Split space_test into separate checks

Split space_test by space type: dlmalloc, rosalloc and large object space to facilitate parallelized testing.

Bug: 13117676
Change-Id: I152dc03717c26dfcf14e93ba2b39f83612a5f560
diff --git a/runtime/gc/space/space_test.h b/runtime/gc/space/space_test.h
new file mode 100644
index 0000000..d01bf2c
--- /dev/null
+++ b/runtime/gc/space/space_test.h
@@ -0,0 +1,542 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
+#define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
+
+#include "zygote_space.h"
+
+#include "common_test.h"
+#include "globals.h"
+#include "UniquePtr.h"
+#include "mirror/array-inl.h"
+#include "mirror/object-inl.h"
+
+#include <stdint.h>
+
+namespace art {
+namespace gc {
+namespace space {
+
+class SpaceTest : public CommonTest {
+ public:
+  void AddSpace(ContinuousSpace* space) {
+    // For RosAlloc, revoke the thread local runs before moving onto a
+    // new alloc space.
+    Runtime::Current()->GetHeap()->RevokeAllThreadLocalBuffers();
+    Runtime::Current()->GetHeap()->AddSpace(space);
+  }
+  void InstallClass(SirtRef<mirror::Object>& o, size_t size)
+      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+    // Note the minimum size, which is the size of a zero-length byte array.
+    EXPECT_GE(size, SizeOfZeroLengthByteArray());
+    SirtRef<mirror::ClassLoader> null_loader(Thread::Current(), nullptr);
+    mirror::Class* byte_array_class = Runtime::Current()->GetClassLinker()->FindClass("[B",
+                                                                                      null_loader);
+    EXPECT_TRUE(byte_array_class != nullptr);
+    o->SetClass(byte_array_class);
+    mirror::Array* arr = o->AsArray<kVerifyNone>();
+    size_t header_size = SizeOfZeroLengthByteArray();
+    int32_t length = size - header_size;
+    arr->SetLength(length);
+    EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
+  }
+
+  static size_t SizeOfZeroLengthByteArray() {
+    return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
+  }
+
+  typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
+                                        size_t capacity, byte* requested_begin);
+  void InitTestBody(CreateSpaceFn create_space);
+  void ZygoteSpaceTestBody(CreateSpaceFn create_space);
+  void AllocAndFreeTestBody(CreateSpaceFn create_space);
+  void AllocAndFreeListTestBody(CreateSpaceFn create_space);
+
+  void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
+                                           int round, size_t growth_limit);
+  void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
+};
+
+static size_t test_rand(size_t* seed) {
+  *seed = *seed * 1103515245 + 12345;
+  return *seed;
+}
+
+void SpaceTest::InitTestBody(CreateSpaceFn create_space) {
+  {
+    // Init < max == growth
+    UniquePtr<Space> space(create_space("test", 16 * MB, 32 * MB, 32 * MB, nullptr));
+    EXPECT_TRUE(space.get() != nullptr);
+  }
+  {
+    // Init == max == growth
+    UniquePtr<Space> space(create_space("test", 16 * MB, 16 * MB, 16 * MB, nullptr));
+    EXPECT_TRUE(space.get() != nullptr);
+  }
+  {
+    // Init > max == growth
+    UniquePtr<Space> space(create_space("test", 32 * MB, 16 * MB, 16 * MB, nullptr));
+    EXPECT_TRUE(space.get() == nullptr);
+  }
+  {
+    // Growth == init < max
+    UniquePtr<Space> space(create_space("test", 16 * MB, 16 * MB, 32 * MB, nullptr));
+    EXPECT_TRUE(space.get() != nullptr);
+  }
+  {
+    // Growth < init < max
+    UniquePtr<Space> space(create_space("test", 16 * MB, 8 * MB, 32 * MB, nullptr));
+    EXPECT_TRUE(space.get() == nullptr);
+  }
+  {
+    // Init < growth < max
+    UniquePtr<Space> space(create_space("test", 8 * MB, 16 * MB, 32 * MB, nullptr));
+    EXPECT_TRUE(space.get() != nullptr);
+  }
+  {
+    // Init < max < growth
+    UniquePtr<Space> space(create_space("test", 8 * MB, 32 * MB, 16 * MB, nullptr));
+    EXPECT_TRUE(space.get() == nullptr);
+  }
+}
+
+// TODO: This test is not very good, we should improve it.
+// The test should do more allocations before the creation of the ZygoteSpace, and then do
+// allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
+// the GC works with the ZygoteSpace.
+void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) {
+  size_t dummy = 0;
+  MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
+  ASSERT_TRUE(space != nullptr);
+
+  // Make space findable to the heap, will also delete space when runtime is cleaned up
+  AddSpace(space);
+  Thread* self = Thread::Current();
+  ScopedObjectAccess soa(self);
+
+  // Succeeds, fits without adjusting the footprint limit.
+  SirtRef<mirror::Object> ptr1(self, space->Alloc(self, 1 * MB, &dummy));
+  EXPECT_TRUE(ptr1.get() != nullptr);
+  InstallClass(ptr1, 1 * MB);
+
+  // Fails, requires a higher footprint limit.
+  mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy);
+  EXPECT_TRUE(ptr2 == nullptr);
+
+  // Succeeds, adjusts the footprint.
+  size_t ptr3_bytes_allocated;
+  SirtRef<mirror::Object> ptr3(self, space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated));
+  EXPECT_TRUE(ptr3.get() != nullptr);
+  EXPECT_LE(8U * MB, ptr3_bytes_allocated);
+  InstallClass(ptr3, 8 * MB);
+
+  // Fails, requires a higher footprint limit.
+  mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy);
+  EXPECT_TRUE(ptr4 == nullptr);
+
+  // Also fails, requires a higher allowed footprint.
+  mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy);
+  EXPECT_TRUE(ptr5 == nullptr);
+
+  // Release some memory.
+  size_t free3 = space->AllocationSize(ptr3.get());
+  EXPECT_EQ(free3, ptr3_bytes_allocated);
+  EXPECT_EQ(free3, space->Free(self, ptr3.reset(nullptr)));
+  EXPECT_LE(8U * MB, free3);
+
+  // Succeeds, now that memory has been freed.
+  SirtRef<mirror::Object> ptr6(self, space->AllocWithGrowth(self, 9 * MB, &dummy));
+  EXPECT_TRUE(ptr6.get() != nullptr);
+  InstallClass(ptr6, 9 * MB);
+
+  // Final clean up.
+  size_t free1 = space->AllocationSize(ptr1.get());
+  space->Free(self, ptr1.reset(nullptr));
+  EXPECT_LE(1U * MB, free1);
+
+  // Make sure that the zygote space isn't directly at the start of the space.
+  space->Alloc(self, 1U * MB, &dummy);
+
+  gc::Heap* heap = Runtime::Current()->GetHeap();
+  space::Space* old_space = space;
+  heap->RemoveSpace(old_space);
+  space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space",
+                                                              heap->IsLowMemoryMode(),
+                                                              &space);
+  delete old_space;
+  // Add the zygote space.
+  AddSpace(zygote_space);
+
+  // Make space findable to the heap, will also delete space when runtime is cleaned up
+  AddSpace(space);
+
+  // Succeeds, fits without adjusting the footprint limit.
+  ptr1.reset(space->Alloc(self, 1 * MB, &dummy));
+  EXPECT_TRUE(ptr1.get() != nullptr);
+  InstallClass(ptr1, 1 * MB);
+
+  // Fails, requires a higher footprint limit.
+  ptr2 = space->Alloc(self, 8 * MB, &dummy);
+  EXPECT_TRUE(ptr2 == nullptr);
+
+  // Succeeds, adjusts the footprint.
+  ptr3.reset(space->AllocWithGrowth(self, 2 * MB, &dummy));
+  EXPECT_TRUE(ptr3.get() != nullptr);
+  InstallClass(ptr3, 2 * MB);
+  space->Free(self, ptr3.reset(nullptr));
+
+  // Final clean up.
+  free1 = space->AllocationSize(ptr1.get());
+  space->Free(self, ptr1.reset(nullptr));
+  EXPECT_LE(1U * MB, free1);
+}
+
+void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) {
+  size_t dummy = 0;
+  MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
+  ASSERT_TRUE(space != nullptr);
+  Thread* self = Thread::Current();
+  ScopedObjectAccess soa(self);
+
+  // Make space findable to the heap, will also delete space when runtime is cleaned up
+  AddSpace(space);
+
+  // Succeeds, fits without adjusting the footprint limit.
+  SirtRef<mirror::Object> ptr1(self, space->Alloc(self, 1 * MB, &dummy));
+  EXPECT_TRUE(ptr1.get() != nullptr);
+  InstallClass(ptr1, 1 * MB);
+
+  // Fails, requires a higher footprint limit.
+  mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy);
+  EXPECT_TRUE(ptr2 == nullptr);
+
+  // Succeeds, adjusts the footprint.
+  size_t ptr3_bytes_allocated;
+  SirtRef<mirror::Object> ptr3(self, space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated));
+  EXPECT_TRUE(ptr3.get() != nullptr);
+  EXPECT_LE(8U * MB, ptr3_bytes_allocated);
+  InstallClass(ptr3, 8 * MB);
+
+  // Fails, requires a higher footprint limit.
+  mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy);
+  EXPECT_TRUE(ptr4 == nullptr);
+
+  // Also fails, requires a higher allowed footprint.
+  mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy);
+  EXPECT_TRUE(ptr5 == nullptr);
+
+  // Release some memory.
+  size_t free3 = space->AllocationSize(ptr3.get());
+  EXPECT_EQ(free3, ptr3_bytes_allocated);
+  space->Free(self, ptr3.reset(nullptr));
+  EXPECT_LE(8U * MB, free3);
+
+  // Succeeds, now that memory has been freed.
+  SirtRef<mirror::Object> ptr6(self, space->AllocWithGrowth(self, 9 * MB, &dummy));
+  EXPECT_TRUE(ptr6.get() != nullptr);
+  InstallClass(ptr6, 9 * MB);
+
+  // Final clean up.
+  size_t free1 = space->AllocationSize(ptr1.get());
+  space->Free(self, ptr1.reset(nullptr));
+  EXPECT_LE(1U * MB, free1);
+}
+
+void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) {
+  MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
+  ASSERT_TRUE(space != nullptr);
+
+  // Make space findable to the heap, will also delete space when runtime is cleaned up
+  AddSpace(space);
+  Thread* self = Thread::Current();
+  ScopedObjectAccess soa(self);
+
+  // Succeeds, fits without adjusting the max allowed footprint.
+  mirror::Object* lots_of_objects[1024];
+  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
+    size_t allocation_size = 0;
+    size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
+    lots_of_objects[i] = space->Alloc(self, size_of_zero_length_byte_array, &allocation_size);
+    EXPECT_TRUE(lots_of_objects[i] != nullptr);
+    SirtRef<mirror::Object> obj(self, lots_of_objects[i]);
+    InstallClass(obj, size_of_zero_length_byte_array);
+    lots_of_objects[i] = obj.get();
+    EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i]));
+  }
+
+  // Release memory and check pointers are nullptr.
+  space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
+  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
+    EXPECT_TRUE(lots_of_objects[i] == nullptr);
+  }
+
+  // Succeeds, fits by adjusting the max allowed footprint.
+  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
+    size_t allocation_size = 0;
+    lots_of_objects[i] = space->AllocWithGrowth(self, 1024, &allocation_size);
+    EXPECT_TRUE(lots_of_objects[i] != nullptr);
+    SirtRef<mirror::Object> obj(self, lots_of_objects[i]);
+    InstallClass(obj, 1024);
+    lots_of_objects[i] = obj.get();
+    EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i]));
+  }
+
+  // Release memory and check pointers are nullptr
+  // TODO: This isn't compaction safe, fix.
+  space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
+  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
+    EXPECT_TRUE(lots_of_objects[i] == nullptr);
+  }
+}
+
+void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
+                                                    int round, size_t growth_limit) {
+  if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
+      ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
+    // No allocation can succeed
+    return;
+  }
+
+  // The space's footprint equals amount of resources requested from system
+  size_t footprint = space->GetFootprint();
+
+  // The space must at least have its book keeping allocated
+  EXPECT_GT(footprint, 0u);
+
+  // But it shouldn't exceed the initial size
+  EXPECT_LE(footprint, growth_limit);
+
+  // space's size shouldn't exceed the initial size
+  EXPECT_LE(space->Size(), growth_limit);
+
+  // this invariant should always hold or else the space has grown to be larger than what the
+  // space believes its size is (which will break invariants)
+  EXPECT_GE(space->Size(), footprint);
+
+  // Fill the space with lots of small objects up to the growth limit
+  size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
+  UniquePtr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
+  size_t last_object = 0;  // last object for which allocation succeeded
+  size_t amount_allocated = 0;  // amount of space allocated
+  Thread* self = Thread::Current();
+  ScopedObjectAccess soa(self);
+  size_t rand_seed = 123456789;
+  for (size_t i = 0; i < max_objects; i++) {
+    size_t alloc_fails = 0;  // number of failed allocations
+    size_t max_fails = 30;  // number of times we fail allocation before giving up
+    for (; alloc_fails < max_fails; alloc_fails++) {
+      size_t alloc_size;
+      if (object_size > 0) {
+        alloc_size = object_size;
+      } else {
+        alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
+        // Note the minimum size, which is the size of a zero-length byte array.
+        size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
+        if (alloc_size < size_of_zero_length_byte_array) {
+          alloc_size = size_of_zero_length_byte_array;
+        }
+      }
+      SirtRef<mirror::Object> object(self, nullptr);
+      size_t bytes_allocated = 0;
+      if (round <= 1) {
+        object.reset(space->Alloc(self, alloc_size, &bytes_allocated));
+      } else {
+        object.reset(space->AllocWithGrowth(self, alloc_size, &bytes_allocated));
+      }
+      footprint = space->GetFootprint();
+      EXPECT_GE(space->Size(), footprint);  // invariant
+      if (object.get() != nullptr) {  // allocation succeeded
+        InstallClass(object, alloc_size);
+        lots_of_objects[i] = object.get();
+        size_t allocation_size = space->AllocationSize(object.get());
+        EXPECT_EQ(bytes_allocated, allocation_size);
+        if (object_size > 0) {
+          EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
+        } else {
+          EXPECT_GE(allocation_size, 8u);
+        }
+        amount_allocated += allocation_size;
+        break;
+      }
+    }
+    if (alloc_fails == max_fails) {
+      last_object = i;
+      break;
+    }
+  }
+  CHECK_NE(last_object, 0u);  // we should have filled the space
+  EXPECT_GT(amount_allocated, 0u);
+
+  // We shouldn't have gone past the growth_limit
+  EXPECT_LE(amount_allocated, growth_limit);
+  EXPECT_LE(footprint, growth_limit);
+  EXPECT_LE(space->Size(), growth_limit);
+
+  // footprint and size should agree with amount allocated
+  EXPECT_GE(footprint, amount_allocated);
+  EXPECT_GE(space->Size(), amount_allocated);
+
+  // Release storage in a semi-adhoc manner
+  size_t free_increment = 96;
+  while (true) {
+    {
+      ScopedThreadStateChange tsc(self, kNative);
+      // Give the space a haircut.
+      space->Trim();
+    }
+
+    // Bounds sanity
+    footprint = space->GetFootprint();
+    EXPECT_LE(amount_allocated, growth_limit);
+    EXPECT_GE(footprint, amount_allocated);
+    EXPECT_LE(footprint, growth_limit);
+    EXPECT_GE(space->Size(), amount_allocated);
+    EXPECT_LE(space->Size(), growth_limit);
+
+    if (free_increment == 0) {
+      break;
+    }
+
+    // Free some objects
+    for (size_t i = 0; i < last_object; i += free_increment) {
+      mirror::Object* object = lots_of_objects.get()[i];
+      if (object == nullptr) {
+        continue;
+      }
+      size_t allocation_size = space->AllocationSize(object);
+      if (object_size > 0) {
+        EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
+      } else {
+        EXPECT_GE(allocation_size, 8u);
+      }
+      space->Free(self, object);
+      lots_of_objects.get()[i] = nullptr;
+      amount_allocated -= allocation_size;
+      footprint = space->GetFootprint();
+      EXPECT_GE(space->Size(), footprint);  // invariant
+    }
+
+    free_increment >>= 1;
+  }
+
+  // The space has become empty here before allocating a large object
+  // below. For RosAlloc, revoke thread-local runs, which are kept
+  // even when empty for a performance reason, so that they won't
+  // cause the following large object allocation to fail due to
+  // potential fragmentation. Note they are normally revoked at each
+  // GC (but no GC here.)
+  space->RevokeAllThreadLocalBuffers();
+
+  // All memory was released, try a large allocation to check freed memory is being coalesced
+  SirtRef<mirror::Object> large_object(self, nullptr);
+  size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
+  size_t bytes_allocated = 0;
+  if (round <= 1) {
+    large_object.reset(space->Alloc(self, three_quarters_space, &bytes_allocated));
+  } else {
+    large_object.reset(space->AllocWithGrowth(self, three_quarters_space, &bytes_allocated));
+  }
+  EXPECT_TRUE(large_object.get() != nullptr);
+  InstallClass(large_object, three_quarters_space);
+
+  // Sanity check footprint
+  footprint = space->GetFootprint();
+  EXPECT_LE(footprint, growth_limit);
+  EXPECT_GE(space->Size(), footprint);
+  EXPECT_LE(space->Size(), growth_limit);
+
+  // Clean up
+  space->Free(self, large_object.reset(nullptr));
+
+  // Sanity check footprint
+  footprint = space->GetFootprint();
+  EXPECT_LE(footprint, growth_limit);
+  EXPECT_GE(space->Size(), footprint);
+  EXPECT_LE(space->Size(), growth_limit);
+}
+
+void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) {
+  if (object_size < SizeOfZeroLengthByteArray()) {
+    // Too small for the object layout/model.
+    return;
+  }
+  size_t initial_size = 4 * MB;
+  size_t growth_limit = 8 * MB;
+  size_t capacity = 16 * MB;
+  MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
+  ASSERT_TRUE(space != nullptr);
+
+  // Basic sanity
+  EXPECT_EQ(space->Capacity(), growth_limit);
+  EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
+
+  // Make space findable to the heap, will also delete space when runtime is cleaned up
+  AddSpace(space);
+
+  // In this round we don't allocate with growth and therefore can't grow past the initial size.
+  // This effectively makes the growth_limit the initial_size, so assert this.
+  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
+  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
+  // Remove growth limit
+  space->ClearGrowthLimit();
+  EXPECT_EQ(space->Capacity(), capacity);
+  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
+}
+
+#define TEST_SizeFootPrintGrowthLimitAndTrim(name, spaceName, spaceFn, size) \
+  TEST_F(spaceName##Test, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
+    SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
+  } \
+  TEST_F(spaceName##Test, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
+    SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
+  }
+
+#define TEST_SPACE_CREATE_FN(spaceName, spaceFn) \
+  class spaceName##Test : public SpaceTest { \
+  }; \
+  \
+  TEST_F(spaceName##Test, Init) { \
+    InitTestBody(spaceFn); \
+  } \
+  TEST_F(spaceName##Test, ZygoteSpace) { \
+    ZygoteSpaceTestBody(spaceFn); \
+  } \
+  TEST_F(spaceName##Test, AllocAndFree) { \
+    AllocAndFreeTestBody(spaceFn); \
+  } \
+  TEST_F(spaceName##Test, AllocAndFreeList) { \
+    AllocAndFreeListTestBody(spaceFn); \
+  } \
+  TEST_F(spaceName##Test, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_12B) { \
+    SizeFootPrintGrowthLimitAndTrimDriver(12, spaceFn); \
+  } \
+  TEST_SizeFootPrintGrowthLimitAndTrim(16B, spaceName, spaceFn, 16) \
+  TEST_SizeFootPrintGrowthLimitAndTrim(24B, spaceName, spaceFn, 24) \
+  TEST_SizeFootPrintGrowthLimitAndTrim(32B, spaceName, spaceFn, 32) \
+  TEST_SizeFootPrintGrowthLimitAndTrim(64B, spaceName, spaceFn, 64) \
+  TEST_SizeFootPrintGrowthLimitAndTrim(128B, spaceName, spaceFn, 128) \
+  TEST_SizeFootPrintGrowthLimitAndTrim(1KB, spaceName, spaceFn, 1 * KB) \
+  TEST_SizeFootPrintGrowthLimitAndTrim(4KB, spaceName, spaceFn, 4 * KB) \
+  TEST_SizeFootPrintGrowthLimitAndTrim(1MB, spaceName, spaceFn, 1 * MB) \
+  TEST_SizeFootPrintGrowthLimitAndTrim(4MB, spaceName, spaceFn, 4 * MB) \
+  TEST_SizeFootPrintGrowthLimitAndTrim(8MB, spaceName, spaceFn, 8 * MB)
+
+}  // namespace space
+}  // namespace gc
+}  // namespace art
+
+#endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_