Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2016 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "loop_optimization.h" |
| 18 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 19 | #include "arch/instruction_set.h" |
| 20 | #include "arch/arm/instruction_set_features_arm.h" |
| 21 | #include "arch/arm64/instruction_set_features_arm64.h" |
| 22 | #include "arch/mips/instruction_set_features_mips.h" |
| 23 | #include "arch/mips64/instruction_set_features_mips64.h" |
| 24 | #include "arch/x86/instruction_set_features_x86.h" |
| 25 | #include "arch/x86_64/instruction_set_features_x86_64.h" |
Aart Bik | 92685a8 | 2017-03-06 11:13:43 -0800 | [diff] [blame] | 26 | #include "driver/compiler_driver.h" |
Aart Bik | 9620230 | 2016-10-04 17:33:56 -0700 | [diff] [blame] | 27 | #include "linear_order.h" |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 28 | |
| 29 | namespace art { |
| 30 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 31 | // Enables vectorization (SIMDization) in the loop optimizer. |
| 32 | static constexpr bool kEnableVectorization = true; |
| 33 | |
Aart Bik | 9abf894 | 2016-10-14 09:49:42 -0700 | [diff] [blame] | 34 | // Remove the instruction from the graph. A bit more elaborate than the usual |
| 35 | // instruction removal, since there may be a cycle in the use structure. |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 36 | static void RemoveFromCycle(HInstruction* instruction) { |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 37 | instruction->RemoveAsUserOfAllInputs(); |
| 38 | instruction->RemoveEnvironmentUsers(); |
| 39 | instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false); |
| 40 | } |
| 41 | |
Aart Bik | 807868e | 2016-11-03 17:51:43 -0700 | [diff] [blame] | 42 | // Detect a goto block and sets succ to the single successor. |
Aart Bik | e3dedc5 | 2016-11-02 17:50:27 -0700 | [diff] [blame] | 43 | static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) { |
| 44 | if (block->GetPredecessors().size() == 1 && |
| 45 | block->GetSuccessors().size() == 1 && |
| 46 | block->IsSingleGoto()) { |
| 47 | *succ = block->GetSingleSuccessor(); |
| 48 | return true; |
| 49 | } |
| 50 | return false; |
| 51 | } |
| 52 | |
Aart Bik | 807868e | 2016-11-03 17:51:43 -0700 | [diff] [blame] | 53 | // Detect an early exit loop. |
| 54 | static bool IsEarlyExit(HLoopInformation* loop_info) { |
| 55 | HBlocksInLoopReversePostOrderIterator it_loop(*loop_info); |
| 56 | for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) { |
| 57 | for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) { |
| 58 | if (!loop_info->Contains(*successor)) { |
| 59 | return true; |
| 60 | } |
| 61 | } |
| 62 | } |
| 63 | return false; |
| 64 | } |
| 65 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 66 | // Test vector restrictions. |
| 67 | static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) { |
| 68 | return (restrictions & tested) != 0; |
| 69 | } |
| 70 | |
| 71 | // Inserts an instruction. |
| 72 | static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) { |
| 73 | DCHECK(block != nullptr); |
| 74 | DCHECK(instruction != nullptr); |
| 75 | block->InsertInstructionBefore(instruction, block->GetLastInstruction()); |
| 76 | return instruction; |
| 77 | } |
| 78 | |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 79 | // |
| 80 | // Class methods. |
| 81 | // |
| 82 | |
| 83 | HLoopOptimization::HLoopOptimization(HGraph* graph, |
Aart Bik | 92685a8 | 2017-03-06 11:13:43 -0800 | [diff] [blame] | 84 | CompilerDriver* compiler_driver, |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 85 | HInductionVarAnalysis* induction_analysis) |
| 86 | : HOptimization(graph, kLoopOptimizationPassName), |
Aart Bik | 92685a8 | 2017-03-06 11:13:43 -0800 | [diff] [blame] | 87 | compiler_driver_(compiler_driver), |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 88 | induction_range_(induction_analysis), |
Aart Bik | 9620230 | 2016-10-04 17:33:56 -0700 | [diff] [blame] | 89 | loop_allocator_(nullptr), |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 90 | global_allocator_(graph_->GetArena()), |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 91 | top_loop_(nullptr), |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 92 | last_loop_(nullptr), |
Aart Bik | 482095d | 2016-10-10 15:39:10 -0700 | [diff] [blame] | 93 | iset_(nullptr), |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 94 | induction_simplication_count_(0), |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 95 | simplified_(false), |
| 96 | vector_length_(0), |
| 97 | vector_refs_(nullptr), |
| 98 | vector_map_(nullptr) { |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 99 | } |
| 100 | |
| 101 | void HLoopOptimization::Run() { |
Mingyao Yang | 01b47b0 | 2017-02-03 12:09:57 -0800 | [diff] [blame] | 102 | // Skip if there is no loop or the graph has try-catch/irreducible loops. |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 103 | // TODO: make this less of a sledgehammer. |
Mingyao Yang | 69d75ff | 2017-02-07 13:06:06 -0800 | [diff] [blame] | 104 | if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) { |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 105 | return; |
| 106 | } |
| 107 | |
Aart Bik | 9620230 | 2016-10-04 17:33:56 -0700 | [diff] [blame] | 108 | // Phase-local allocator that draws from the global pool. Since the allocator |
| 109 | // itself resides on the stack, it is destructed on exiting Run(), which |
| 110 | // implies its underlying memory is released immediately. |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 111 | ArenaAllocator allocator(global_allocator_->GetArenaPool()); |
Aart Bik | 9620230 | 2016-10-04 17:33:56 -0700 | [diff] [blame] | 112 | loop_allocator_ = &allocator; |
Nicolas Geoffray | ebe1674 | 2016-10-05 09:55:42 +0100 | [diff] [blame] | 113 | |
Aart Bik | 9620230 | 2016-10-04 17:33:56 -0700 | [diff] [blame] | 114 | // Perform loop optimizations. |
| 115 | LocalRun(); |
Mingyao Yang | 69d75ff | 2017-02-07 13:06:06 -0800 | [diff] [blame] | 116 | if (top_loop_ == nullptr) { |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 117 | graph_->SetHasLoops(false); // no more loops |
Mingyao Yang | 69d75ff | 2017-02-07 13:06:06 -0800 | [diff] [blame] | 118 | } |
| 119 | |
Aart Bik | 9620230 | 2016-10-04 17:33:56 -0700 | [diff] [blame] | 120 | // Detach. |
| 121 | loop_allocator_ = nullptr; |
| 122 | last_loop_ = top_loop_ = nullptr; |
| 123 | } |
| 124 | |
| 125 | void HLoopOptimization::LocalRun() { |
| 126 | // Build the linear order using the phase-local allocator. This step enables building |
| 127 | // a loop hierarchy that properly reflects the outer-inner and previous-next relation. |
| 128 | ArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder)); |
| 129 | LinearizeGraph(graph_, loop_allocator_, &linear_order); |
| 130 | |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 131 | // Build the loop hierarchy. |
Aart Bik | 9620230 | 2016-10-04 17:33:56 -0700 | [diff] [blame] | 132 | for (HBasicBlock* block : linear_order) { |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 133 | if (block->IsLoopHeader()) { |
| 134 | AddLoop(block->GetLoopInformation()); |
| 135 | } |
| 136 | } |
Aart Bik | 9620230 | 2016-10-04 17:33:56 -0700 | [diff] [blame] | 137 | |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 138 | // Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 139 | // temporary data structures using the phase-local allocator. All new HIR |
| 140 | // should use the global allocator. |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 141 | if (top_loop_ != nullptr) { |
| 142 | ArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization)); |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 143 | ArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization)); |
| 144 | ArenaSafeMap<HInstruction*, HInstruction*> map( |
| 145 | std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization)); |
| 146 | // Attach. |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 147 | iset_ = &iset; |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 148 | vector_refs_ = &refs; |
| 149 | vector_map_ = ↦ |
| 150 | // Traverse. |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 151 | TraverseLoopsInnerToOuter(top_loop_); |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 152 | // Detach. |
| 153 | iset_ = nullptr; |
| 154 | vector_refs_ = nullptr; |
| 155 | vector_map_ = nullptr; |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 156 | } |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 157 | } |
| 158 | |
| 159 | void HLoopOptimization::AddLoop(HLoopInformation* loop_info) { |
| 160 | DCHECK(loop_info != nullptr); |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 161 | LoopNode* node = new (loop_allocator_) LoopNode(loop_info); |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 162 | if (last_loop_ == nullptr) { |
| 163 | // First loop. |
| 164 | DCHECK(top_loop_ == nullptr); |
| 165 | last_loop_ = top_loop_ = node; |
| 166 | } else if (loop_info->IsIn(*last_loop_->loop_info)) { |
| 167 | // Inner loop. |
| 168 | node->outer = last_loop_; |
| 169 | DCHECK(last_loop_->inner == nullptr); |
| 170 | last_loop_ = last_loop_->inner = node; |
| 171 | } else { |
| 172 | // Subsequent loop. |
| 173 | while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) { |
| 174 | last_loop_ = last_loop_->outer; |
| 175 | } |
| 176 | node->outer = last_loop_->outer; |
| 177 | node->previous = last_loop_; |
| 178 | DCHECK(last_loop_->next == nullptr); |
| 179 | last_loop_ = last_loop_->next = node; |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | void HLoopOptimization::RemoveLoop(LoopNode* node) { |
| 184 | DCHECK(node != nullptr); |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 185 | DCHECK(node->inner == nullptr); |
| 186 | if (node->previous != nullptr) { |
| 187 | // Within sequence. |
| 188 | node->previous->next = node->next; |
| 189 | if (node->next != nullptr) { |
| 190 | node->next->previous = node->previous; |
| 191 | } |
| 192 | } else { |
| 193 | // First of sequence. |
| 194 | if (node->outer != nullptr) { |
| 195 | node->outer->inner = node->next; |
| 196 | } else { |
| 197 | top_loop_ = node->next; |
| 198 | } |
| 199 | if (node->next != nullptr) { |
| 200 | node->next->outer = node->outer; |
| 201 | node->next->previous = nullptr; |
| 202 | } |
| 203 | } |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 204 | } |
| 205 | |
| 206 | void HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) { |
| 207 | for ( ; node != nullptr; node = node->next) { |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 208 | // Visit inner loops first. |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 209 | uint32_t current_induction_simplification_count = induction_simplication_count_; |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 210 | if (node->inner != nullptr) { |
| 211 | TraverseLoopsInnerToOuter(node->inner); |
| 212 | } |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 213 | // Recompute induction information of this loop if the induction |
| 214 | // of any inner loop has been simplified. |
Aart Bik | 482095d | 2016-10-10 15:39:10 -0700 | [diff] [blame] | 215 | if (current_induction_simplification_count != induction_simplication_count_) { |
| 216 | induction_range_.ReVisit(node->loop_info); |
| 217 | } |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 218 | // Repeat simplifications in the loop-body until no more changes occur. |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 219 | // Note that since each simplification consists of eliminating code (without |
| 220 | // introducing new code), this process is always finite. |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 221 | do { |
| 222 | simplified_ = false; |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 223 | SimplifyInduction(node); |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 224 | SimplifyBlocks(node); |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 225 | } while (simplified_); |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 226 | // Optimize inner loop. |
Aart Bik | 9abf894 | 2016-10-14 09:49:42 -0700 | [diff] [blame] | 227 | if (node->inner == nullptr) { |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 228 | OptimizeInnerLoop(node); |
Aart Bik | 9abf894 | 2016-10-14 09:49:42 -0700 | [diff] [blame] | 229 | } |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 230 | } |
| 231 | } |
| 232 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 233 | // |
| 234 | // Optimization. |
| 235 | // |
| 236 | |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 237 | void HLoopOptimization::SimplifyInduction(LoopNode* node) { |
| 238 | HBasicBlock* header = node->loop_info->GetHeader(); |
| 239 | HBasicBlock* preheader = node->loop_info->GetPreHeader(); |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 240 | // Scan the phis in the header to find opportunities to simplify an induction |
| 241 | // cycle that is only used outside the loop. Replace these uses, if any, with |
| 242 | // the last value and remove the induction cycle. |
| 243 | // Examples: for (int i = 0; x != null; i++) { .... no i .... } |
| 244 | // for (int i = 0; i < 10; i++, k++) { .... no k .... } return k; |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 245 | for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) { |
| 246 | HPhi* phi = it.Current()->AsPhi(); |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 247 | iset_->clear(); // prepare phi induction |
| 248 | if (TrySetPhiInduction(phi, /*restrict_uses*/ true) && |
| 249 | TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) { |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 250 | for (HInstruction* i : *iset_) { |
| 251 | RemoveFromCycle(i); |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 252 | } |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 253 | simplified_ = true; |
Aart Bik | 482095d | 2016-10-10 15:39:10 -0700 | [diff] [blame] | 254 | } |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | void HLoopOptimization::SimplifyBlocks(LoopNode* node) { |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 259 | // Iterate over all basic blocks in the loop-body. |
| 260 | for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) { |
| 261 | HBasicBlock* block = it.Current(); |
| 262 | // Remove dead instructions from the loop-body. |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 263 | RemoveDeadInstructions(block->GetPhis()); |
| 264 | RemoveDeadInstructions(block->GetInstructions()); |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 265 | // Remove trivial control flow blocks from the loop-body. |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 266 | if (block->GetPredecessors().size() == 1 && |
| 267 | block->GetSuccessors().size() == 1 && |
| 268 | block->GetSingleSuccessor()->GetPredecessors().size() == 1) { |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 269 | simplified_ = true; |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 270 | block->MergeWith(block->GetSingleSuccessor()); |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 271 | } else if (block->GetSuccessors().size() == 2) { |
| 272 | // Trivial if block can be bypassed to either branch. |
| 273 | HBasicBlock* succ0 = block->GetSuccessors()[0]; |
| 274 | HBasicBlock* succ1 = block->GetSuccessors()[1]; |
| 275 | HBasicBlock* meet0 = nullptr; |
| 276 | HBasicBlock* meet1 = nullptr; |
| 277 | if (succ0 != succ1 && |
| 278 | IsGotoBlock(succ0, &meet0) && |
| 279 | IsGotoBlock(succ1, &meet1) && |
| 280 | meet0 == meet1 && // meets again |
| 281 | meet0 != block && // no self-loop |
| 282 | meet0->GetPhis().IsEmpty()) { // not used for merging |
| 283 | simplified_ = true; |
| 284 | succ0->DisconnectAndDelete(); |
| 285 | if (block->Dominates(meet0)) { |
| 286 | block->RemoveDominatedBlock(meet0); |
| 287 | succ1->AddDominatedBlock(meet0); |
| 288 | meet0->SetDominator(succ1); |
Aart Bik | e3dedc5 | 2016-11-02 17:50:27 -0700 | [diff] [blame] | 289 | } |
Aart Bik | 482095d | 2016-10-10 15:39:10 -0700 | [diff] [blame] | 290 | } |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 291 | } |
Aart Bik | df7822e | 2016-12-06 10:05:30 -0800 | [diff] [blame] | 292 | } |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 293 | } |
| 294 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 295 | void HLoopOptimization::OptimizeInnerLoop(LoopNode* node) { |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 296 | HBasicBlock* header = node->loop_info->GetHeader(); |
| 297 | HBasicBlock* preheader = node->loop_info->GetPreHeader(); |
Aart Bik | 9abf894 | 2016-10-14 09:49:42 -0700 | [diff] [blame] | 298 | // Ensure loop header logic is finite. |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 299 | int64_t trip_count = 0; |
| 300 | if (!induction_range_.IsFinite(node->loop_info, &trip_count)) { |
| 301 | return; |
Aart Bik | 9abf894 | 2016-10-14 09:49:42 -0700 | [diff] [blame] | 302 | } |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 303 | |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 304 | // Ensure there is only a single loop-body (besides the header). |
| 305 | HBasicBlock* body = nullptr; |
| 306 | for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) { |
| 307 | if (it.Current() != header) { |
| 308 | if (body != nullptr) { |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 309 | return; |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 310 | } |
| 311 | body = it.Current(); |
| 312 | } |
| 313 | } |
| 314 | // Ensure there is only a single exit point. |
| 315 | if (header->GetSuccessors().size() != 2) { |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 316 | return; |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 317 | } |
| 318 | HBasicBlock* exit = (header->GetSuccessors()[0] == body) |
| 319 | ? header->GetSuccessors()[1] |
| 320 | : header->GetSuccessors()[0]; |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 321 | // Ensure exit can only be reached by exiting loop. |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 322 | if (exit->GetPredecessors().size() != 1) { |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 323 | return; |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 324 | } |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 325 | // Detect either an empty loop (no side effects other than plain iteration) or |
| 326 | // a trivial loop (just iterating once). Replace subsequent index uses, if any, |
| 327 | // with the last value and remove the loop, possibly after unrolling its body. |
| 328 | HInstruction* phi = header->GetFirstPhi(); |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 329 | iset_->clear(); // prepare phi induction |
| 330 | if (TrySetSimpleLoopHeader(header)) { |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 331 | bool is_empty = IsEmptyBody(body); |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 332 | if ((is_empty || trip_count == 1) && |
| 333 | TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ true)) { |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 334 | if (!is_empty) { |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 335 | // Unroll the loop-body, which sees initial value of the index. |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 336 | phi->ReplaceWith(phi->InputAt(0)); |
| 337 | preheader->MergeInstructionsWith(body); |
| 338 | } |
| 339 | body->DisconnectAndDelete(); |
| 340 | exit->RemovePredecessor(header); |
| 341 | header->RemoveSuccessor(exit); |
| 342 | header->RemoveDominatedBlock(exit); |
| 343 | header->DisconnectAndDelete(); |
| 344 | preheader->AddSuccessor(exit); |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 345 | preheader->AddInstruction(new (global_allocator_) HGoto()); |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 346 | preheader->AddDominatedBlock(exit); |
| 347 | exit->SetDominator(preheader); |
| 348 | RemoveLoop(node); // update hierarchy |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 349 | return; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | // Vectorize loop, if possible and valid. |
| 354 | if (kEnableVectorization) { |
| 355 | iset_->clear(); // prepare phi induction |
| 356 | if (TrySetSimpleLoopHeader(header) && |
| 357 | CanVectorize(node, body, trip_count) && |
| 358 | TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ true)) { |
| 359 | Vectorize(node, body, exit, trip_count); |
| 360 | graph_->SetHasSIMD(true); // flag SIMD usage |
| 361 | return; |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | // |
| 367 | // Loop vectorization. The implementation is based on the book by Aart J.C. Bik: |
| 368 | // "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance." |
| 369 | // Intel Press, June, 2004 (http://www.aartbik.com/). |
| 370 | // |
| 371 | |
| 372 | bool HLoopOptimization::CanVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) { |
| 373 | // Reset vector bookkeeping. |
| 374 | vector_length_ = 0; |
| 375 | vector_refs_->clear(); |
| 376 | vector_runtime_test_a_ = |
| 377 | vector_runtime_test_b_= nullptr; |
| 378 | |
| 379 | // Phis in the loop-body prevent vectorization. |
| 380 | if (!block->GetPhis().IsEmpty()) { |
| 381 | return false; |
| 382 | } |
| 383 | |
| 384 | // Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side |
| 385 | // occurrence, which allows passing down attributes down the use tree. |
| 386 | for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| 387 | if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) { |
| 388 | return false; // failure to vectorize a left-hand-side |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | // Heuristics. Does vectorization seem profitable? |
| 393 | // TODO: refine |
| 394 | if (vector_length_ == 0) { |
| 395 | return false; // nothing found |
| 396 | } else if (0 < trip_count && trip_count < vector_length_) { |
| 397 | return false; // insufficient iterations |
| 398 | } |
| 399 | |
| 400 | // Data dependence analysis. Find each pair of references with same type, where |
| 401 | // at least one is a write. Each such pair denotes a possible data dependence. |
| 402 | // This analysis exploits the property that differently typed arrays cannot be |
| 403 | // aliased, as well as the property that references either point to the same |
| 404 | // array or to two completely disjoint arrays, i.e., no partial aliasing. |
| 405 | // Other than a few simply heuristics, no detailed subscript analysis is done. |
| 406 | for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) { |
| 407 | for (auto j = i; ++j != vector_refs_->end(); ) { |
| 408 | if (i->type == j->type && (i->lhs || j->lhs)) { |
| 409 | // Found same-typed a[i+x] vs. b[i+y], where at least one is a write. |
| 410 | HInstruction* a = i->base; |
| 411 | HInstruction* b = j->base; |
| 412 | HInstruction* x = i->offset; |
| 413 | HInstruction* y = j->offset; |
| 414 | if (a == b) { |
| 415 | // Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence). |
| 416 | // Conservatively assume a loop-carried data dependence otherwise, and reject. |
| 417 | if (x != y) { |
| 418 | return false; |
| 419 | } |
| 420 | } else { |
| 421 | // Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence). |
| 422 | // Conservatively assume a potential loop-carried data dependence otherwise, avoided by |
| 423 | // generating an explicit a != b disambiguation runtime test on the two references. |
| 424 | if (x != y) { |
| 425 | // For now, we reject after one test to avoid excessive overhead. |
| 426 | if (vector_runtime_test_a_ != nullptr) { |
| 427 | return false; |
| 428 | } |
| 429 | vector_runtime_test_a_ = a; |
| 430 | vector_runtime_test_b_ = b; |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | // Success! |
| 438 | return true; |
| 439 | } |
| 440 | |
| 441 | void HLoopOptimization::Vectorize(LoopNode* node, |
| 442 | HBasicBlock* block, |
| 443 | HBasicBlock* exit, |
| 444 | int64_t trip_count) { |
| 445 | Primitive::Type induc_type = Primitive::kPrimInt; |
| 446 | HBasicBlock* header = node->loop_info->GetHeader(); |
| 447 | HBasicBlock* preheader = node->loop_info->GetPreHeader(); |
| 448 | |
| 449 | // A cleanup is needed for any unknown trip count or for a known trip count |
| 450 | // with remainder iterations after vectorization. |
| 451 | bool needs_cleanup = trip_count == 0 || (trip_count % vector_length_) != 0; |
| 452 | |
| 453 | // Adjust vector bookkeeping. |
| 454 | iset_->clear(); // prepare phi induction |
| 455 | bool is_simple_loop_header = TrySetSimpleLoopHeader(header); // fills iset_ |
| 456 | DCHECK(is_simple_loop_header); |
| 457 | |
| 458 | // Generate preheader: |
| 459 | // stc = <trip-count>; |
| 460 | // vtc = stc - stc % VL; |
| 461 | HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader); |
| 462 | HInstruction* vtc = stc; |
| 463 | if (needs_cleanup) { |
| 464 | DCHECK(IsPowerOfTwo(vector_length_)); |
| 465 | HInstruction* rem = Insert( |
| 466 | preheader, new (global_allocator_) HAnd(induc_type, |
| 467 | stc, |
| 468 | graph_->GetIntConstant(vector_length_ - 1))); |
| 469 | vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem)); |
| 470 | } |
| 471 | |
| 472 | // Generate runtime disambiguation test: |
| 473 | // vtc = a != b ? vtc : 0; |
| 474 | if (vector_runtime_test_a_ != nullptr) { |
| 475 | HInstruction* rt = Insert( |
| 476 | preheader, |
| 477 | new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_)); |
| 478 | vtc = Insert(preheader, |
| 479 | new (global_allocator_) HSelect(rt, vtc, graph_->GetIntConstant(0), kNoDexPc)); |
| 480 | needs_cleanup = true; |
| 481 | } |
| 482 | |
| 483 | // Generate vector loop: |
| 484 | // for (i = 0; i < vtc; i += VL) |
| 485 | // <vectorized-loop-body> |
| 486 | vector_mode_ = kVector; |
| 487 | GenerateNewLoop(node, |
| 488 | block, |
| 489 | graph_->TransformLoopForVectorization(header, block, exit), |
| 490 | graph_->GetIntConstant(0), |
| 491 | vtc, |
| 492 | graph_->GetIntConstant(vector_length_)); |
| 493 | HLoopInformation* vloop = vector_header_->GetLoopInformation(); |
| 494 | |
| 495 | // Generate cleanup loop, if needed: |
| 496 | // for ( ; i < stc; i += 1) |
| 497 | // <loop-body> |
| 498 | if (needs_cleanup) { |
| 499 | vector_mode_ = kSequential; |
| 500 | GenerateNewLoop(node, |
| 501 | block, |
| 502 | graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit), |
| 503 | vector_phi_, |
| 504 | stc, |
| 505 | graph_->GetIntConstant(1)); |
| 506 | } |
| 507 | |
| 508 | // Remove the original loop by disconnecting the body block |
| 509 | // and removing all instructions from the header. |
| 510 | block->DisconnectAndDelete(); |
| 511 | while (!header->GetFirstInstruction()->IsGoto()) { |
| 512 | header->RemoveInstruction(header->GetFirstInstruction()); |
| 513 | } |
| 514 | // Update loop hierarchy: the old header now resides in the |
| 515 | // same outer loop as the old preheader. |
| 516 | header->SetLoopInformation(preheader->GetLoopInformation()); // outward |
| 517 | node->loop_info = vloop; |
| 518 | } |
| 519 | |
| 520 | void HLoopOptimization::GenerateNewLoop(LoopNode* node, |
| 521 | HBasicBlock* block, |
| 522 | HBasicBlock* new_preheader, |
| 523 | HInstruction* lo, |
| 524 | HInstruction* hi, |
| 525 | HInstruction* step) { |
| 526 | Primitive::Type induc_type = Primitive::kPrimInt; |
| 527 | // Prepare new loop. |
| 528 | vector_map_->clear(); |
| 529 | vector_preheader_ = new_preheader, |
| 530 | vector_header_ = vector_preheader_->GetSingleSuccessor(); |
| 531 | vector_body_ = vector_header_->GetSuccessors()[1]; |
| 532 | vector_phi_ = new (global_allocator_) HPhi(global_allocator_, |
| 533 | kNoRegNumber, |
| 534 | 0, |
| 535 | HPhi::ToPhiType(induc_type)); |
| 536 | // Generate header. |
| 537 | // for (i = lo; i < hi; i += step) |
| 538 | // <loop-body> |
| 539 | HInstruction* cond = new (global_allocator_) HAboveOrEqual(vector_phi_, hi); |
| 540 | vector_header_->AddPhi(vector_phi_); |
| 541 | vector_header_->AddInstruction(cond); |
| 542 | vector_header_->AddInstruction(new (global_allocator_) HIf(cond)); |
| 543 | // Suspend check and environment. |
| 544 | HInstruction* suspend = vector_header_->GetFirstInstruction(); |
| 545 | suspend->CopyEnvironmentFromWithLoopPhiAdjustment( |
| 546 | node->loop_info->GetSuspendCheck()->GetEnvironment(), vector_header_); |
| 547 | // Generate body. |
| 548 | for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| 549 | bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true); |
| 550 | DCHECK(vectorized_def); |
| 551 | } |
| 552 | for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| 553 | auto i = vector_map_->find(it.Current()); |
| 554 | if (i != vector_map_->end() && !i->second->IsInBlock()) { |
| 555 | Insert(vector_body_, i->second); // lays out in original order |
| 556 | if (i->second->NeedsEnvironment()) { |
| 557 | i->second->CopyEnvironmentFromWithLoopPhiAdjustment( |
| 558 | suspend->GetEnvironment(), vector_header_); |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | // Finalize increment and phi. |
| 563 | HInstruction* inc = new (global_allocator_) HAdd(induc_type, vector_phi_, step); |
| 564 | vector_phi_->AddInput(lo); |
| 565 | vector_phi_->AddInput(Insert(vector_body_, inc)); |
| 566 | } |
| 567 | |
| 568 | // TODO: accept reductions at left-hand-side, mixed-type store idioms, etc. |
| 569 | bool HLoopOptimization::VectorizeDef(LoopNode* node, |
| 570 | HInstruction* instruction, |
| 571 | bool generate_code) { |
| 572 | // Accept a left-hand-side array base[index] for |
| 573 | // (1) supported vector type, |
| 574 | // (2) loop-invariant base, |
| 575 | // (3) unit stride index, |
| 576 | // (4) vectorizable right-hand-side value. |
| 577 | uint64_t restrictions = kNone; |
| 578 | if (instruction->IsArraySet()) { |
| 579 | Primitive::Type type = instruction->AsArraySet()->GetComponentType(); |
| 580 | HInstruction* base = instruction->InputAt(0); |
| 581 | HInstruction* index = instruction->InputAt(1); |
| 582 | HInstruction* value = instruction->InputAt(2); |
| 583 | HInstruction* offset = nullptr; |
| 584 | if (TrySetVectorType(type, &restrictions) && |
| 585 | node->loop_info->IsDefinedOutOfTheLoop(base) && |
| 586 | induction_range_.IsUnitStride(index, &offset) && |
| 587 | VectorizeUse(node, value, generate_code, type, restrictions)) { |
| 588 | if (generate_code) { |
| 589 | GenerateVecSub(index, offset); |
| 590 | GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), type); |
| 591 | } else { |
| 592 | vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true)); |
| 593 | } |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 594 | return true; |
| 595 | } |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 596 | return false; |
| 597 | } |
| 598 | // Branch back okay. |
| 599 | if (instruction->IsGoto()) { |
| 600 | return true; |
| 601 | } |
| 602 | // Otherwise accept only expressions with no effects outside the immediate loop-body. |
| 603 | // Note that actual uses are inspected during right-hand-side tree traversal. |
| 604 | return !IsUsedOutsideLoop(node->loop_info, instruction) && !instruction->DoesAnyWrite(); |
| 605 | } |
| 606 | |
| 607 | // TODO: more operations and intrinsics, detect saturation arithmetic, etc. |
| 608 | bool HLoopOptimization::VectorizeUse(LoopNode* node, |
| 609 | HInstruction* instruction, |
| 610 | bool generate_code, |
| 611 | Primitive::Type type, |
| 612 | uint64_t restrictions) { |
| 613 | // Accept anything for which code has already been generated. |
| 614 | if (generate_code) { |
| 615 | if (vector_map_->find(instruction) != vector_map_->end()) { |
| 616 | return true; |
| 617 | } |
| 618 | } |
| 619 | // Continue the right-hand-side tree traversal, passing in proper |
| 620 | // types and vector restrictions along the way. During code generation, |
| 621 | // all new nodes are drawn from the global allocator. |
| 622 | if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) { |
| 623 | // Accept invariant use, using scalar expansion. |
| 624 | if (generate_code) { |
| 625 | GenerateVecInv(instruction, type); |
| 626 | } |
| 627 | return true; |
| 628 | } else if (instruction->IsArrayGet()) { |
| 629 | // Accept a right-hand-side array base[index] for |
| 630 | // (1) exact matching vector type, |
| 631 | // (2) loop-invariant base, |
| 632 | // (3) unit stride index, |
| 633 | // (4) vectorizable right-hand-side value. |
| 634 | HInstruction* base = instruction->InputAt(0); |
| 635 | HInstruction* index = instruction->InputAt(1); |
| 636 | HInstruction* offset = nullptr; |
| 637 | if (type == instruction->GetType() && |
| 638 | node->loop_info->IsDefinedOutOfTheLoop(base) && |
| 639 | induction_range_.IsUnitStride(index, &offset)) { |
| 640 | if (generate_code) { |
| 641 | GenerateVecSub(index, offset); |
| 642 | GenerateVecMem(instruction, vector_map_->Get(index), nullptr, type); |
| 643 | } else { |
| 644 | vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false)); |
| 645 | } |
| 646 | return true; |
| 647 | } |
| 648 | } else if (instruction->IsTypeConversion()) { |
| 649 | // Accept particular type conversions. |
| 650 | HTypeConversion* conversion = instruction->AsTypeConversion(); |
| 651 | HInstruction* opa = conversion->InputAt(0); |
| 652 | Primitive::Type from = conversion->GetInputType(); |
| 653 | Primitive::Type to = conversion->GetResultType(); |
| 654 | if ((to == Primitive::kPrimByte || |
| 655 | to == Primitive::kPrimChar || |
| 656 | to == Primitive::kPrimShort) && from == Primitive::kPrimInt) { |
| 657 | // Accept a "narrowing" type conversion from a "wider" computation for |
| 658 | // (1) conversion into final required type, |
| 659 | // (2) vectorizable operand, |
| 660 | // (3) "wider" operations cannot bring in higher order bits. |
| 661 | if (to == type && VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) { |
| 662 | if (generate_code) { |
| 663 | if (vector_mode_ == kVector) { |
| 664 | vector_map_->Put(instruction, vector_map_->Get(opa)); // operand pass-through |
| 665 | } else { |
| 666 | GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type); |
| 667 | } |
| 668 | } |
| 669 | return true; |
| 670 | } |
| 671 | } else if (to == Primitive::kPrimFloat && from == Primitive::kPrimInt) { |
| 672 | DCHECK_EQ(to, type); |
| 673 | // Accept int to float conversion for |
| 674 | // (1) supported int, |
| 675 | // (2) vectorizable operand. |
| 676 | if (TrySetVectorType(from, &restrictions) && |
| 677 | VectorizeUse(node, opa, generate_code, from, restrictions)) { |
| 678 | if (generate_code) { |
| 679 | GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type); |
| 680 | } |
| 681 | return true; |
| 682 | } |
| 683 | } |
| 684 | return false; |
| 685 | } else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) { |
| 686 | // Accept unary operator for vectorizable operand. |
| 687 | HInstruction* opa = instruction->InputAt(0); |
| 688 | if (VectorizeUse(node, opa, generate_code, type, restrictions)) { |
| 689 | if (generate_code) { |
| 690 | GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type); |
| 691 | } |
| 692 | return true; |
| 693 | } |
| 694 | } else if (instruction->IsAdd() || instruction->IsSub() || |
| 695 | instruction->IsMul() || instruction->IsDiv() || |
| 696 | instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) { |
| 697 | // Deal with vector restrictions. |
| 698 | if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) || |
| 699 | (instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) { |
| 700 | return false; |
| 701 | } |
| 702 | // Accept binary operator for vectorizable operands. |
| 703 | HInstruction* opa = instruction->InputAt(0); |
| 704 | HInstruction* opb = instruction->InputAt(1); |
| 705 | if (VectorizeUse(node, opa, generate_code, type, restrictions) && |
| 706 | VectorizeUse(node, opb, generate_code, type, restrictions)) { |
| 707 | if (generate_code) { |
| 708 | GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type); |
| 709 | } |
| 710 | return true; |
| 711 | } |
| 712 | } else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) { |
| 713 | // Deal with vector restrictions. |
| 714 | if ((HasVectorRestrictions(restrictions, kNoShift)) || |
| 715 | (instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) { |
| 716 | return false; // unsupported instruction |
| 717 | } else if ((instruction->IsShr() || instruction->IsUShr()) && |
| 718 | HasVectorRestrictions(restrictions, kNoHiBits)) { |
| 719 | return false; // hibits may impact lobits; TODO: we can do better! |
| 720 | } |
| 721 | // Accept shift operator for vectorizable/invariant operands. |
| 722 | // TODO: accept symbolic, albeit loop invariant shift factors. |
| 723 | HInstruction* opa = instruction->InputAt(0); |
| 724 | HInstruction* opb = instruction->InputAt(1); |
| 725 | if (VectorizeUse(node, opa, generate_code, type, restrictions) && opb->IsIntConstant()) { |
| 726 | if (generate_code) { |
| 727 | // Make sure shift factor only looks at lower bits, as defined for sequential shifts. |
| 728 | // Note that even the narrower SIMD shifts do the right thing after that. |
| 729 | int32_t mask = (instruction->GetType() == Primitive::kPrimLong) |
| 730 | ? kMaxLongShiftDistance |
| 731 | : kMaxIntShiftDistance; |
| 732 | HInstruction* s = graph_->GetIntConstant(opb->AsIntConstant()->GetValue() & mask); |
| 733 | GenerateVecOp(instruction, vector_map_->Get(opa), s, type); |
| 734 | } |
| 735 | return true; |
| 736 | } |
| 737 | } else if (instruction->IsInvokeStaticOrDirect()) { |
| 738 | // TODO: coming soon. |
| 739 | return false; |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 740 | } |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 741 | return false; |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 742 | } |
| 743 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 744 | bool HLoopOptimization::TrySetVectorType(Primitive::Type type, uint64_t* restrictions) { |
| 745 | const InstructionSetFeatures* features = compiler_driver_->GetInstructionSetFeatures(); |
| 746 | switch (compiler_driver_->GetInstructionSet()) { |
| 747 | case kArm: |
| 748 | case kThumb2: |
| 749 | return false; |
| 750 | case kArm64: |
| 751 | // Allow vectorization for all ARM devices, because Android assumes that |
| 752 | // ARMv8 AArch64 always supports advanced SIMD. For now, only D registers |
| 753 | // (64-bit vectors) not Q registers (128-bit vectors). |
| 754 | switch (type) { |
| 755 | case Primitive::kPrimBoolean: |
| 756 | case Primitive::kPrimByte: |
| 757 | *restrictions |= kNoDiv; |
| 758 | return TrySetVectorLength(8); |
| 759 | case Primitive::kPrimChar: |
| 760 | case Primitive::kPrimShort: |
| 761 | *restrictions |= kNoDiv; |
| 762 | return TrySetVectorLength(4); |
| 763 | case Primitive::kPrimInt: |
| 764 | *restrictions |= kNoDiv; |
| 765 | return TrySetVectorLength(2); |
| 766 | case Primitive::kPrimFloat: |
| 767 | return TrySetVectorLength(2); |
| 768 | default: |
| 769 | return false; |
| 770 | } |
| 771 | case kX86: |
| 772 | case kX86_64: |
| 773 | // Allow vectorization for SSE4-enabled X86 devices only (128-bit vectors). |
| 774 | if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) { |
| 775 | switch (type) { |
| 776 | case Primitive::kPrimBoolean: |
| 777 | case Primitive::kPrimByte: |
| 778 | *restrictions |= kNoMul | kNoDiv | kNoShift; |
| 779 | return TrySetVectorLength(16); |
| 780 | case Primitive::kPrimChar: |
| 781 | case Primitive::kPrimShort: |
| 782 | *restrictions |= kNoDiv; |
| 783 | return TrySetVectorLength(8); |
| 784 | case Primitive::kPrimInt: |
| 785 | *restrictions |= kNoDiv; |
| 786 | return TrySetVectorLength(4); |
| 787 | case Primitive::kPrimLong: |
| 788 | *restrictions |= kNoMul | kNoDiv | kNoShr; |
| 789 | return TrySetVectorLength(2); |
| 790 | case Primitive::kPrimFloat: |
| 791 | return TrySetVectorLength(4); |
| 792 | case Primitive::kPrimDouble: |
| 793 | return TrySetVectorLength(2); |
| 794 | default: |
| 795 | break; |
| 796 | } // switch type |
| 797 | } |
| 798 | return false; |
| 799 | case kMips: |
| 800 | case kMips64: |
| 801 | // TODO: implement MIPS SIMD. |
| 802 | return false; |
| 803 | default: |
| 804 | return false; |
| 805 | } // switch instruction set |
| 806 | } |
| 807 | |
| 808 | bool HLoopOptimization::TrySetVectorLength(uint32_t length) { |
| 809 | DCHECK(IsPowerOfTwo(length) && length >= 2u); |
| 810 | // First time set? |
| 811 | if (vector_length_ == 0) { |
| 812 | vector_length_ = length; |
| 813 | } |
| 814 | // Different types are acceptable within a loop-body, as long as all the corresponding vector |
| 815 | // lengths match exactly to obtain a uniform traversal through the vector iteration space |
| 816 | // (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions). |
| 817 | return vector_length_ == length; |
| 818 | } |
| 819 | |
| 820 | void HLoopOptimization::GenerateVecInv(HInstruction* org, Primitive::Type type) { |
| 821 | if (vector_map_->find(org) == vector_map_->end()) { |
| 822 | // In scalar code, just use a self pass-through for scalar invariants |
| 823 | // (viz. expression remains itself). |
| 824 | if (vector_mode_ == kSequential) { |
| 825 | vector_map_->Put(org, org); |
| 826 | return; |
| 827 | } |
| 828 | // In vector code, explicit scalar expansion is needed. |
| 829 | HInstruction* vector = new (global_allocator_) HVecReplicateScalar( |
| 830 | global_allocator_, org, type, vector_length_); |
| 831 | vector_map_->Put(org, Insert(vector_preheader_, vector)); |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) { |
| 836 | if (vector_map_->find(org) == vector_map_->end()) { |
| 837 | HInstruction* subscript = vector_phi_; |
| 838 | if (offset != nullptr) { |
| 839 | subscript = new (global_allocator_) HAdd(Primitive::kPrimInt, subscript, offset); |
| 840 | if (org->IsPhi()) { |
| 841 | Insert(vector_body_, subscript); // lacks layout placeholder |
| 842 | } |
| 843 | } |
| 844 | vector_map_->Put(org, subscript); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | void HLoopOptimization::GenerateVecMem(HInstruction* org, |
| 849 | HInstruction* opa, |
| 850 | HInstruction* opb, |
| 851 | Primitive::Type type) { |
| 852 | HInstruction* vector = nullptr; |
| 853 | if (vector_mode_ == kVector) { |
| 854 | // Vector store or load. |
| 855 | if (opb != nullptr) { |
| 856 | vector = new (global_allocator_) HVecStore( |
| 857 | global_allocator_, org->InputAt(0), opa, opb, type, vector_length_); |
| 858 | } else { |
| 859 | vector = new (global_allocator_) HVecLoad( |
| 860 | global_allocator_, org->InputAt(0), opa, type, vector_length_); |
| 861 | } |
| 862 | } else { |
| 863 | // Scalar store or load. |
| 864 | DCHECK(vector_mode_ == kSequential); |
| 865 | if (opb != nullptr) { |
| 866 | vector = new (global_allocator_) HArraySet(org->InputAt(0), opa, opb, type, kNoDexPc); |
| 867 | } else { |
| 868 | vector = new (global_allocator_) HArrayGet(org->InputAt(0), opa, type, kNoDexPc); |
| 869 | } |
| 870 | } |
| 871 | vector_map_->Put(org, vector); |
| 872 | } |
| 873 | |
| 874 | #define GENERATE_VEC(x, y) \ |
| 875 | if (vector_mode_ == kVector) { \ |
| 876 | vector = (x); \ |
| 877 | } else { \ |
| 878 | DCHECK(vector_mode_ == kSequential); \ |
| 879 | vector = (y); \ |
| 880 | } \ |
| 881 | break; |
| 882 | |
| 883 | void HLoopOptimization::GenerateVecOp(HInstruction* org, |
| 884 | HInstruction* opa, |
| 885 | HInstruction* opb, |
| 886 | Primitive::Type type) { |
| 887 | if (vector_mode_ == kSequential) { |
| 888 | // Scalar code follows implicit integral promotion. |
| 889 | if (type == Primitive::kPrimBoolean || |
| 890 | type == Primitive::kPrimByte || |
| 891 | type == Primitive::kPrimChar || |
| 892 | type == Primitive::kPrimShort) { |
| 893 | type = Primitive::kPrimInt; |
| 894 | } |
| 895 | } |
| 896 | HInstruction* vector = nullptr; |
| 897 | switch (org->GetKind()) { |
| 898 | case HInstruction::kNeg: |
| 899 | DCHECK(opb == nullptr); |
| 900 | GENERATE_VEC( |
| 901 | new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_), |
| 902 | new (global_allocator_) HNeg(type, opa)); |
| 903 | case HInstruction::kNot: |
| 904 | DCHECK(opb == nullptr); |
| 905 | GENERATE_VEC( |
| 906 | new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_), |
| 907 | new (global_allocator_) HNot(type, opa)); |
| 908 | case HInstruction::kBooleanNot: |
| 909 | DCHECK(opb == nullptr); |
| 910 | GENERATE_VEC( |
| 911 | new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_), |
| 912 | new (global_allocator_) HBooleanNot(opa)); |
| 913 | case HInstruction::kTypeConversion: |
| 914 | DCHECK(opb == nullptr); |
| 915 | GENERATE_VEC( |
| 916 | new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_), |
| 917 | new (global_allocator_) HTypeConversion(type, opa, kNoDexPc)); |
| 918 | case HInstruction::kAdd: |
| 919 | GENERATE_VEC( |
| 920 | new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_), |
| 921 | new (global_allocator_) HAdd(type, opa, opb)); |
| 922 | case HInstruction::kSub: |
| 923 | GENERATE_VEC( |
| 924 | new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_), |
| 925 | new (global_allocator_) HSub(type, opa, opb)); |
| 926 | case HInstruction::kMul: |
| 927 | GENERATE_VEC( |
| 928 | new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_), |
| 929 | new (global_allocator_) HMul(type, opa, opb)); |
| 930 | case HInstruction::kDiv: |
| 931 | GENERATE_VEC( |
| 932 | new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_), |
| 933 | new (global_allocator_) HDiv(type, opa, opb, kNoDexPc)); |
| 934 | case HInstruction::kAnd: |
| 935 | GENERATE_VEC( |
| 936 | new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_), |
| 937 | new (global_allocator_) HAnd(type, opa, opb)); |
| 938 | case HInstruction::kOr: |
| 939 | GENERATE_VEC( |
| 940 | new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_), |
| 941 | new (global_allocator_) HOr(type, opa, opb)); |
| 942 | case HInstruction::kXor: |
| 943 | GENERATE_VEC( |
| 944 | new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_), |
| 945 | new (global_allocator_) HXor(type, opa, opb)); |
| 946 | case HInstruction::kShl: |
| 947 | GENERATE_VEC( |
| 948 | new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_), |
| 949 | new (global_allocator_) HShl(type, opa, opb)); |
| 950 | case HInstruction::kShr: |
| 951 | GENERATE_VEC( |
| 952 | new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_), |
| 953 | new (global_allocator_) HShr(type, opa, opb)); |
| 954 | case HInstruction::kUShr: |
| 955 | GENERATE_VEC( |
| 956 | new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_), |
| 957 | new (global_allocator_) HUShr(type, opa, opb)); |
| 958 | case HInstruction::kInvokeStaticOrDirect: { |
| 959 | // TODO: coming soon. |
| 960 | break; |
| 961 | } |
| 962 | default: |
| 963 | break; |
| 964 | } // switch |
| 965 | CHECK(vector != nullptr) << "Unsupported SIMD operator"; |
| 966 | vector_map_->Put(org, vector); |
| 967 | } |
| 968 | |
| 969 | #undef GENERATE_VEC |
| 970 | |
| 971 | // |
| 972 | // Helpers. |
| 973 | // |
| 974 | |
| 975 | bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) { |
| 976 | DCHECK(iset_->empty()); |
Aart Bik | cc42be0 | 2016-10-20 16:14:16 -0700 | [diff] [blame] | 977 | ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi); |
| 978 | if (set != nullptr) { |
| 979 | for (HInstruction* i : *set) { |
Aart Bik | e3dedc5 | 2016-11-02 17:50:27 -0700 | [diff] [blame] | 980 | // Check that, other than instructions that are no longer in the graph (removed earlier) |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 981 | // each instruction is removable and, when restrict uses are requested, other than for phi, |
| 982 | // all uses are contained within the cycle. |
Aart Bik | e3dedc5 | 2016-11-02 17:50:27 -0700 | [diff] [blame] | 983 | if (!i->IsInBlock()) { |
| 984 | continue; |
| 985 | } else if (!i->IsRemovable()) { |
| 986 | return false; |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 987 | } else if (i != phi && restrict_uses) { |
Aart Bik | cc42be0 | 2016-10-20 16:14:16 -0700 | [diff] [blame] | 988 | for (const HUseListNode<HInstruction*>& use : i->GetUses()) { |
| 989 | if (set->find(use.GetUser()) == set->end()) { |
| 990 | return false; |
| 991 | } |
| 992 | } |
| 993 | } |
Aart Bik | e3dedc5 | 2016-11-02 17:50:27 -0700 | [diff] [blame] | 994 | iset_->insert(i); // copy |
Aart Bik | cc42be0 | 2016-10-20 16:14:16 -0700 | [diff] [blame] | 995 | } |
Aart Bik | cc42be0 | 2016-10-20 16:14:16 -0700 | [diff] [blame] | 996 | return true; |
| 997 | } |
| 998 | return false; |
| 999 | } |
| 1000 | |
| 1001 | // Find: phi: Phi(init, addsub) |
| 1002 | // s: SuspendCheck |
| 1003 | // c: Condition(phi, bound) |
| 1004 | // i: If(c) |
| 1005 | // TODO: Find a less pattern matching approach? |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 1006 | bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block) { |
Aart Bik | cc42be0 | 2016-10-20 16:14:16 -0700 | [diff] [blame] | 1007 | DCHECK(iset_->empty()); |
| 1008 | HInstruction* phi = block->GetFirstPhi(); |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 1009 | if (phi != nullptr && |
| 1010 | phi->GetNext() == nullptr && |
| 1011 | TrySetPhiInduction(phi->AsPhi(), /*restrict_uses*/ false)) { |
Aart Bik | cc42be0 | 2016-10-20 16:14:16 -0700 | [diff] [blame] | 1012 | HInstruction* s = block->GetFirstInstruction(); |
| 1013 | if (s != nullptr && s->IsSuspendCheck()) { |
| 1014 | HInstruction* c = s->GetNext(); |
| 1015 | if (c != nullptr && c->IsCondition() && c->GetUses().HasExactlyOneElement()) { |
| 1016 | HInstruction* i = c->GetNext(); |
| 1017 | if (i != nullptr && i->IsIf() && i->InputAt(0) == c) { |
| 1018 | iset_->insert(c); |
| 1019 | iset_->insert(s); |
| 1020 | return true; |
| 1021 | } |
| 1022 | } |
| 1023 | } |
| 1024 | } |
| 1025 | return false; |
| 1026 | } |
| 1027 | |
| 1028 | bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) { |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 1029 | if (!block->GetPhis().IsEmpty()) { |
| 1030 | return false; |
| 1031 | } |
| 1032 | for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| 1033 | HInstruction* instruction = it.Current(); |
| 1034 | if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) { |
| 1035 | return false; |
Aart Bik | cc42be0 | 2016-10-20 16:14:16 -0700 | [diff] [blame] | 1036 | } |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 1037 | } |
| 1038 | return true; |
| 1039 | } |
| 1040 | |
| 1041 | bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info, |
| 1042 | HInstruction* instruction) { |
| 1043 | for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { |
| 1044 | if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) { |
| 1045 | return true; |
| 1046 | } |
Aart Bik | cc42be0 | 2016-10-20 16:14:16 -0700 | [diff] [blame] | 1047 | } |
| 1048 | return false; |
| 1049 | } |
| 1050 | |
Aart Bik | 482095d | 2016-10-10 15:39:10 -0700 | [diff] [blame] | 1051 | bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info, |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 1052 | HInstruction* instruction, |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 1053 | bool collect_loop_uses, |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 1054 | /*out*/ int32_t* use_count) { |
| 1055 | for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { |
| 1056 | HInstruction* user = use.GetUser(); |
| 1057 | if (iset_->find(user) == iset_->end()) { // not excluded? |
| 1058 | HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation(); |
Aart Bik | 482095d | 2016-10-10 15:39:10 -0700 | [diff] [blame] | 1059 | if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) { |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 1060 | // If collect_loop_uses is set, simply keep adding those uses to the set. |
| 1061 | // Otherwise, reject uses inside the loop that were not already in the set. |
| 1062 | if (collect_loop_uses) { |
| 1063 | iset_->insert(user); |
| 1064 | continue; |
| 1065 | } |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 1066 | return false; |
| 1067 | } |
| 1068 | ++*use_count; |
| 1069 | } |
| 1070 | } |
| 1071 | return true; |
| 1072 | } |
| 1073 | |
Aart Bik | 807868e | 2016-11-03 17:51:43 -0700 | [diff] [blame] | 1074 | bool HLoopOptimization::TryReplaceWithLastValue(HInstruction* instruction, HBasicBlock* block) { |
| 1075 | // Try to replace outside uses with the last value. Environment uses can consume this |
| 1076 | // value too, since any first true use is outside the loop (although this may imply |
| 1077 | // that de-opting may look "ahead" a bit on the phi value). If there are only environment |
| 1078 | // uses, the value is dropped altogether, since the computations have no effect. |
| 1079 | if (induction_range_.CanGenerateLastValue(instruction)) { |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 1080 | HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block); |
| 1081 | const HUseList<HInstruction*>& uses = instruction->GetUses(); |
| 1082 | for (auto it = uses.begin(), end = uses.end(); it != end;) { |
| 1083 | HInstruction* user = it->GetUser(); |
| 1084 | size_t index = it->GetIndex(); |
| 1085 | ++it; // increment before replacing |
| 1086 | if (iset_->find(user) == iset_->end()) { // not excluded? |
| 1087 | user->ReplaceInput(replacement, index); |
| 1088 | induction_range_.Replace(user, instruction, replacement); // update induction |
| 1089 | } |
| 1090 | } |
| 1091 | const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses(); |
| 1092 | for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) { |
| 1093 | HEnvironment* user = it->GetUser(); |
| 1094 | size_t index = it->GetIndex(); |
| 1095 | ++it; // increment before replacing |
| 1096 | if (iset_->find(user->GetHolder()) == iset_->end()) { // not excluded? |
| 1097 | user->RemoveAsUserOfInput(index); |
| 1098 | user->SetRawEnvAt(index, replacement); |
| 1099 | replacement->AddEnvUseAt(user, index); |
| 1100 | } |
| 1101 | } |
| 1102 | induction_simplication_count_++; |
Aart Bik | 807868e | 2016-11-03 17:51:43 -0700 | [diff] [blame] | 1103 | return true; |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 1104 | } |
Aart Bik | 807868e | 2016-11-03 17:51:43 -0700 | [diff] [blame] | 1105 | return false; |
Aart Bik | 8c4a854 | 2016-10-06 11:36:57 -0700 | [diff] [blame] | 1106 | } |
| 1107 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 1108 | bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info, |
| 1109 | HInstruction* instruction, |
| 1110 | HBasicBlock* block, |
| 1111 | bool collect_loop_uses) { |
| 1112 | // Assigning the last value is always successful if there are no uses. |
| 1113 | // Otherwise, it succeeds in a no early-exit loop by generating the |
| 1114 | // proper last value assignment. |
| 1115 | int32_t use_count = 0; |
| 1116 | return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) && |
| 1117 | (use_count == 0 || |
| 1118 | (!IsEarlyExit(loop_info) && TryReplaceWithLastValue(instruction, block))); |
| 1119 | } |
| 1120 | |
Aart Bik | 6b69e0a | 2017-01-11 10:20:43 -0800 | [diff] [blame] | 1121 | void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) { |
| 1122 | for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) { |
| 1123 | HInstruction* instruction = i.Current(); |
| 1124 | if (instruction->IsDeadAndRemovable()) { |
| 1125 | simplified_ = true; |
| 1126 | instruction->GetBlock()->RemoveInstructionOrPhi(instruction); |
| 1127 | } |
| 1128 | } |
| 1129 | } |
| 1130 | |
Aart Bik | 281c681 | 2016-08-26 11:31:48 -0700 | [diff] [blame] | 1131 | } // namespace art |