Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2012 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "dex/compiler_ir.h" |
| 18 | #include "dex/compiler_internals.h" |
| 19 | #include "dex/quick/mir_to_lir-inl.h" |
| 20 | #include "mirror/array.h" |
| 21 | #include "oat/runtime/oat_support_entrypoints.h" |
| 22 | #include "verifier/method_verifier.h" |
| 23 | |
| 24 | namespace art { |
| 25 | |
| 26 | /* |
| 27 | * This source files contains "gen" codegen routines that should |
| 28 | * be applicable to most targets. Only mid-level support utilities |
| 29 | * and "op" calls may be used here. |
| 30 | */ |
| 31 | |
| 32 | /* |
| 33 | * Generate an kPseudoBarrier marker to indicate the boundary of special |
| 34 | * blocks. |
| 35 | */ |
| 36 | void Mir2Lir::GenBarrier() |
| 37 | { |
| 38 | LIR* barrier = NewLIR0(kPseudoBarrier); |
| 39 | /* Mark all resources as being clobbered */ |
| 40 | barrier->def_mask = -1; |
| 41 | } |
| 42 | |
| 43 | // FIXME: need to do some work to split out targets with |
| 44 | // condition codes and those without |
| 45 | LIR* Mir2Lir::GenCheck(ConditionCode c_code, ThrowKind kind) |
| 46 | { |
| 47 | DCHECK_NE(cu_->instruction_set, kMips); |
| 48 | LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_); |
| 49 | LIR* branch = OpCondBranch(c_code, tgt); |
| 50 | // Remember branch target - will process later |
| 51 | throw_launchpads_.Insert(tgt); |
| 52 | return branch; |
| 53 | } |
| 54 | |
| 55 | LIR* Mir2Lir::GenImmedCheck(ConditionCode c_code, int reg, int imm_val, ThrowKind kind) |
| 56 | { |
| 57 | LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg, imm_val); |
| 58 | LIR* branch; |
| 59 | if (c_code == kCondAl) { |
| 60 | branch = OpUnconditionalBranch(tgt); |
| 61 | } else { |
| 62 | branch = OpCmpImmBranch(c_code, reg, imm_val, tgt); |
| 63 | } |
| 64 | // Remember branch target - will process later |
| 65 | throw_launchpads_.Insert(tgt); |
| 66 | return branch; |
| 67 | } |
| 68 | |
| 69 | /* Perform null-check on a register. */ |
| 70 | LIR* Mir2Lir::GenNullCheck(int s_reg, int m_reg, int opt_flags) |
| 71 | { |
| 72 | if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && |
| 73 | opt_flags & MIR_IGNORE_NULL_CHECK) { |
| 74 | return NULL; |
| 75 | } |
| 76 | return GenImmedCheck(kCondEq, m_reg, 0, kThrowNullPointer); |
| 77 | } |
| 78 | |
| 79 | /* Perform check on two registers */ |
| 80 | LIR* Mir2Lir::GenRegRegCheck(ConditionCode c_code, int reg1, int reg2, |
| 81 | ThrowKind kind) |
| 82 | { |
| 83 | LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg1, reg2); |
| 84 | LIR* branch = OpCmpBranch(c_code, reg1, reg2, tgt); |
| 85 | // Remember branch target - will process later |
| 86 | throw_launchpads_.Insert(tgt); |
| 87 | return branch; |
| 88 | } |
| 89 | |
| 90 | void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, |
| 91 | RegLocation rl_src2, LIR* taken, |
| 92 | LIR* fall_through) |
| 93 | { |
| 94 | ConditionCode cond; |
| 95 | switch (opcode) { |
| 96 | case Instruction::IF_EQ: |
| 97 | cond = kCondEq; |
| 98 | break; |
| 99 | case Instruction::IF_NE: |
| 100 | cond = kCondNe; |
| 101 | break; |
| 102 | case Instruction::IF_LT: |
| 103 | cond = kCondLt; |
| 104 | break; |
| 105 | case Instruction::IF_GE: |
| 106 | cond = kCondGe; |
| 107 | break; |
| 108 | case Instruction::IF_GT: |
| 109 | cond = kCondGt; |
| 110 | break; |
| 111 | case Instruction::IF_LE: |
| 112 | cond = kCondLe; |
| 113 | break; |
| 114 | default: |
| 115 | cond = static_cast<ConditionCode>(0); |
| 116 | LOG(FATAL) << "Unexpected opcode " << opcode; |
| 117 | } |
| 118 | |
| 119 | // Normalize such that if either operand is constant, src2 will be constant |
| 120 | if (rl_src1.is_const) { |
| 121 | RegLocation rl_temp = rl_src1; |
| 122 | rl_src1 = rl_src2; |
| 123 | rl_src2 = rl_temp; |
| 124 | cond = FlipComparisonOrder(cond); |
| 125 | } |
| 126 | |
| 127 | rl_src1 = LoadValue(rl_src1, kCoreReg); |
| 128 | // Is this really an immediate comparison? |
| 129 | if (rl_src2.is_const) { |
| 130 | // If it's already live in a register or not easily materialized, just keep going |
| 131 | RegLocation rl_temp = UpdateLoc(rl_src2); |
| 132 | if ((rl_temp.location == kLocDalvikFrame) && |
| 133 | InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) { |
| 134 | // OK - convert this to a compare immediate and branch |
| 135 | OpCmpImmBranch(cond, rl_src1.low_reg, mir_graph_->ConstantValue(rl_src2), taken); |
| 136 | OpUnconditionalBranch(fall_through); |
| 137 | return; |
| 138 | } |
| 139 | } |
| 140 | rl_src2 = LoadValue(rl_src2, kCoreReg); |
| 141 | OpCmpBranch(cond, rl_src1.low_reg, rl_src2.low_reg, taken); |
| 142 | OpUnconditionalBranch(fall_through); |
| 143 | } |
| 144 | |
| 145 | void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken, |
| 146 | LIR* fall_through) |
| 147 | { |
| 148 | ConditionCode cond; |
| 149 | rl_src = LoadValue(rl_src, kCoreReg); |
| 150 | switch (opcode) { |
| 151 | case Instruction::IF_EQZ: |
| 152 | cond = kCondEq; |
| 153 | break; |
| 154 | case Instruction::IF_NEZ: |
| 155 | cond = kCondNe; |
| 156 | break; |
| 157 | case Instruction::IF_LTZ: |
| 158 | cond = kCondLt; |
| 159 | break; |
| 160 | case Instruction::IF_GEZ: |
| 161 | cond = kCondGe; |
| 162 | break; |
| 163 | case Instruction::IF_GTZ: |
| 164 | cond = kCondGt; |
| 165 | break; |
| 166 | case Instruction::IF_LEZ: |
| 167 | cond = kCondLe; |
| 168 | break; |
| 169 | default: |
| 170 | cond = static_cast<ConditionCode>(0); |
| 171 | LOG(FATAL) << "Unexpected opcode " << opcode; |
| 172 | } |
| 173 | OpCmpImmBranch(cond, rl_src.low_reg, 0, taken); |
| 174 | OpUnconditionalBranch(fall_through); |
| 175 | } |
| 176 | |
| 177 | void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) |
| 178 | { |
| 179 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 180 | if (rl_src.location == kLocPhysReg) { |
| 181 | OpRegCopy(rl_result.low_reg, rl_src.low_reg); |
| 182 | } else { |
| 183 | LoadValueDirect(rl_src, rl_result.low_reg); |
| 184 | } |
| 185 | OpRegRegImm(kOpAsr, rl_result.high_reg, rl_result.low_reg, 31); |
| 186 | StoreValueWide(rl_dest, rl_result); |
| 187 | } |
| 188 | |
| 189 | void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest, |
| 190 | RegLocation rl_src) |
| 191 | { |
| 192 | rl_src = LoadValue(rl_src, kCoreReg); |
| 193 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 194 | OpKind op = kOpInvalid; |
| 195 | switch (opcode) { |
| 196 | case Instruction::INT_TO_BYTE: |
| 197 | op = kOp2Byte; |
| 198 | break; |
| 199 | case Instruction::INT_TO_SHORT: |
| 200 | op = kOp2Short; |
| 201 | break; |
| 202 | case Instruction::INT_TO_CHAR: |
| 203 | op = kOp2Char; |
| 204 | break; |
| 205 | default: |
| 206 | LOG(ERROR) << "Bad int conversion type"; |
| 207 | } |
| 208 | OpRegReg(op, rl_result.low_reg, rl_src.low_reg); |
| 209 | StoreValue(rl_dest, rl_result); |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * Let helper function take care of everything. Will call |
| 214 | * Array::AllocFromCode(type_idx, method, count); |
| 215 | * Note: AllocFromCode will handle checks for errNegativeArraySize. |
| 216 | */ |
| 217 | void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest, |
| 218 | RegLocation rl_src) |
| 219 | { |
| 220 | FlushAllRegs(); /* Everything to home location */ |
| 221 | int func_offset; |
| 222 | if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, |
| 223 | type_idx)) { |
| 224 | func_offset = ENTRYPOINT_OFFSET(pAllocArrayFromCode); |
| 225 | } else { |
| 226 | func_offset= ENTRYPOINT_OFFSET(pAllocArrayFromCodeWithAccessCheck); |
| 227 | } |
| 228 | CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true); |
| 229 | RegLocation rl_result = GetReturn(false); |
| 230 | StoreValue(rl_dest, rl_result); |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * Similar to GenNewArray, but with post-allocation initialization. |
| 235 | * Verifier guarantees we're dealing with an array class. Current |
| 236 | * code throws runtime exception "bad Filled array req" for 'D' and 'J'. |
| 237 | * Current code also throws internal unimp if not 'L', '[' or 'I'. |
| 238 | */ |
| 239 | void Mir2Lir::GenFilledNewArray(CallInfo* info) |
| 240 | { |
| 241 | int elems = info->num_arg_words; |
| 242 | int type_idx = info->index; |
| 243 | FlushAllRegs(); /* Everything to home location */ |
| 244 | int func_offset; |
| 245 | if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, |
| 246 | type_idx)) { |
| 247 | func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCode); |
| 248 | } else { |
| 249 | func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCodeWithAccessCheck); |
| 250 | } |
| 251 | CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true); |
| 252 | FreeTemp(TargetReg(kArg2)); |
| 253 | FreeTemp(TargetReg(kArg1)); |
| 254 | /* |
| 255 | * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the |
| 256 | * return region. Because AllocFromCode placed the new array |
| 257 | * in kRet0, we'll just lock it into place. When debugger support is |
| 258 | * added, it may be necessary to additionally copy all return |
| 259 | * values to a home location in thread-local storage |
| 260 | */ |
| 261 | LockTemp(TargetReg(kRet0)); |
| 262 | |
| 263 | // TODO: use the correct component size, currently all supported types |
| 264 | // share array alignment with ints (see comment at head of function) |
| 265 | size_t component_size = sizeof(int32_t); |
| 266 | |
| 267 | // Having a range of 0 is legal |
| 268 | if (info->is_range && (elems > 0)) { |
| 269 | /* |
| 270 | * Bit of ugliness here. We're going generate a mem copy loop |
| 271 | * on the register range, but it is possible that some regs |
| 272 | * in the range have been promoted. This is unlikely, but |
| 273 | * before generating the copy, we'll just force a flush |
| 274 | * of any regs in the source range that have been promoted to |
| 275 | * home location. |
| 276 | */ |
| 277 | for (int i = 0; i < elems; i++) { |
| 278 | RegLocation loc = UpdateLoc(info->args[i]); |
| 279 | if (loc.location == kLocPhysReg) { |
| 280 | StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), |
| 281 | loc.low_reg, kWord); |
| 282 | } |
| 283 | } |
| 284 | /* |
| 285 | * TUNING note: generated code here could be much improved, but |
| 286 | * this is an uncommon operation and isn't especially performance |
| 287 | * critical. |
| 288 | */ |
| 289 | int r_src = AllocTemp(); |
| 290 | int r_dst = AllocTemp(); |
| 291 | int r_idx = AllocTemp(); |
| 292 | int r_val = INVALID_REG; |
| 293 | switch(cu_->instruction_set) { |
| 294 | case kThumb2: |
| 295 | r_val = TargetReg(kLr); |
| 296 | break; |
| 297 | case kX86: |
| 298 | FreeTemp(TargetReg(kRet0)); |
| 299 | r_val = AllocTemp(); |
| 300 | break; |
| 301 | case kMips: |
| 302 | r_val = AllocTemp(); |
| 303 | break; |
| 304 | default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; |
| 305 | } |
| 306 | // Set up source pointer |
| 307 | RegLocation rl_first = info->args[0]; |
| 308 | OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low)); |
| 309 | // Set up the target pointer |
| 310 | OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0), |
| 311 | mirror::Array::DataOffset(component_size).Int32Value()); |
| 312 | // Set up the loop counter (known to be > 0) |
| 313 | LoadConstant(r_idx, elems - 1); |
| 314 | // Generate the copy loop. Going backwards for convenience |
| 315 | LIR* target = NewLIR0(kPseudoTargetLabel); |
| 316 | // Copy next element |
| 317 | LoadBaseIndexed(r_src, r_idx, r_val, 2, kWord); |
| 318 | StoreBaseIndexed(r_dst, r_idx, r_val, 2, kWord); |
| 319 | FreeTemp(r_val); |
| 320 | OpDecAndBranch(kCondGe, r_idx, target); |
| 321 | if (cu_->instruction_set == kX86) { |
| 322 | // Restore the target pointer |
| 323 | OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst, |
| 324 | -mirror::Array::DataOffset(component_size).Int32Value()); |
| 325 | } |
| 326 | } else if (!info->is_range) { |
| 327 | // TUNING: interleave |
| 328 | for (int i = 0; i < elems; i++) { |
| 329 | RegLocation rl_arg = LoadValue(info->args[i], kCoreReg); |
| 330 | StoreBaseDisp(TargetReg(kRet0), |
| 331 | mirror::Array::DataOffset(component_size).Int32Value() + |
| 332 | i * 4, rl_arg.low_reg, kWord); |
| 333 | // If the LoadValue caused a temp to be allocated, free it |
| 334 | if (IsTemp(rl_arg.low_reg)) { |
| 335 | FreeTemp(rl_arg.low_reg); |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | if (info->result.location != kLocInvalid) { |
| 340 | StoreValue(info->result, GetReturn(false /* not fp */)); |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | void Mir2Lir::GenSput(uint32_t field_idx, RegLocation rl_src, bool is_long_or_double, |
| 345 | bool is_object) |
| 346 | { |
| 347 | int field_offset; |
| 348 | int ssb_index; |
| 349 | bool is_volatile; |
| 350 | bool is_referrers_class; |
| 351 | bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( |
| 352 | field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index, |
| 353 | is_referrers_class, is_volatile, true); |
| 354 | if (fast_path && !SLOW_FIELD_PATH) { |
| 355 | DCHECK_GE(field_offset, 0); |
| 356 | int rBase; |
| 357 | if (is_referrers_class) { |
| 358 | // Fast path, static storage base is this method's class |
| 359 | RegLocation rl_method = LoadCurrMethod(); |
| 360 | rBase = AllocTemp(); |
| 361 | LoadWordDisp(rl_method.low_reg, |
| 362 | mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase); |
| 363 | if (IsTemp(rl_method.low_reg)) { |
| 364 | FreeTemp(rl_method.low_reg); |
| 365 | } |
| 366 | } else { |
| 367 | // Medium path, static storage base in a different class which requires checks that the other |
| 368 | // class is initialized. |
| 369 | // TODO: remove initialized check now that we are initializing classes in the compiler driver. |
| 370 | DCHECK_GE(ssb_index, 0); |
| 371 | // May do runtime call so everything to home locations. |
| 372 | FlushAllRegs(); |
| 373 | // Using fixed register to sync with possible call to runtime support. |
| 374 | int r_method = TargetReg(kArg1); |
| 375 | LockTemp(r_method); |
| 376 | LoadCurrMethodDirect(r_method); |
| 377 | rBase = TargetReg(kArg0); |
| 378 | LockTemp(rBase); |
| 379 | LoadWordDisp(r_method, |
| 380 | mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), |
| 381 | rBase); |
| 382 | LoadWordDisp(rBase, |
| 383 | mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + |
| 384 | sizeof(int32_t*) * ssb_index, rBase); |
| 385 | // rBase now points at appropriate static storage base (Class*) |
| 386 | // or NULL if not initialized. Check for NULL and call helper if NULL. |
| 387 | // TUNING: fast path should fall through |
| 388 | LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); |
| 389 | LoadConstant(TargetReg(kArg0), ssb_index); |
| 390 | CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); |
| 391 | if (cu_->instruction_set == kMips) { |
| 392 | // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy |
| 393 | OpRegCopy(rBase, TargetReg(kRet0)); |
| 394 | } |
| 395 | LIR* skip_target = NewLIR0(kPseudoTargetLabel); |
| 396 | branch_over->target = skip_target; |
| 397 | FreeTemp(r_method); |
| 398 | } |
| 399 | // rBase now holds static storage base |
| 400 | if (is_long_or_double) { |
| 401 | rl_src = LoadValueWide(rl_src, kAnyReg); |
| 402 | } else { |
| 403 | rl_src = LoadValue(rl_src, kAnyReg); |
| 404 | } |
| 405 | if (is_volatile) { |
| 406 | GenMemBarrier(kStoreStore); |
| 407 | } |
| 408 | if (is_long_or_double) { |
| 409 | StoreBaseDispWide(rBase, field_offset, rl_src.low_reg, |
| 410 | rl_src.high_reg); |
| 411 | } else { |
| 412 | StoreWordDisp(rBase, field_offset, rl_src.low_reg); |
| 413 | } |
| 414 | if (is_volatile) { |
| 415 | GenMemBarrier(kStoreLoad); |
| 416 | } |
| 417 | if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { |
| 418 | MarkGCCard(rl_src.low_reg, rBase); |
| 419 | } |
| 420 | FreeTemp(rBase); |
| 421 | } else { |
| 422 | FlushAllRegs(); // Everything to home locations |
| 423 | int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Static) : |
| 424 | (is_object ? ENTRYPOINT_OFFSET(pSetObjStatic) |
| 425 | : ENTRYPOINT_OFFSET(pSet32Static)); |
| 426 | CallRuntimeHelperImmRegLocation(setter_offset, field_idx, rl_src, true); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | void Mir2Lir::GenSget(uint32_t field_idx, RegLocation rl_dest, |
| 431 | bool is_long_or_double, bool is_object) |
| 432 | { |
| 433 | int field_offset; |
| 434 | int ssb_index; |
| 435 | bool is_volatile; |
| 436 | bool is_referrers_class; |
| 437 | bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( |
| 438 | field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index, |
| 439 | is_referrers_class, is_volatile, false); |
| 440 | if (fast_path && !SLOW_FIELD_PATH) { |
| 441 | DCHECK_GE(field_offset, 0); |
| 442 | int rBase; |
| 443 | if (is_referrers_class) { |
| 444 | // Fast path, static storage base is this method's class |
| 445 | RegLocation rl_method = LoadCurrMethod(); |
| 446 | rBase = AllocTemp(); |
| 447 | LoadWordDisp(rl_method.low_reg, |
| 448 | mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase); |
| 449 | } else { |
| 450 | // Medium path, static storage base in a different class which requires checks that the other |
| 451 | // class is initialized |
| 452 | // TODO: remove initialized check now that we are initializing classes in the compiler driver. |
| 453 | DCHECK_GE(ssb_index, 0); |
| 454 | // May do runtime call so everything to home locations. |
| 455 | FlushAllRegs(); |
| 456 | // Using fixed register to sync with possible call to runtime support. |
| 457 | int r_method = TargetReg(kArg1); |
| 458 | LockTemp(r_method); |
| 459 | LoadCurrMethodDirect(r_method); |
| 460 | rBase = TargetReg(kArg0); |
| 461 | LockTemp(rBase); |
| 462 | LoadWordDisp(r_method, |
| 463 | mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), |
| 464 | rBase); |
| 465 | LoadWordDisp(rBase, mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + |
| 466 | sizeof(int32_t*) * ssb_index, rBase); |
| 467 | // rBase now points at appropriate static storage base (Class*) |
| 468 | // or NULL if not initialized. Check for NULL and call helper if NULL. |
| 469 | // TUNING: fast path should fall through |
| 470 | LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); |
| 471 | CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); |
| 472 | if (cu_->instruction_set == kMips) { |
| 473 | // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy |
| 474 | OpRegCopy(rBase, TargetReg(kRet0)); |
| 475 | } |
| 476 | LIR* skip_target = NewLIR0(kPseudoTargetLabel); |
| 477 | branch_over->target = skip_target; |
| 478 | FreeTemp(r_method); |
| 479 | } |
| 480 | // rBase now holds static storage base |
| 481 | RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true); |
| 482 | if (is_volatile) { |
| 483 | GenMemBarrier(kLoadLoad); |
| 484 | } |
| 485 | if (is_long_or_double) { |
| 486 | LoadBaseDispWide(rBase, field_offset, rl_result.low_reg, |
| 487 | rl_result.high_reg, INVALID_SREG); |
| 488 | } else { |
| 489 | LoadWordDisp(rBase, field_offset, rl_result.low_reg); |
| 490 | } |
| 491 | FreeTemp(rBase); |
| 492 | if (is_long_or_double) { |
| 493 | StoreValueWide(rl_dest, rl_result); |
| 494 | } else { |
| 495 | StoreValue(rl_dest, rl_result); |
| 496 | } |
| 497 | } else { |
| 498 | FlushAllRegs(); // Everything to home locations |
| 499 | int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Static) : |
| 500 | (is_object ? ENTRYPOINT_OFFSET(pGetObjStatic) |
| 501 | : ENTRYPOINT_OFFSET(pGet32Static)); |
| 502 | CallRuntimeHelperImm(getterOffset, field_idx, true); |
| 503 | if (is_long_or_double) { |
| 504 | RegLocation rl_result = GetReturnWide(rl_dest.fp); |
| 505 | StoreValueWide(rl_dest, rl_result); |
| 506 | } else { |
| 507 | RegLocation rl_result = GetReturn(rl_dest.fp); |
| 508 | StoreValue(rl_dest, rl_result); |
| 509 | } |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | void Mir2Lir::HandleSuspendLaunchPads() |
| 514 | { |
| 515 | int num_elems = suspend_launchpads_.Size(); |
| 516 | int helper_offset = ENTRYPOINT_OFFSET(pTestSuspendFromCode); |
| 517 | for (int i = 0; i < num_elems; i++) { |
| 518 | ResetRegPool(); |
| 519 | ResetDefTracking(); |
| 520 | LIR* lab = suspend_launchpads_.Get(i); |
| 521 | LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[0]); |
| 522 | current_dalvik_offset_ = lab->operands[1]; |
| 523 | AppendLIR(lab); |
| 524 | int r_tgt = CallHelperSetup(helper_offset); |
| 525 | CallHelper(r_tgt, helper_offset, true /* MarkSafepointPC */); |
| 526 | OpUnconditionalBranch(resume_lab); |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | void Mir2Lir::HandleIntrinsicLaunchPads() |
| 531 | { |
| 532 | int num_elems = intrinsic_launchpads_.Size(); |
| 533 | for (int i = 0; i < num_elems; i++) { |
| 534 | ResetRegPool(); |
| 535 | ResetDefTracking(); |
| 536 | LIR* lab = intrinsic_launchpads_.Get(i); |
| 537 | CallInfo* info = reinterpret_cast<CallInfo*>(lab->operands[0]); |
| 538 | current_dalvik_offset_ = info->offset; |
| 539 | AppendLIR(lab); |
| 540 | // NOTE: GenInvoke handles MarkSafepointPC |
| 541 | GenInvoke(info); |
| 542 | LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[2]); |
| 543 | if (resume_lab != NULL) { |
| 544 | OpUnconditionalBranch(resume_lab); |
| 545 | } |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | void Mir2Lir::HandleThrowLaunchPads() |
| 550 | { |
| 551 | int num_elems = throw_launchpads_.Size(); |
| 552 | for (int i = 0; i < num_elems; i++) { |
| 553 | ResetRegPool(); |
| 554 | ResetDefTracking(); |
| 555 | LIR* lab = throw_launchpads_.Get(i); |
| 556 | current_dalvik_offset_ = lab->operands[1]; |
| 557 | AppendLIR(lab); |
| 558 | int func_offset = 0; |
| 559 | int v1 = lab->operands[2]; |
| 560 | int v2 = lab->operands[3]; |
| 561 | bool target_x86 = (cu_->instruction_set == kX86); |
| 562 | switch (lab->operands[0]) { |
| 563 | case kThrowNullPointer: |
| 564 | func_offset = ENTRYPOINT_OFFSET(pThrowNullPointerFromCode); |
| 565 | break; |
| 566 | case kThrowConstantArrayBounds: // v1 is length reg (for Arm/Mips), v2 constant index |
| 567 | // v1 holds the constant array index. Mips/Arm uses v2 for length, x86 reloads. |
| 568 | if (target_x86) { |
| 569 | OpRegMem(kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value()); |
| 570 | } else { |
| 571 | OpRegCopy(TargetReg(kArg1), v1); |
| 572 | } |
| 573 | // Make sure the following LoadConstant doesn't mess with kArg1. |
| 574 | LockTemp(TargetReg(kArg1)); |
| 575 | LoadConstant(TargetReg(kArg0), v2); |
| 576 | func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode); |
| 577 | break; |
| 578 | case kThrowArrayBounds: |
| 579 | // Move v1 (array index) to kArg0 and v2 (array length) to kArg1 |
| 580 | if (v2 != TargetReg(kArg0)) { |
| 581 | OpRegCopy(TargetReg(kArg0), v1); |
| 582 | if (target_x86) { |
| 583 | // x86 leaves the array pointer in v2, so load the array length that the handler expects |
| 584 | OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); |
| 585 | } else { |
| 586 | OpRegCopy(TargetReg(kArg1), v2); |
| 587 | } |
| 588 | } else { |
| 589 | if (v1 == TargetReg(kArg1)) { |
| 590 | // Swap v1 and v2, using kArg2 as a temp |
| 591 | OpRegCopy(TargetReg(kArg2), v1); |
| 592 | if (target_x86) { |
| 593 | // x86 leaves the array pointer in v2; load the array length that the handler expects |
| 594 | OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); |
| 595 | } else { |
| 596 | OpRegCopy(TargetReg(kArg1), v2); |
| 597 | } |
| 598 | OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); |
| 599 | } else { |
| 600 | if (target_x86) { |
| 601 | // x86 leaves the array pointer in v2; load the array length that the handler expects |
| 602 | OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); |
| 603 | } else { |
| 604 | OpRegCopy(TargetReg(kArg1), v2); |
| 605 | } |
| 606 | OpRegCopy(TargetReg(kArg0), v1); |
| 607 | } |
| 608 | } |
| 609 | func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode); |
| 610 | break; |
| 611 | case kThrowDivZero: |
| 612 | func_offset = ENTRYPOINT_OFFSET(pThrowDivZeroFromCode); |
| 613 | break; |
| 614 | case kThrowNoSuchMethod: |
| 615 | OpRegCopy(TargetReg(kArg0), v1); |
| 616 | func_offset = |
| 617 | ENTRYPOINT_OFFSET(pThrowNoSuchMethodFromCode); |
| 618 | break; |
| 619 | case kThrowStackOverflow: |
| 620 | func_offset = ENTRYPOINT_OFFSET(pThrowStackOverflowFromCode); |
| 621 | // Restore stack alignment |
| 622 | if (target_x86) { |
| 623 | OpRegImm(kOpAdd, TargetReg(kSp), frame_size_); |
| 624 | } else { |
| 625 | OpRegImm(kOpAdd, TargetReg(kSp), (num_core_spills_ + num_fp_spills_) * 4); |
| 626 | } |
| 627 | break; |
| 628 | default: |
| 629 | LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0]; |
| 630 | } |
| 631 | ClobberCalleeSave(); |
| 632 | int r_tgt = CallHelperSetup(func_offset); |
| 633 | CallHelper(r_tgt, func_offset, true /* MarkSafepointPC */); |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | void Mir2Lir::GenIGet(uint32_t field_idx, int opt_flags, OpSize size, |
| 638 | RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, |
| 639 | bool is_object) |
| 640 | { |
| 641 | int field_offset; |
| 642 | bool is_volatile; |
| 643 | |
| 644 | bool fast_path = FastInstance(field_idx, field_offset, is_volatile, false); |
| 645 | |
| 646 | if (fast_path && !SLOW_FIELD_PATH) { |
| 647 | RegLocation rl_result; |
| 648 | RegisterClass reg_class = oat_reg_class_by_size(size); |
| 649 | DCHECK_GE(field_offset, 0); |
| 650 | rl_obj = LoadValue(rl_obj, kCoreReg); |
| 651 | if (is_long_or_double) { |
| 652 | DCHECK(rl_dest.wide); |
| 653 | GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| 654 | if (cu_->instruction_set == kX86) { |
| 655 | rl_result = EvalLoc(rl_dest, reg_class, true); |
| 656 | GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| 657 | LoadBaseDispWide(rl_obj.low_reg, field_offset, rl_result.low_reg, |
| 658 | rl_result.high_reg, rl_obj.s_reg_low); |
| 659 | if (is_volatile) { |
| 660 | GenMemBarrier(kLoadLoad); |
| 661 | } |
| 662 | } else { |
| 663 | int reg_ptr = AllocTemp(); |
| 664 | OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); |
| 665 | rl_result = EvalLoc(rl_dest, reg_class, true); |
| 666 | LoadBaseDispWide(reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); |
| 667 | if (is_volatile) { |
| 668 | GenMemBarrier(kLoadLoad); |
| 669 | } |
| 670 | FreeTemp(reg_ptr); |
| 671 | } |
| 672 | StoreValueWide(rl_dest, rl_result); |
| 673 | } else { |
| 674 | rl_result = EvalLoc(rl_dest, reg_class, true); |
| 675 | GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| 676 | LoadBaseDisp(rl_obj.low_reg, field_offset, rl_result.low_reg, |
| 677 | kWord, rl_obj.s_reg_low); |
| 678 | if (is_volatile) { |
| 679 | GenMemBarrier(kLoadLoad); |
| 680 | } |
| 681 | StoreValue(rl_dest, rl_result); |
| 682 | } |
| 683 | } else { |
| 684 | int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Instance) : |
| 685 | (is_object ? ENTRYPOINT_OFFSET(pGetObjInstance) |
| 686 | : ENTRYPOINT_OFFSET(pGet32Instance)); |
| 687 | CallRuntimeHelperImmRegLocation(getterOffset, field_idx, rl_obj, true); |
| 688 | if (is_long_or_double) { |
| 689 | RegLocation rl_result = GetReturnWide(rl_dest.fp); |
| 690 | StoreValueWide(rl_dest, rl_result); |
| 691 | } else { |
| 692 | RegLocation rl_result = GetReturn(rl_dest.fp); |
| 693 | StoreValue(rl_dest, rl_result); |
| 694 | } |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | void Mir2Lir::GenIPut(uint32_t field_idx, int opt_flags, OpSize size, |
| 699 | RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, |
| 700 | bool is_object) |
| 701 | { |
| 702 | int field_offset; |
| 703 | bool is_volatile; |
| 704 | |
| 705 | bool fast_path = FastInstance(field_idx, field_offset, is_volatile, |
| 706 | true); |
| 707 | if (fast_path && !SLOW_FIELD_PATH) { |
| 708 | RegisterClass reg_class = oat_reg_class_by_size(size); |
| 709 | DCHECK_GE(field_offset, 0); |
| 710 | rl_obj = LoadValue(rl_obj, kCoreReg); |
| 711 | if (is_long_or_double) { |
| 712 | int reg_ptr; |
| 713 | rl_src = LoadValueWide(rl_src, kAnyReg); |
| 714 | GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| 715 | reg_ptr = AllocTemp(); |
| 716 | OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); |
| 717 | if (is_volatile) { |
| 718 | GenMemBarrier(kStoreStore); |
| 719 | } |
| 720 | StoreBaseDispWide(reg_ptr, 0, rl_src.low_reg, rl_src.high_reg); |
| 721 | if (is_volatile) { |
| 722 | GenMemBarrier(kLoadLoad); |
| 723 | } |
| 724 | FreeTemp(reg_ptr); |
| 725 | } else { |
| 726 | rl_src = LoadValue(rl_src, reg_class); |
| 727 | GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| 728 | if (is_volatile) { |
| 729 | GenMemBarrier(kStoreStore); |
| 730 | } |
| 731 | StoreBaseDisp(rl_obj.low_reg, field_offset, rl_src.low_reg, kWord); |
| 732 | if (is_volatile) { |
| 733 | GenMemBarrier(kLoadLoad); |
| 734 | } |
| 735 | if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { |
| 736 | MarkGCCard(rl_src.low_reg, rl_obj.low_reg); |
| 737 | } |
| 738 | } |
| 739 | } else { |
| 740 | int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Instance) : |
| 741 | (is_object ? ENTRYPOINT_OFFSET(pSetObjInstance) |
| 742 | : ENTRYPOINT_OFFSET(pSet32Instance)); |
| 743 | CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_idx, rl_obj, rl_src, true); |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) |
| 748 | { |
| 749 | RegLocation rl_method = LoadCurrMethod(); |
| 750 | int res_reg = AllocTemp(); |
| 751 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 752 | if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, |
| 753 | *cu_->dex_file, |
| 754 | type_idx)) { |
| 755 | // Call out to helper which resolves type and verifies access. |
| 756 | // Resolved type returned in kRet0. |
| 757 | CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode), |
| 758 | type_idx, rl_method.low_reg, true); |
| 759 | RegLocation rl_result = GetReturn(false); |
| 760 | StoreValue(rl_dest, rl_result); |
| 761 | } else { |
| 762 | // We're don't need access checks, load type from dex cache |
| 763 | int32_t dex_cache_offset = |
| 764 | mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(); |
| 765 | LoadWordDisp(rl_method.low_reg, dex_cache_offset, res_reg); |
| 766 | int32_t offset_of_type = |
| 767 | mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) |
| 768 | * type_idx); |
| 769 | LoadWordDisp(res_reg, offset_of_type, rl_result.low_reg); |
| 770 | if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, |
| 771 | type_idx) || SLOW_TYPE_PATH) { |
| 772 | // Slow path, at runtime test if type is null and if so initialize |
| 773 | FlushAllRegs(); |
| 774 | LIR* branch1 = OpCmpImmBranch(kCondEq, rl_result.low_reg, 0, NULL); |
| 775 | // Resolved, store and hop over following code |
| 776 | StoreValue(rl_dest, rl_result); |
| 777 | /* |
| 778 | * Because we have stores of the target value on two paths, |
| 779 | * clobber temp tracking for the destination using the ssa name |
| 780 | */ |
| 781 | ClobberSReg(rl_dest.s_reg_low); |
| 782 | LIR* branch2 = OpUnconditionalBranch(0); |
| 783 | // TUNING: move slow path to end & remove unconditional branch |
| 784 | LIR* target1 = NewLIR0(kPseudoTargetLabel); |
| 785 | // Call out to helper, which will return resolved type in kArg0 |
| 786 | CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, |
| 787 | rl_method.low_reg, true); |
| 788 | RegLocation rl_result = GetReturn(false); |
| 789 | StoreValue(rl_dest, rl_result); |
| 790 | /* |
| 791 | * Because we have stores of the target value on two paths, |
| 792 | * clobber temp tracking for the destination using the ssa name |
| 793 | */ |
| 794 | ClobberSReg(rl_dest.s_reg_low); |
| 795 | // Rejoin code paths |
| 796 | LIR* target2 = NewLIR0(kPseudoTargetLabel); |
| 797 | branch1->target = target1; |
| 798 | branch2->target = target2; |
| 799 | } else { |
| 800 | // Fast path, we're done - just store result |
| 801 | StoreValue(rl_dest, rl_result); |
| 802 | } |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) |
| 807 | { |
| 808 | /* NOTE: Most strings should be available at compile time */ |
| 809 | int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() + |
| 810 | (sizeof(mirror::String*) * string_idx); |
| 811 | if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache( |
| 812 | *cu_->dex_file, string_idx) || SLOW_STRING_PATH) { |
| 813 | // slow path, resolve string if not in dex cache |
| 814 | FlushAllRegs(); |
| 815 | LockCallTemps(); // Using explicit registers |
| 816 | LoadCurrMethodDirect(TargetReg(kArg2)); |
| 817 | LoadWordDisp(TargetReg(kArg2), |
| 818 | mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0)); |
| 819 | // Might call out to helper, which will return resolved string in kRet0 |
| 820 | int r_tgt = CallHelperSetup(ENTRYPOINT_OFFSET(pResolveStringFromCode)); |
| 821 | LoadWordDisp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0)); |
| 822 | LoadConstant(TargetReg(kArg1), string_idx); |
| 823 | if (cu_->instruction_set == kThumb2) { |
| 824 | OpRegImm(kOpCmp, TargetReg(kRet0), 0); // Is resolved? |
| 825 | GenBarrier(); |
| 826 | // For testing, always force through helper |
| 827 | if (!EXERCISE_SLOWEST_STRING_PATH) { |
| 828 | OpIT(kCondEq, "T"); |
| 829 | } |
| 830 | OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq |
| 831 | LIR* call_inst = OpReg(kOpBlx, r_tgt); // .eq, helper(Method*, string_idx) |
| 832 | MarkSafepointPC(call_inst); |
| 833 | FreeTemp(r_tgt); |
| 834 | } else if (cu_->instruction_set == kMips) { |
| 835 | LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kRet0), 0, NULL); |
| 836 | OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq |
| 837 | LIR* call_inst = OpReg(kOpBlx, r_tgt); |
| 838 | MarkSafepointPC(call_inst); |
| 839 | FreeTemp(r_tgt); |
| 840 | LIR* target = NewLIR0(kPseudoTargetLabel); |
| 841 | branch->target = target; |
| 842 | } else { |
| 843 | DCHECK_EQ(cu_->instruction_set, kX86); |
| 844 | CallRuntimeHelperRegReg(ENTRYPOINT_OFFSET(pResolveStringFromCode), TargetReg(kArg2), TargetReg(kArg1), true); |
| 845 | } |
| 846 | GenBarrier(); |
| 847 | StoreValue(rl_dest, GetReturn(false)); |
| 848 | } else { |
| 849 | RegLocation rl_method = LoadCurrMethod(); |
| 850 | int res_reg = AllocTemp(); |
| 851 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 852 | LoadWordDisp(rl_method.low_reg, |
| 853 | mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), res_reg); |
| 854 | LoadWordDisp(res_reg, offset_of_string, rl_result.low_reg); |
| 855 | StoreValue(rl_dest, rl_result); |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | * Let helper function take care of everything. Will |
| 861 | * call Class::NewInstanceFromCode(type_idx, method); |
| 862 | */ |
| 863 | void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) |
| 864 | { |
| 865 | FlushAllRegs(); /* Everything to home location */ |
| 866 | // alloc will always check for resolution, do we also need to verify |
| 867 | // access because the verifier was unable to? |
| 868 | int func_offset; |
| 869 | if (cu_->compiler_driver->CanAccessInstantiableTypeWithoutChecks( |
| 870 | cu_->method_idx, *cu_->dex_file, type_idx)) { |
| 871 | func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCode); |
| 872 | } else { |
| 873 | func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCodeWithAccessCheck); |
| 874 | } |
| 875 | CallRuntimeHelperImmMethod(func_offset, type_idx, true); |
| 876 | RegLocation rl_result = GetReturn(false); |
| 877 | StoreValue(rl_dest, rl_result); |
| 878 | } |
| 879 | |
| 880 | void Mir2Lir::GenThrow(RegLocation rl_src) |
| 881 | { |
| 882 | FlushAllRegs(); |
| 883 | CallRuntimeHelperRegLocation(ENTRYPOINT_OFFSET(pDeliverException), rl_src, true); |
| 884 | } |
| 885 | |
| 886 | // For final classes there are no sub-classes to check and so we can answer the instance-of |
| 887 | // question with simple comparisons. |
| 888 | void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest, |
| 889 | RegLocation rl_src) { |
| 890 | RegLocation object = LoadValue(rl_src, kCoreReg); |
| 891 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 892 | int result_reg = rl_result.low_reg; |
| 893 | if (result_reg == object.low_reg) { |
| 894 | result_reg = AllocTypedTemp(false, kCoreReg); |
| 895 | } |
| 896 | LoadConstant(result_reg, 0); // assume false |
| 897 | LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL); |
| 898 | |
| 899 | int check_class = AllocTypedTemp(false, kCoreReg); |
| 900 | int object_class = AllocTypedTemp(false, kCoreReg); |
| 901 | |
| 902 | LoadCurrMethodDirect(check_class); |
| 903 | if (use_declaring_class) { |
| 904 | LoadWordDisp(check_class, mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), |
| 905 | check_class); |
| 906 | LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class); |
| 907 | } else { |
| 908 | LoadWordDisp(check_class, mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), |
| 909 | check_class); |
| 910 | LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class); |
| 911 | int32_t offset_of_type = |
| 912 | mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + |
| 913 | (sizeof(mirror::Class*) * type_idx); |
| 914 | LoadWordDisp(check_class, offset_of_type, check_class); |
| 915 | } |
| 916 | |
| 917 | LIR* ne_branchover = NULL; |
| 918 | if (cu_->instruction_set == kThumb2) { |
| 919 | OpRegReg(kOpCmp, check_class, object_class); // Same? |
| 920 | OpIT(kCondEq, ""); // if-convert the test |
| 921 | LoadConstant(result_reg, 1); // .eq case - load true |
| 922 | } else { |
| 923 | ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL); |
| 924 | LoadConstant(result_reg, 1); // eq case - load true |
| 925 | } |
| 926 | LIR* target = NewLIR0(kPseudoTargetLabel); |
| 927 | null_branchover->target = target; |
| 928 | if (ne_branchover != NULL) { |
| 929 | ne_branchover->target = target; |
| 930 | } |
| 931 | FreeTemp(object_class); |
| 932 | FreeTemp(check_class); |
| 933 | if (IsTemp(result_reg)) { |
| 934 | OpRegCopy(rl_result.low_reg, result_reg); |
| 935 | FreeTemp(result_reg); |
| 936 | } |
| 937 | StoreValue(rl_dest, rl_result); |
| 938 | } |
| 939 | |
| 940 | void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final, |
| 941 | bool type_known_abstract, bool use_declaring_class, |
| 942 | bool can_assume_type_is_in_dex_cache, |
| 943 | uint32_t type_idx, RegLocation rl_dest, |
| 944 | RegLocation rl_src) { |
| 945 | FlushAllRegs(); |
| 946 | // May generate a call - use explicit registers |
| 947 | LockCallTemps(); |
| 948 | LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* |
| 949 | int class_reg = TargetReg(kArg2); // kArg2 will hold the Class* |
| 950 | if (needs_access_check) { |
| 951 | // Check we have access to type_idx and if not throw IllegalAccessError, |
| 952 | // returns Class* in kArg0 |
| 953 | CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode), |
| 954 | type_idx, true); |
| 955 | OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path |
| 956 | LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref |
| 957 | } else if (use_declaring_class) { |
| 958 | LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref |
| 959 | LoadWordDisp(TargetReg(kArg1), |
| 960 | mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), class_reg); |
| 961 | } else { |
| 962 | // Load dex cache entry into class_reg (kArg2) |
| 963 | LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref |
| 964 | LoadWordDisp(TargetReg(kArg1), |
| 965 | mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); |
| 966 | int32_t offset_of_type = |
| 967 | mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) |
| 968 | * type_idx); |
| 969 | LoadWordDisp(class_reg, offset_of_type, class_reg); |
| 970 | if (!can_assume_type_is_in_dex_cache) { |
| 971 | // Need to test presence of type in dex cache at runtime |
| 972 | LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); |
| 973 | // Not resolved |
| 974 | // Call out to helper, which will return resolved type in kRet0 |
| 975 | CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, true); |
| 976 | OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path |
| 977 | LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* reload Ref */ |
| 978 | // Rejoin code paths |
| 979 | LIR* hop_target = NewLIR0(kPseudoTargetLabel); |
| 980 | hop_branch->target = hop_target; |
| 981 | } |
| 982 | } |
| 983 | /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */ |
| 984 | RegLocation rl_result = GetReturn(false); |
| 985 | if (cu_->instruction_set == kMips) { |
| 986 | // On MIPS rArg0 != rl_result, place false in result if branch is taken. |
| 987 | LoadConstant(rl_result.low_reg, 0); |
| 988 | } |
| 989 | LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); |
| 990 | |
| 991 | /* load object->klass_ */ |
| 992 | DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); |
| 993 | LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); |
| 994 | /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */ |
| 995 | LIR* branchover = NULL; |
| 996 | if (type_known_final) { |
| 997 | // rl_result == ref == null == 0. |
| 998 | if (cu_->instruction_set == kThumb2) { |
| 999 | OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? |
| 1000 | OpIT(kCondEq, "E"); // if-convert the test |
| 1001 | LoadConstant(rl_result.low_reg, 1); // .eq case - load true |
| 1002 | LoadConstant(rl_result.low_reg, 0); // .ne case - load false |
| 1003 | } else { |
| 1004 | LoadConstant(rl_result.low_reg, 0); // ne case - load false |
| 1005 | branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL); |
| 1006 | LoadConstant(rl_result.low_reg, 1); // eq case - load true |
| 1007 | } |
| 1008 | } else { |
| 1009 | if (cu_->instruction_set == kThumb2) { |
| 1010 | int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode)); |
| 1011 | if (!type_known_abstract) { |
| 1012 | /* Uses conditional nullification */ |
| 1013 | OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? |
| 1014 | OpIT(kCondEq, "EE"); // if-convert the test |
| 1015 | LoadConstant(TargetReg(kArg0), 1); // .eq case - load true |
| 1016 | } |
| 1017 | OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class |
| 1018 | OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) |
| 1019 | FreeTemp(r_tgt); |
| 1020 | } else { |
| 1021 | if (!type_known_abstract) { |
| 1022 | /* Uses branchovers */ |
| 1023 | LoadConstant(rl_result.low_reg, 1); // assume true |
| 1024 | branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL); |
| 1025 | } |
| 1026 | if (cu_->instruction_set != kX86) { |
| 1027 | int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode)); |
| 1028 | OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class |
| 1029 | OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) |
| 1030 | FreeTemp(r_tgt); |
| 1031 | } else { |
| 1032 | OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); |
| 1033 | OpThreadMem(kOpBlx, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode)); |
| 1034 | } |
| 1035 | } |
| 1036 | } |
| 1037 | // TODO: only clobber when type isn't final? |
| 1038 | ClobberCalleeSave(); |
| 1039 | /* branch targets here */ |
| 1040 | LIR* target = NewLIR0(kPseudoTargetLabel); |
| 1041 | StoreValue(rl_dest, rl_result); |
| 1042 | branch1->target = target; |
| 1043 | if (branchover != NULL) { |
| 1044 | branchover->target = target; |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { |
| 1049 | bool type_known_final, type_known_abstract, use_declaring_class; |
| 1050 | bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, |
| 1051 | *cu_->dex_file, |
| 1052 | type_idx, |
| 1053 | &type_known_final, |
| 1054 | &type_known_abstract, |
| 1055 | &use_declaring_class); |
| 1056 | bool can_assume_type_is_in_dex_cache = !needs_access_check && |
| 1057 | cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx); |
| 1058 | |
| 1059 | if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) { |
| 1060 | GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src); |
| 1061 | } else { |
| 1062 | GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract, |
| 1063 | use_declaring_class, can_assume_type_is_in_dex_cache, |
| 1064 | type_idx, rl_dest, rl_src); |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) |
| 1069 | { |
| 1070 | bool type_known_final, type_known_abstract, use_declaring_class; |
| 1071 | bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, |
| 1072 | *cu_->dex_file, |
| 1073 | type_idx, |
| 1074 | &type_known_final, |
| 1075 | &type_known_abstract, |
| 1076 | &use_declaring_class); |
| 1077 | // Note: currently type_known_final is unused, as optimizing will only improve the performance |
| 1078 | // of the exception throw path. |
| 1079 | DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit(); |
| 1080 | const MethodReference mr(cu->GetDexFile(), cu->GetDexMethodIndex()); |
| 1081 | if (!needs_access_check && cu_->compiler_driver->IsSafeCast(mr, insn_idx)) { |
| 1082 | // Verifier type analysis proved this check cast would never cause an exception. |
| 1083 | return; |
| 1084 | } |
| 1085 | FlushAllRegs(); |
| 1086 | // May generate a call - use explicit registers |
| 1087 | LockCallTemps(); |
| 1088 | LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* |
| 1089 | int class_reg = TargetReg(kArg2); // kArg2 will hold the Class* |
| 1090 | if (needs_access_check) { |
| 1091 | // Check we have access to type_idx and if not throw IllegalAccessError, |
| 1092 | // returns Class* in kRet0 |
| 1093 | // InitializeTypeAndVerifyAccess(idx, method) |
| 1094 | CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode), |
| 1095 | type_idx, TargetReg(kArg1), true); |
| 1096 | OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path |
| 1097 | } else if (use_declaring_class) { |
| 1098 | LoadWordDisp(TargetReg(kArg1), |
| 1099 | mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), class_reg); |
| 1100 | } else { |
| 1101 | // Load dex cache entry into class_reg (kArg2) |
| 1102 | LoadWordDisp(TargetReg(kArg1), |
| 1103 | mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); |
| 1104 | int32_t offset_of_type = |
| 1105 | mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + |
| 1106 | (sizeof(mirror::Class*) * type_idx); |
| 1107 | LoadWordDisp(class_reg, offset_of_type, class_reg); |
| 1108 | if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) { |
| 1109 | // Need to test presence of type in dex cache at runtime |
| 1110 | LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); |
| 1111 | // Not resolved |
| 1112 | // Call out to helper, which will return resolved type in kArg0 |
| 1113 | // InitializeTypeFromCode(idx, method) |
| 1114 | CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, TargetReg(kArg1), |
| 1115 | true); |
| 1116 | OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path |
| 1117 | // Rejoin code paths |
| 1118 | LIR* hop_target = NewLIR0(kPseudoTargetLabel); |
| 1119 | hop_branch->target = hop_target; |
| 1120 | } |
| 1121 | } |
| 1122 | // At this point, class_reg (kArg2) has class |
| 1123 | LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref |
| 1124 | /* Null is OK - continue */ |
| 1125 | LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); |
| 1126 | /* load object->klass_ */ |
| 1127 | DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); |
| 1128 | LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); |
| 1129 | /* kArg1 now contains object->klass_ */ |
| 1130 | LIR* branch2 = NULL; |
| 1131 | if (!type_known_abstract) { |
| 1132 | branch2 = OpCmpBranch(kCondEq, TargetReg(kArg1), class_reg, NULL); |
| 1133 | } |
| 1134 | CallRuntimeHelperRegReg(ENTRYPOINT_OFFSET(pCheckCastFromCode), TargetReg(kArg1), TargetReg(kArg2), |
| 1135 | true); |
| 1136 | /* branch target here */ |
| 1137 | LIR* target = NewLIR0(kPseudoTargetLabel); |
| 1138 | branch1->target = target; |
| 1139 | if (branch2 != NULL) { |
| 1140 | branch2->target = target; |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest, |
| 1145 | RegLocation rl_src1, RegLocation rl_src2) |
| 1146 | { |
| 1147 | RegLocation rl_result; |
| 1148 | if (cu_->instruction_set == kThumb2) { |
| 1149 | /* |
| 1150 | * NOTE: This is the one place in the code in which we might have |
| 1151 | * as many as six live temporary registers. There are 5 in the normal |
| 1152 | * set for Arm. Until we have spill capabilities, temporarily add |
| 1153 | * lr to the temp set. It is safe to do this locally, but note that |
| 1154 | * lr is used explicitly elsewhere in the code generator and cannot |
| 1155 | * normally be used as a general temp register. |
| 1156 | */ |
| 1157 | MarkTemp(TargetReg(kLr)); // Add lr to the temp pool |
| 1158 | FreeTemp(TargetReg(kLr)); // and make it available |
| 1159 | } |
| 1160 | rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| 1161 | rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| 1162 | rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 1163 | // The longs may overlap - use intermediate temp if so |
| 1164 | if ((rl_result.low_reg == rl_src1.high_reg) || (rl_result.low_reg == rl_src2.high_reg)){ |
| 1165 | int t_reg = AllocTemp(); |
| 1166 | OpRegRegReg(first_op, t_reg, rl_src1.low_reg, rl_src2.low_reg); |
| 1167 | OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg); |
| 1168 | OpRegCopy(rl_result.low_reg, t_reg); |
| 1169 | FreeTemp(t_reg); |
| 1170 | } else { |
| 1171 | OpRegRegReg(first_op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); |
| 1172 | OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, |
| 1173 | rl_src2.high_reg); |
| 1174 | } |
| 1175 | /* |
| 1176 | * NOTE: If rl_dest refers to a frame variable in a large frame, the |
| 1177 | * following StoreValueWide might need to allocate a temp register. |
| 1178 | * To further work around the lack of a spill capability, explicitly |
| 1179 | * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result. |
| 1180 | * Remove when spill is functional. |
| 1181 | */ |
| 1182 | FreeRegLocTemps(rl_result, rl_src1); |
| 1183 | FreeRegLocTemps(rl_result, rl_src2); |
| 1184 | StoreValueWide(rl_dest, rl_result); |
| 1185 | if (cu_->instruction_set == kThumb2) { |
| 1186 | Clobber(TargetReg(kLr)); |
| 1187 | UnmarkTemp(TargetReg(kLr)); // Remove lr from the temp pool |
| 1188 | } |
| 1189 | } |
| 1190 | |
| 1191 | |
| 1192 | void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| 1193 | RegLocation rl_src1, RegLocation rl_shift) |
| 1194 | { |
| 1195 | int func_offset = -1; // Make gcc happy |
| 1196 | |
| 1197 | switch (opcode) { |
| 1198 | case Instruction::SHL_LONG: |
| 1199 | case Instruction::SHL_LONG_2ADDR: |
| 1200 | func_offset = ENTRYPOINT_OFFSET(pShlLong); |
| 1201 | break; |
| 1202 | case Instruction::SHR_LONG: |
| 1203 | case Instruction::SHR_LONG_2ADDR: |
| 1204 | func_offset = ENTRYPOINT_OFFSET(pShrLong); |
| 1205 | break; |
| 1206 | case Instruction::USHR_LONG: |
| 1207 | case Instruction::USHR_LONG_2ADDR: |
| 1208 | func_offset = ENTRYPOINT_OFFSET(pUshrLong); |
| 1209 | break; |
| 1210 | default: |
| 1211 | LOG(FATAL) << "Unexpected case"; |
| 1212 | } |
| 1213 | FlushAllRegs(); /* Send everything to home location */ |
| 1214 | CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false); |
| 1215 | RegLocation rl_result = GetReturnWide(false); |
| 1216 | StoreValueWide(rl_dest, rl_result); |
| 1217 | } |
| 1218 | |
| 1219 | |
| 1220 | void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, |
| 1221 | RegLocation rl_src1, RegLocation rl_src2) |
| 1222 | { |
| 1223 | OpKind op = kOpBkpt; |
| 1224 | bool is_div_rem = false; |
| 1225 | bool check_zero = false; |
| 1226 | bool unary = false; |
| 1227 | RegLocation rl_result; |
| 1228 | bool shift_op = false; |
| 1229 | switch (opcode) { |
| 1230 | case Instruction::NEG_INT: |
| 1231 | op = kOpNeg; |
| 1232 | unary = true; |
| 1233 | break; |
| 1234 | case Instruction::NOT_INT: |
| 1235 | op = kOpMvn; |
| 1236 | unary = true; |
| 1237 | break; |
| 1238 | case Instruction::ADD_INT: |
| 1239 | case Instruction::ADD_INT_2ADDR: |
| 1240 | op = kOpAdd; |
| 1241 | break; |
| 1242 | case Instruction::SUB_INT: |
| 1243 | case Instruction::SUB_INT_2ADDR: |
| 1244 | op = kOpSub; |
| 1245 | break; |
| 1246 | case Instruction::MUL_INT: |
| 1247 | case Instruction::MUL_INT_2ADDR: |
| 1248 | op = kOpMul; |
| 1249 | break; |
| 1250 | case Instruction::DIV_INT: |
| 1251 | case Instruction::DIV_INT_2ADDR: |
| 1252 | check_zero = true; |
| 1253 | op = kOpDiv; |
| 1254 | is_div_rem = true; |
| 1255 | break; |
| 1256 | /* NOTE: returns in kArg1 */ |
| 1257 | case Instruction::REM_INT: |
| 1258 | case Instruction::REM_INT_2ADDR: |
| 1259 | check_zero = true; |
| 1260 | op = kOpRem; |
| 1261 | is_div_rem = true; |
| 1262 | break; |
| 1263 | case Instruction::AND_INT: |
| 1264 | case Instruction::AND_INT_2ADDR: |
| 1265 | op = kOpAnd; |
| 1266 | break; |
| 1267 | case Instruction::OR_INT: |
| 1268 | case Instruction::OR_INT_2ADDR: |
| 1269 | op = kOpOr; |
| 1270 | break; |
| 1271 | case Instruction::XOR_INT: |
| 1272 | case Instruction::XOR_INT_2ADDR: |
| 1273 | op = kOpXor; |
| 1274 | break; |
| 1275 | case Instruction::SHL_INT: |
| 1276 | case Instruction::SHL_INT_2ADDR: |
| 1277 | shift_op = true; |
| 1278 | op = kOpLsl; |
| 1279 | break; |
| 1280 | case Instruction::SHR_INT: |
| 1281 | case Instruction::SHR_INT_2ADDR: |
| 1282 | shift_op = true; |
| 1283 | op = kOpAsr; |
| 1284 | break; |
| 1285 | case Instruction::USHR_INT: |
| 1286 | case Instruction::USHR_INT_2ADDR: |
| 1287 | shift_op = true; |
| 1288 | op = kOpLsr; |
| 1289 | break; |
| 1290 | default: |
| 1291 | LOG(FATAL) << "Invalid word arith op: " << opcode; |
| 1292 | } |
| 1293 | if (!is_div_rem) { |
| 1294 | if (unary) { |
| 1295 | rl_src1 = LoadValue(rl_src1, kCoreReg); |
| 1296 | rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 1297 | OpRegReg(op, rl_result.low_reg, rl_src1.low_reg); |
| 1298 | } else { |
| 1299 | if (shift_op) { |
| 1300 | int t_reg = INVALID_REG; |
| 1301 | if (cu_->instruction_set == kX86) { |
| 1302 | // X86 doesn't require masking and must use ECX |
| 1303 | t_reg = TargetReg(kCount); // rCX |
| 1304 | LoadValueDirectFixed(rl_src2, t_reg); |
| 1305 | } else { |
| 1306 | rl_src2 = LoadValue(rl_src2, kCoreReg); |
| 1307 | t_reg = AllocTemp(); |
| 1308 | OpRegRegImm(kOpAnd, t_reg, rl_src2.low_reg, 31); |
| 1309 | } |
| 1310 | rl_src1 = LoadValue(rl_src1, kCoreReg); |
| 1311 | rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 1312 | OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, t_reg); |
| 1313 | FreeTemp(t_reg); |
| 1314 | } else { |
| 1315 | rl_src1 = LoadValue(rl_src1, kCoreReg); |
| 1316 | rl_src2 = LoadValue(rl_src2, kCoreReg); |
| 1317 | rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 1318 | OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); |
| 1319 | } |
| 1320 | } |
| 1321 | StoreValue(rl_dest, rl_result); |
| 1322 | } else { |
| 1323 | if (cu_->instruction_set == kMips) { |
| 1324 | rl_src1 = LoadValue(rl_src1, kCoreReg); |
| 1325 | rl_src2 = LoadValue(rl_src2, kCoreReg); |
| 1326 | if (check_zero) { |
| 1327 | GenImmedCheck(kCondEq, rl_src2.low_reg, 0, kThrowDivZero); |
| 1328 | } |
| 1329 | rl_result = GenDivRem(rl_dest, rl_src1.low_reg, rl_src2.low_reg, op == kOpDiv); |
| 1330 | } else { |
| 1331 | int func_offset = ENTRYPOINT_OFFSET(pIdivmod); |
| 1332 | FlushAllRegs(); /* Send everything to home location */ |
| 1333 | LoadValueDirectFixed(rl_src2, TargetReg(kArg1)); |
| 1334 | int r_tgt = CallHelperSetup(func_offset); |
| 1335 | LoadValueDirectFixed(rl_src1, TargetReg(kArg0)); |
| 1336 | if (check_zero) { |
| 1337 | GenImmedCheck(kCondEq, TargetReg(kArg1), 0, kThrowDivZero); |
| 1338 | } |
| 1339 | // NOTE: callout here is not a safepoint |
| 1340 | CallHelper(r_tgt, func_offset, false /* not a safepoint */ ); |
| 1341 | if (op == kOpDiv) |
| 1342 | rl_result = GetReturn(false); |
| 1343 | else |
| 1344 | rl_result = GetReturnAlt(); |
| 1345 | } |
| 1346 | StoreValue(rl_dest, rl_result); |
| 1347 | } |
| 1348 | } |
| 1349 | |
| 1350 | /* |
| 1351 | * The following are the first-level codegen routines that analyze the format |
| 1352 | * of each bytecode then either dispatch special purpose codegen routines |
| 1353 | * or produce corresponding Thumb instructions directly. |
| 1354 | */ |
| 1355 | |
| 1356 | static bool IsPowerOfTwo(int x) |
| 1357 | { |
| 1358 | return (x & (x - 1)) == 0; |
| 1359 | } |
| 1360 | |
| 1361 | // Returns true if no more than two bits are set in 'x'. |
| 1362 | static bool IsPopCountLE2(unsigned int x) |
| 1363 | { |
| 1364 | x &= x - 1; |
| 1365 | return (x & (x - 1)) == 0; |
| 1366 | } |
| 1367 | |
| 1368 | // Returns the index of the lowest set bit in 'x'. |
| 1369 | static int LowestSetBit(unsigned int x) { |
| 1370 | int bit_posn = 0; |
| 1371 | while ((x & 0xf) == 0) { |
| 1372 | bit_posn += 4; |
| 1373 | x >>= 4; |
| 1374 | } |
| 1375 | while ((x & 1) == 0) { |
| 1376 | bit_posn++; |
| 1377 | x >>= 1; |
| 1378 | } |
| 1379 | return bit_posn; |
| 1380 | } |
| 1381 | |
| 1382 | // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' |
| 1383 | // and store the result in 'rl_dest'. |
| 1384 | bool Mir2Lir::HandleEasyDivide(Instruction::Code dalvik_opcode, |
| 1385 | RegLocation rl_src, RegLocation rl_dest, int lit) |
| 1386 | { |
| 1387 | if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) { |
| 1388 | return false; |
| 1389 | } |
| 1390 | // No divide instruction for Arm, so check for more special cases |
| 1391 | if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) { |
| 1392 | return SmallLiteralDivide(dalvik_opcode, rl_src, rl_dest, lit); |
| 1393 | } |
| 1394 | int k = LowestSetBit(lit); |
| 1395 | if (k >= 30) { |
| 1396 | // Avoid special cases. |
| 1397 | return false; |
| 1398 | } |
| 1399 | bool div = (dalvik_opcode == Instruction::DIV_INT_LIT8 || |
| 1400 | dalvik_opcode == Instruction::DIV_INT_LIT16); |
| 1401 | rl_src = LoadValue(rl_src, kCoreReg); |
| 1402 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 1403 | if (div) { |
| 1404 | int t_reg = AllocTemp(); |
| 1405 | if (lit == 2) { |
| 1406 | // Division by 2 is by far the most common division by constant. |
| 1407 | OpRegRegImm(kOpLsr, t_reg, rl_src.low_reg, 32 - k); |
| 1408 | OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); |
| 1409 | OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); |
| 1410 | } else { |
| 1411 | OpRegRegImm(kOpAsr, t_reg, rl_src.low_reg, 31); |
| 1412 | OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k); |
| 1413 | OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); |
| 1414 | OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); |
| 1415 | } |
| 1416 | } else { |
| 1417 | int t_reg1 = AllocTemp(); |
| 1418 | int t_reg2 = AllocTemp(); |
| 1419 | if (lit == 2) { |
| 1420 | OpRegRegImm(kOpLsr, t_reg1, rl_src.low_reg, 32 - k); |
| 1421 | OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); |
| 1422 | OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1); |
| 1423 | OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); |
| 1424 | } else { |
| 1425 | OpRegRegImm(kOpAsr, t_reg1, rl_src.low_reg, 31); |
| 1426 | OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k); |
| 1427 | OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); |
| 1428 | OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1); |
| 1429 | OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); |
| 1430 | } |
| 1431 | } |
| 1432 | StoreValue(rl_dest, rl_result); |
| 1433 | return true; |
| 1434 | } |
| 1435 | |
| 1436 | // Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit' |
| 1437 | // and store the result in 'rl_dest'. |
| 1438 | bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) |
| 1439 | { |
| 1440 | // Can we simplify this multiplication? |
| 1441 | bool power_of_two = false; |
| 1442 | bool pop_count_le2 = false; |
| 1443 | bool power_of_two_minus_one = false; |
| 1444 | if (lit < 2) { |
| 1445 | // Avoid special cases. |
| 1446 | return false; |
| 1447 | } else if (IsPowerOfTwo(lit)) { |
| 1448 | power_of_two = true; |
| 1449 | } else if (IsPopCountLE2(lit)) { |
| 1450 | pop_count_le2 = true; |
| 1451 | } else if (IsPowerOfTwo(lit + 1)) { |
| 1452 | power_of_two_minus_one = true; |
| 1453 | } else { |
| 1454 | return false; |
| 1455 | } |
| 1456 | rl_src = LoadValue(rl_src, kCoreReg); |
| 1457 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 1458 | if (power_of_two) { |
| 1459 | // Shift. |
| 1460 | OpRegRegImm(kOpLsl, rl_result.low_reg, rl_src.low_reg, LowestSetBit(lit)); |
| 1461 | } else if (pop_count_le2) { |
| 1462 | // Shift and add and shift. |
| 1463 | int first_bit = LowestSetBit(lit); |
| 1464 | int second_bit = LowestSetBit(lit ^ (1 << first_bit)); |
| 1465 | GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit); |
| 1466 | } else { |
| 1467 | // Reverse subtract: (src << (shift + 1)) - src. |
| 1468 | DCHECK(power_of_two_minus_one); |
| 1469 | // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1) |
| 1470 | int t_reg = AllocTemp(); |
| 1471 | OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, LowestSetBit(lit + 1)); |
| 1472 | OpRegRegReg(kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg); |
| 1473 | } |
| 1474 | StoreValue(rl_dest, rl_result); |
| 1475 | return true; |
| 1476 | } |
| 1477 | |
| 1478 | void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src, |
| 1479 | int lit) |
| 1480 | { |
| 1481 | RegLocation rl_result; |
| 1482 | OpKind op = static_cast<OpKind>(0); /* Make gcc happy */ |
| 1483 | int shift_op = false; |
| 1484 | bool is_div = false; |
| 1485 | |
| 1486 | switch (opcode) { |
| 1487 | case Instruction::RSUB_INT_LIT8: |
| 1488 | case Instruction::RSUB_INT: { |
| 1489 | rl_src = LoadValue(rl_src, kCoreReg); |
| 1490 | rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 1491 | if (cu_->instruction_set == kThumb2) { |
| 1492 | OpRegRegImm(kOpRsub, rl_result.low_reg, rl_src.low_reg, lit); |
| 1493 | } else { |
| 1494 | OpRegReg(kOpNeg, rl_result.low_reg, rl_src.low_reg); |
| 1495 | OpRegImm(kOpAdd, rl_result.low_reg, lit); |
| 1496 | } |
| 1497 | StoreValue(rl_dest, rl_result); |
| 1498 | return; |
| 1499 | } |
| 1500 | |
| 1501 | case Instruction::SUB_INT: |
| 1502 | case Instruction::SUB_INT_2ADDR: |
| 1503 | lit = -lit; |
| 1504 | // Intended fallthrough |
| 1505 | case Instruction::ADD_INT: |
| 1506 | case Instruction::ADD_INT_2ADDR: |
| 1507 | case Instruction::ADD_INT_LIT8: |
| 1508 | case Instruction::ADD_INT_LIT16: |
| 1509 | op = kOpAdd; |
| 1510 | break; |
| 1511 | case Instruction::MUL_INT: |
| 1512 | case Instruction::MUL_INT_2ADDR: |
| 1513 | case Instruction::MUL_INT_LIT8: |
| 1514 | case Instruction::MUL_INT_LIT16: { |
| 1515 | if (HandleEasyMultiply(rl_src, rl_dest, lit)) { |
| 1516 | return; |
| 1517 | } |
| 1518 | op = kOpMul; |
| 1519 | break; |
| 1520 | } |
| 1521 | case Instruction::AND_INT: |
| 1522 | case Instruction::AND_INT_2ADDR: |
| 1523 | case Instruction::AND_INT_LIT8: |
| 1524 | case Instruction::AND_INT_LIT16: |
| 1525 | op = kOpAnd; |
| 1526 | break; |
| 1527 | case Instruction::OR_INT: |
| 1528 | case Instruction::OR_INT_2ADDR: |
| 1529 | case Instruction::OR_INT_LIT8: |
| 1530 | case Instruction::OR_INT_LIT16: |
| 1531 | op = kOpOr; |
| 1532 | break; |
| 1533 | case Instruction::XOR_INT: |
| 1534 | case Instruction::XOR_INT_2ADDR: |
| 1535 | case Instruction::XOR_INT_LIT8: |
| 1536 | case Instruction::XOR_INT_LIT16: |
| 1537 | op = kOpXor; |
| 1538 | break; |
| 1539 | case Instruction::SHL_INT_LIT8: |
| 1540 | case Instruction::SHL_INT: |
| 1541 | case Instruction::SHL_INT_2ADDR: |
| 1542 | lit &= 31; |
| 1543 | shift_op = true; |
| 1544 | op = kOpLsl; |
| 1545 | break; |
| 1546 | case Instruction::SHR_INT_LIT8: |
| 1547 | case Instruction::SHR_INT: |
| 1548 | case Instruction::SHR_INT_2ADDR: |
| 1549 | lit &= 31; |
| 1550 | shift_op = true; |
| 1551 | op = kOpAsr; |
| 1552 | break; |
| 1553 | case Instruction::USHR_INT_LIT8: |
| 1554 | case Instruction::USHR_INT: |
| 1555 | case Instruction::USHR_INT_2ADDR: |
| 1556 | lit &= 31; |
| 1557 | shift_op = true; |
| 1558 | op = kOpLsr; |
| 1559 | break; |
| 1560 | |
| 1561 | case Instruction::DIV_INT: |
| 1562 | case Instruction::DIV_INT_2ADDR: |
| 1563 | case Instruction::DIV_INT_LIT8: |
| 1564 | case Instruction::DIV_INT_LIT16: |
| 1565 | case Instruction::REM_INT: |
| 1566 | case Instruction::REM_INT_2ADDR: |
| 1567 | case Instruction::REM_INT_LIT8: |
| 1568 | case Instruction::REM_INT_LIT16: { |
| 1569 | if (lit == 0) { |
| 1570 | GenImmedCheck(kCondAl, 0, 0, kThrowDivZero); |
| 1571 | return; |
| 1572 | } |
| 1573 | if (HandleEasyDivide(opcode, rl_src, rl_dest, lit)) { |
| 1574 | return; |
| 1575 | } |
| 1576 | if ((opcode == Instruction::DIV_INT_LIT8) || |
| 1577 | (opcode == Instruction::DIV_INT) || |
| 1578 | (opcode == Instruction::DIV_INT_2ADDR) || |
| 1579 | (opcode == Instruction::DIV_INT_LIT16)) { |
| 1580 | is_div = true; |
| 1581 | } else { |
| 1582 | is_div = false; |
| 1583 | } |
| 1584 | if (cu_->instruction_set == kMips) { |
| 1585 | rl_src = LoadValue(rl_src, kCoreReg); |
| 1586 | rl_result = GenDivRemLit(rl_dest, rl_src.low_reg, lit, is_div); |
| 1587 | } else { |
| 1588 | FlushAllRegs(); /* Everything to home location */ |
| 1589 | LoadValueDirectFixed(rl_src, TargetReg(kArg0)); |
| 1590 | Clobber(TargetReg(kArg0)); |
| 1591 | int func_offset = ENTRYPOINT_OFFSET(pIdivmod); |
| 1592 | CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false); |
| 1593 | if (is_div) |
| 1594 | rl_result = GetReturn(false); |
| 1595 | else |
| 1596 | rl_result = GetReturnAlt(); |
| 1597 | } |
| 1598 | StoreValue(rl_dest, rl_result); |
| 1599 | return; |
| 1600 | } |
| 1601 | default: |
| 1602 | LOG(FATAL) << "Unexpected opcode " << opcode; |
| 1603 | } |
| 1604 | rl_src = LoadValue(rl_src, kCoreReg); |
| 1605 | rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 1606 | // Avoid shifts by literal 0 - no support in Thumb. Change to copy |
| 1607 | if (shift_op && (lit == 0)) { |
| 1608 | OpRegCopy(rl_result.low_reg, rl_src.low_reg); |
| 1609 | } else { |
| 1610 | OpRegRegImm(op, rl_result.low_reg, rl_src.low_reg, lit); |
| 1611 | } |
| 1612 | StoreValue(rl_dest, rl_result); |
| 1613 | } |
| 1614 | |
| 1615 | void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| 1616 | RegLocation rl_src1, RegLocation rl_src2) |
| 1617 | { |
| 1618 | RegLocation rl_result; |
| 1619 | OpKind first_op = kOpBkpt; |
| 1620 | OpKind second_op = kOpBkpt; |
| 1621 | bool call_out = false; |
| 1622 | bool check_zero = false; |
| 1623 | int func_offset; |
| 1624 | int ret_reg = TargetReg(kRet0); |
| 1625 | |
| 1626 | switch (opcode) { |
| 1627 | case Instruction::NOT_LONG: |
| 1628 | rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| 1629 | rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 1630 | // Check for destructive overlap |
| 1631 | if (rl_result.low_reg == rl_src2.high_reg) { |
| 1632 | int t_reg = AllocTemp(); |
| 1633 | OpRegCopy(t_reg, rl_src2.high_reg); |
| 1634 | OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); |
| 1635 | OpRegReg(kOpMvn, rl_result.high_reg, t_reg); |
| 1636 | FreeTemp(t_reg); |
| 1637 | } else { |
| 1638 | OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); |
| 1639 | OpRegReg(kOpMvn, rl_result.high_reg, rl_src2.high_reg); |
| 1640 | } |
| 1641 | StoreValueWide(rl_dest, rl_result); |
| 1642 | return; |
| 1643 | case Instruction::ADD_LONG: |
| 1644 | case Instruction::ADD_LONG_2ADDR: |
| 1645 | if (cu_->instruction_set != kThumb2) { |
| 1646 | GenAddLong(rl_dest, rl_src1, rl_src2); |
| 1647 | return; |
| 1648 | } |
| 1649 | first_op = kOpAdd; |
| 1650 | second_op = kOpAdc; |
| 1651 | break; |
| 1652 | case Instruction::SUB_LONG: |
| 1653 | case Instruction::SUB_LONG_2ADDR: |
| 1654 | if (cu_->instruction_set != kThumb2) { |
| 1655 | GenSubLong(rl_dest, rl_src1, rl_src2); |
| 1656 | return; |
| 1657 | } |
| 1658 | first_op = kOpSub; |
| 1659 | second_op = kOpSbc; |
| 1660 | break; |
| 1661 | case Instruction::MUL_LONG: |
| 1662 | case Instruction::MUL_LONG_2ADDR: |
| 1663 | if (cu_->instruction_set == kThumb2) { |
| 1664 | GenMulLong(rl_dest, rl_src1, rl_src2); |
| 1665 | return; |
| 1666 | } else { |
| 1667 | call_out = true; |
| 1668 | ret_reg = TargetReg(kRet0); |
| 1669 | func_offset = ENTRYPOINT_OFFSET(pLmul); |
| 1670 | } |
| 1671 | break; |
| 1672 | case Instruction::DIV_LONG: |
| 1673 | case Instruction::DIV_LONG_2ADDR: |
| 1674 | call_out = true; |
| 1675 | check_zero = true; |
| 1676 | ret_reg = TargetReg(kRet0); |
| 1677 | func_offset = ENTRYPOINT_OFFSET(pLdiv); |
| 1678 | break; |
| 1679 | case Instruction::REM_LONG: |
| 1680 | case Instruction::REM_LONG_2ADDR: |
| 1681 | call_out = true; |
| 1682 | check_zero = true; |
| 1683 | func_offset = ENTRYPOINT_OFFSET(pLdivmod); |
| 1684 | /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */ |
| 1685 | ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0); |
| 1686 | break; |
| 1687 | case Instruction::AND_LONG_2ADDR: |
| 1688 | case Instruction::AND_LONG: |
| 1689 | if (cu_->instruction_set == kX86) { |
| 1690 | return GenAndLong(rl_dest, rl_src1, rl_src2); |
| 1691 | } |
| 1692 | first_op = kOpAnd; |
| 1693 | second_op = kOpAnd; |
| 1694 | break; |
| 1695 | case Instruction::OR_LONG: |
| 1696 | case Instruction::OR_LONG_2ADDR: |
| 1697 | if (cu_->instruction_set == kX86) { |
| 1698 | GenOrLong(rl_dest, rl_src1, rl_src2); |
| 1699 | return; |
| 1700 | } |
| 1701 | first_op = kOpOr; |
| 1702 | second_op = kOpOr; |
| 1703 | break; |
| 1704 | case Instruction::XOR_LONG: |
| 1705 | case Instruction::XOR_LONG_2ADDR: |
| 1706 | if (cu_->instruction_set == kX86) { |
| 1707 | GenXorLong(rl_dest, rl_src1, rl_src2); |
| 1708 | return; |
| 1709 | } |
| 1710 | first_op = kOpXor; |
| 1711 | second_op = kOpXor; |
| 1712 | break; |
| 1713 | case Instruction::NEG_LONG: { |
| 1714 | GenNegLong(rl_dest, rl_src2); |
| 1715 | return; |
| 1716 | } |
| 1717 | default: |
| 1718 | LOG(FATAL) << "Invalid long arith op"; |
| 1719 | } |
| 1720 | if (!call_out) { |
| 1721 | GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2); |
| 1722 | } else { |
| 1723 | FlushAllRegs(); /* Send everything to home location */ |
| 1724 | if (check_zero) { |
| 1725 | LoadValueDirectWideFixed(rl_src2, TargetReg(kArg2), TargetReg(kArg3)); |
| 1726 | int r_tgt = CallHelperSetup(func_offset); |
| 1727 | GenDivZeroCheck(TargetReg(kArg2), TargetReg(kArg3)); |
| 1728 | LoadValueDirectWideFixed(rl_src1, TargetReg(kArg0), TargetReg(kArg1)); |
| 1729 | // NOTE: callout here is not a safepoint |
| 1730 | CallHelper(r_tgt, func_offset, false /* not safepoint */); |
| 1731 | } else { |
| 1732 | CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false); |
| 1733 | } |
| 1734 | // Adjust return regs in to handle case of rem returning kArg2/kArg3 |
| 1735 | if (ret_reg == TargetReg(kRet0)) |
| 1736 | rl_result = GetReturnWide(false); |
| 1737 | else |
| 1738 | rl_result = GetReturnWideAlt(); |
| 1739 | StoreValueWide(rl_dest, rl_result); |
| 1740 | } |
| 1741 | } |
| 1742 | |
| 1743 | void Mir2Lir::GenConversionCall(int func_offset, |
| 1744 | RegLocation rl_dest, RegLocation rl_src) |
| 1745 | { |
| 1746 | /* |
| 1747 | * Don't optimize the register usage since it calls out to support |
| 1748 | * functions |
| 1749 | */ |
| 1750 | FlushAllRegs(); /* Send everything to home location */ |
| 1751 | if (rl_src.wide) { |
| 1752 | LoadValueDirectWideFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0), |
| 1753 | rl_src.fp ? TargetReg(kFArg1) : TargetReg(kArg1)); |
| 1754 | } else { |
| 1755 | LoadValueDirectFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); |
| 1756 | } |
| 1757 | CallRuntimeHelperRegLocation(func_offset, rl_src, false); |
| 1758 | if (rl_dest.wide) { |
| 1759 | RegLocation rl_result; |
| 1760 | rl_result = GetReturnWide(rl_dest.fp); |
| 1761 | StoreValueWide(rl_dest, rl_result); |
| 1762 | } else { |
| 1763 | RegLocation rl_result; |
| 1764 | rl_result = GetReturn(rl_dest.fp); |
| 1765 | StoreValue(rl_dest, rl_result); |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | /* Check if we need to check for pending suspend request */ |
| 1770 | void Mir2Lir::GenSuspendTest(int opt_flags) |
| 1771 | { |
| 1772 | if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { |
| 1773 | return; |
| 1774 | } |
| 1775 | FlushAllRegs(); |
| 1776 | LIR* branch = OpTestSuspend(NULL); |
| 1777 | LIR* ret_lab = NewLIR0(kPseudoTargetLabel); |
| 1778 | LIR* target = RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, |
| 1779 | reinterpret_cast<uintptr_t>(ret_lab), current_dalvik_offset_); |
| 1780 | branch->target = target; |
| 1781 | suspend_launchpads_.Insert(target); |
| 1782 | } |
| 1783 | |
| 1784 | /* Check if we need to check for pending suspend request */ |
| 1785 | void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) |
| 1786 | { |
| 1787 | if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { |
| 1788 | OpUnconditionalBranch(target); |
| 1789 | return; |
| 1790 | } |
| 1791 | OpTestSuspend(target); |
| 1792 | LIR* launch_pad = |
| 1793 | RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, |
| 1794 | reinterpret_cast<uintptr_t>(target), current_dalvik_offset_); |
| 1795 | FlushAllRegs(); |
| 1796 | OpUnconditionalBranch(launch_pad); |
| 1797 | suspend_launchpads_.Insert(launch_pad); |
| 1798 | } |
| 1799 | |
| 1800 | } // namespace art |