  SetBit(cu, temp_block_v, bb->id);
+  if (CompareBitVectors(temp_block_v, bb->dominators)) {
+    CopyBitVector(bb->dominators, temp_block_v);
+    return true;
+  }
+  return false;
+}
+
+/*
+ * Worker function to compute the idom.  This implementation is only
+ * used when kDebugVerifyDataflow is active and should compute the
+ * same i_dom as ComputeblockIDom.
+ */
+static bool SlowComputeBlockIDom(CompilationUnit* cu, BasicBlock* bb)
+{
+  GrowableList* block_list = &cu->block_list;
+  ArenaBitVector* temp_block_v = cu->temp_block_v;
+  ArenaBitVectorIterator bv_iterator;
+  BasicBlock* i_dom;
+
+  if (bb == cu->entry_block) return false;
+
+  CopyBitVector(temp_block_v, bb->dominators);
+  ClearBit(temp_block_v, bb->id);
+  BitVectorIteratorInit(temp_block_v, &bv_iterator);
+
+  /* Should not see any dead block */
+  DCHECK_NE(CountSetBits(temp_block_v),  0);
+  if (CountSetBits(temp_block_v) == 1) {
+    i_dom = reinterpret_cast<BasicBlock*>
+        (GrowableListGetElement(block_list, BitVectorIteratorNext(&bv_iterator)));
+    bb->i_dom = i_dom;
+  } else {
+    int i_dom_idx = BitVectorIteratorNext(&bv_iterator);
+    DCHECK_NE(i_dom_idx, -1);
+    while (true) {
+      int next_dom = BitVectorIteratorNext(&bv_iterator);
+      if (next_dom == -1) break;
+      BasicBlock* next_dom_bb =
+          reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, next_dom));
+      /* i_dom dominates next_dom - set new i_dom */
+      if (IsBitSet(next_dom_bb->dominators, i_dom_idx)) {
+          i_dom_idx = next_dom;
+      }
+
+    }
+    i_dom = reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, i_dom_idx));
+    /* Set the immediate dominator block for bb */
+    bb->i_dom = i_dom;
+  }
+  /* Add bb to the i_dominated set of the immediate dominator block */
+  SetBit(cu, i_dom->i_dominated, bb->id);
+  return true;
+}
+
+/*
+ * Walk through the ordered i_dom list until we reach common parent.
+ * Given the ordering of i_dom_list, this common parent represents the
+ * last element of the intersection of block1 and block2 dominators.
+  */
+static int FindCommonParent(CompilationUnit *cu, int block1, int block2)
+{
+  while (block1 != block2) {
+    while (block1 < block2) {
+      block1 = cu->i_dom_list[block1];
+      DCHECK_NE(block1, NOTVISITED);
+    }
+    while (block2 < block1) {
+      block2 = cu->i_dom_list[block2];
+      DCHECK_NE(block2, NOTVISITED);
+    }
+  }
+  return block1;
+}
+
+/* Worker function to compute each block's immediate dominator */
+static bool ComputeblockIDom(CompilationUnit* cu, BasicBlock* bb)
+{
+  GrowableListIterator iter;
+  int idom = -1;
+
+  /* Special-case entry block */
+  if (bb == cu->entry_block) {
+    return false;
+  }
+
+  /* Iterate through the predecessors */
+  GrowableListIteratorInit(bb->predecessors, &iter);
+
+  /* Find the first processed predecessor */
+  while (true) {
+    BasicBlock* pred_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter));
+    CHECK(pred_bb != NULL);
+    if (cu->i_dom_list[pred_bb->dfs_id] != NOTVISITED) {
+      idom = pred_bb->dfs_id;
+      break;
+    }
+  }
+
+  /* Scan the rest of the predecessors */
+  while (true) {
+      BasicBlock* pred_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter));
+      if (!pred_bb) break;
+      if (cu->i_dom_list[pred_bb->dfs_id] == NOTVISITED) {
+        continue;
+      } else {
+        idom = FindCommonParent(cu, pred_bb->dfs_id, idom);
+      }
+  }
+
+  DCHECK_NE(idom, NOTVISITED);
+
+  /* Did something change? */
+  if (cu->i_dom_list[bb->dfs_id] != idom) {
+    cu->i_dom_list[bb->dfs_id] = idom;
+    return true;
+  }
+  return false;
+}
+
+/* Worker function to compute each block's domintors */
+static bool ComputeBlockDominiators(CompilationUnit* cu, BasicBlock* bb)
+{
+  if (bb == cu->entry_block) {
+    ClearAllBits(bb->dominators);
+  } else {
+    CopyBitVector(bb->dominators, bb->i_dom->dominators);
+  }
+  SetBit(cu, bb->dominators, bb->id);
+  return false;
+}
+
+static bool SetDominators(CompilationUnit* cu, BasicBlock* bb)
+{
+  if (bb != cu->entry_block) {
+    int idom_dfs_idx = cu->i_dom_list[bb->dfs_id];
+    DCHECK_NE(idom_dfs_idx, NOTVISITED);
+    int i_dom_idx = cu->dfs_post_order.elem_list[idom_dfs_idx];
+    BasicBlock* i_dom =
+        reinterpret_cast<BasicBlock*>(GrowableListGetElement(&cu->block_list, i_dom_idx));
+    if (cu->enable_debug & (1 << kDebugVerifyDataflow)) {
+      DCHECK_EQ(bb->i_dom->id, i_dom->id);
+    }
+    bb->i_dom = i_dom;
+    /* Add bb to the i_dominated set of the immediate dominator block */
+    SetBit(cu, i_dom->i_dominated, bb->id);
+  }
+  return false;
+}
+
+/* Compute dominators, immediate dominator, and dominance fronter */
+static void ComputeDominators(CompilationUnit* cu)
+{
+  int num_reachable_blocks = cu->num_reachable_blocks;
+  int num_total_blocks = cu->block_list.num_used;
+
+  /* Initialize domination-related data structures */
+  DataFlowAnalysisDispatcher(cu, InitializeDominationInfo,
+                                kReachableNodes, false /* is_iterative */);
+
+  /* Initalize & Clear i_dom_list */
+  if (cu->i_dom_list == NULL) {
+    cu->i_dom_list = static_cast<int*>(NewMem(cu, sizeof(int) * num_reachable_blocks,
+                                               false, kAllocDFInfo));
+  }
+  for (int i = 0; i < num_reachable_blocks; i++) {
+    cu->i_dom_list[i] = NOTVISITED;
+  }
+
+  /* For post-order, last block is entry block.  Set its i_dom to istelf */
+  DCHECK_EQ(cu->entry_block->dfs_id, num_reachable_blocks-1);
+  cu->i_dom_list[cu->entry_block->dfs_id] = cu->entry_block->dfs_id;
+
+  /* Compute the immediate dominators */
+  DataFlowAnalysisDispatcher(cu, ComputeblockIDom,
+                                kReversePostOrderTraversal,
+                                true /* is_iterative */);
+
+  /* Set the dominator for the root node */
+  ClearAllBits(cu->entry_block->dominators);
+  SetBit(cu, cu->entry_block->dominators, cu->entry_block->id);
+
+  if (cu->temp_block_v == NULL) {
+    cu->temp_block_v = AllocBitVector(cu, num_total_blocks,
+                                          false /* expandable */,
+                                          kBitMapTmpBlockV);
+  } else {
+    ClearAllBits(cu->temp_block_v);
+  }
+  cu->entry_block->i_dom = NULL;
+
+  /* For testing, compute sets using alternate mechanism */
+  if (cu->enable_debug & (1 << kDebugVerifyDataflow)) {
+    // Use alternate mechanism to compute dominators for comparison
+    DataFlowAnalysisDispatcher(cu, SlowComputeBlockDominators,
+                                  kPreOrderDFSTraversal,
+                                  true /* is_iterative */);
+
+   DataFlowAnalysisDispatcher(cu, SlowComputeBlockIDom,
+                                 kReachableNodes,
+                                 false /* is_iterative */);
+  }
+
+  DataFlowAnalysisDispatcher(cu, SetDominators,
+                                kReachableNodes,
+                                false /* is_iterative */);
+
+  DataFlowAnalysisDispatcher(cu, ComputeBlockDominiators,
+                                kReversePostOrderTraversal,
+                                false /* is_iterative */);
+
+  /*
+   * Now go ahead and compute the post order traversal based on the
+   * i_dominated sets.
+   */
+  if (cu->dom_post_order_traversal.elem_list == NULL) {
+    CompilerInitGrowableList(cu, &cu->dom_post_order_traversal,
+                        num_reachable_blocks, kListDomPostOrderTraversal);
+  } else {
+    cu->dom_post_order_traversal.num_used = 0;
+  }
+
+  ComputeDomPostOrderTraversal(cu, cu->entry_block);
+  DCHECK_EQ(cu->dom_post_order_traversal.num_used, static_cast<unsigned>(cu->num_reachable_blocks));
+
+  /* Now compute the dominance frontier for each block */
+  DataFlowAnalysisDispatcher(cu, ComputeDominanceFrontier,
+                                        kPostOrderDOMTraversal,
+                                        false /* is_iterative */);
+}
+
+/*
+ * Perform dest U= src1 ^ ~src2
+ * This is probably not general enough to be placed in BitVector.[ch].
+ */
+static void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
+                              const ArenaBitVector* src2)
+{
+  if (dest->storage_size != src1->storage_size ||
+    dest->storage_size != src2->storage_size ||
+    dest->expandable != src1->expandable ||
+    dest->expandable != src2->expandable) {
+    LOG(FATAL) << "Incompatible set properties";
+  }
+
+  unsigned int idx;
+  for (idx = 0; idx < dest->storage_size; idx++) {
+    dest->storage[idx] |= src1->storage[idx] & ~src2->storage[idx];
+  }
+}
+
+/*
+ * Iterate through all successor blocks and propagate up the live-in sets.
+ * The calculated result is used for phi-node pruning - where we only need to
+ * insert a phi node if the variable is live-in to the block.
+ */
+static bool ComputeBlockLiveIns(CompilationUnit* cu, BasicBlock* bb)
+{
+  ArenaBitVector* temp_dalvik_register_v = cu->temp_dalvik_register_v;
+
+  if (bb->data_flow_info == NULL) return false;
+  CopyBitVector(temp_dalvik_register_v, bb->data_flow_info->live_in_v);
+  if (bb->taken && bb->taken->data_flow_info)
+    ComputeSuccLineIn(temp_dalvik_register_v, bb->taken->data_flow_info->live_in_v,
+                      bb->data_flow_info->def_v);
+  if (bb->fall_through && bb->fall_through->data_flow_info)
+    ComputeSuccLineIn(temp_dalvik_register_v,
+                      bb->fall_through->data_flow_info->live_in_v,
+                      bb->data_flow_info->def_v);
+  if (bb->successor_block_list.block_list_type != kNotUsed) {
+    GrowableListIterator iterator;
+    GrowableListIteratorInit(&bb->successor_block_list.blocks,
+                                &iterator);
+    while (true) {
+      SuccessorBlockInfo *successor_block_info =
+          reinterpret_cast<SuccessorBlockInfo*>(GrowableListIteratorNext(&iterator));
+      if (successor_block_info == NULL) break;
+      BasicBlock* succ_bb = successor_block_info->block;
+      if (succ_bb->data_flow_info) {
+        ComputeSuccLineIn(temp_dalvik_register_v,
+                          succ_bb->data_flow_info->live_in_v,
+                          bb->data_flow_info->def_v);
+      }
+    }
+  }
+  if (CompareBitVectors(temp_dalvik_register_v, bb->data_flow_info->live_in_v)) {
+    CopyBitVector(bb->data_flow_info->live_in_v, temp_dalvik_register_v);
+    return true;
+  }
+  return false;
+}
+
+/* Insert phi nodes to for each variable to the dominance frontiers */
+static void InsertPhiNodes(CompilationUnit* cu)
+{
+  int dalvik_reg;
+  const GrowableList* block_list = &cu->block_list;
+  ArenaBitVector* phi_blocks =
+      AllocBitVector(cu, cu->num_blocks, false, kBitMapPhi);
+  ArenaBitVector* tmp_blocks =
+      AllocBitVector(cu, cu->num_blocks, false, kBitMapTmpBlocks);
+  ArenaBitVector* input_blocks =
+      AllocBitVector(cu, cu->num_blocks, false, kBitMapInputBlocks);
+
+  cu->temp_dalvik_register_v =
+      AllocBitVector(cu, cu->num_dalvik_registers, false,
+                        kBitMapRegisterV);
+
+  DataFlowAnalysisDispatcher(cu, ComputeBlockLiveIns,
+                                kPostOrderDFSTraversal, true /* is_iterative */);
+
+  /* Iterate through each Dalvik register */
+  for (dalvik_reg = cu->num_dalvik_registers - 1; dalvik_reg >= 0; dalvik_reg--) {
+    bool change;
+    ArenaBitVectorIterator iterator;
+
+    CopyBitVector(input_blocks, cu->def_block_matrix[dalvik_reg]);
+    ClearAllBits(phi_blocks);
+
+    /* Calculate the phi blocks for each Dalvik register */
+    do {
+      change = false;
+      ClearAllBits(tmp_blocks);
+      BitVectorIteratorInit(input_blocks, &iterator);
+
+      while (true) {
+        int idx = BitVectorIteratorNext(&iterator);
+        if (idx == -1) break;
+          BasicBlock* def_bb =
+              reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, idx));
+
+          /* Merge the dominance frontier to tmp_blocks */
+          //TUNING: hot call to UnifyBitVetors
+          if (def_bb->dom_frontier != NULL) {
+            UnifyBitVetors(tmp_blocks, tmp_blocks, def_bb->dom_frontier);
+          }
+        }
+        if (CompareBitVectors(phi_blocks, tmp_blocks)) {
+          change = true;
+          CopyBitVector(phi_blocks, tmp_blocks);
+
+          /*
+           * Iterate through the original blocks plus the new ones in
+           * the dominance frontier.
+           */
+          CopyBitVector(input_blocks, phi_blocks);
+          UnifyBitVetors(input_blocks, input_blocks,
+                             cu->def_block_matrix[dalvik_reg]);
+      }
+    } while (change);
+
+    /*
+     * Insert a phi node for dalvik_reg in the phi_blocks if the Dalvik
+     * register is in the live-in set.
+     */
+    BitVectorIteratorInit(phi_blocks, &iterator);
+    while (true) {
+      int idx = BitVectorIteratorNext(&iterator);
+      if (idx == -1) break;
+      BasicBlock* phi_bb =
+          reinterpret_cast<BasicBlock*>(GrowableListGetElement(block_list, idx));
+      /* Variable will be clobbered before being used - no need for phi */
+      if (!IsBitSet(phi_bb->data_flow_info->live_in_v, dalvik_reg)) continue;
+      MIR *phi = static_cast<MIR*>(NewMem(cu, sizeof(MIR), true, kAllocDFInfo));
+      phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpPhi);
+      phi->dalvikInsn.vA = dalvik_reg;
+      phi->offset = phi_bb->start_offset;
+      PrependMIR(phi_bb, phi);
+    }
+  }
+}
+
+/*
+ * Worker function to insert phi-operands with latest SSA names from
+ * predecessor blocks
+ */
+static bool InsertPhiNodeOperands(CompilationUnit* cu, BasicBlock* bb)
+{
+  GrowableListIterator iter;
+  MIR *mir;
+  std::vector<int> uses;
+  std::vector<int> incoming_arc;
+
+  /* Phi nodes are at the beginning of each block */
+  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    if (mir->dalvikInsn.opcode != static_cast<Instruction::Code>(kMirOpPhi))
+      return true;
+    int ssa_reg = mir->ssa_rep->defs[0];
+    DCHECK_GE(ssa_reg, 0);   // Shouldn't see compiler temps here
+    int v_reg = SRegToVReg(cu, ssa_reg);
+
+    uses.clear();
+    incoming_arc.clear();
+
+    /* Iterate through the predecessors */
+    GrowableListIteratorInit(bb->predecessors, &iter);
+    while (true) {
+      BasicBlock* pred_bb =
+         reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter));
+      if (!pred_bb) break;
+      int ssa_reg = pred_bb->data_flow_info->vreg_to_ssa_map[v_reg];
+      uses.push_back(ssa_reg);
+      incoming_arc.push_back(pred_bb->id);
+    }
+
+    /* Count the number of SSA registers for a Dalvik register */
+    int num_uses = uses.size();
+    mir->ssa_rep->num_uses = num_uses;
+    mir->ssa_rep->uses =
+        static_cast<int*>(NewMem(cu, sizeof(int) * num_uses, false, kAllocDFInfo));
+    mir->ssa_rep->fp_use =
+        static_cast<bool*>(NewMem(cu, sizeof(bool) * num_uses, true, kAllocDFInfo));
+    int* incoming =
+        static_cast<int*>(NewMem(cu, sizeof(int) * num_uses, false, kAllocDFInfo));
+    // TODO: Ugly, rework (but don't burden each MIR/LIR for Phi-only needs)
+    mir->dalvikInsn.vB = reinterpret_cast<uintptr_t>(incoming);
+
+    /* Set the uses array for the phi node */
+    int *use_ptr = mir->ssa_rep->uses;
+    for (int i = 0; i < num_uses; i++) {
+      *use_ptr++ = uses[i];
+      *incoming++ = incoming_arc[i];
+    }
+  }
+
+  return true;
+}
+
+static void DoDFSPreOrderSSARename(CompilationUnit* cu, BasicBlock* block)
+{
+
+  if (block->visited || block->hidden) return;
+  block->visited = true;
+
+  /* Process this block */
+  DoSSAConversion(cu, block);
+  int map_size = sizeof(int) * cu->num_dalvik_registers;
+
+  /* Save SSA map snapshot */
+  int* saved_ssa_map = static_cast<int*>(NewMem(cu, map_size, false, kAllocDalvikToSSAMap));
+  memcpy(saved_ssa_map, cu->vreg_to_ssa_map, map_size);
+
+  if (block->fall_through) {
+    DoDFSPreOrderSSARename(cu, block->fall_through);
+    /* Restore SSA map snapshot */
+    memcpy(cu->vreg_to_ssa_map, saved_ssa_map, map_size);
+  }
+  if (block->taken) {
+    DoDFSPreOrderSSARename(cu, block->taken);
+    /* Restore SSA map snapshot */
+    memcpy(cu->vreg_to_ssa_map, saved_ssa_map, map_size);
+  }
+  if (block->successor_block_list.block_list_type != kNotUsed) {
+    GrowableListIterator iterator;
+    GrowableListIteratorInit(&block->successor_block_list.blocks, &iterator);
+    while (true) {
+      SuccessorBlockInfo *successor_block_info =
+          reinterpret_cast<SuccessorBlockInfo*>(GrowableListIteratorNext(&iterator));
+      if (successor_block_info == NULL) break;
+      BasicBlock* succ_bb = successor_block_info->block;
+      DoDFSPreOrderSSARename(cu, succ_bb);
+      /* Restore SSA map snapshot */
+      memcpy(cu->vreg_to_ssa_map, saved_ssa_map, map_size);
+    }
+  }
+  cu->vreg_to_ssa_map = saved_ssa_map;
+  return;
+}
+
+/* Perform SSA transformation for the whole method */
+void SSATransformation(CompilationUnit* cu)
+{
+  /* Compute the DFS order */
+  ComputeDFSOrders(cu);
+
+  if (!cu->disable_dataflow) {
+    /* Compute the dominator info */
+    ComputeDominators(cu);
+  }
+
+  /* Allocate data structures in preparation for SSA conversion */
+  CompilerInitializeSSAConversion(cu);
+
+  if (!cu->disable_dataflow) {
+    /* Find out the "Dalvik reg def x block" relation */
+    ComputeDefBlockMatrix(cu);
+
+    /* Insert phi nodes to dominance frontiers for all variables */
+    InsertPhiNodes(cu);
+  }
+
+  /* Rename register names by local defs and phi nodes */
+  DataFlowAnalysisDispatcher(cu, ClearVisitedFlag,
+                                kAllNodes, false /* is_iterative */);
+  DoDFSPreOrderSSARename(cu, cu->entry_block);
+
+  if (!cu->disable_dataflow) {
+    /*
+     * Shared temp bit vector used by each block to count the number of defs
+     * from all the predecessor blocks.
+     */
+    cu->temp_ssa_register_v = AllocBitVector(cu, cu->num_ssa_regs,
+         false, kBitMapTempSSARegisterV);
+
+    cu->temp_ssa_block_id_v =
+        static_cast<int*>(NewMem(cu, sizeof(int) * cu->num_ssa_regs, false, kAllocDFInfo));
+
+    /* Insert phi-operands with latest SSA names from predecessor blocks */
+    DataFlowAnalysisDispatcher(cu, InsertPhiNodeOperands,
+                                  kReachableNodes, false /* is_iterative */);
+  }
+}
+
+}  // namespace art
diff --git a/src/compiler/dex/ssa_transformation.h b/src/compiler/dex/ssa_transformation.h
new file mode 100644
index 0000000..92f7c0e
--- /dev/null
+++ b/src/compiler/dex/ssa_transformation.h
@@ -0,0 +1,28 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_COMPILER_DEX_SSATRANSFORMATION_H_
+#define ART_SRC_COMPILER_DEX_SSATRANSFORMATION_H_
+
+#include "compiler_internals.h"
+
+namespace art {
+
+void SSATransformation(CompilationUnit* cu);
+
+}  // namespace art
+
+#endif  // ART_SRC_COMPILER_DEX_DATAFLOW_H_
diff --git a/src/compiler/dex/write_elf.cc b/src/compiler/dex/write_elf.cc
new file mode 100644
index 0000000..1fd8a9492
--- /dev/null
+++ b/src/compiler/dex/write_elf.cc
@@ -0,0 +1,33 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler.h"
+#include "elf_writer.h"
+#include "os.h"
+
+extern "C" bool WriteElf(art::Compiler& compiler,
+                         std::vector<uint8_t>& oat_contents,
+                         art::File* file) {
+  return art::ElfWriter::Create(file, oat_contents, compiler);
+}
+extern "C" bool FixupElf(art::File* file, uintptr_t oat_data_begin) {
+  return art::ElfWriter::Fixup(file, oat_data_begin);
+}
+extern "C" void GetOatElfInformation(art::File* file,
+                                     size_t& oat_loaded_size,
+                                     size_t& oat_data_offset) {
+  art::ElfWriter::GetOatElfInformation(file, oat_loaded_size, oat_data_offset);
+}