Revert "Revert "Refactor HGraphBuilder and SsaBuilder to remove HLocals""
This patch merges the instruction-building phases from HGraphBuilder
and SsaBuilder into a single HInstructionBuilder class. As a result,
it is not necessary to generate HLocal, HLoadLocal and HStoreLocal
instructions any more, as the builder produces SSA form directly.
Saves 5-15% of arena-allocated memory (see bug for more data):
GMS 20.46MB => 19.26MB (-5.86%)
Maps 24.12MB => 21.47MB (-10.98%)
YouTube 28.60MB => 26.01MB (-9.05%)
This CL fixed an issue with parsing quickened instructions.
Bug: 27894376
Bug: 27998571
Bug: 27995065
Change-Id: I20dbe1bf2d0fe296377478db98cb86cba695e694
diff --git a/compiler/optimizing/instruction_builder.cc b/compiler/optimizing/instruction_builder.cc
new file mode 100644
index 0000000..b0f0893
--- /dev/null
+++ b/compiler/optimizing/instruction_builder.cc
@@ -0,0 +1,2701 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "instruction_builder.h"
+
+#include "bytecode_utils.h"
+#include "class_linker.h"
+#include "driver/compiler_options.h"
+#include "scoped_thread_state_change.h"
+
+namespace art {
+
+void HInstructionBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
+ if (compilation_stats_ != nullptr) {
+ compilation_stats_->RecordStat(compilation_stat);
+ }
+}
+
+HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
+ return block_builder_->GetBlockAt(dex_pc);
+}
+
+ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
+ ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
+ const size_t vregs = graph_->GetNumberOfVRegs();
+ if (locals->size() != vregs) {
+ locals->resize(vregs, nullptr);
+
+ if (block->IsCatchBlock()) {
+ // We record incoming inputs of catch phis at throwing instructions and
+ // must therefore eagerly create the phis. Phis for undefined vregs will
+ // be deleted when the first throwing instruction with the vreg undefined
+ // is encountered. Unused phis will be removed by dead phi analysis.
+ for (size_t i = 0; i < vregs; ++i) {
+ // No point in creating the catch phi if it is already undefined at
+ // the first throwing instruction.
+ HInstruction* current_local_value = (*current_locals_)[i];
+ if (current_local_value != nullptr) {
+ HPhi* phi = new (arena_) HPhi(
+ arena_,
+ i,
+ 0,
+ current_local_value->GetType());
+ block->AddPhi(phi);
+ (*locals)[i] = phi;
+ }
+ }
+ }
+ }
+ return locals;
+}
+
+HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
+ ArenaVector<HInstruction*>* locals = GetLocalsFor(block);
+ return (*locals)[local];
+}
+
+void HInstructionBuilder::InitializeBlockLocals() {
+ current_locals_ = GetLocalsFor(current_block_);
+
+ if (current_block_->IsCatchBlock()) {
+ // Catch phis were already created and inputs collected from throwing sites.
+ if (kIsDebugBuild) {
+ // Make sure there was at least one throwing instruction which initialized
+ // locals (guaranteed by HGraphBuilder) and that all try blocks have been
+ // visited already (from HTryBoundary scoping and reverse post order).
+ bool catch_block_visited = false;
+ for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
+ HBasicBlock* current = it.Current();
+ if (current == current_block_) {
+ catch_block_visited = true;
+ } else if (current->IsTryBlock()) {
+ const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
+ if (try_entry.HasExceptionHandler(*current_block_)) {
+ DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
+ }
+ }
+ }
+ DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
+ << "No instructions throwing into a live catch block.";
+ }
+ } else if (current_block_->IsLoopHeader()) {
+ // If the block is a loop header, we know we only have visited the pre header
+ // because we are visiting in reverse post order. We create phis for all initialized
+ // locals from the pre header. Their inputs will be populated at the end of
+ // the analysis.
+ for (size_t local = 0; local < current_locals_->size(); ++local) {
+ HInstruction* incoming =
+ ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
+ if (incoming != nullptr) {
+ HPhi* phi = new (arena_) HPhi(
+ arena_,
+ local,
+ 0,
+ incoming->GetType());
+ current_block_->AddPhi(phi);
+ (*current_locals_)[local] = phi;
+ }
+ }
+
+ // Save the loop header so that the last phase of the analysis knows which
+ // blocks need to be updated.
+ loop_headers_.push_back(current_block_);
+ } else if (current_block_->GetPredecessors().size() > 0) {
+ // All predecessors have already been visited because we are visiting in reverse post order.
+ // We merge the values of all locals, creating phis if those values differ.
+ for (size_t local = 0; local < current_locals_->size(); ++local) {
+ bool one_predecessor_has_no_value = false;
+ bool is_different = false;
+ HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
+
+ for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
+ HInstruction* current = ValueOfLocalAt(predecessor, local);
+ if (current == nullptr) {
+ one_predecessor_has_no_value = true;
+ break;
+ } else if (current != value) {
+ is_different = true;
+ }
+ }
+
+ if (one_predecessor_has_no_value) {
+ // If one predecessor has no value for this local, we trust the verifier has
+ // successfully checked that there is a store dominating any read after this block.
+ continue;
+ }
+
+ if (is_different) {
+ HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
+ HPhi* phi = new (arena_) HPhi(
+ arena_,
+ local,
+ current_block_->GetPredecessors().size(),
+ first_input->GetType());
+ for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
+ HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
+ phi->SetRawInputAt(i, pred_value);
+ }
+ current_block_->AddPhi(phi);
+ value = phi;
+ }
+ (*current_locals_)[local] = value;
+ }
+ }
+}
+
+void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
+ const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
+ for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
+ ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
+ DCHECK_EQ(handler_locals->size(), current_locals_->size());
+ for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
+ HInstruction* handler_value = (*handler_locals)[vreg];
+ if (handler_value == nullptr) {
+ // Vreg was undefined at a previously encountered throwing instruction
+ // and the catch phi was deleted. Do not record the local value.
+ continue;
+ }
+ DCHECK(handler_value->IsPhi());
+
+ HInstruction* local_value = (*current_locals_)[vreg];
+ if (local_value == nullptr) {
+ // This is the first instruction throwing into `catch_block` where
+ // `vreg` is undefined. Delete the catch phi.
+ catch_block->RemovePhi(handler_value->AsPhi());
+ (*handler_locals)[vreg] = nullptr;
+ } else {
+ // Vreg has been defined at all instructions throwing into `catch_block`
+ // encountered so far. Record the local value in the catch phi.
+ handler_value->AsPhi()->AddInput(local_value);
+ }
+ }
+ }
+}
+
+void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
+ current_block_->AddInstruction(instruction);
+ InitializeInstruction(instruction);
+}
+
+void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
+ if (current_block_->GetInstructions().IsEmpty()) {
+ current_block_->AddInstruction(instruction);
+ } else {
+ current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
+ }
+ InitializeInstruction(instruction);
+}
+
+void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
+ if (instruction->NeedsEnvironment()) {
+ HEnvironment* environment = new (arena_) HEnvironment(
+ arena_,
+ current_locals_->size(),
+ graph_->GetDexFile(),
+ graph_->GetMethodIdx(),
+ instruction->GetDexPc(),
+ graph_->GetInvokeType(),
+ instruction);
+ environment->CopyFrom(*current_locals_);
+ instruction->SetRawEnvironment(environment);
+ }
+}
+
+void HInstructionBuilder::SetLoopHeaderPhiInputs() {
+ for (size_t i = loop_headers_.size(); i > 0; --i) {
+ HBasicBlock* block = loop_headers_[i - 1];
+ for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
+ HPhi* phi = it.Current()->AsPhi();
+ size_t vreg = phi->GetRegNumber();
+ for (HBasicBlock* predecessor : block->GetPredecessors()) {
+ HInstruction* value = ValueOfLocalAt(predecessor, vreg);
+ if (value == nullptr) {
+ // Vreg is undefined at this predecessor. Mark it dead and leave with
+ // fewer inputs than predecessors. SsaChecker will fail if not removed.
+ phi->SetDead();
+ break;
+ } else {
+ phi->AddInput(value);
+ }
+ }
+ }
+ }
+}
+
+static bool IsBlockPopulated(HBasicBlock* block) {
+ if (block->IsLoopHeader()) {
+ // Suspend checks were inserted into loop headers during building of dominator tree.
+ DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
+ return block->GetFirstInstruction() != block->GetLastInstruction();
+ } else {
+ return !block->GetInstructions().IsEmpty();
+ }
+}
+
+bool HInstructionBuilder::Build() {
+ locals_for_.resize(graph_->GetBlocks().size(),
+ ArenaVector<HInstruction*>(arena_->Adapter(kArenaAllocGraphBuilder)));
+
+ // Find locations where we want to generate extra stackmaps for native debugging.
+ // This allows us to generate the info only at interesting points (for example,
+ // at start of java statement) rather than before every dex instruction.
+ const bool native_debuggable = compiler_driver_ != nullptr &&
+ compiler_driver_->GetCompilerOptions().GetNativeDebuggable();
+ ArenaBitVector* native_debug_info_locations = nullptr;
+ if (native_debuggable) {
+ const uint32_t num_instructions = code_item_.insns_size_in_code_units_;
+ native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false);
+ FindNativeDebugInfoLocations(native_debug_info_locations);
+ }
+
+ for (HReversePostOrderIterator block_it(*graph_); !block_it.Done(); block_it.Advance()) {
+ current_block_ = block_it.Current();
+ uint32_t block_dex_pc = current_block_->GetDexPc();
+
+ InitializeBlockLocals();
+
+ if (current_block_->IsEntryBlock()) {
+ InitializeParameters();
+ AppendInstruction(new (arena_) HSuspendCheck(0u));
+ AppendInstruction(new (arena_) HGoto(0u));
+ continue;
+ } else if (current_block_->IsExitBlock()) {
+ AppendInstruction(new (arena_) HExit());
+ continue;
+ } else if (current_block_->IsLoopHeader()) {
+ HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(current_block_->GetDexPc());
+ current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
+ // This is slightly odd because the loop header might not be empty (TryBoundary).
+ // But we're still creating the environment with locals from the top of the block.
+ InsertInstructionAtTop(suspend_check);
+ }
+
+ if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
+ // Synthetic block that does not need to be populated.
+ DCHECK(IsBlockPopulated(current_block_));
+ continue;
+ }
+
+ DCHECK(!IsBlockPopulated(current_block_));
+
+ for (CodeItemIterator it(code_item_, block_dex_pc); !it.Done(); it.Advance()) {
+ if (current_block_ == nullptr) {
+ // The previous instruction ended this block.
+ break;
+ }
+
+ uint32_t dex_pc = it.CurrentDexPc();
+ if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
+ // This dex_pc starts a new basic block.
+ break;
+ }
+
+ if (current_block_->IsTryBlock() && IsThrowingDexInstruction(it.CurrentInstruction())) {
+ PropagateLocalsToCatchBlocks();
+ }
+
+ if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
+ AppendInstruction(new (arena_) HNativeDebugInfo(dex_pc));
+ }
+
+ if (!ProcessDexInstruction(it.CurrentInstruction(), dex_pc)) {
+ return false;
+ }
+ }
+
+ if (current_block_ != nullptr) {
+ // Branching instructions clear current_block, so we know the last
+ // instruction of the current block is not a branching instruction.
+ // We add an unconditional Goto to the next block.
+ DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
+ AppendInstruction(new (arena_) HGoto());
+ }
+ }
+
+ SetLoopHeaderPhiInputs();
+
+ return true;
+}
+
+void HInstructionBuilder::FindNativeDebugInfoLocations(ArenaBitVector* locations) {
+ // The callback gets called when the line number changes.
+ // In other words, it marks the start of new java statement.
+ struct Callback {
+ static bool Position(void* ctx, const DexFile::PositionInfo& entry) {
+ static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_);
+ return false;
+ }
+ };
+ dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations);
+ // Instruction-specific tweaks.
+ const Instruction* const begin = Instruction::At(code_item_.insns_);
+ const Instruction* const end = begin->RelativeAt(code_item_.insns_size_in_code_units_);
+ for (const Instruction* inst = begin; inst < end; inst = inst->Next()) {
+ switch (inst->Opcode()) {
+ case Instruction::MOVE_EXCEPTION: {
+ // Stop in native debugger after the exception has been moved.
+ // The compiler also expects the move at the start of basic block so
+ // we do not want to interfere by inserting native-debug-info before it.
+ locations->ClearBit(inst->GetDexPc(code_item_.insns_));
+ const Instruction* next = inst->Next();
+ if (next < end) {
+ locations->SetBit(next->GetDexPc(code_item_.insns_));
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+}
+
+HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, Primitive::Type type) const {
+ HInstruction* value = (*current_locals_)[reg_number];
+ DCHECK(value != nullptr);
+
+ // If the operation requests a specific type, we make sure its input is of that type.
+ if (type != value->GetType()) {
+ if (Primitive::IsFloatingPointType(type)) {
+ return ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
+ } else if (type == Primitive::kPrimNot) {
+ return ssa_builder_->GetReferenceTypeEquivalent(value);
+ }
+ }
+
+ return value;
+}
+
+void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
+ Primitive::Type stored_type = stored_value->GetType();
+ DCHECK_NE(stored_type, Primitive::kPrimVoid);
+
+ // Storing into vreg `reg_number` may implicitly invalidate the surrounding
+ // registers. Consider the following cases:
+ // (1) Storing a wide value must overwrite previous values in both `reg_number`
+ // and `reg_number+1`. We store `nullptr` in `reg_number+1`.
+ // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
+ // must invalidate it. We store `nullptr` in `reg_number-1`.
+ // Consequently, storing a wide value into the high vreg of another wide value
+ // will invalidate both `reg_number-1` and `reg_number+1`.
+
+ if (reg_number != 0) {
+ HInstruction* local_low = (*current_locals_)[reg_number - 1];
+ if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) {
+ // The vreg we are storing into was previously the high vreg of a pair.
+ // We need to invalidate its low vreg.
+ DCHECK((*current_locals_)[reg_number] == nullptr);
+ (*current_locals_)[reg_number - 1] = nullptr;
+ }
+ }
+
+ (*current_locals_)[reg_number] = stored_value;
+ if (Primitive::Is64BitType(stored_type)) {
+ // We are storing a pair. Invalidate the instruction in the high vreg.
+ (*current_locals_)[reg_number + 1] = nullptr;
+ }
+}
+
+void HInstructionBuilder::InitializeParameters() {
+ DCHECK(current_block_->IsEntryBlock());
+
+ // dex_compilation_unit_ is null only when unit testing.
+ if (dex_compilation_unit_ == nullptr) {
+ return;
+ }
+
+ const char* shorty = dex_compilation_unit_->GetShorty();
+ uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
+ uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
+ uint16_t parameter_index = 0;
+
+ const DexFile::MethodId& referrer_method_id =
+ dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
+ if (!dex_compilation_unit_->IsStatic()) {
+ // Add the implicit 'this' argument, not expressed in the signature.
+ HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_,
+ referrer_method_id.class_idx_,
+ parameter_index++,
+ Primitive::kPrimNot,
+ true);
+ AppendInstruction(parameter);
+ UpdateLocal(locals_index++, parameter);
+ number_of_parameters--;
+ }
+
+ const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
+ const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
+ for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
+ HParameterValue* parameter = new (arena_) HParameterValue(
+ *dex_file_,
+ arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
+ parameter_index++,
+ Primitive::GetType(shorty[shorty_pos]),
+ false);
+ ++shorty_pos;
+ AppendInstruction(parameter);
+ // Store the parameter value in the local that the dex code will use
+ // to reference that parameter.
+ UpdateLocal(locals_index++, parameter);
+ if (Primitive::Is64BitType(parameter->GetType())) {
+ i++;
+ locals_index++;
+ parameter_index++;
+ }
+ }
+}
+
+template<typename T>
+void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
+ HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+ T* comparison = new (arena_) T(first, second, dex_pc);
+ AppendInstruction(comparison);
+ AppendInstruction(new (arena_) HIf(comparison, dex_pc));
+ current_block_ = nullptr;
+}
+
+template<typename T>
+void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
+ HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
+ T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
+ AppendInstruction(comparison);
+ AppendInstruction(new (arena_) HIf(comparison, dex_pc));
+ current_block_ = nullptr;
+}
+
+template<typename T>
+void HInstructionBuilder::Unop_12x(const Instruction& instruction,
+ Primitive::Type type,
+ uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegB(), type);
+ AppendInstruction(new (arena_) T(type, first, dex_pc));
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
+ Primitive::Type input_type,
+ Primitive::Type result_type,
+ uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
+ AppendInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_23x(const Instruction& instruction,
+ Primitive::Type type,
+ uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegB(), type);
+ HInstruction* second = LoadLocal(instruction.VRegC(), type);
+ AppendInstruction(new (arena_) T(type, first, second, dex_pc));
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
+ Primitive::Type type,
+ uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegB(), type);
+ HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt);
+ AppendInstruction(new (arena_) T(type, first, second, dex_pc));
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
+ Primitive::Type type,
+ ComparisonBias bias,
+ uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegB(), type);
+ HInstruction* second = LoadLocal(instruction.VRegC(), type);
+ AppendInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
+ Primitive::Type type,
+ uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegA(), type);
+ HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+ AppendInstruction(new (arena_) T(type, first, second, dex_pc));
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_12x(const Instruction& instruction,
+ Primitive::Type type,
+ uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegA(), type);
+ HInstruction* second = LoadLocal(instruction.VRegB(), type);
+ AppendInstruction(new (arena_) T(type, first, second, dex_pc));
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+ HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
+ if (reverse) {
+ std::swap(first, second);
+ }
+ AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
+ HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+ HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
+ if (reverse) {
+ std::swap(first, second);
+ }
+ AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) {
+ Thread* self = Thread::Current();
+ return cu->IsConstructor()
+ && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
+}
+
+// Returns true if `block` has only one successor which starts at the next
+// dex_pc after `instruction` at `dex_pc`.
+static bool IsFallthroughInstruction(const Instruction& instruction,
+ uint32_t dex_pc,
+ HBasicBlock* block) {
+ uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
+ return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
+}
+
+void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
+ HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
+ DexSwitchTable table(instruction, dex_pc);
+
+ if (table.GetNumEntries() == 0) {
+ // Empty Switch. Code falls through to the next block.
+ DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
+ AppendInstruction(new (arena_) HGoto(dex_pc));
+ } else if (table.ShouldBuildDecisionTree()) {
+ for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
+ HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
+ HEqual* comparison = new (arena_) HEqual(value, case_value, dex_pc);
+ AppendInstruction(comparison);
+ AppendInstruction(new (arena_) HIf(comparison, dex_pc));
+
+ if (!it.IsLast()) {
+ current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
+ }
+ }
+ } else {
+ AppendInstruction(
+ new (arena_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
+ }
+
+ current_block_ = nullptr;
+}
+
+void HInstructionBuilder::BuildReturn(const Instruction& instruction,
+ Primitive::Type type,
+ uint32_t dex_pc) {
+ if (type == Primitive::kPrimVoid) {
+ if (graph_->ShouldGenerateConstructorBarrier()) {
+ // The compilation unit is null during testing.
+ if (dex_compilation_unit_ != nullptr) {
+ DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_))
+ << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
+ }
+ AppendInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc));
+ }
+ AppendInstruction(new (arena_) HReturnVoid(dex_pc));
+ } else {
+ HInstruction* value = LoadLocal(instruction.VRegA(), type);
+ AppendInstruction(new (arena_) HReturn(value, dex_pc));
+ }
+ current_block_ = nullptr;
+}
+
+static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
+ switch (opcode) {
+ case Instruction::INVOKE_STATIC:
+ case Instruction::INVOKE_STATIC_RANGE:
+ return kStatic;
+ case Instruction::INVOKE_DIRECT:
+ case Instruction::INVOKE_DIRECT_RANGE:
+ return kDirect;
+ case Instruction::INVOKE_VIRTUAL:
+ case Instruction::INVOKE_VIRTUAL_QUICK:
+ case Instruction::INVOKE_VIRTUAL_RANGE:
+ case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
+ return kVirtual;
+ case Instruction::INVOKE_INTERFACE:
+ case Instruction::INVOKE_INTERFACE_RANGE:
+ return kInterface;
+ case Instruction::INVOKE_SUPER_RANGE:
+ case Instruction::INVOKE_SUPER:
+ return kSuper;
+ default:
+ LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
+ UNREACHABLE();
+ }
+}
+
+ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) {
+ ScopedObjectAccess soa(Thread::Current());
+ StackHandleScope<3> hs(soa.Self());
+
+ ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
+ Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
+ soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
+ Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass()));
+
+ ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>(
+ *dex_compilation_unit_->GetDexFile(),
+ method_idx,
+ dex_compilation_unit_->GetDexCache(),
+ class_loader,
+ /* referrer */ nullptr,
+ invoke_type);
+
+ if (UNLIKELY(resolved_method == nullptr)) {
+ // Clean up any exception left by type resolution.
+ soa.Self()->ClearException();
+ return nullptr;
+ }
+
+ // Check access. The class linker has a fast path for looking into the dex cache
+ // and does not check the access if it hits it.
+ if (compiling_class.Get() == nullptr) {
+ if (!resolved_method->IsPublic()) {
+ return nullptr;
+ }
+ } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(),
+ resolved_method,
+ dex_compilation_unit_->GetDexCache().Get(),
+ method_idx)) {
+ return nullptr;
+ }
+
+ // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
+ // We need to look at the referrer's super class vtable. We need to do this to know if we need to
+ // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
+ // which require runtime handling.
+ if (invoke_type == kSuper) {
+ if (compiling_class.Get() == nullptr) {
+ // We could not determine the method's class we need to wait until runtime.
+ DCHECK(Runtime::Current()->IsAotCompiler());
+ return nullptr;
+ }
+ ArtMethod* current_method = graph_->GetArtMethod();
+ DCHECK(current_method != nullptr);
+ Handle<mirror::Class> methods_class(hs.NewHandle(
+ dex_compilation_unit_->GetClassLinker()->ResolveReferencedClassOfMethod(Thread::Current(),
+ method_idx,
+ current_method)));
+ if (methods_class.Get() == nullptr) {
+ // Invoking a super method requires knowing the actual super class. If we did not resolve
+ // the compiling method's declaring class (which only happens for ahead of time
+ // compilation), bail out.
+ DCHECK(Runtime::Current()->IsAotCompiler());
+ return nullptr;
+ } else {
+ ArtMethod* actual_method;
+ if (methods_class->IsInterface()) {
+ actual_method = methods_class->FindVirtualMethodForInterfaceSuper(
+ resolved_method, class_linker->GetImagePointerSize());
+ } else {
+ uint16_t vtable_index = resolved_method->GetMethodIndex();
+ actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
+ vtable_index, class_linker->GetImagePointerSize());
+ }
+ if (actual_method != resolved_method &&
+ !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
+ // The back-end code generator relies on this check in order to ensure that it will not
+ // attempt to read the dex_cache with a dex_method_index that is not from the correct
+ // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
+ // builder, which means that the code-generator (and compiler driver during sharpening and
+ // inliner, maybe) might invoke an incorrect method.
+ // TODO: The actual method could still be referenced in the current dex file, so we
+ // could try locating it.
+ // TODO: Remove the dex_file restriction.
+ return nullptr;
+ }
+ if (!actual_method->IsInvokable()) {
+ // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
+ // could resolve the callee to the wrong method.
+ return nullptr;
+ }
+ resolved_method = actual_method;
+ }
+ }
+
+ // Check for incompatible class changes. The class linker has a fast path for
+ // looking into the dex cache and does not check incompatible class changes if it hits it.
+ if (resolved_method->CheckIncompatibleClassChange(invoke_type)) {
+ return nullptr;
+ }
+
+ return resolved_method;
+}
+
+bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
+ uint32_t dex_pc,
+ uint32_t method_idx,
+ uint32_t number_of_vreg_arguments,
+ bool is_range,
+ uint32_t* args,
+ uint32_t register_index) {
+ InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
+ const char* descriptor = dex_file_->GetMethodShorty(method_idx);
+ Primitive::Type return_type = Primitive::GetType(descriptor[0]);
+
+ // Remove the return type from the 'proto'.
+ size_t number_of_arguments = strlen(descriptor) - 1;
+ if (invoke_type != kStatic) { // instance call
+ // One extra argument for 'this'.
+ number_of_arguments++;
+ }
+
+ MethodReference target_method(dex_file_, method_idx);
+
+ // Special handling for string init.
+ int32_t string_init_offset = 0;
+ bool is_string_init = compiler_driver_->IsStringInit(method_idx,
+ dex_file_,
+ &string_init_offset);
+ // Replace calls to String.<init> with StringFactory.
+ if (is_string_init) {
+ HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
+ HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
+ HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
+ dchecked_integral_cast<uint64_t>(string_init_offset),
+ 0U
+ };
+ HInvoke* invoke = new (arena_) HInvokeStaticOrDirect(
+ arena_,
+ number_of_arguments - 1,
+ Primitive::kPrimNot /*return_type */,
+ dex_pc,
+ method_idx,
+ target_method,
+ dispatch_info,
+ invoke_type,
+ kStatic /* optimized_invoke_type */,
+ HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
+ return HandleStringInit(invoke,
+ number_of_vreg_arguments,
+ args,
+ register_index,
+ is_range,
+ descriptor);
+ }
+
+ ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type);
+
+ if (UNLIKELY(resolved_method == nullptr)) {
+ MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod);
+ HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_,
+ number_of_arguments,
+ return_type,
+ dex_pc,
+ method_idx,
+ invoke_type);
+ return HandleInvoke(invoke,
+ number_of_vreg_arguments,
+ args,
+ register_index,
+ is_range,
+ descriptor,
+ nullptr /* clinit_check */);
+ }
+
+ // Potential class initialization check, in the case of a static method call.
+ HClinitCheck* clinit_check = nullptr;
+ HInvoke* invoke = nullptr;
+ if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
+ // By default, consider that the called method implicitly requires
+ // an initialization check of its declaring method.
+ HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
+ = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
+ ScopedObjectAccess soa(Thread::Current());
+ if (invoke_type == kStatic) {
+ clinit_check = ProcessClinitCheckForInvoke(
+ dex_pc, resolved_method, method_idx, &clinit_check_requirement);
+ } else if (invoke_type == kSuper) {
+ if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
+ // Update the target method to the one resolved. Note that this may be a no-op if
+ // we resolved to the method referenced by the instruction.
+ method_idx = resolved_method->GetDexMethodIndex();
+ target_method = MethodReference(dex_file_, method_idx);
+ }
+ }
+
+ HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
+ HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod,
+ HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
+ 0u,
+ 0U
+ };
+ invoke = new (arena_) HInvokeStaticOrDirect(arena_,
+ number_of_arguments,
+ return_type,
+ dex_pc,
+ method_idx,
+ target_method,
+ dispatch_info,
+ invoke_type,
+ invoke_type,
+ clinit_check_requirement);
+ } else if (invoke_type == kVirtual) {
+ ScopedObjectAccess soa(Thread::Current()); // Needed for the method index
+ invoke = new (arena_) HInvokeVirtual(arena_,
+ number_of_arguments,
+ return_type,
+ dex_pc,
+ method_idx,
+ resolved_method->GetMethodIndex());
+ } else {
+ DCHECK_EQ(invoke_type, kInterface);
+ ScopedObjectAccess soa(Thread::Current()); // Needed for the method index
+ invoke = new (arena_) HInvokeInterface(arena_,
+ number_of_arguments,
+ return_type,
+ dex_pc,
+ method_idx,
+ resolved_method->GetDexMethodIndex());
+ }
+
+ return HandleInvoke(invoke,
+ number_of_vreg_arguments,
+ args,
+ register_index,
+ is_range,
+ descriptor,
+ clinit_check);
+}
+
+bool HInstructionBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) {
+ bool finalizable;
+ bool can_throw = NeedsAccessCheck(type_index, &finalizable);
+
+ // Only the non-resolved entrypoint handles the finalizable class case. If we
+ // need access checks, then we haven't resolved the method and the class may
+ // again be finalizable.
+ QuickEntrypointEnum entrypoint = (finalizable || can_throw)
+ ? kQuickAllocObject
+ : kQuickAllocObjectInitialized;
+
+ ScopedObjectAccess soa(Thread::Current());
+ StackHandleScope<3> hs(soa.Self());
+ Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+ dex_compilation_unit_->GetClassLinker()->FindDexCache(
+ soa.Self(), *dex_compilation_unit_->GetDexFile())));
+ Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
+ const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
+ Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
+ outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
+
+ if (outer_dex_cache.Get() != dex_cache.Get()) {
+ // We currently do not support inlining allocations across dex files.
+ return false;
+ }
+
+ HLoadClass* load_class = new (arena_) HLoadClass(
+ graph_->GetCurrentMethod(),
+ type_index,
+ outer_dex_file,
+ IsOutermostCompilingClass(type_index),
+ dex_pc,
+ /*needs_access_check*/ can_throw,
+ compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, type_index));
+
+ AppendInstruction(load_class);
+ HInstruction* cls = load_class;
+ if (!IsInitialized(resolved_class)) {
+ cls = new (arena_) HClinitCheck(load_class, dex_pc);
+ AppendInstruction(cls);
+ }
+
+ AppendInstruction(new (arena_) HNewInstance(
+ cls,
+ graph_->GetCurrentMethod(),
+ dex_pc,
+ type_index,
+ *dex_compilation_unit_->GetDexFile(),
+ can_throw,
+ finalizable,
+ entrypoint));
+ return true;
+}
+
+static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class)
+ SHARED_REQUIRES(Locks::mutator_lock_) {
+ return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
+}
+
+bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const {
+ if (cls.Get() == nullptr) {
+ return false;
+ }
+
+ // `CanAssumeClassIsLoaded` will return true if we're JITting, or will
+ // check whether the class is in an image for the AOT compilation.
+ if (cls->IsInitialized() &&
+ compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) {
+ return true;
+ }
+
+ if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) {
+ return true;
+ }
+
+ // TODO: We should walk over the inlined methods, but we don't pass
+ // that information to the builder.
+ if (IsSubClass(GetCompilingClass(), cls.Get())) {
+ return true;
+ }
+
+ return false;
+}
+
+HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
+ uint32_t dex_pc,
+ ArtMethod* resolved_method,
+ uint32_t method_idx,
+ HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
+ const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
+ Thread* self = Thread::Current();
+ StackHandleScope<4> hs(self);
+ Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+ dex_compilation_unit_->GetClassLinker()->FindDexCache(
+ self, *dex_compilation_unit_->GetDexFile())));
+ Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
+ outer_compilation_unit_->GetClassLinker()->FindDexCache(
+ self, outer_dex_file)));
+ Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
+ Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass()));
+
+ // The index at which the method's class is stored in the DexCache's type array.
+ uint32_t storage_index = DexFile::kDexNoIndex;
+ bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get());
+ if (is_outer_class) {
+ storage_index = outer_class->GetDexTypeIndex();
+ } else if (outer_dex_cache.Get() == dex_cache.Get()) {
+ // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
+ compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
+ GetCompilingClass(),
+ resolved_method,
+ method_idx,
+ &storage_index);
+ }
+
+ HClinitCheck* clinit_check = nullptr;
+
+ if (IsInitialized(resolved_method_class)) {
+ *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
+ } else if (storage_index != DexFile::kDexNoIndex) {
+ *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
+ HLoadClass* load_class = new (arena_) HLoadClass(
+ graph_->GetCurrentMethod(),
+ storage_index,
+ outer_dex_file,
+ is_outer_class,
+ dex_pc,
+ /*needs_access_check*/ false,
+ compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index));
+ AppendInstruction(load_class);
+ clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
+ AppendInstruction(clinit_check);
+ }
+ return clinit_check;
+}
+
+bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke,
+ uint32_t number_of_vreg_arguments,
+ uint32_t* args,
+ uint32_t register_index,
+ bool is_range,
+ const char* descriptor,
+ size_t start_index,
+ size_t* argument_index) {
+ uint32_t descriptor_index = 1; // Skip the return type.
+
+ for (size_t i = start_index;
+ // Make sure we don't go over the expected arguments or over the number of
+ // dex registers given. If the instruction was seen as dead by the verifier,
+ // it hasn't been properly checked.
+ (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
+ i++, (*argument_index)++) {
+ Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
+ bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
+ if (!is_range
+ && is_wide
+ && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
+ // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
+ // reject any class where this is violated. However, the verifier only does these checks
+ // on non trivially dead instructions, so we just bailout the compilation.
+ VLOG(compiler) << "Did not compile "
+ << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
+ << " because of non-sequential dex register pair in wide argument";
+ MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
+ return false;
+ }
+ HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
+ invoke->SetArgumentAt(*argument_index, arg);
+ if (is_wide) {
+ i++;
+ }
+ }
+
+ if (*argument_index != invoke->GetNumberOfArguments()) {
+ VLOG(compiler) << "Did not compile "
+ << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
+ << " because of wrong number of arguments in invoke instruction";
+ MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
+ return false;
+ }
+
+ if (invoke->IsInvokeStaticOrDirect() &&
+ HInvokeStaticOrDirect::NeedsCurrentMethodInput(
+ invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
+ invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
+ (*argument_index)++;
+ }
+
+ return true;
+}
+
+bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
+ uint32_t number_of_vreg_arguments,
+ uint32_t* args,
+ uint32_t register_index,
+ bool is_range,
+ const char* descriptor,
+ HClinitCheck* clinit_check) {
+ DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
+
+ size_t start_index = 0;
+ size_t argument_index = 0;
+ if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) { // Instance call.
+ HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot);
+ HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc());
+ AppendInstruction(null_check);
+ invoke->SetArgumentAt(0, null_check);
+ start_index = 1;
+ argument_index = 1;
+ }
+
+ if (!SetupInvokeArguments(invoke,
+ number_of_vreg_arguments,
+ args,
+ register_index,
+ is_range,
+ descriptor,
+ start_index,
+ &argument_index)) {
+ return false;
+ }
+
+ if (clinit_check != nullptr) {
+ // Add the class initialization check as last input of `invoke`.
+ DCHECK(invoke->IsInvokeStaticOrDirect());
+ DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
+ == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
+ invoke->SetArgumentAt(argument_index, clinit_check);
+ argument_index++;
+ }
+
+ AppendInstruction(invoke);
+ latest_result_ = invoke;
+
+ return true;
+}
+
+bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
+ uint32_t number_of_vreg_arguments,
+ uint32_t* args,
+ uint32_t register_index,
+ bool is_range,
+ const char* descriptor) {
+ DCHECK(invoke->IsInvokeStaticOrDirect());
+ DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
+
+ size_t start_index = 1;
+ size_t argument_index = 0;
+ if (!SetupInvokeArguments(invoke,
+ number_of_vreg_arguments,
+ args,
+ register_index,
+ is_range,
+ descriptor,
+ start_index,
+ &argument_index)) {
+ return false;
+ }
+
+ AppendInstruction(invoke);
+
+ // This is a StringFactory call, not an actual String constructor. Its result
+ // replaces the empty String pre-allocated by NewInstance.
+ uint32_t orig_this_reg = is_range ? register_index : args[0];
+ HInstruction* arg_this = LoadLocal(orig_this_reg, Primitive::kPrimNot);
+
+ // Replacing the NewInstance might render it redundant. Keep a list of these
+ // to be visited once it is clear whether it is has remaining uses.
+ if (arg_this->IsNewInstance()) {
+ ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
+ } else {
+ DCHECK(arg_this->IsPhi());
+ // NewInstance is not the direct input of the StringFactory call. It might
+ // be redundant but optimizing this case is not worth the effort.
+ }
+
+ // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
+ for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
+ if ((*current_locals_)[vreg] == arg_this) {
+ (*current_locals_)[vreg] = invoke;
+ }
+ }
+
+ return true;
+}
+
+static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
+ const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
+ const char* type = dex_file.GetFieldTypeDescriptor(field_id);
+ return Primitive::GetType(type[0]);
+}
+
+bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
+ uint32_t dex_pc,
+ bool is_put) {
+ uint32_t source_or_dest_reg = instruction.VRegA_22c();
+ uint32_t obj_reg = instruction.VRegB_22c();
+ uint16_t field_index;
+ if (instruction.IsQuickened()) {
+ if (!CanDecodeQuickenedInfo()) {
+ return false;
+ }
+ field_index = LookupQuickenedInfo(dex_pc);
+ } else {
+ field_index = instruction.VRegC_22c();
+ }
+
+ ScopedObjectAccess soa(Thread::Current());
+ ArtField* resolved_field =
+ compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
+
+
+ HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot);
+ HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc);
+ AppendInstruction(null_check);
+
+ Primitive::Type field_type = (resolved_field == nullptr)
+ ? GetFieldAccessType(*dex_file_, field_index)
+ : resolved_field->GetTypeAsPrimitiveType();
+ if (is_put) {
+ HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
+ HInstruction* field_set = nullptr;
+ if (resolved_field == nullptr) {
+ MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
+ field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check,
+ value,
+ field_type,
+ field_index,
+ dex_pc);
+ } else {
+ uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
+ field_set = new (arena_) HInstanceFieldSet(null_check,
+ value,
+ field_type,
+ resolved_field->GetOffset(),
+ resolved_field->IsVolatile(),
+ field_index,
+ class_def_index,
+ *dex_file_,
+ dex_compilation_unit_->GetDexCache(),
+ dex_pc);
+ }
+ AppendInstruction(field_set);
+ } else {
+ HInstruction* field_get = nullptr;
+ if (resolved_field == nullptr) {
+ MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
+ field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check,
+ field_type,
+ field_index,
+ dex_pc);
+ } else {
+ uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
+ field_get = new (arena_) HInstanceFieldGet(null_check,
+ field_type,
+ resolved_field->GetOffset(),
+ resolved_field->IsVolatile(),
+ field_index,
+ class_def_index,
+ *dex_file_,
+ dex_compilation_unit_->GetDexCache(),
+ dex_pc);
+ }
+ AppendInstruction(field_get);
+ UpdateLocal(source_or_dest_reg, field_get);
+ }
+
+ return true;
+}
+
+static mirror::Class* GetClassFrom(CompilerDriver* driver,
+ const DexCompilationUnit& compilation_unit) {
+ ScopedObjectAccess soa(Thread::Current());
+ StackHandleScope<2> hs(soa.Self());
+ const DexFile& dex_file = *compilation_unit.GetDexFile();
+ Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
+ soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader())));
+ Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+ compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file)));
+
+ return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
+}
+
+mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const {
+ return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
+}
+
+mirror::Class* HInstructionBuilder::GetCompilingClass() const {
+ return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
+}
+
+bool HInstructionBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
+ ScopedObjectAccess soa(Thread::Current());
+ StackHandleScope<4> hs(soa.Self());
+ Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+ dex_compilation_unit_->GetClassLinker()->FindDexCache(
+ soa.Self(), *dex_compilation_unit_->GetDexFile())));
+ Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
+ soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
+ Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
+ soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
+ Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
+
+ // GetOutermostCompilingClass returns null when the class is unresolved
+ // (e.g. if it derives from an unresolved class). This is bogus knowing that
+ // we are compiling it.
+ // When this happens we cannot establish a direct relation between the current
+ // class and the outer class, so we return false.
+ // (Note that this is only used for optimizing invokes and field accesses)
+ return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get());
+}
+
+void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
+ uint32_t dex_pc,
+ bool is_put,
+ Primitive::Type field_type) {
+ uint32_t source_or_dest_reg = instruction.VRegA_21c();
+ uint16_t field_index = instruction.VRegB_21c();
+
+ if (is_put) {
+ HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
+ AppendInstruction(
+ new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
+ } else {
+ AppendInstruction(new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
+ UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
+ }
+}
+
+bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
+ uint32_t dex_pc,
+ bool is_put) {
+ uint32_t source_or_dest_reg = instruction.VRegA_21c();
+ uint16_t field_index = instruction.VRegB_21c();
+
+ ScopedObjectAccess soa(Thread::Current());
+ StackHandleScope<5> hs(soa.Self());
+ Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+ dex_compilation_unit_->GetClassLinker()->FindDexCache(
+ soa.Self(), *dex_compilation_unit_->GetDexFile())));
+ Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
+ soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
+ ArtField* resolved_field = compiler_driver_->ResolveField(
+ soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
+
+ if (resolved_field == nullptr) {
+ MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
+ Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index);
+ BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
+ return true;
+ }
+
+ Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
+ const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
+ Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
+ outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
+ Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
+
+ // The index at which the field's class is stored in the DexCache's type array.
+ uint32_t storage_index;
+ bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass());
+ if (is_outer_class) {
+ storage_index = outer_class->GetDexTypeIndex();
+ } else if (outer_dex_cache.Get() != dex_cache.Get()) {
+ // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
+ return false;
+ } else {
+ // TODO: This is rather expensive. Perf it and cache the results if needed.
+ std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
+ outer_dex_cache.Get(),
+ GetCompilingClass(),
+ resolved_field,
+ field_index,
+ &storage_index);
+ bool can_easily_access = is_put ? pair.second : pair.first;
+ if (!can_easily_access) {
+ MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
+ BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
+ return true;
+ }
+ }
+
+ bool is_in_cache =
+ compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index);
+ HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(),
+ storage_index,
+ outer_dex_file,
+ is_outer_class,
+ dex_pc,
+ /*needs_access_check*/ false,
+ is_in_cache);
+ AppendInstruction(constant);
+
+ HInstruction* cls = constant;
+
+ Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass()));
+ if (!IsInitialized(klass)) {
+ cls = new (arena_) HClinitCheck(constant, dex_pc);
+ AppendInstruction(cls);
+ }
+
+ uint16_t class_def_index = klass->GetDexClassDefIndex();
+ if (is_put) {
+ // We need to keep the class alive before loading the value.
+ HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
+ DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
+ AppendInstruction(new (arena_) HStaticFieldSet(cls,
+ value,
+ field_type,
+ resolved_field->GetOffset(),
+ resolved_field->IsVolatile(),
+ field_index,
+ class_def_index,
+ *dex_file_,
+ dex_cache_,
+ dex_pc));
+ } else {
+ AppendInstruction(new (arena_) HStaticFieldGet(cls,
+ field_type,
+ resolved_field->GetOffset(),
+ resolved_field->IsVolatile(),
+ field_index,
+ class_def_index,
+ *dex_file_,
+ dex_cache_,
+ dex_pc));
+ UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
+ }
+ return true;
+}
+
+void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
+ uint16_t first_vreg,
+ int64_t second_vreg_or_constant,
+ uint32_t dex_pc,
+ Primitive::Type type,
+ bool second_is_constant,
+ bool isDiv) {
+ DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
+
+ HInstruction* first = LoadLocal(first_vreg, type);
+ HInstruction* second = nullptr;
+ if (second_is_constant) {
+ if (type == Primitive::kPrimInt) {
+ second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
+ } else {
+ second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
+ }
+ } else {
+ second = LoadLocal(second_vreg_or_constant, type);
+ }
+
+ if (!second_is_constant
+ || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
+ || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
+ second = new (arena_) HDivZeroCheck(second, dex_pc);
+ AppendInstruction(second);
+ }
+
+ if (isDiv) {
+ AppendInstruction(new (arena_) HDiv(type, first, second, dex_pc));
+ } else {
+ AppendInstruction(new (arena_) HRem(type, first, second, dex_pc));
+ }
+ UpdateLocal(out_vreg, current_block_->GetLastInstruction());
+}
+
+void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
+ uint32_t dex_pc,
+ bool is_put,
+ Primitive::Type anticipated_type) {
+ uint8_t source_or_dest_reg = instruction.VRegA_23x();
+ uint8_t array_reg = instruction.VRegB_23x();
+ uint8_t index_reg = instruction.VRegC_23x();
+
+ HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot);
+ object = new (arena_) HNullCheck(object, dex_pc);
+ AppendInstruction(object);
+
+ HInstruction* length = new (arena_) HArrayLength(object, dex_pc);
+ AppendInstruction(length);
+ HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
+ index = new (arena_) HBoundsCheck(index, length, dex_pc);
+ AppendInstruction(index);
+ if (is_put) {
+ HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
+ // TODO: Insert a type check node if the type is Object.
+ HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
+ ssa_builder_->MaybeAddAmbiguousArraySet(aset);
+ AppendInstruction(aset);
+ } else {
+ HArrayGet* aget = new (arena_) HArrayGet(object, index, anticipated_type, dex_pc);
+ ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
+ AppendInstruction(aget);
+ UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
+ }
+ graph_->SetHasBoundsChecks(true);
+}
+
+void HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
+ uint32_t type_index,
+ uint32_t number_of_vreg_arguments,
+ bool is_range,
+ uint32_t* args,
+ uint32_t register_index) {
+ HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
+ bool finalizable;
+ QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
+ ? kQuickAllocArrayWithAccessCheck
+ : kQuickAllocArray;
+ HInstruction* object = new (arena_) HNewArray(length,
+ graph_->GetCurrentMethod(),
+ dex_pc,
+ type_index,
+ *dex_compilation_unit_->GetDexFile(),
+ entrypoint);
+ AppendInstruction(object);
+
+ const char* descriptor = dex_file_->StringByTypeIdx(type_index);
+ DCHECK_EQ(descriptor[0], '[') << descriptor;
+ char primitive = descriptor[1];
+ DCHECK(primitive == 'I'
+ || primitive == 'L'
+ || primitive == '[') << descriptor;
+ bool is_reference_array = (primitive == 'L') || (primitive == '[');
+ Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
+
+ for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
+ HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
+ HInstruction* index = graph_->GetIntConstant(i, dex_pc);
+ HArraySet* aset = new (arena_) HArraySet(object, index, value, type, dex_pc);
+ ssa_builder_->MaybeAddAmbiguousArraySet(aset);
+ AppendInstruction(aset);
+ }
+ latest_result_ = object;
+}
+
+template <typename T>
+void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
+ const T* data,
+ uint32_t element_count,
+ Primitive::Type anticipated_type,
+ uint32_t dex_pc) {
+ for (uint32_t i = 0; i < element_count; ++i) {
+ HInstruction* index = graph_->GetIntConstant(i, dex_pc);
+ HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
+ HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
+ ssa_builder_->MaybeAddAmbiguousArraySet(aset);
+ AppendInstruction(aset);
+ }
+}
+
+void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
+ HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot);
+ HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
+ AppendInstruction(null_check);
+
+ HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc);
+ AppendInstruction(length);
+
+ int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
+ const Instruction::ArrayDataPayload* payload =
+ reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset);
+ const uint8_t* data = payload->data;
+ uint32_t element_count = payload->element_count;
+
+ // Implementation of this DEX instruction seems to be that the bounds check is
+ // done before doing any stores.
+ HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
+ AppendInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
+
+ switch (payload->element_width) {
+ case 1:
+ BuildFillArrayData(null_check,
+ reinterpret_cast<const int8_t*>(data),
+ element_count,
+ Primitive::kPrimByte,
+ dex_pc);
+ break;
+ case 2:
+ BuildFillArrayData(null_check,
+ reinterpret_cast<const int16_t*>(data),
+ element_count,
+ Primitive::kPrimShort,
+ dex_pc);
+ break;
+ case 4:
+ BuildFillArrayData(null_check,
+ reinterpret_cast<const int32_t*>(data),
+ element_count,
+ Primitive::kPrimInt,
+ dex_pc);
+ break;
+ case 8:
+ BuildFillWideArrayData(null_check,
+ reinterpret_cast<const int64_t*>(data),
+ element_count,
+ dex_pc);
+ break;
+ default:
+ LOG(FATAL) << "Unknown element width for " << payload->element_width;
+ }
+ graph_->SetHasBoundsChecks(true);
+}
+
+void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
+ const int64_t* data,
+ uint32_t element_count,
+ uint32_t dex_pc) {
+ for (uint32_t i = 0; i < element_count; ++i) {
+ HInstruction* index = graph_->GetIntConstant(i, dex_pc);
+ HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
+ HArraySet* aset = new (arena_) HArraySet(object, index, value, Primitive::kPrimLong, dex_pc);
+ ssa_builder_->MaybeAddAmbiguousArraySet(aset);
+ AppendInstruction(aset);
+ }
+}
+
+static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
+ SHARED_REQUIRES(Locks::mutator_lock_) {
+ if (cls.Get() == nullptr) {
+ return TypeCheckKind::kUnresolvedCheck;
+ } else if (cls->IsInterface()) {
+ return TypeCheckKind::kInterfaceCheck;
+ } else if (cls->IsArrayClass()) {
+ if (cls->GetComponentType()->IsObjectClass()) {
+ return TypeCheckKind::kArrayObjectCheck;
+ } else if (cls->CannotBeAssignedFromOtherTypes()) {
+ return TypeCheckKind::kExactCheck;
+ } else {
+ return TypeCheckKind::kArrayCheck;
+ }
+ } else if (cls->IsFinal()) {
+ return TypeCheckKind::kExactCheck;
+ } else if (cls->IsAbstract()) {
+ return TypeCheckKind::kAbstractClassCheck;
+ } else {
+ return TypeCheckKind::kClassHierarchyCheck;
+ }
+}
+
+void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
+ uint8_t destination,
+ uint8_t reference,
+ uint16_t type_index,
+ uint32_t dex_pc) {
+ bool type_known_final, type_known_abstract, use_declaring_class;
+ bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
+ dex_compilation_unit_->GetDexMethodIndex(),
+ *dex_compilation_unit_->GetDexFile(),
+ type_index,
+ &type_known_final,
+ &type_known_abstract,
+ &use_declaring_class);
+
+ ScopedObjectAccess soa(Thread::Current());
+ StackHandleScope<2> hs(soa.Self());
+ const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
+ Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+ dex_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), dex_file)));
+ Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
+
+ HInstruction* object = LoadLocal(reference, Primitive::kPrimNot);
+ HLoadClass* cls = new (arena_) HLoadClass(
+ graph_->GetCurrentMethod(),
+ type_index,
+ dex_file,
+ IsOutermostCompilingClass(type_index),
+ dex_pc,
+ !can_access,
+ compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_file, type_index));
+ AppendInstruction(cls);
+
+ TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class);
+ if (instruction.Opcode() == Instruction::INSTANCE_OF) {
+ AppendInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc));
+ UpdateLocal(destination, current_block_->GetLastInstruction());
+ } else {
+ DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
+ // We emit a CheckCast followed by a BoundType. CheckCast is a statement
+ // which may throw. If it succeeds BoundType sets the new type of `object`
+ // for all subsequent uses.
+ AppendInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc));
+ AppendInstruction(new (arena_) HBoundType(object, dex_pc));
+ UpdateLocal(reference, current_block_->GetLastInstruction());
+ }
+}
+
+bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const {
+ return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
+ dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, finalizable);
+}
+
+bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
+ return interpreter_metadata_ != nullptr;
+}
+
+uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t dex_pc) {
+ DCHECK(interpreter_metadata_ != nullptr);
+
+ // First check if the info has already been decoded from `interpreter_metadata_`.
+ auto it = skipped_interpreter_metadata_.find(dex_pc);
+ if (it != skipped_interpreter_metadata_.end()) {
+ // Remove the entry from the map and return the parsed info.
+ uint16_t value_in_map = it->second;
+ skipped_interpreter_metadata_.erase(it);
+ return value_in_map;
+ }
+
+ // Otherwise start parsing `interpreter_metadata_` until the slot for `dex_pc`
+ // is found. Store skipped values in the `skipped_interpreter_metadata_` map.
+ while (true) {
+ uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
+ uint16_t value_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
+ DCHECK_LE(dex_pc_in_map, dex_pc);
+
+ if (dex_pc_in_map == dex_pc) {
+ return value_in_map;
+ } else {
+ skipped_interpreter_metadata_.Put(dex_pc_in_map, value_in_map);
+ }
+ }
+}
+
+bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
+ switch (instruction.Opcode()) {
+ case Instruction::CONST_4: {
+ int32_t register_index = instruction.VRegA();
+ HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
+ UpdateLocal(register_index, constant);
+ break;
+ }
+
+ case Instruction::CONST_16: {
+ int32_t register_index = instruction.VRegA();
+ HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
+ UpdateLocal(register_index, constant);
+ break;
+ }
+
+ case Instruction::CONST: {
+ int32_t register_index = instruction.VRegA();
+ HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
+ UpdateLocal(register_index, constant);
+ break;
+ }
+
+ case Instruction::CONST_HIGH16: {
+ int32_t register_index = instruction.VRegA();
+ HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
+ UpdateLocal(register_index, constant);
+ break;
+ }
+
+ case Instruction::CONST_WIDE_16: {
+ int32_t register_index = instruction.VRegA();
+ // Get 16 bits of constant value, sign extended to 64 bits.
+ int64_t value = instruction.VRegB_21s();
+ value <<= 48;
+ value >>= 48;
+ HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
+ UpdateLocal(register_index, constant);
+ break;
+ }
+
+ case Instruction::CONST_WIDE_32: {
+ int32_t register_index = instruction.VRegA();
+ // Get 32 bits of constant value, sign extended to 64 bits.
+ int64_t value = instruction.VRegB_31i();
+ value <<= 32;
+ value >>= 32;
+ HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
+ UpdateLocal(register_index, constant);
+ break;
+ }
+
+ case Instruction::CONST_WIDE: {
+ int32_t register_index = instruction.VRegA();
+ HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
+ UpdateLocal(register_index, constant);
+ break;
+ }
+
+ case Instruction::CONST_WIDE_HIGH16: {
+ int32_t register_index = instruction.VRegA();
+ int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
+ HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
+ UpdateLocal(register_index, constant);
+ break;
+ }
+
+ // Note that the SSA building will refine the types.
+ case Instruction::MOVE:
+ case Instruction::MOVE_FROM16:
+ case Instruction::MOVE_16: {
+ HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+ UpdateLocal(instruction.VRegA(), value);
+ break;
+ }
+
+ // Note that the SSA building will refine the types.
+ case Instruction::MOVE_WIDE:
+ case Instruction::MOVE_WIDE_FROM16:
+ case Instruction::MOVE_WIDE_16: {
+ HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
+ UpdateLocal(instruction.VRegA(), value);
+ break;
+ }
+
+ case Instruction::MOVE_OBJECT:
+ case Instruction::MOVE_OBJECT_16:
+ case Instruction::MOVE_OBJECT_FROM16: {
+ HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot);
+ UpdateLocal(instruction.VRegA(), value);
+ break;
+ }
+
+ case Instruction::RETURN_VOID_NO_BARRIER:
+ case Instruction::RETURN_VOID: {
+ BuildReturn(instruction, Primitive::kPrimVoid, dex_pc);
+ break;
+ }
+
+#define IF_XX(comparison, cond) \
+ case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
+ case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
+
+ IF_XX(HEqual, EQ);
+ IF_XX(HNotEqual, NE);
+ IF_XX(HLessThan, LT);
+ IF_XX(HLessThanOrEqual, LE);
+ IF_XX(HGreaterThan, GT);
+ IF_XX(HGreaterThanOrEqual, GE);
+
+ case Instruction::GOTO:
+ case Instruction::GOTO_16:
+ case Instruction::GOTO_32: {
+ AppendInstruction(new (arena_) HGoto(dex_pc));
+ current_block_ = nullptr;
+ break;
+ }
+
+ case Instruction::RETURN: {
+ BuildReturn(instruction, return_type_, dex_pc);
+ break;
+ }
+
+ case Instruction::RETURN_OBJECT: {
+ BuildReturn(instruction, return_type_, dex_pc);
+ break;
+ }
+
+ case Instruction::RETURN_WIDE: {
+ BuildReturn(instruction, return_type_, dex_pc);
+ break;
+ }
+
+ case Instruction::INVOKE_DIRECT:
+ case Instruction::INVOKE_INTERFACE:
+ case Instruction::INVOKE_STATIC:
+ case Instruction::INVOKE_SUPER:
+ case Instruction::INVOKE_VIRTUAL:
+ case Instruction::INVOKE_VIRTUAL_QUICK: {
+ uint16_t method_idx;
+ if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
+ if (!CanDecodeQuickenedInfo()) {
+ return false;
+ }
+ method_idx = LookupQuickenedInfo(dex_pc);
+ } else {
+ method_idx = instruction.VRegB_35c();
+ }
+ uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
+ uint32_t args[5];
+ instruction.GetVarArgs(args);
+ if (!BuildInvoke(instruction, dex_pc, method_idx,
+ number_of_vreg_arguments, false, args, -1)) {
+ return false;
+ }
+ break;
+ }
+
+ case Instruction::INVOKE_DIRECT_RANGE:
+ case Instruction::INVOKE_INTERFACE_RANGE:
+ case Instruction::INVOKE_STATIC_RANGE:
+ case Instruction::INVOKE_SUPER_RANGE:
+ case Instruction::INVOKE_VIRTUAL_RANGE:
+ case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
+ uint16_t method_idx;
+ if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
+ if (!CanDecodeQuickenedInfo()) {
+ return false;
+ }
+ method_idx = LookupQuickenedInfo(dex_pc);
+ } else {
+ method_idx = instruction.VRegB_3rc();
+ }
+ uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
+ uint32_t register_index = instruction.VRegC();
+ if (!BuildInvoke(instruction, dex_pc, method_idx,
+ number_of_vreg_arguments, true, nullptr, register_index)) {
+ return false;
+ }
+ break;
+ }
+
+ case Instruction::NEG_INT: {
+ Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::NEG_LONG: {
+ Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::NEG_FLOAT: {
+ Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::NEG_DOUBLE: {
+ Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::NOT_INT: {
+ Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::NOT_LONG: {
+ Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::INT_TO_LONG: {
+ Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::INT_TO_FLOAT: {
+ Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::INT_TO_DOUBLE: {
+ Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::LONG_TO_INT: {
+ Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::LONG_TO_FLOAT: {
+ Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::LONG_TO_DOUBLE: {
+ Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::FLOAT_TO_INT: {
+ Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::FLOAT_TO_LONG: {
+ Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::FLOAT_TO_DOUBLE: {
+ Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::DOUBLE_TO_INT: {
+ Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::DOUBLE_TO_LONG: {
+ Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::DOUBLE_TO_FLOAT: {
+ Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::INT_TO_BYTE: {
+ Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
+ break;
+ }
+
+ case Instruction::INT_TO_SHORT: {
+ Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
+ break;
+ }
+
+ case Instruction::INT_TO_CHAR: {
+ Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_INT: {
+ Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_LONG: {
+ Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_DOUBLE: {
+ Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_FLOAT: {
+ Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::SUB_INT: {
+ Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::SUB_LONG: {
+ Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::SUB_FLOAT: {
+ Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::SUB_DOUBLE: {
+ Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_INT_2ADDR: {
+ Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_INT: {
+ Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_LONG: {
+ Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_FLOAT: {
+ Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_DOUBLE: {
+ Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::DIV_INT: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+ dex_pc, Primitive::kPrimInt, false, true);
+ break;
+ }
+
+ case Instruction::DIV_LONG: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+ dex_pc, Primitive::kPrimLong, false, true);
+ break;
+ }
+
+ case Instruction::DIV_FLOAT: {
+ Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::DIV_DOUBLE: {
+ Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::REM_INT: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+ dex_pc, Primitive::kPrimInt, false, false);
+ break;
+ }
+
+ case Instruction::REM_LONG: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+ dex_pc, Primitive::kPrimLong, false, false);
+ break;
+ }
+
+ case Instruction::REM_FLOAT: {
+ Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::REM_DOUBLE: {
+ Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::AND_INT: {
+ Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::AND_LONG: {
+ Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::SHL_INT: {
+ Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::SHL_LONG: {
+ Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::SHR_INT: {
+ Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::SHR_LONG: {
+ Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::USHR_INT: {
+ Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::USHR_LONG: {
+ Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::OR_INT: {
+ Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::OR_LONG: {
+ Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::XOR_INT: {
+ Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::XOR_LONG: {
+ Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_LONG_2ADDR: {
+ Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_DOUBLE_2ADDR: {
+ Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_FLOAT_2ADDR: {
+ Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::SUB_INT_2ADDR: {
+ Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::SUB_LONG_2ADDR: {
+ Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::SUB_FLOAT_2ADDR: {
+ Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::SUB_DOUBLE_2ADDR: {
+ Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_INT_2ADDR: {
+ Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_LONG_2ADDR: {
+ Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_FLOAT_2ADDR: {
+ Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_DOUBLE_2ADDR: {
+ Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::DIV_INT_2ADDR: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
+ dex_pc, Primitive::kPrimInt, false, true);
+ break;
+ }
+
+ case Instruction::DIV_LONG_2ADDR: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
+ dex_pc, Primitive::kPrimLong, false, true);
+ break;
+ }
+
+ case Instruction::REM_INT_2ADDR: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
+ dex_pc, Primitive::kPrimInt, false, false);
+ break;
+ }
+
+ case Instruction::REM_LONG_2ADDR: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
+ dex_pc, Primitive::kPrimLong, false, false);
+ break;
+ }
+
+ case Instruction::REM_FLOAT_2ADDR: {
+ Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::REM_DOUBLE_2ADDR: {
+ Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::SHL_INT_2ADDR: {
+ Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::SHL_LONG_2ADDR: {
+ Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::SHR_INT_2ADDR: {
+ Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::SHR_LONG_2ADDR: {
+ Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::USHR_INT_2ADDR: {
+ Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::USHR_LONG_2ADDR: {
+ Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::DIV_FLOAT_2ADDR: {
+ Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
+ break;
+ }
+
+ case Instruction::DIV_DOUBLE_2ADDR: {
+ Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
+ break;
+ }
+
+ case Instruction::AND_INT_2ADDR: {
+ Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::AND_LONG_2ADDR: {
+ Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::OR_INT_2ADDR: {
+ Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::OR_LONG_2ADDR: {
+ Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::XOR_INT_2ADDR: {
+ Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
+ break;
+ }
+
+ case Instruction::XOR_LONG_2ADDR: {
+ Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_INT_LIT16: {
+ Binop_22s<HAdd>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::AND_INT_LIT16: {
+ Binop_22s<HAnd>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::OR_INT_LIT16: {
+ Binop_22s<HOr>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::XOR_INT_LIT16: {
+ Binop_22s<HXor>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::RSUB_INT: {
+ Binop_22s<HSub>(instruction, true, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_INT_LIT16: {
+ Binop_22s<HMul>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::ADD_INT_LIT8: {
+ Binop_22b<HAdd>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::AND_INT_LIT8: {
+ Binop_22b<HAnd>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::OR_INT_LIT8: {
+ Binop_22b<HOr>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::XOR_INT_LIT8: {
+ Binop_22b<HXor>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::RSUB_INT_LIT8: {
+ Binop_22b<HSub>(instruction, true, dex_pc);
+ break;
+ }
+
+ case Instruction::MUL_INT_LIT8: {
+ Binop_22b<HMul>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::DIV_INT_LIT16:
+ case Instruction::DIV_INT_LIT8: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+ dex_pc, Primitive::kPrimInt, true, true);
+ break;
+ }
+
+ case Instruction::REM_INT_LIT16:
+ case Instruction::REM_INT_LIT8: {
+ BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+ dex_pc, Primitive::kPrimInt, true, false);
+ break;
+ }
+
+ case Instruction::SHL_INT_LIT8: {
+ Binop_22b<HShl>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::SHR_INT_LIT8: {
+ Binop_22b<HShr>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::USHR_INT_LIT8: {
+ Binop_22b<HUShr>(instruction, false, dex_pc);
+ break;
+ }
+
+ case Instruction::NEW_INSTANCE: {
+ if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) {
+ return false;
+ }
+ UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+ break;
+ }
+
+ case Instruction::NEW_ARRAY: {
+ uint16_t type_index = instruction.VRegC_22c();
+ HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt);
+ bool finalizable;
+ QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
+ ? kQuickAllocArrayWithAccessCheck
+ : kQuickAllocArray;
+ AppendInstruction(new (arena_) HNewArray(length,
+ graph_->GetCurrentMethod(),
+ dex_pc,
+ type_index,
+ *dex_compilation_unit_->GetDexFile(),
+ entrypoint));
+ UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
+ break;
+ }
+
+ case Instruction::FILLED_NEW_ARRAY: {
+ uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
+ uint32_t type_index = instruction.VRegB_35c();
+ uint32_t args[5];
+ instruction.GetVarArgs(args);
+ BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
+ break;
+ }
+
+ case Instruction::FILLED_NEW_ARRAY_RANGE: {
+ uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
+ uint32_t type_index = instruction.VRegB_3rc();
+ uint32_t register_index = instruction.VRegC_3rc();
+ BuildFilledNewArray(
+ dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
+ break;
+ }
+
+ case Instruction::FILL_ARRAY_DATA: {
+ BuildFillArrayData(instruction, dex_pc);
+ break;
+ }
+
+ case Instruction::MOVE_RESULT:
+ case Instruction::MOVE_RESULT_WIDE:
+ case Instruction::MOVE_RESULT_OBJECT: {
+ DCHECK(latest_result_ != nullptr);
+ UpdateLocal(instruction.VRegA(), latest_result_);
+ latest_result_ = nullptr;
+ break;
+ }
+
+ case Instruction::CMP_LONG: {
+ Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc);
+ break;
+ }
+
+ case Instruction::CMPG_FLOAT: {
+ Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc);
+ break;
+ }
+
+ case Instruction::CMPG_DOUBLE: {
+ Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc);
+ break;
+ }
+
+ case Instruction::CMPL_FLOAT: {
+ Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc);
+ break;
+ }
+
+ case Instruction::CMPL_DOUBLE: {
+ Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc);
+ break;
+ }
+
+ case Instruction::NOP:
+ break;
+
+ case Instruction::IGET:
+ case Instruction::IGET_QUICK:
+ case Instruction::IGET_WIDE:
+ case Instruction::IGET_WIDE_QUICK:
+ case Instruction::IGET_OBJECT:
+ case Instruction::IGET_OBJECT_QUICK:
+ case Instruction::IGET_BOOLEAN:
+ case Instruction::IGET_BOOLEAN_QUICK:
+ case Instruction::IGET_BYTE:
+ case Instruction::IGET_BYTE_QUICK:
+ case Instruction::IGET_CHAR:
+ case Instruction::IGET_CHAR_QUICK:
+ case Instruction::IGET_SHORT:
+ case Instruction::IGET_SHORT_QUICK: {
+ if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
+ return false;
+ }
+ break;
+ }
+
+ case Instruction::IPUT:
+ case Instruction::IPUT_QUICK:
+ case Instruction::IPUT_WIDE:
+ case Instruction::IPUT_WIDE_QUICK:
+ case Instruction::IPUT_OBJECT:
+ case Instruction::IPUT_OBJECT_QUICK:
+ case Instruction::IPUT_BOOLEAN:
+ case Instruction::IPUT_BOOLEAN_QUICK:
+ case Instruction::IPUT_BYTE:
+ case Instruction::IPUT_BYTE_QUICK:
+ case Instruction::IPUT_CHAR:
+ case Instruction::IPUT_CHAR_QUICK:
+ case Instruction::IPUT_SHORT:
+ case Instruction::IPUT_SHORT_QUICK: {
+ if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
+ return false;
+ }
+ break;
+ }
+
+ case Instruction::SGET:
+ case Instruction::SGET_WIDE:
+ case Instruction::SGET_OBJECT:
+ case Instruction::SGET_BOOLEAN:
+ case Instruction::SGET_BYTE:
+ case Instruction::SGET_CHAR:
+ case Instruction::SGET_SHORT: {
+ if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
+ return false;
+ }
+ break;
+ }
+
+ case Instruction::SPUT:
+ case Instruction::SPUT_WIDE:
+ case Instruction::SPUT_OBJECT:
+ case Instruction::SPUT_BOOLEAN:
+ case Instruction::SPUT_BYTE:
+ case Instruction::SPUT_CHAR:
+ case Instruction::SPUT_SHORT: {
+ if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
+ return false;
+ }
+ break;
+ }
+
+#define ARRAY_XX(kind, anticipated_type) \
+ case Instruction::AGET##kind: { \
+ BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \
+ break; \
+ } \
+ case Instruction::APUT##kind: { \
+ BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \
+ break; \
+ }
+
+ ARRAY_XX(, Primitive::kPrimInt);
+ ARRAY_XX(_WIDE, Primitive::kPrimLong);
+ ARRAY_XX(_OBJECT, Primitive::kPrimNot);
+ ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
+ ARRAY_XX(_BYTE, Primitive::kPrimByte);
+ ARRAY_XX(_CHAR, Primitive::kPrimChar);
+ ARRAY_XX(_SHORT, Primitive::kPrimShort);
+
+ case Instruction::ARRAY_LENGTH: {
+ HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot);
+ object = new (arena_) HNullCheck(object, dex_pc);
+ AppendInstruction(object);
+ AppendInstruction(new (arena_) HArrayLength(object, dex_pc));
+ UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
+ break;
+ }
+
+ case Instruction::CONST_STRING: {
+ uint32_t string_index = instruction.VRegB_21c();
+ AppendInstruction(
+ new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
+ UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
+ break;
+ }
+
+ case Instruction::CONST_STRING_JUMBO: {
+ uint32_t string_index = instruction.VRegB_31c();
+ AppendInstruction(
+ new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
+ UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
+ break;
+ }
+
+ case Instruction::CONST_CLASS: {
+ uint16_t type_index = instruction.VRegB_21c();
+ bool type_known_final;
+ bool type_known_abstract;
+ bool dont_use_is_referrers_class;
+ // `CanAccessTypeWithoutChecks` will tell whether the method being
+ // built is trying to access its own class, so that the generated
+ // code can optimize for this case. However, the optimization does not
+ // work for inlining, so we use `IsOutermostCompilingClass` instead.
+ bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
+ dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
+ &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
+ AppendInstruction(new (arena_) HLoadClass(
+ graph_->GetCurrentMethod(),
+ type_index,
+ *dex_file_,
+ IsOutermostCompilingClass(type_index),
+ dex_pc,
+ !can_access,
+ compiler_driver_->CanAssumeTypeIsPresentInDexCache(*dex_file_, type_index)));
+ UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
+ break;
+ }
+
+ case Instruction::MOVE_EXCEPTION: {
+ AppendInstruction(new (arena_) HLoadException(dex_pc));
+ UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
+ AppendInstruction(new (arena_) HClearException(dex_pc));
+ break;
+ }
+
+ case Instruction::THROW: {
+ HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot);
+ AppendInstruction(new (arena_) HThrow(exception, dex_pc));
+ // We finished building this block. Set the current block to null to avoid
+ // adding dead instructions to it.
+ current_block_ = nullptr;
+ break;
+ }
+
+ case Instruction::INSTANCE_OF: {
+ uint8_t destination = instruction.VRegA_22c();
+ uint8_t reference = instruction.VRegB_22c();
+ uint16_t type_index = instruction.VRegC_22c();
+ BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
+ break;
+ }
+
+ case Instruction::CHECK_CAST: {
+ uint8_t reference = instruction.VRegA_21c();
+ uint16_t type_index = instruction.VRegB_21c();
+ BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
+ break;
+ }
+
+ case Instruction::MONITOR_ENTER: {
+ AppendInstruction(new (arena_) HMonitorOperation(
+ LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
+ HMonitorOperation::OperationKind::kEnter,
+ dex_pc));
+ break;
+ }
+
+ case Instruction::MONITOR_EXIT: {
+ AppendInstruction(new (arena_) HMonitorOperation(
+ LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
+ HMonitorOperation::OperationKind::kExit,
+ dex_pc));
+ break;
+ }
+
+ case Instruction::SPARSE_SWITCH:
+ case Instruction::PACKED_SWITCH: {
+ BuildSwitch(instruction, dex_pc);
+ break;
+ }
+
+ default:
+ VLOG(compiler) << "Did not compile "
+ << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
+ << " because of unhandled instruction "
+ << instruction.Name();
+ MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
+ return false;
+ }
+ return true;
+} // NOLINT(readability/fn_size)
+
+} // namespace art