Revert "Revert "Refactor HGraphBuilder and SsaBuilder to remove HLocals""

This patch merges the instruction-building phases from HGraphBuilder
and SsaBuilder into a single HInstructionBuilder class. As a result,
it is not necessary to generate HLocal, HLoadLocal and HStoreLocal
instructions any more, as the builder produces SSA form directly.

Saves 5-15% of arena-allocated memory (see bug for more data):
  GMS      20.46MB  =>  19.26MB  (-5.86%)
  Maps     24.12MB  =>  21.47MB  (-10.98%)
  YouTube  28.60MB  =>  26.01MB  (-9.05%)

This CL fixed an issue with parsing quickened instructions.

Bug: 27894376
Bug: 27998571
Bug: 27995065

Change-Id: I20dbe1bf2d0fe296377478db98cb86cba695e694
diff --git a/compiler/optimizing/instruction_builder.cc b/compiler/optimizing/instruction_builder.cc
new file mode 100644
index 0000000..b0f0893
--- /dev/null
+++ b/compiler/optimizing/instruction_builder.cc
@@ -0,0 +1,2701 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "instruction_builder.h"
+
+#include "bytecode_utils.h"
+#include "class_linker.h"
+#include "driver/compiler_options.h"
+#include "scoped_thread_state_change.h"
+
+namespace art {
+
+void HInstructionBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
+  if (compilation_stats_ != nullptr) {
+    compilation_stats_->RecordStat(compilation_stat);
+  }
+}
+
+HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
+  return block_builder_->GetBlockAt(dex_pc);
+}
+
+ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
+  ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
+  const size_t vregs = graph_->GetNumberOfVRegs();
+  if (locals->size() != vregs) {
+    locals->resize(vregs, nullptr);
+
+    if (block->IsCatchBlock()) {
+      // We record incoming inputs of catch phis at throwing instructions and
+      // must therefore eagerly create the phis. Phis for undefined vregs will
+      // be deleted when the first throwing instruction with the vreg undefined
+      // is encountered. Unused phis will be removed by dead phi analysis.
+      for (size_t i = 0; i < vregs; ++i) {
+        // No point in creating the catch phi if it is already undefined at
+        // the first throwing instruction.
+        HInstruction* current_local_value = (*current_locals_)[i];
+        if (current_local_value != nullptr) {
+          HPhi* phi = new (arena_) HPhi(
+              arena_,
+              i,
+              0,
+              current_local_value->GetType());
+          block->AddPhi(phi);
+          (*locals)[i] = phi;
+        }
+      }
+    }
+  }
+  return locals;
+}
+
+HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
+  ArenaVector<HInstruction*>* locals = GetLocalsFor(block);
+  return (*locals)[local];
+}
+
+void HInstructionBuilder::InitializeBlockLocals() {
+  current_locals_ = GetLocalsFor(current_block_);
+
+  if (current_block_->IsCatchBlock()) {
+    // Catch phis were already created and inputs collected from throwing sites.
+    if (kIsDebugBuild) {
+      // Make sure there was at least one throwing instruction which initialized
+      // locals (guaranteed by HGraphBuilder) and that all try blocks have been
+      // visited already (from HTryBoundary scoping and reverse post order).
+      bool catch_block_visited = false;
+      for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
+        HBasicBlock* current = it.Current();
+        if (current == current_block_) {
+          catch_block_visited = true;
+        } else if (current->IsTryBlock()) {
+          const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
+          if (try_entry.HasExceptionHandler(*current_block_)) {
+            DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
+          }
+        }
+      }
+      DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
+          << "No instructions throwing into a live catch block.";
+    }
+  } else if (current_block_->IsLoopHeader()) {
+    // If the block is a loop header, we know we only have visited the pre header
+    // because we are visiting in reverse post order. We create phis for all initialized
+    // locals from the pre header. Their inputs will be populated at the end of
+    // the analysis.
+    for (size_t local = 0; local < current_locals_->size(); ++local) {
+      HInstruction* incoming =
+          ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
+      if (incoming != nullptr) {
+        HPhi* phi = new (arena_) HPhi(
+            arena_,
+            local,
+            0,
+            incoming->GetType());
+        current_block_->AddPhi(phi);
+        (*current_locals_)[local] = phi;
+      }
+    }
+
+    // Save the loop header so that the last phase of the analysis knows which
+    // blocks need to be updated.
+    loop_headers_.push_back(current_block_);
+  } else if (current_block_->GetPredecessors().size() > 0) {
+    // All predecessors have already been visited because we are visiting in reverse post order.
+    // We merge the values of all locals, creating phis if those values differ.
+    for (size_t local = 0; local < current_locals_->size(); ++local) {
+      bool one_predecessor_has_no_value = false;
+      bool is_different = false;
+      HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
+
+      for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
+        HInstruction* current = ValueOfLocalAt(predecessor, local);
+        if (current == nullptr) {
+          one_predecessor_has_no_value = true;
+          break;
+        } else if (current != value) {
+          is_different = true;
+        }
+      }
+
+      if (one_predecessor_has_no_value) {
+        // If one predecessor has no value for this local, we trust the verifier has
+        // successfully checked that there is a store dominating any read after this block.
+        continue;
+      }
+
+      if (is_different) {
+        HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
+        HPhi* phi = new (arena_) HPhi(
+            arena_,
+            local,
+            current_block_->GetPredecessors().size(),
+            first_input->GetType());
+        for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
+          HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
+          phi->SetRawInputAt(i, pred_value);
+        }
+        current_block_->AddPhi(phi);
+        value = phi;
+      }
+      (*current_locals_)[local] = value;
+    }
+  }
+}
+
+void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
+  const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
+  for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
+    ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
+    DCHECK_EQ(handler_locals->size(), current_locals_->size());
+    for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
+      HInstruction* handler_value = (*handler_locals)[vreg];
+      if (handler_value == nullptr) {
+        // Vreg was undefined at a previously encountered throwing instruction
+        // and the catch phi was deleted. Do not record the local value.
+        continue;
+      }
+      DCHECK(handler_value->IsPhi());
+
+      HInstruction* local_value = (*current_locals_)[vreg];
+      if (local_value == nullptr) {
+        // This is the first instruction throwing into `catch_block` where
+        // `vreg` is undefined. Delete the catch phi.
+        catch_block->RemovePhi(handler_value->AsPhi());
+        (*handler_locals)[vreg] = nullptr;
+      } else {
+        // Vreg has been defined at all instructions throwing into `catch_block`
+        // encountered so far. Record the local value in the catch phi.
+        handler_value->AsPhi()->AddInput(local_value);
+      }
+    }
+  }
+}
+
+void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
+  current_block_->AddInstruction(instruction);
+  InitializeInstruction(instruction);
+}
+
+void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
+  if (current_block_->GetInstructions().IsEmpty()) {
+    current_block_->AddInstruction(instruction);
+  } else {
+    current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
+  }
+  InitializeInstruction(instruction);
+}
+
+void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
+  if (instruction->NeedsEnvironment()) {
+    HEnvironment* environment = new (arena_) HEnvironment(
+        arena_,
+        current_locals_->size(),
+        graph_->GetDexFile(),
+        graph_->GetMethodIdx(),
+        instruction->GetDexPc(),
+        graph_->GetInvokeType(),
+        instruction);
+    environment->CopyFrom(*current_locals_);
+    instruction->SetRawEnvironment(environment);
+  }
+}
+
+void HInstructionBuilder::SetLoopHeaderPhiInputs() {
+  for (size_t i = loop_headers_.size(); i > 0; --i) {
+    HBasicBlock* block = loop_headers_[i - 1];
+    for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
+      HPhi* phi = it.Current()->AsPhi();
+      size_t vreg = phi->GetRegNumber();
+      for (HBasicBlock* predecessor : block->GetPredecessors()) {
+        HInstruction* value = ValueOfLocalAt(predecessor, vreg);
+        if (value == nullptr) {
+          // Vreg is undefined at this predecessor. Mark it dead and leave with
+          // fewer inputs than predecessors. SsaChecker will fail if not removed.
+          phi->SetDead();
+          break;
+        } else {
+          phi->AddInput(value);
+        }
+      }
+    }
+  }
+}
+
+static bool IsBlockPopulated(HBasicBlock* block) {
+  if (block->IsLoopHeader()) {
+    // Suspend checks were inserted into loop headers during building of dominator tree.
+    DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
+    return block->GetFirstInstruction() != block->GetLastInstruction();
+  } else {
+    return !block->GetInstructions().IsEmpty();
+  }
+}
+
+bool HInstructionBuilder::Build() {
+  locals_for_.resize(graph_->GetBlocks().size(),
+                     ArenaVector<HInstruction*>(arena_->Adapter(kArenaAllocGraphBuilder)));
+
+  // Find locations where we want to generate extra stackmaps for native debugging.
+  // This allows us to generate the info only at interesting points (for example,
+  // at start of java statement) rather than before every dex instruction.
+  const bool native_debuggable = compiler_driver_ != nullptr &&
+                                 compiler_driver_->GetCompilerOptions().GetNativeDebuggable();
+  ArenaBitVector* native_debug_info_locations = nullptr;
+  if (native_debuggable) {
+    const uint32_t num_instructions = code_item_.insns_size_in_code_units_;
+    native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false);
+    FindNativeDebugInfoLocations(native_debug_info_locations);
+  }
+
+  for (HReversePostOrderIterator block_it(*graph_); !block_it.Done(); block_it.Advance()) {
+    current_block_ = block_it.Current();
+    uint32_t block_dex_pc = current_block_->GetDexPc();
+
+    InitializeBlockLocals();
+
+    if (current_block_->IsEntryBlock()) {
+      InitializeParameters();
+      AppendInstruction(new (arena_) HSuspendCheck(0u));
+      AppendInstruction(new (arena_) HGoto(0u));
+      continue;
+    } else if (current_block_->IsExitBlock()) {
+      AppendInstruction(new (arena_) HExit());
+      continue;
+    } else if (current_block_->IsLoopHeader()) {
+      HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(current_block_->GetDexPc());
+      current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
+      // This is slightly odd because the loop header might not be empty (TryBoundary).
+      // But we're still creating the environment with locals from the top of the block.
+      InsertInstructionAtTop(suspend_check);
+    }
+
+    if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
+      // Synthetic block that does not need to be populated.
+      DCHECK(IsBlockPopulated(current_block_));
+      continue;
+    }
+
+    DCHECK(!IsBlockPopulated(current_block_));
+
+    for (CodeItemIterator it(code_item_, block_dex_pc); !it.Done(); it.Advance()) {
+      if (current_block_ == nullptr) {
+        // The previous instruction ended this block.
+        break;
+      }
+
+      uint32_t dex_pc = it.CurrentDexPc();
+      if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
+        // This dex_pc starts a new basic block.
+        break;
+      }
+
+      if (current_block_->IsTryBlock() && IsThrowingDexInstruction(it.CurrentInstruction())) {
+        PropagateLocalsToCatchBlocks();
+      }
+
+      if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
+        AppendInstruction(new (arena_) HNativeDebugInfo(dex_pc));
+      }
+
+      if (!ProcessDexInstruction(it.CurrentInstruction(), dex_pc)) {
+        return false;
+      }
+    }
+
+    if (current_block_ != nullptr) {
+      // Branching instructions clear current_block, so we know the last
+      // instruction of the current block is not a branching instruction.
+      // We add an unconditional Goto to the next block.
+      DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
+      AppendInstruction(new (arena_) HGoto());
+    }
+  }
+
+  SetLoopHeaderPhiInputs();
+
+  return true;
+}
+
+void HInstructionBuilder::FindNativeDebugInfoLocations(ArenaBitVector* locations) {
+  // The callback gets called when the line number changes.
+  // In other words, it marks the start of new java statement.
+  struct Callback {
+    static bool Position(void* ctx, const DexFile::PositionInfo& entry) {
+      static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_);
+      return false;
+    }
+  };
+  dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations);
+  // Instruction-specific tweaks.
+  const Instruction* const begin = Instruction::At(code_item_.insns_);
+  const Instruction* const end = begin->RelativeAt(code_item_.insns_size_in_code_units_);
+  for (const Instruction* inst = begin; inst < end; inst = inst->Next()) {
+    switch (inst->Opcode()) {
+      case Instruction::MOVE_EXCEPTION: {
+        // Stop in native debugger after the exception has been moved.
+        // The compiler also expects the move at the start of basic block so
+        // we do not want to interfere by inserting native-debug-info before it.
+        locations->ClearBit(inst->GetDexPc(code_item_.insns_));
+        const Instruction* next = inst->Next();
+        if (next < end) {
+          locations->SetBit(next->GetDexPc(code_item_.insns_));
+        }
+        break;
+      }
+      default:
+        break;
+    }
+  }
+}
+
+HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, Primitive::Type type) const {
+  HInstruction* value = (*current_locals_)[reg_number];
+  DCHECK(value != nullptr);
+
+  // If the operation requests a specific type, we make sure its input is of that type.
+  if (type != value->GetType()) {
+    if (Primitive::IsFloatingPointType(type)) {
+      return ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
+    } else if (type == Primitive::kPrimNot) {
+      return ssa_builder_->GetReferenceTypeEquivalent(value);
+    }
+  }
+
+  return value;
+}
+
+void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
+  Primitive::Type stored_type = stored_value->GetType();
+  DCHECK_NE(stored_type, Primitive::kPrimVoid);
+
+  // Storing into vreg `reg_number` may implicitly invalidate the surrounding
+  // registers. Consider the following cases:
+  // (1) Storing a wide value must overwrite previous values in both `reg_number`
+  //     and `reg_number+1`. We store `nullptr` in `reg_number+1`.
+  // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
+  //     must invalidate it. We store `nullptr` in `reg_number-1`.
+  // Consequently, storing a wide value into the high vreg of another wide value
+  // will invalidate both `reg_number-1` and `reg_number+1`.
+
+  if (reg_number != 0) {
+    HInstruction* local_low = (*current_locals_)[reg_number - 1];
+    if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) {
+      // The vreg we are storing into was previously the high vreg of a pair.
+      // We need to invalidate its low vreg.
+      DCHECK((*current_locals_)[reg_number] == nullptr);
+      (*current_locals_)[reg_number - 1] = nullptr;
+    }
+  }
+
+  (*current_locals_)[reg_number] = stored_value;
+  if (Primitive::Is64BitType(stored_type)) {
+    // We are storing a pair. Invalidate the instruction in the high vreg.
+    (*current_locals_)[reg_number + 1] = nullptr;
+  }
+}
+
+void HInstructionBuilder::InitializeParameters() {
+  DCHECK(current_block_->IsEntryBlock());
+
+  // dex_compilation_unit_ is null only when unit testing.
+  if (dex_compilation_unit_ == nullptr) {
+    return;
+  }
+
+  const char* shorty = dex_compilation_unit_->GetShorty();
+  uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
+  uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
+  uint16_t parameter_index = 0;
+
+  const DexFile::MethodId& referrer_method_id =
+      dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
+  if (!dex_compilation_unit_->IsStatic()) {
+    // Add the implicit 'this' argument, not expressed in the signature.
+    HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_,
+                                                              referrer_method_id.class_idx_,
+                                                              parameter_index++,
+                                                              Primitive::kPrimNot,
+                                                              true);
+    AppendInstruction(parameter);
+    UpdateLocal(locals_index++, parameter);
+    number_of_parameters--;
+  }
+
+  const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
+  const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
+  for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
+    HParameterValue* parameter = new (arena_) HParameterValue(
+        *dex_file_,
+        arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
+        parameter_index++,
+        Primitive::GetType(shorty[shorty_pos]),
+        false);
+    ++shorty_pos;
+    AppendInstruction(parameter);
+    // Store the parameter value in the local that the dex code will use
+    // to reference that parameter.
+    UpdateLocal(locals_index++, parameter);
+    if (Primitive::Is64BitType(parameter->GetType())) {
+      i++;
+      locals_index++;
+      parameter_index++;
+    }
+  }
+}
+
+template<typename T>
+void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
+  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+  T* comparison = new (arena_) T(first, second, dex_pc);
+  AppendInstruction(comparison);
+  AppendInstruction(new (arena_) HIf(comparison, dex_pc));
+  current_block_ = nullptr;
+}
+
+template<typename T>
+void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
+  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
+  T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
+  AppendInstruction(comparison);
+  AppendInstruction(new (arena_) HIf(comparison, dex_pc));
+  current_block_ = nullptr;
+}
+
+template<typename T>
+void HInstructionBuilder::Unop_12x(const Instruction& instruction,
+                                   Primitive::Type type,
+                                   uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegB(), type);
+  AppendInstruction(new (arena_) T(type, first, dex_pc));
+  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
+                                         Primitive::Type input_type,
+                                         Primitive::Type result_type,
+                                         uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
+  AppendInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
+  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_23x(const Instruction& instruction,
+                                    Primitive::Type type,
+                                    uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegB(), type);
+  HInstruction* second = LoadLocal(instruction.VRegC(), type);
+  AppendInstruction(new (arena_) T(type, first, second, dex_pc));
+  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
+                                          Primitive::Type type,
+                                          uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegB(), type);
+  HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt);
+  AppendInstruction(new (arena_) T(type, first, second, dex_pc));
+  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
+                                        Primitive::Type type,
+                                        ComparisonBias bias,
+                                        uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegB(), type);
+  HInstruction* second = LoadLocal(instruction.VRegC(), type);
+  AppendInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
+  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
+                                          Primitive::Type type,
+                                          uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegA(), type);
+  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+  AppendInstruction(new (arena_) T(type, first, second, dex_pc));
+  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_12x(const Instruction& instruction,
+                                    Primitive::Type type,
+                                    uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegA(), type);
+  HInstruction* second = LoadLocal(instruction.VRegB(), type);
+  AppendInstruction(new (arena_) T(type, first, second, dex_pc));
+  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
+  if (reverse) {
+    std::swap(first, second);
+  }
+  AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
+  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+template<typename T>
+void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
+  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
+  if (reverse) {
+    std::swap(first, second);
+  }
+  AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
+  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+}
+
+static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) {
+  Thread* self = Thread::Current();
+  return cu->IsConstructor()
+      && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
+}
+
+// Returns true if `block` has only one successor which starts at the next
+// dex_pc after `instruction` at `dex_pc`.
+static bool IsFallthroughInstruction(const Instruction& instruction,
+                                     uint32_t dex_pc,
+                                     HBasicBlock* block) {
+  uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
+  return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
+}
+
+void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
+  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
+  DexSwitchTable table(instruction, dex_pc);
+
+  if (table.GetNumEntries() == 0) {
+    // Empty Switch. Code falls through to the next block.
+    DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
+    AppendInstruction(new (arena_) HGoto(dex_pc));
+  } else if (table.ShouldBuildDecisionTree()) {
+    for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
+      HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
+      HEqual* comparison = new (arena_) HEqual(value, case_value, dex_pc);
+      AppendInstruction(comparison);
+      AppendInstruction(new (arena_) HIf(comparison, dex_pc));
+
+      if (!it.IsLast()) {
+        current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
+      }
+    }
+  } else {
+    AppendInstruction(
+        new (arena_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
+  }
+
+  current_block_ = nullptr;
+}
+
+void HInstructionBuilder::BuildReturn(const Instruction& instruction,
+                                      Primitive::Type type,
+                                      uint32_t dex_pc) {
+  if (type == Primitive::kPrimVoid) {
+    if (graph_->ShouldGenerateConstructorBarrier()) {
+      // The compilation unit is null during testing.
+      if (dex_compilation_unit_ != nullptr) {
+        DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_))
+          << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
+      }
+      AppendInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc));
+    }
+    AppendInstruction(new (arena_) HReturnVoid(dex_pc));
+  } else {
+    HInstruction* value = LoadLocal(instruction.VRegA(), type);
+    AppendInstruction(new (arena_) HReturn(value, dex_pc));
+  }
+  current_block_ = nullptr;
+}
+
+static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
+  switch (opcode) {
+    case Instruction::INVOKE_STATIC:
+    case Instruction::INVOKE_STATIC_RANGE:
+      return kStatic;
+    case Instruction::INVOKE_DIRECT:
+    case Instruction::INVOKE_DIRECT_RANGE:
+      return kDirect;
+    case Instruction::INVOKE_VIRTUAL:
+    case Instruction::INVOKE_VIRTUAL_QUICK:
+    case Instruction::INVOKE_VIRTUAL_RANGE:
+    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
+      return kVirtual;
+    case Instruction::INVOKE_INTERFACE:
+    case Instruction::INVOKE_INTERFACE_RANGE:
+      return kInterface;
+    case Instruction::INVOKE_SUPER_RANGE:
+    case Instruction::INVOKE_SUPER:
+      return kSuper;
+    default:
+      LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
+      UNREACHABLE();
+  }
+}
+
+ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) {
+  ScopedObjectAccess soa(Thread::Current());
+  StackHandleScope<3> hs(soa.Self());
+
+  ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
+  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
+      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
+  Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass()));
+
+  ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>(
+      *dex_compilation_unit_->GetDexFile(),
+      method_idx,
+      dex_compilation_unit_->GetDexCache(),
+      class_loader,
+      /* referrer */ nullptr,
+      invoke_type);
+
+  if (UNLIKELY(resolved_method == nullptr)) {
+    // Clean up any exception left by type resolution.
+    soa.Self()->ClearException();
+    return nullptr;
+  }
+
+  // Check access. The class linker has a fast path for looking into the dex cache
+  // and does not check the access if it hits it.
+  if (compiling_class.Get() == nullptr) {
+    if (!resolved_method->IsPublic()) {
+      return nullptr;
+    }
+  } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(),
+                                                       resolved_method,
+                                                       dex_compilation_unit_->GetDexCache().Get(),
+                                                       method_idx)) {
+    return nullptr;
+  }
+
+  // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
+  // We need to look at the referrer's super class vtable. We need to do this to know if we need to
+  // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
+  // which require runtime handling.
+  if (invoke_type == kSuper) {
+    if (compiling_class.Get() == nullptr) {
+      // We could not determine the method's class we need to wait until runtime.
+      DCHECK(Runtime::Current()->IsAotCompiler());
+      return nullptr;
+    }
+    ArtMethod* current_method = graph_->GetArtMethod();
+    DCHECK(current_method != nullptr);
+    Handle<mirror::Class> methods_class(hs.NewHandle(
+        dex_compilation_unit_->GetClassLinker()->ResolveReferencedClassOfMethod(Thread::Current(),
+                                                                                method_idx,
+                                                                                current_method)));
+    if (methods_class.Get() == nullptr) {
+      // Invoking a super method requires knowing the actual super class. If we did not resolve
+      // the compiling method's declaring class (which only happens for ahead of time
+      // compilation), bail out.
+      DCHECK(Runtime::Current()->IsAotCompiler());
+      return nullptr;
+    } else {
+      ArtMethod* actual_method;
+      if (methods_class->IsInterface()) {
+        actual_method = methods_class->FindVirtualMethodForInterfaceSuper(
+            resolved_method, class_linker->GetImagePointerSize());
+      } else {
+        uint16_t vtable_index = resolved_method->GetMethodIndex();
+        actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
+            vtable_index, class_linker->GetImagePointerSize());
+      }
+      if (actual_method != resolved_method &&
+          !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
+        // The back-end code generator relies on this check in order to ensure that it will not
+        // attempt to read the dex_cache with a dex_method_index that is not from the correct
+        // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
+        // builder, which means that the code-generator (and compiler driver during sharpening and
+        // inliner, maybe) might invoke an incorrect method.
+        // TODO: The actual method could still be referenced in the current dex file, so we
+        //       could try locating it.
+        // TODO: Remove the dex_file restriction.
+        return nullptr;
+      }
+      if (!actual_method->IsInvokable()) {
+        // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
+        // could resolve the callee to the wrong method.
+        return nullptr;
+      }
+      resolved_method = actual_method;
+    }
+  }
+
+  // Check for incompatible class changes. The class linker has a fast path for
+  // looking into the dex cache and does not check incompatible class changes if it hits it.
+  if (resolved_method->CheckIncompatibleClassChange(invoke_type)) {
+    return nullptr;
+  }
+
+  return resolved_method;
+}
+
+bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
+                                      uint32_t dex_pc,
+                                      uint32_t method_idx,
+                                      uint32_t number_of_vreg_arguments,
+                                      bool is_range,
+                                      uint32_t* args,
+                                      uint32_t register_index) {
+  InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
+  const char* descriptor = dex_file_->GetMethodShorty(method_idx);
+  Primitive::Type return_type = Primitive::GetType(descriptor[0]);
+
+  // Remove the return type from the 'proto'.
+  size_t number_of_arguments = strlen(descriptor) - 1;
+  if (invoke_type != kStatic) {  // instance call
+    // One extra argument for 'this'.
+    number_of_arguments++;
+  }
+
+  MethodReference target_method(dex_file_, method_idx);
+
+  // Special handling for string init.
+  int32_t string_init_offset = 0;
+  bool is_string_init = compiler_driver_->IsStringInit(method_idx,
+                                                       dex_file_,
+                                                       &string_init_offset);
+  // Replace calls to String.<init> with StringFactory.
+  if (is_string_init) {
+    HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
+        HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
+        HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
+        dchecked_integral_cast<uint64_t>(string_init_offset),
+        0U
+    };
+    HInvoke* invoke = new (arena_) HInvokeStaticOrDirect(
+        arena_,
+        number_of_arguments - 1,
+        Primitive::kPrimNot /*return_type */,
+        dex_pc,
+        method_idx,
+        target_method,
+        dispatch_info,
+        invoke_type,
+        kStatic /* optimized_invoke_type */,
+        HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
+    return HandleStringInit(invoke,
+                            number_of_vreg_arguments,
+                            args,
+                            register_index,
+                            is_range,
+                            descriptor);
+  }
+
+  ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type);
+
+  if (UNLIKELY(resolved_method == nullptr)) {
+    MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod);
+    HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_,
+                                                     number_of_arguments,
+                                                     return_type,
+                                                     dex_pc,
+                                                     method_idx,
+                                                     invoke_type);
+    return HandleInvoke(invoke,
+                        number_of_vreg_arguments,
+                        args,
+                        register_index,
+                        is_range,
+                        descriptor,
+                        nullptr /* clinit_check */);
+  }
+
+  // Potential class initialization check, in the case of a static method call.
+  HClinitCheck* clinit_check = nullptr;
+  HInvoke* invoke = nullptr;
+  if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
+    // By default, consider that the called method implicitly requires
+    // an initialization check of its declaring method.
+    HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
+        = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
+    ScopedObjectAccess soa(Thread::Current());
+    if (invoke_type == kStatic) {
+      clinit_check = ProcessClinitCheckForInvoke(
+          dex_pc, resolved_method, method_idx, &clinit_check_requirement);
+    } else if (invoke_type == kSuper) {
+      if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
+        // Update the target method to the one resolved. Note that this may be a no-op if
+        // we resolved to the method referenced by the instruction.
+        method_idx = resolved_method->GetDexMethodIndex();
+        target_method = MethodReference(dex_file_, method_idx);
+      }
+    }
+
+    HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
+        HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod,
+        HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
+        0u,
+        0U
+    };
+    invoke = new (arena_) HInvokeStaticOrDirect(arena_,
+                                                number_of_arguments,
+                                                return_type,
+                                                dex_pc,
+                                                method_idx,
+                                                target_method,
+                                                dispatch_info,
+                                                invoke_type,
+                                                invoke_type,
+                                                clinit_check_requirement);
+  } else if (invoke_type == kVirtual) {
+    ScopedObjectAccess soa(Thread::Current());  // Needed for the method index
+    invoke = new (arena_) HInvokeVirtual(arena_,
+                                         number_of_arguments,
+                                         return_type,
+                                         dex_pc,
+                                         method_idx,
+                                         resolved_method->GetMethodIndex());
+  } else {
+    DCHECK_EQ(invoke_type, kInterface);
+    ScopedObjectAccess soa(Thread::Current());  // Needed for the method index
+    invoke = new (arena_) HInvokeInterface(arena_,
+                                           number_of_arguments,
+                                           return_type,
+                                           dex_pc,
+                                           method_idx,
+                                           resolved_method->GetDexMethodIndex());
+  }
+
+  return HandleInvoke(invoke,
+                      number_of_vreg_arguments,
+                      args,
+                      register_index,
+                      is_range,
+                      descriptor,
+                      clinit_check);
+}
+
+bool HInstructionBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) {
+  bool finalizable;
+  bool can_throw = NeedsAccessCheck(type_index, &finalizable);
+
+  // Only the non-resolved entrypoint handles the finalizable class case. If we
+  // need access checks, then we haven't resolved the method and the class may
+  // again be finalizable.
+  QuickEntrypointEnum entrypoint = (finalizable || can_throw)
+      ? kQuickAllocObject
+      : kQuickAllocObjectInitialized;
+
+  ScopedObjectAccess soa(Thread::Current());
+  StackHandleScope<3> hs(soa.Self());
+  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+      dex_compilation_unit_->GetClassLinker()->FindDexCache(
+          soa.Self(), *dex_compilation_unit_->GetDexFile())));
+  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
+  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
+  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
+      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
+
+  if (outer_dex_cache.Get() != dex_cache.Get()) {
+    // We currently do not support inlining allocations across dex files.
+    return false;
+  }
+
+  HLoadClass* load_class = new (arena_) HLoadClass(
+      graph_->GetCurrentMethod(),
+      type_index,
+      outer_dex_file,
+      IsOutermostCompilingClass(type_index),
+      dex_pc,
+      /*needs_access_check*/ can_throw,
+      compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, type_index));
+
+  AppendInstruction(load_class);
+  HInstruction* cls = load_class;
+  if (!IsInitialized(resolved_class)) {
+    cls = new (arena_) HClinitCheck(load_class, dex_pc);
+    AppendInstruction(cls);
+  }
+
+  AppendInstruction(new (arena_) HNewInstance(
+      cls,
+      graph_->GetCurrentMethod(),
+      dex_pc,
+      type_index,
+      *dex_compilation_unit_->GetDexFile(),
+      can_throw,
+      finalizable,
+      entrypoint));
+  return true;
+}
+
+static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class)
+    SHARED_REQUIRES(Locks::mutator_lock_) {
+  return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
+}
+
+bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const {
+  if (cls.Get() == nullptr) {
+    return false;
+  }
+
+  // `CanAssumeClassIsLoaded` will return true if we're JITting, or will
+  // check whether the class is in an image for the AOT compilation.
+  if (cls->IsInitialized() &&
+      compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) {
+    return true;
+  }
+
+  if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) {
+    return true;
+  }
+
+  // TODO: We should walk over the inlined methods, but we don't pass
+  //       that information to the builder.
+  if (IsSubClass(GetCompilingClass(), cls.Get())) {
+    return true;
+  }
+
+  return false;
+}
+
+HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
+      uint32_t dex_pc,
+      ArtMethod* resolved_method,
+      uint32_t method_idx,
+      HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
+  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
+  Thread* self = Thread::Current();
+  StackHandleScope<4> hs(self);
+  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+      dex_compilation_unit_->GetClassLinker()->FindDexCache(
+          self, *dex_compilation_unit_->GetDexFile())));
+  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
+      outer_compilation_unit_->GetClassLinker()->FindDexCache(
+          self, outer_dex_file)));
+  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
+  Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass()));
+
+  // The index at which the method's class is stored in the DexCache's type array.
+  uint32_t storage_index = DexFile::kDexNoIndex;
+  bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get());
+  if (is_outer_class) {
+    storage_index = outer_class->GetDexTypeIndex();
+  } else if (outer_dex_cache.Get() == dex_cache.Get()) {
+    // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
+    compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
+                                                               GetCompilingClass(),
+                                                               resolved_method,
+                                                               method_idx,
+                                                               &storage_index);
+  }
+
+  HClinitCheck* clinit_check = nullptr;
+
+  if (IsInitialized(resolved_method_class)) {
+    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
+  } else if (storage_index != DexFile::kDexNoIndex) {
+    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
+    HLoadClass* load_class = new (arena_) HLoadClass(
+        graph_->GetCurrentMethod(),
+        storage_index,
+        outer_dex_file,
+        is_outer_class,
+        dex_pc,
+        /*needs_access_check*/ false,
+        compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index));
+    AppendInstruction(load_class);
+    clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
+    AppendInstruction(clinit_check);
+  }
+  return clinit_check;
+}
+
+bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke,
+                                               uint32_t number_of_vreg_arguments,
+                                               uint32_t* args,
+                                               uint32_t register_index,
+                                               bool is_range,
+                                               const char* descriptor,
+                                               size_t start_index,
+                                               size_t* argument_index) {
+  uint32_t descriptor_index = 1;  // Skip the return type.
+
+  for (size_t i = start_index;
+       // Make sure we don't go over the expected arguments or over the number of
+       // dex registers given. If the instruction was seen as dead by the verifier,
+       // it hasn't been properly checked.
+       (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
+       i++, (*argument_index)++) {
+    Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
+    bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
+    if (!is_range
+        && is_wide
+        && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
+      // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
+      // reject any class where this is violated. However, the verifier only does these checks
+      // on non trivially dead instructions, so we just bailout the compilation.
+      VLOG(compiler) << "Did not compile "
+                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
+                     << " because of non-sequential dex register pair in wide argument";
+      MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
+      return false;
+    }
+    HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
+    invoke->SetArgumentAt(*argument_index, arg);
+    if (is_wide) {
+      i++;
+    }
+  }
+
+  if (*argument_index != invoke->GetNumberOfArguments()) {
+    VLOG(compiler) << "Did not compile "
+                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
+                   << " because of wrong number of arguments in invoke instruction";
+    MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
+    return false;
+  }
+
+  if (invoke->IsInvokeStaticOrDirect() &&
+      HInvokeStaticOrDirect::NeedsCurrentMethodInput(
+          invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
+    invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
+    (*argument_index)++;
+  }
+
+  return true;
+}
+
+bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
+                                       uint32_t number_of_vreg_arguments,
+                                       uint32_t* args,
+                                       uint32_t register_index,
+                                       bool is_range,
+                                       const char* descriptor,
+                                       HClinitCheck* clinit_check) {
+  DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
+
+  size_t start_index = 0;
+  size_t argument_index = 0;
+  if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) {  // Instance call.
+    HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot);
+    HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc());
+    AppendInstruction(null_check);
+    invoke->SetArgumentAt(0, null_check);
+    start_index = 1;
+    argument_index = 1;
+  }
+
+  if (!SetupInvokeArguments(invoke,
+                            number_of_vreg_arguments,
+                            args,
+                            register_index,
+                            is_range,
+                            descriptor,
+                            start_index,
+                            &argument_index)) {
+    return false;
+  }
+
+  if (clinit_check != nullptr) {
+    // Add the class initialization check as last input of `invoke`.
+    DCHECK(invoke->IsInvokeStaticOrDirect());
+    DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
+        == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
+    invoke->SetArgumentAt(argument_index, clinit_check);
+    argument_index++;
+  }
+
+  AppendInstruction(invoke);
+  latest_result_ = invoke;
+
+  return true;
+}
+
+bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
+                                           uint32_t number_of_vreg_arguments,
+                                           uint32_t* args,
+                                           uint32_t register_index,
+                                           bool is_range,
+                                           const char* descriptor) {
+  DCHECK(invoke->IsInvokeStaticOrDirect());
+  DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
+
+  size_t start_index = 1;
+  size_t argument_index = 0;
+  if (!SetupInvokeArguments(invoke,
+                            number_of_vreg_arguments,
+                            args,
+                            register_index,
+                            is_range,
+                            descriptor,
+                            start_index,
+                            &argument_index)) {
+    return false;
+  }
+
+  AppendInstruction(invoke);
+
+  // This is a StringFactory call, not an actual String constructor. Its result
+  // replaces the empty String pre-allocated by NewInstance.
+  uint32_t orig_this_reg = is_range ? register_index : args[0];
+  HInstruction* arg_this = LoadLocal(orig_this_reg, Primitive::kPrimNot);
+
+  // Replacing the NewInstance might render it redundant. Keep a list of these
+  // to be visited once it is clear whether it is has remaining uses.
+  if (arg_this->IsNewInstance()) {
+    ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
+  } else {
+    DCHECK(arg_this->IsPhi());
+    // NewInstance is not the direct input of the StringFactory call. It might
+    // be redundant but optimizing this case is not worth the effort.
+  }
+
+  // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
+  for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
+    if ((*current_locals_)[vreg] == arg_this) {
+      (*current_locals_)[vreg] = invoke;
+    }
+  }
+
+  return true;
+}
+
+static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
+  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
+  const char* type = dex_file.GetFieldTypeDescriptor(field_id);
+  return Primitive::GetType(type[0]);
+}
+
+bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
+                                                   uint32_t dex_pc,
+                                                   bool is_put) {
+  uint32_t source_or_dest_reg = instruction.VRegA_22c();
+  uint32_t obj_reg = instruction.VRegB_22c();
+  uint16_t field_index;
+  if (instruction.IsQuickened()) {
+    if (!CanDecodeQuickenedInfo()) {
+      return false;
+    }
+    field_index = LookupQuickenedInfo(dex_pc);
+  } else {
+    field_index = instruction.VRegC_22c();
+  }
+
+  ScopedObjectAccess soa(Thread::Current());
+  ArtField* resolved_field =
+      compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
+
+
+  HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot);
+  HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc);
+  AppendInstruction(null_check);
+
+  Primitive::Type field_type = (resolved_field == nullptr)
+      ? GetFieldAccessType(*dex_file_, field_index)
+      : resolved_field->GetTypeAsPrimitiveType();
+  if (is_put) {
+    HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
+    HInstruction* field_set = nullptr;
+    if (resolved_field == nullptr) {
+      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
+      field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check,
+                                                           value,
+                                                           field_type,
+                                                           field_index,
+                                                           dex_pc);
+    } else {
+      uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
+      field_set = new (arena_) HInstanceFieldSet(null_check,
+                                                 value,
+                                                 field_type,
+                                                 resolved_field->GetOffset(),
+                                                 resolved_field->IsVolatile(),
+                                                 field_index,
+                                                 class_def_index,
+                                                 *dex_file_,
+                                                 dex_compilation_unit_->GetDexCache(),
+                                                 dex_pc);
+    }
+    AppendInstruction(field_set);
+  } else {
+    HInstruction* field_get = nullptr;
+    if (resolved_field == nullptr) {
+      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
+      field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check,
+                                                           field_type,
+                                                           field_index,
+                                                           dex_pc);
+    } else {
+      uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
+      field_get = new (arena_) HInstanceFieldGet(null_check,
+                                                 field_type,
+                                                 resolved_field->GetOffset(),
+                                                 resolved_field->IsVolatile(),
+                                                 field_index,
+                                                 class_def_index,
+                                                 *dex_file_,
+                                                 dex_compilation_unit_->GetDexCache(),
+                                                 dex_pc);
+    }
+    AppendInstruction(field_get);
+    UpdateLocal(source_or_dest_reg, field_get);
+  }
+
+  return true;
+}
+
+static mirror::Class* GetClassFrom(CompilerDriver* driver,
+                                   const DexCompilationUnit& compilation_unit) {
+  ScopedObjectAccess soa(Thread::Current());
+  StackHandleScope<2> hs(soa.Self());
+  const DexFile& dex_file = *compilation_unit.GetDexFile();
+  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
+      soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader())));
+  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+      compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file)));
+
+  return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
+}
+
+mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const {
+  return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
+}
+
+mirror::Class* HInstructionBuilder::GetCompilingClass() const {
+  return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
+}
+
+bool HInstructionBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
+  ScopedObjectAccess soa(Thread::Current());
+  StackHandleScope<4> hs(soa.Self());
+  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+      dex_compilation_unit_->GetClassLinker()->FindDexCache(
+          soa.Self(), *dex_compilation_unit_->GetDexFile())));
+  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
+      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
+  Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
+      soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
+  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
+
+  // GetOutermostCompilingClass returns null when the class is unresolved
+  // (e.g. if it derives from an unresolved class). This is bogus knowing that
+  // we are compiling it.
+  // When this happens we cannot establish a direct relation between the current
+  // class and the outer class, so we return false.
+  // (Note that this is only used for optimizing invokes and field accesses)
+  return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get());
+}
+
+void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
+                                                     uint32_t dex_pc,
+                                                     bool is_put,
+                                                     Primitive::Type field_type) {
+  uint32_t source_or_dest_reg = instruction.VRegA_21c();
+  uint16_t field_index = instruction.VRegB_21c();
+
+  if (is_put) {
+    HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
+    AppendInstruction(
+        new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
+  } else {
+    AppendInstruction(new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
+    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
+  }
+}
+
+bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
+                                                 uint32_t dex_pc,
+                                                 bool is_put) {
+  uint32_t source_or_dest_reg = instruction.VRegA_21c();
+  uint16_t field_index = instruction.VRegB_21c();
+
+  ScopedObjectAccess soa(Thread::Current());
+  StackHandleScope<5> hs(soa.Self());
+  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+      dex_compilation_unit_->GetClassLinker()->FindDexCache(
+          soa.Self(), *dex_compilation_unit_->GetDexFile())));
+  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
+      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
+  ArtField* resolved_field = compiler_driver_->ResolveField(
+      soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
+
+  if (resolved_field == nullptr) {
+    MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
+    Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index);
+    BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
+    return true;
+  }
+
+  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
+  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
+  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
+      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
+  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
+
+  // The index at which the field's class is stored in the DexCache's type array.
+  uint32_t storage_index;
+  bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass());
+  if (is_outer_class) {
+    storage_index = outer_class->GetDexTypeIndex();
+  } else if (outer_dex_cache.Get() != dex_cache.Get()) {
+    // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
+    return false;
+  } else {
+    // TODO: This is rather expensive. Perf it and cache the results if needed.
+    std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
+        outer_dex_cache.Get(),
+        GetCompilingClass(),
+        resolved_field,
+        field_index,
+        &storage_index);
+    bool can_easily_access = is_put ? pair.second : pair.first;
+    if (!can_easily_access) {
+      MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
+      BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
+      return true;
+    }
+  }
+
+  bool is_in_cache =
+      compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index);
+  HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(),
+                                                 storage_index,
+                                                 outer_dex_file,
+                                                 is_outer_class,
+                                                 dex_pc,
+                                                 /*needs_access_check*/ false,
+                                                 is_in_cache);
+  AppendInstruction(constant);
+
+  HInstruction* cls = constant;
+
+  Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass()));
+  if (!IsInitialized(klass)) {
+    cls = new (arena_) HClinitCheck(constant, dex_pc);
+    AppendInstruction(cls);
+  }
+
+  uint16_t class_def_index = klass->GetDexClassDefIndex();
+  if (is_put) {
+    // We need to keep the class alive before loading the value.
+    HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
+    DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
+    AppendInstruction(new (arena_) HStaticFieldSet(cls,
+                                                   value,
+                                                   field_type,
+                                                   resolved_field->GetOffset(),
+                                                   resolved_field->IsVolatile(),
+                                                   field_index,
+                                                   class_def_index,
+                                                   *dex_file_,
+                                                   dex_cache_,
+                                                   dex_pc));
+  } else {
+    AppendInstruction(new (arena_) HStaticFieldGet(cls,
+                                                   field_type,
+                                                   resolved_field->GetOffset(),
+                                                   resolved_field->IsVolatile(),
+                                                   field_index,
+                                                   class_def_index,
+                                                   *dex_file_,
+                                                   dex_cache_,
+                                                   dex_pc));
+    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
+  }
+  return true;
+}
+
+void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
+                                       uint16_t first_vreg,
+                                       int64_t second_vreg_or_constant,
+                                       uint32_t dex_pc,
+                                       Primitive::Type type,
+                                       bool second_is_constant,
+                                       bool isDiv) {
+  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
+
+  HInstruction* first = LoadLocal(first_vreg, type);
+  HInstruction* second = nullptr;
+  if (second_is_constant) {
+    if (type == Primitive::kPrimInt) {
+      second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
+    } else {
+      second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
+    }
+  } else {
+    second = LoadLocal(second_vreg_or_constant, type);
+  }
+
+  if (!second_is_constant
+      || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
+      || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
+    second = new (arena_) HDivZeroCheck(second, dex_pc);
+    AppendInstruction(second);
+  }
+
+  if (isDiv) {
+    AppendInstruction(new (arena_) HDiv(type, first, second, dex_pc));
+  } else {
+    AppendInstruction(new (arena_) HRem(type, first, second, dex_pc));
+  }
+  UpdateLocal(out_vreg, current_block_->GetLastInstruction());
+}
+
+void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
+                                           uint32_t dex_pc,
+                                           bool is_put,
+                                           Primitive::Type anticipated_type) {
+  uint8_t source_or_dest_reg = instruction.VRegA_23x();
+  uint8_t array_reg = instruction.VRegB_23x();
+  uint8_t index_reg = instruction.VRegC_23x();
+
+  HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot);
+  object = new (arena_) HNullCheck(object, dex_pc);
+  AppendInstruction(object);
+
+  HInstruction* length = new (arena_) HArrayLength(object, dex_pc);
+  AppendInstruction(length);
+  HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
+  index = new (arena_) HBoundsCheck(index, length, dex_pc);
+  AppendInstruction(index);
+  if (is_put) {
+    HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
+    // TODO: Insert a type check node if the type is Object.
+    HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
+    ssa_builder_->MaybeAddAmbiguousArraySet(aset);
+    AppendInstruction(aset);
+  } else {
+    HArrayGet* aget = new (arena_) HArrayGet(object, index, anticipated_type, dex_pc);
+    ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
+    AppendInstruction(aget);
+    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
+  }
+  graph_->SetHasBoundsChecks(true);
+}
+
+void HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
+                                              uint32_t type_index,
+                                              uint32_t number_of_vreg_arguments,
+                                              bool is_range,
+                                              uint32_t* args,
+                                              uint32_t register_index) {
+  HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
+  bool finalizable;
+  QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
+      ? kQuickAllocArrayWithAccessCheck
+      : kQuickAllocArray;
+  HInstruction* object = new (arena_) HNewArray(length,
+                                                graph_->GetCurrentMethod(),
+                                                dex_pc,
+                                                type_index,
+                                                *dex_compilation_unit_->GetDexFile(),
+                                                entrypoint);
+  AppendInstruction(object);
+
+  const char* descriptor = dex_file_->StringByTypeIdx(type_index);
+  DCHECK_EQ(descriptor[0], '[') << descriptor;
+  char primitive = descriptor[1];
+  DCHECK(primitive == 'I'
+      || primitive == 'L'
+      || primitive == '[') << descriptor;
+  bool is_reference_array = (primitive == 'L') || (primitive == '[');
+  Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
+
+  for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
+    HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
+    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
+    HArraySet* aset = new (arena_) HArraySet(object, index, value, type, dex_pc);
+    ssa_builder_->MaybeAddAmbiguousArraySet(aset);
+    AppendInstruction(aset);
+  }
+  latest_result_ = object;
+}
+
+template <typename T>
+void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
+                                             const T* data,
+                                             uint32_t element_count,
+                                             Primitive::Type anticipated_type,
+                                             uint32_t dex_pc) {
+  for (uint32_t i = 0; i < element_count; ++i) {
+    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
+    HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
+    HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
+    ssa_builder_->MaybeAddAmbiguousArraySet(aset);
+    AppendInstruction(aset);
+  }
+}
+
+void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
+  HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot);
+  HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
+  AppendInstruction(null_check);
+
+  HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc);
+  AppendInstruction(length);
+
+  int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
+  const Instruction::ArrayDataPayload* payload =
+      reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset);
+  const uint8_t* data = payload->data;
+  uint32_t element_count = payload->element_count;
+
+  // Implementation of this DEX instruction seems to be that the bounds check is
+  // done before doing any stores.
+  HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
+  AppendInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
+
+  switch (payload->element_width) {
+    case 1:
+      BuildFillArrayData(null_check,
+                         reinterpret_cast<const int8_t*>(data),
+                         element_count,
+                         Primitive::kPrimByte,
+                         dex_pc);
+      break;
+    case 2:
+      BuildFillArrayData(null_check,
+                         reinterpret_cast<const int16_t*>(data),
+                         element_count,
+                         Primitive::kPrimShort,
+                         dex_pc);
+      break;
+    case 4:
+      BuildFillArrayData(null_check,
+                         reinterpret_cast<const int32_t*>(data),
+                         element_count,
+                         Primitive::kPrimInt,
+                         dex_pc);
+      break;
+    case 8:
+      BuildFillWideArrayData(null_check,
+                             reinterpret_cast<const int64_t*>(data),
+                             element_count,
+                             dex_pc);
+      break;
+    default:
+      LOG(FATAL) << "Unknown element width for " << payload->element_width;
+  }
+  graph_->SetHasBoundsChecks(true);
+}
+
+void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
+                                                 const int64_t* data,
+                                                 uint32_t element_count,
+                                                 uint32_t dex_pc) {
+  for (uint32_t i = 0; i < element_count; ++i) {
+    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
+    HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
+    HArraySet* aset = new (arena_) HArraySet(object, index, value, Primitive::kPrimLong, dex_pc);
+    ssa_builder_->MaybeAddAmbiguousArraySet(aset);
+    AppendInstruction(aset);
+  }
+}
+
+static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
+    SHARED_REQUIRES(Locks::mutator_lock_) {
+  if (cls.Get() == nullptr) {
+    return TypeCheckKind::kUnresolvedCheck;
+  } else if (cls->IsInterface()) {
+    return TypeCheckKind::kInterfaceCheck;
+  } else if (cls->IsArrayClass()) {
+    if (cls->GetComponentType()->IsObjectClass()) {
+      return TypeCheckKind::kArrayObjectCheck;
+    } else if (cls->CannotBeAssignedFromOtherTypes()) {
+      return TypeCheckKind::kExactCheck;
+    } else {
+      return TypeCheckKind::kArrayCheck;
+    }
+  } else if (cls->IsFinal()) {
+    return TypeCheckKind::kExactCheck;
+  } else if (cls->IsAbstract()) {
+    return TypeCheckKind::kAbstractClassCheck;
+  } else {
+    return TypeCheckKind::kClassHierarchyCheck;
+  }
+}
+
+void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
+                                         uint8_t destination,
+                                         uint8_t reference,
+                                         uint16_t type_index,
+                                         uint32_t dex_pc) {
+  bool type_known_final, type_known_abstract, use_declaring_class;
+  bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
+      dex_compilation_unit_->GetDexMethodIndex(),
+      *dex_compilation_unit_->GetDexFile(),
+      type_index,
+      &type_known_final,
+      &type_known_abstract,
+      &use_declaring_class);
+
+  ScopedObjectAccess soa(Thread::Current());
+  StackHandleScope<2> hs(soa.Self());
+  const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
+  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
+      dex_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), dex_file)));
+  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
+
+  HInstruction* object = LoadLocal(reference, Primitive::kPrimNot);
+  HLoadClass* cls = new (arena_) HLoadClass(
+      graph_->GetCurrentMethod(),
+      type_index,
+      dex_file,
+      IsOutermostCompilingClass(type_index),
+      dex_pc,
+      !can_access,
+      compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_file, type_index));
+  AppendInstruction(cls);
+
+  TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class);
+  if (instruction.Opcode() == Instruction::INSTANCE_OF) {
+    AppendInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc));
+    UpdateLocal(destination, current_block_->GetLastInstruction());
+  } else {
+    DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
+    // We emit a CheckCast followed by a BoundType. CheckCast is a statement
+    // which may throw. If it succeeds BoundType sets the new type of `object`
+    // for all subsequent uses.
+    AppendInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc));
+    AppendInstruction(new (arena_) HBoundType(object, dex_pc));
+    UpdateLocal(reference, current_block_->GetLastInstruction());
+  }
+}
+
+bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const {
+  return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
+      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, finalizable);
+}
+
+bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
+  return interpreter_metadata_ != nullptr;
+}
+
+uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t dex_pc) {
+  DCHECK(interpreter_metadata_ != nullptr);
+
+  // First check if the info has already been decoded from `interpreter_metadata_`.
+  auto it = skipped_interpreter_metadata_.find(dex_pc);
+  if (it != skipped_interpreter_metadata_.end()) {
+    // Remove the entry from the map and return the parsed info.
+    uint16_t value_in_map = it->second;
+    skipped_interpreter_metadata_.erase(it);
+    return value_in_map;
+  }
+
+  // Otherwise start parsing `interpreter_metadata_` until the slot for `dex_pc`
+  // is found. Store skipped values in the `skipped_interpreter_metadata_` map.
+  while (true) {
+    uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
+    uint16_t value_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
+    DCHECK_LE(dex_pc_in_map, dex_pc);
+
+    if (dex_pc_in_map == dex_pc) {
+      return value_in_map;
+    } else {
+      skipped_interpreter_metadata_.Put(dex_pc_in_map, value_in_map);
+    }
+  }
+}
+
+bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
+  switch (instruction.Opcode()) {
+    case Instruction::CONST_4: {
+      int32_t register_index = instruction.VRegA();
+      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
+      UpdateLocal(register_index, constant);
+      break;
+    }
+
+    case Instruction::CONST_16: {
+      int32_t register_index = instruction.VRegA();
+      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
+      UpdateLocal(register_index, constant);
+      break;
+    }
+
+    case Instruction::CONST: {
+      int32_t register_index = instruction.VRegA();
+      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
+      UpdateLocal(register_index, constant);
+      break;
+    }
+
+    case Instruction::CONST_HIGH16: {
+      int32_t register_index = instruction.VRegA();
+      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
+      UpdateLocal(register_index, constant);
+      break;
+    }
+
+    case Instruction::CONST_WIDE_16: {
+      int32_t register_index = instruction.VRegA();
+      // Get 16 bits of constant value, sign extended to 64 bits.
+      int64_t value = instruction.VRegB_21s();
+      value <<= 48;
+      value >>= 48;
+      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
+      UpdateLocal(register_index, constant);
+      break;
+    }
+
+    case Instruction::CONST_WIDE_32: {
+      int32_t register_index = instruction.VRegA();
+      // Get 32 bits of constant value, sign extended to 64 bits.
+      int64_t value = instruction.VRegB_31i();
+      value <<= 32;
+      value >>= 32;
+      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
+      UpdateLocal(register_index, constant);
+      break;
+    }
+
+    case Instruction::CONST_WIDE: {
+      int32_t register_index = instruction.VRegA();
+      HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
+      UpdateLocal(register_index, constant);
+      break;
+    }
+
+    case Instruction::CONST_WIDE_HIGH16: {
+      int32_t register_index = instruction.VRegA();
+      int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
+      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
+      UpdateLocal(register_index, constant);
+      break;
+    }
+
+    // Note that the SSA building will refine the types.
+    case Instruction::MOVE:
+    case Instruction::MOVE_FROM16:
+    case Instruction::MOVE_16: {
+      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
+      UpdateLocal(instruction.VRegA(), value);
+      break;
+    }
+
+    // Note that the SSA building will refine the types.
+    case Instruction::MOVE_WIDE:
+    case Instruction::MOVE_WIDE_FROM16:
+    case Instruction::MOVE_WIDE_16: {
+      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
+      UpdateLocal(instruction.VRegA(), value);
+      break;
+    }
+
+    case Instruction::MOVE_OBJECT:
+    case Instruction::MOVE_OBJECT_16:
+    case Instruction::MOVE_OBJECT_FROM16: {
+      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot);
+      UpdateLocal(instruction.VRegA(), value);
+      break;
+    }
+
+    case Instruction::RETURN_VOID_NO_BARRIER:
+    case Instruction::RETURN_VOID: {
+      BuildReturn(instruction, Primitive::kPrimVoid, dex_pc);
+      break;
+    }
+
+#define IF_XX(comparison, cond) \
+    case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
+    case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
+
+    IF_XX(HEqual, EQ);
+    IF_XX(HNotEqual, NE);
+    IF_XX(HLessThan, LT);
+    IF_XX(HLessThanOrEqual, LE);
+    IF_XX(HGreaterThan, GT);
+    IF_XX(HGreaterThanOrEqual, GE);
+
+    case Instruction::GOTO:
+    case Instruction::GOTO_16:
+    case Instruction::GOTO_32: {
+      AppendInstruction(new (arena_) HGoto(dex_pc));
+      current_block_ = nullptr;
+      break;
+    }
+
+    case Instruction::RETURN: {
+      BuildReturn(instruction, return_type_, dex_pc);
+      break;
+    }
+
+    case Instruction::RETURN_OBJECT: {
+      BuildReturn(instruction, return_type_, dex_pc);
+      break;
+    }
+
+    case Instruction::RETURN_WIDE: {
+      BuildReturn(instruction, return_type_, dex_pc);
+      break;
+    }
+
+    case Instruction::INVOKE_DIRECT:
+    case Instruction::INVOKE_INTERFACE:
+    case Instruction::INVOKE_STATIC:
+    case Instruction::INVOKE_SUPER:
+    case Instruction::INVOKE_VIRTUAL:
+    case Instruction::INVOKE_VIRTUAL_QUICK: {
+      uint16_t method_idx;
+      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
+        if (!CanDecodeQuickenedInfo()) {
+          return false;
+        }
+        method_idx = LookupQuickenedInfo(dex_pc);
+      } else {
+        method_idx = instruction.VRegB_35c();
+      }
+      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
+      uint32_t args[5];
+      instruction.GetVarArgs(args);
+      if (!BuildInvoke(instruction, dex_pc, method_idx,
+                       number_of_vreg_arguments, false, args, -1)) {
+        return false;
+      }
+      break;
+    }
+
+    case Instruction::INVOKE_DIRECT_RANGE:
+    case Instruction::INVOKE_INTERFACE_RANGE:
+    case Instruction::INVOKE_STATIC_RANGE:
+    case Instruction::INVOKE_SUPER_RANGE:
+    case Instruction::INVOKE_VIRTUAL_RANGE:
+    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
+      uint16_t method_idx;
+      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
+        if (!CanDecodeQuickenedInfo()) {
+          return false;
+        }
+        method_idx = LookupQuickenedInfo(dex_pc);
+      } else {
+        method_idx = instruction.VRegB_3rc();
+      }
+      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
+      uint32_t register_index = instruction.VRegC();
+      if (!BuildInvoke(instruction, dex_pc, method_idx,
+                       number_of_vreg_arguments, true, nullptr, register_index)) {
+        return false;
+      }
+      break;
+    }
+
+    case Instruction::NEG_INT: {
+      Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::NEG_LONG: {
+      Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::NEG_FLOAT: {
+      Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::NEG_DOUBLE: {
+      Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::NOT_INT: {
+      Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::NOT_LONG: {
+      Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::INT_TO_LONG: {
+      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::INT_TO_FLOAT: {
+      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::INT_TO_DOUBLE: {
+      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::LONG_TO_INT: {
+      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::LONG_TO_FLOAT: {
+      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::LONG_TO_DOUBLE: {
+      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::FLOAT_TO_INT: {
+      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::FLOAT_TO_LONG: {
+      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::FLOAT_TO_DOUBLE: {
+      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::DOUBLE_TO_INT: {
+      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::DOUBLE_TO_LONG: {
+      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::DOUBLE_TO_FLOAT: {
+      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::INT_TO_BYTE: {
+      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
+      break;
+    }
+
+    case Instruction::INT_TO_SHORT: {
+      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
+      break;
+    }
+
+    case Instruction::INT_TO_CHAR: {
+      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_INT: {
+      Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_LONG: {
+      Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_DOUBLE: {
+      Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_FLOAT: {
+      Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::SUB_INT: {
+      Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::SUB_LONG: {
+      Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::SUB_FLOAT: {
+      Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::SUB_DOUBLE: {
+      Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_INT_2ADDR: {
+      Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_INT: {
+      Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_LONG: {
+      Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_FLOAT: {
+      Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_DOUBLE: {
+      Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::DIV_INT: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+                         dex_pc, Primitive::kPrimInt, false, true);
+      break;
+    }
+
+    case Instruction::DIV_LONG: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+                         dex_pc, Primitive::kPrimLong, false, true);
+      break;
+    }
+
+    case Instruction::DIV_FLOAT: {
+      Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::DIV_DOUBLE: {
+      Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::REM_INT: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+                         dex_pc, Primitive::kPrimInt, false, false);
+      break;
+    }
+
+    case Instruction::REM_LONG: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+                         dex_pc, Primitive::kPrimLong, false, false);
+      break;
+    }
+
+    case Instruction::REM_FLOAT: {
+      Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::REM_DOUBLE: {
+      Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::AND_INT: {
+      Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::AND_LONG: {
+      Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::SHL_INT: {
+      Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::SHL_LONG: {
+      Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::SHR_INT: {
+      Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::SHR_LONG: {
+      Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::USHR_INT: {
+      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::USHR_LONG: {
+      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::OR_INT: {
+      Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::OR_LONG: {
+      Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::XOR_INT: {
+      Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::XOR_LONG: {
+      Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_LONG_2ADDR: {
+      Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_DOUBLE_2ADDR: {
+      Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_FLOAT_2ADDR: {
+      Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::SUB_INT_2ADDR: {
+      Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::SUB_LONG_2ADDR: {
+      Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::SUB_FLOAT_2ADDR: {
+      Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::SUB_DOUBLE_2ADDR: {
+      Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_INT_2ADDR: {
+      Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_LONG_2ADDR: {
+      Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_FLOAT_2ADDR: {
+      Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_DOUBLE_2ADDR: {
+      Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::DIV_INT_2ADDR: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
+                         dex_pc, Primitive::kPrimInt, false, true);
+      break;
+    }
+
+    case Instruction::DIV_LONG_2ADDR: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
+                         dex_pc, Primitive::kPrimLong, false, true);
+      break;
+    }
+
+    case Instruction::REM_INT_2ADDR: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
+                         dex_pc, Primitive::kPrimInt, false, false);
+      break;
+    }
+
+    case Instruction::REM_LONG_2ADDR: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
+                         dex_pc, Primitive::kPrimLong, false, false);
+      break;
+    }
+
+    case Instruction::REM_FLOAT_2ADDR: {
+      Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::REM_DOUBLE_2ADDR: {
+      Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::SHL_INT_2ADDR: {
+      Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::SHL_LONG_2ADDR: {
+      Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::SHR_INT_2ADDR: {
+      Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::SHR_LONG_2ADDR: {
+      Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::USHR_INT_2ADDR: {
+      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::USHR_LONG_2ADDR: {
+      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::DIV_FLOAT_2ADDR: {
+      Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
+      break;
+    }
+
+    case Instruction::DIV_DOUBLE_2ADDR: {
+      Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
+      break;
+    }
+
+    case Instruction::AND_INT_2ADDR: {
+      Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::AND_LONG_2ADDR: {
+      Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::OR_INT_2ADDR: {
+      Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::OR_LONG_2ADDR: {
+      Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::XOR_INT_2ADDR: {
+      Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
+      break;
+    }
+
+    case Instruction::XOR_LONG_2ADDR: {
+      Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_INT_LIT16: {
+      Binop_22s<HAdd>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::AND_INT_LIT16: {
+      Binop_22s<HAnd>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::OR_INT_LIT16: {
+      Binop_22s<HOr>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::XOR_INT_LIT16: {
+      Binop_22s<HXor>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::RSUB_INT: {
+      Binop_22s<HSub>(instruction, true, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_INT_LIT16: {
+      Binop_22s<HMul>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::ADD_INT_LIT8: {
+      Binop_22b<HAdd>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::AND_INT_LIT8: {
+      Binop_22b<HAnd>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::OR_INT_LIT8: {
+      Binop_22b<HOr>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::XOR_INT_LIT8: {
+      Binop_22b<HXor>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::RSUB_INT_LIT8: {
+      Binop_22b<HSub>(instruction, true, dex_pc);
+      break;
+    }
+
+    case Instruction::MUL_INT_LIT8: {
+      Binop_22b<HMul>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::DIV_INT_LIT16:
+    case Instruction::DIV_INT_LIT8: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+                         dex_pc, Primitive::kPrimInt, true, true);
+      break;
+    }
+
+    case Instruction::REM_INT_LIT16:
+    case Instruction::REM_INT_LIT8: {
+      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
+                         dex_pc, Primitive::kPrimInt, true, false);
+      break;
+    }
+
+    case Instruction::SHL_INT_LIT8: {
+      Binop_22b<HShl>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::SHR_INT_LIT8: {
+      Binop_22b<HShr>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::USHR_INT_LIT8: {
+      Binop_22b<HUShr>(instruction, false, dex_pc);
+      break;
+    }
+
+    case Instruction::NEW_INSTANCE: {
+      if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) {
+        return false;
+      }
+      UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
+      break;
+    }
+
+    case Instruction::NEW_ARRAY: {
+      uint16_t type_index = instruction.VRegC_22c();
+      HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt);
+      bool finalizable;
+      QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
+          ? kQuickAllocArrayWithAccessCheck
+          : kQuickAllocArray;
+      AppendInstruction(new (arena_) HNewArray(length,
+                                               graph_->GetCurrentMethod(),
+                                               dex_pc,
+                                               type_index,
+                                               *dex_compilation_unit_->GetDexFile(),
+                                               entrypoint));
+      UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
+      break;
+    }
+
+    case Instruction::FILLED_NEW_ARRAY: {
+      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
+      uint32_t type_index = instruction.VRegB_35c();
+      uint32_t args[5];
+      instruction.GetVarArgs(args);
+      BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
+      break;
+    }
+
+    case Instruction::FILLED_NEW_ARRAY_RANGE: {
+      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
+      uint32_t type_index = instruction.VRegB_3rc();
+      uint32_t register_index = instruction.VRegC_3rc();
+      BuildFilledNewArray(
+          dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
+      break;
+    }
+
+    case Instruction::FILL_ARRAY_DATA: {
+      BuildFillArrayData(instruction, dex_pc);
+      break;
+    }
+
+    case Instruction::MOVE_RESULT:
+    case Instruction::MOVE_RESULT_WIDE:
+    case Instruction::MOVE_RESULT_OBJECT: {
+      DCHECK(latest_result_ != nullptr);
+      UpdateLocal(instruction.VRegA(), latest_result_);
+      latest_result_ = nullptr;
+      break;
+    }
+
+    case Instruction::CMP_LONG: {
+      Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc);
+      break;
+    }
+
+    case Instruction::CMPG_FLOAT: {
+      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc);
+      break;
+    }
+
+    case Instruction::CMPG_DOUBLE: {
+      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc);
+      break;
+    }
+
+    case Instruction::CMPL_FLOAT: {
+      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc);
+      break;
+    }
+
+    case Instruction::CMPL_DOUBLE: {
+      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc);
+      break;
+    }
+
+    case Instruction::NOP:
+      break;
+
+    case Instruction::IGET:
+    case Instruction::IGET_QUICK:
+    case Instruction::IGET_WIDE:
+    case Instruction::IGET_WIDE_QUICK:
+    case Instruction::IGET_OBJECT:
+    case Instruction::IGET_OBJECT_QUICK:
+    case Instruction::IGET_BOOLEAN:
+    case Instruction::IGET_BOOLEAN_QUICK:
+    case Instruction::IGET_BYTE:
+    case Instruction::IGET_BYTE_QUICK:
+    case Instruction::IGET_CHAR:
+    case Instruction::IGET_CHAR_QUICK:
+    case Instruction::IGET_SHORT:
+    case Instruction::IGET_SHORT_QUICK: {
+      if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
+        return false;
+      }
+      break;
+    }
+
+    case Instruction::IPUT:
+    case Instruction::IPUT_QUICK:
+    case Instruction::IPUT_WIDE:
+    case Instruction::IPUT_WIDE_QUICK:
+    case Instruction::IPUT_OBJECT:
+    case Instruction::IPUT_OBJECT_QUICK:
+    case Instruction::IPUT_BOOLEAN:
+    case Instruction::IPUT_BOOLEAN_QUICK:
+    case Instruction::IPUT_BYTE:
+    case Instruction::IPUT_BYTE_QUICK:
+    case Instruction::IPUT_CHAR:
+    case Instruction::IPUT_CHAR_QUICK:
+    case Instruction::IPUT_SHORT:
+    case Instruction::IPUT_SHORT_QUICK: {
+      if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
+        return false;
+      }
+      break;
+    }
+
+    case Instruction::SGET:
+    case Instruction::SGET_WIDE:
+    case Instruction::SGET_OBJECT:
+    case Instruction::SGET_BOOLEAN:
+    case Instruction::SGET_BYTE:
+    case Instruction::SGET_CHAR:
+    case Instruction::SGET_SHORT: {
+      if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
+        return false;
+      }
+      break;
+    }
+
+    case Instruction::SPUT:
+    case Instruction::SPUT_WIDE:
+    case Instruction::SPUT_OBJECT:
+    case Instruction::SPUT_BOOLEAN:
+    case Instruction::SPUT_BYTE:
+    case Instruction::SPUT_CHAR:
+    case Instruction::SPUT_SHORT: {
+      if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
+        return false;
+      }
+      break;
+    }
+
+#define ARRAY_XX(kind, anticipated_type)                                          \
+    case Instruction::AGET##kind: {                                               \
+      BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
+      break;                                                                      \
+    }                                                                             \
+    case Instruction::APUT##kind: {                                               \
+      BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
+      break;                                                                      \
+    }
+
+    ARRAY_XX(, Primitive::kPrimInt);
+    ARRAY_XX(_WIDE, Primitive::kPrimLong);
+    ARRAY_XX(_OBJECT, Primitive::kPrimNot);
+    ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
+    ARRAY_XX(_BYTE, Primitive::kPrimByte);
+    ARRAY_XX(_CHAR, Primitive::kPrimChar);
+    ARRAY_XX(_SHORT, Primitive::kPrimShort);
+
+    case Instruction::ARRAY_LENGTH: {
+      HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot);
+      object = new (arena_) HNullCheck(object, dex_pc);
+      AppendInstruction(object);
+      AppendInstruction(new (arena_) HArrayLength(object, dex_pc));
+      UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
+      break;
+    }
+
+    case Instruction::CONST_STRING: {
+      uint32_t string_index = instruction.VRegB_21c();
+      AppendInstruction(
+          new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
+      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
+      break;
+    }
+
+    case Instruction::CONST_STRING_JUMBO: {
+      uint32_t string_index = instruction.VRegB_31c();
+      AppendInstruction(
+          new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
+      UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
+      break;
+    }
+
+    case Instruction::CONST_CLASS: {
+      uint16_t type_index = instruction.VRegB_21c();
+      bool type_known_final;
+      bool type_known_abstract;
+      bool dont_use_is_referrers_class;
+      // `CanAccessTypeWithoutChecks` will tell whether the method being
+      // built is trying to access its own class, so that the generated
+      // code can optimize for this case. However, the optimization does not
+      // work for inlining, so we use `IsOutermostCompilingClass` instead.
+      bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
+          dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
+          &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
+      AppendInstruction(new (arena_) HLoadClass(
+          graph_->GetCurrentMethod(),
+          type_index,
+          *dex_file_,
+          IsOutermostCompilingClass(type_index),
+          dex_pc,
+          !can_access,
+          compiler_driver_->CanAssumeTypeIsPresentInDexCache(*dex_file_, type_index)));
+      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
+      break;
+    }
+
+    case Instruction::MOVE_EXCEPTION: {
+      AppendInstruction(new (arena_) HLoadException(dex_pc));
+      UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
+      AppendInstruction(new (arena_) HClearException(dex_pc));
+      break;
+    }
+
+    case Instruction::THROW: {
+      HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot);
+      AppendInstruction(new (arena_) HThrow(exception, dex_pc));
+      // We finished building this block. Set the current block to null to avoid
+      // adding dead instructions to it.
+      current_block_ = nullptr;
+      break;
+    }
+
+    case Instruction::INSTANCE_OF: {
+      uint8_t destination = instruction.VRegA_22c();
+      uint8_t reference = instruction.VRegB_22c();
+      uint16_t type_index = instruction.VRegC_22c();
+      BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
+      break;
+    }
+
+    case Instruction::CHECK_CAST: {
+      uint8_t reference = instruction.VRegA_21c();
+      uint16_t type_index = instruction.VRegB_21c();
+      BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
+      break;
+    }
+
+    case Instruction::MONITOR_ENTER: {
+      AppendInstruction(new (arena_) HMonitorOperation(
+          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
+          HMonitorOperation::OperationKind::kEnter,
+          dex_pc));
+      break;
+    }
+
+    case Instruction::MONITOR_EXIT: {
+      AppendInstruction(new (arena_) HMonitorOperation(
+          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
+          HMonitorOperation::OperationKind::kExit,
+          dex_pc));
+      break;
+    }
+
+    case Instruction::SPARSE_SWITCH:
+    case Instruction::PACKED_SWITCH: {
+      BuildSwitch(instruction, dex_pc);
+      break;
+    }
+
+    default:
+      VLOG(compiler) << "Did not compile "
+                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
+                     << " because of unhandled instruction "
+                     << instruction.Name();
+      MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
+      return false;
+  }
+  return true;
+}  // NOLINT(readability/fn_size)
+
+}  // namespace art