Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2012 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | /* This file contains codegen for the X86 ISA */ |
| 18 | |
| 19 | #include "codegen_x86.h" |
| 20 | #include "dex/quick/mir_to_lir-inl.h" |
| 21 | #include "mirror/array.h" |
| 22 | #include "x86_lir.h" |
| 23 | |
| 24 | namespace art { |
| 25 | |
| 26 | /* |
| 27 | * Perform register memory operation. |
| 28 | */ |
| 29 | LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 30 | int reg1, int base, int offset, ThrowKind kind) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 31 | LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, |
| 32 | current_dalvik_offset_, reg1, base, offset); |
| 33 | OpRegMem(kOpCmp, reg1, base, offset); |
| 34 | LIR* branch = OpCondBranch(c_code, tgt); |
| 35 | // Remember branch target - will process later |
| 36 | throw_launchpads_.Insert(tgt); |
| 37 | return branch; |
| 38 | } |
| 39 | |
| 40 | /* |
Mark Mendell | 343adb5 | 2013-12-18 06:02:17 -0800 | [diff] [blame] | 41 | * Perform a compare of memory to immediate value |
| 42 | */ |
| 43 | LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code, |
| 44 | int base, int offset, int check_value, ThrowKind kind) { |
| 45 | LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, |
| 46 | current_dalvik_offset_, base, check_value, 0); |
| 47 | NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value); |
| 48 | LIR* branch = OpCondBranch(c_code, tgt); |
| 49 | // Remember branch target - will process later |
| 50 | throw_launchpads_.Insert(tgt); |
| 51 | return branch; |
| 52 | } |
| 53 | |
| 54 | /* |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 55 | * Compare two 64-bit values |
| 56 | * x = y return 0 |
| 57 | * x < y return -1 |
| 58 | * x > y return 1 |
| 59 | */ |
| 60 | void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 61 | RegLocation rl_src2) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 62 | FlushAllRegs(); |
| 63 | LockCallTemps(); // Prepare for explicit register usage |
| 64 | LoadValueDirectWideFixed(rl_src1, r0, r1); |
| 65 | LoadValueDirectWideFixed(rl_src2, r2, r3); |
| 66 | // Compute (r1:r0) = (r1:r0) - (r3:r2) |
| 67 | OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2 |
| 68 | OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF |
| 69 | NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0 |
| 70 | NewLIR2(kX86Movzx8RR, r2, r2); |
| 71 | OpReg(kOpNeg, r2); // r2 = -r2 |
| 72 | OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF |
| 73 | NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0 |
| 74 | NewLIR2(kX86Movzx8RR, r0, r0); |
| 75 | OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2 |
| 76 | RegLocation rl_result = LocCReturn(); |
| 77 | StoreValue(rl_dest, rl_result); |
| 78 | } |
| 79 | |
| 80 | X86ConditionCode X86ConditionEncoding(ConditionCode cond) { |
| 81 | switch (cond) { |
| 82 | case kCondEq: return kX86CondEq; |
| 83 | case kCondNe: return kX86CondNe; |
| 84 | case kCondCs: return kX86CondC; |
| 85 | case kCondCc: return kX86CondNc; |
Vladimir Marko | 58af1f9 | 2013-12-19 13:31:15 +0000 | [diff] [blame] | 86 | case kCondUlt: return kX86CondC; |
| 87 | case kCondUge: return kX86CondNc; |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 88 | case kCondMi: return kX86CondS; |
| 89 | case kCondPl: return kX86CondNs; |
| 90 | case kCondVs: return kX86CondO; |
| 91 | case kCondVc: return kX86CondNo; |
| 92 | case kCondHi: return kX86CondA; |
| 93 | case kCondLs: return kX86CondBe; |
| 94 | case kCondGe: return kX86CondGe; |
| 95 | case kCondLt: return kX86CondL; |
| 96 | case kCondGt: return kX86CondG; |
| 97 | case kCondLe: return kX86CondLe; |
| 98 | case kCondAl: |
| 99 | case kCondNv: LOG(FATAL) << "Should not reach here"; |
| 100 | } |
| 101 | return kX86CondO; |
| 102 | } |
| 103 | |
| 104 | LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 105 | LIR* target) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 106 | NewLIR2(kX86Cmp32RR, src1, src2); |
| 107 | X86ConditionCode cc = X86ConditionEncoding(cond); |
| 108 | LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , |
| 109 | cc); |
| 110 | branch->target = target; |
| 111 | return branch; |
| 112 | } |
| 113 | |
| 114 | LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 115 | int check_value, LIR* target) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 116 | if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) { |
| 117 | // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode |
| 118 | NewLIR2(kX86Test32RR, reg, reg); |
| 119 | } else { |
| 120 | NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value); |
| 121 | } |
| 122 | X86ConditionCode cc = X86ConditionEncoding(cond); |
| 123 | LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc); |
| 124 | branch->target = target; |
| 125 | return branch; |
| 126 | } |
| 127 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 128 | LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 129 | if (X86_FPREG(r_dest) || X86_FPREG(r_src)) |
| 130 | return OpFpRegCopy(r_dest, r_src); |
| 131 | LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR, |
| 132 | r_dest, r_src); |
Razvan A Lupusoru | bd288c2 | 2013-12-20 17:27:23 -0800 | [diff] [blame] | 133 | if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 134 | res->flags.is_nop = true; |
| 135 | } |
| 136 | return res; |
| 137 | } |
| 138 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 139 | LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 140 | LIR *res = OpRegCopyNoInsert(r_dest, r_src); |
| 141 | AppendLIR(res); |
| 142 | return res; |
| 143 | } |
| 144 | |
| 145 | void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 146 | int src_lo, int src_hi) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 147 | bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi); |
| 148 | bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi); |
| 149 | assert(X86_FPREG(src_lo) == X86_FPREG(src_hi)); |
| 150 | assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi)); |
| 151 | if (dest_fp) { |
| 152 | if (src_fp) { |
| 153 | OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi)); |
| 154 | } else { |
| 155 | // TODO: Prevent this from happening in the code. The result is often |
| 156 | // unused or could have been loaded more easily from memory. |
| 157 | NewLIR2(kX86MovdxrRR, dest_lo, src_lo); |
Bill Buzbee | d61ba4b | 2014-01-13 21:44:01 +0000 | [diff] [blame] | 158 | dest_hi = AllocTempDouble(); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 159 | NewLIR2(kX86MovdxrRR, dest_hi, src_hi); |
| 160 | NewLIR2(kX86PsllqRI, dest_hi, 32); |
| 161 | NewLIR2(kX86OrpsRR, dest_lo, dest_hi); |
Bill Buzbee | d61ba4b | 2014-01-13 21:44:01 +0000 | [diff] [blame] | 162 | FreeTemp(dest_hi); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 163 | } |
| 164 | } else { |
| 165 | if (src_fp) { |
| 166 | NewLIR2(kX86MovdrxRR, dest_lo, src_lo); |
| 167 | NewLIR2(kX86PsrlqRI, src_lo, 32); |
| 168 | NewLIR2(kX86MovdrxRR, dest_hi, src_lo); |
| 169 | } else { |
| 170 | // Handle overlap |
| 171 | if (src_hi == dest_lo) { |
| 172 | OpRegCopy(dest_hi, src_hi); |
| 173 | OpRegCopy(dest_lo, src_lo); |
| 174 | } else { |
| 175 | OpRegCopy(dest_lo, src_lo); |
| 176 | OpRegCopy(dest_hi, src_hi); |
| 177 | } |
| 178 | } |
| 179 | } |
| 180 | } |
| 181 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 182 | void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 183 | UNIMPLEMENTED(FATAL) << "Need codegen for GenSelect"; |
| 184 | } |
| 185 | |
| 186 | void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) { |
buzbee | 0d82948 | 2013-10-11 15:24:55 -0700 | [diff] [blame] | 187 | LIR* taken = &block_label_list_[bb->taken]; |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 188 | RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0); |
| 189 | RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2); |
Vladimir Marko | a894607 | 2014-01-22 10:30:44 +0000 | [diff] [blame] | 190 | ConditionCode ccode = mir->meta.ccode; |
Mark Mendell | 412d4f8 | 2013-12-18 13:32:36 -0800 | [diff] [blame] | 191 | |
| 192 | if (rl_src1.is_const) { |
| 193 | std::swap(rl_src1, rl_src2); |
| 194 | ccode = FlipComparisonOrder(ccode); |
| 195 | } |
| 196 | if (rl_src2.is_const) { |
| 197 | // Do special compare/branch against simple const operand |
| 198 | int64_t val = mir_graph_->ConstantValueWide(rl_src2); |
| 199 | GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode); |
| 200 | return; |
| 201 | } |
| 202 | |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 203 | FlushAllRegs(); |
| 204 | LockCallTemps(); // Prepare for explicit register usage |
| 205 | LoadValueDirectWideFixed(rl_src1, r0, r1); |
| 206 | LoadValueDirectWideFixed(rl_src2, r2, r3); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 207 | // Swap operands and condition code to prevent use of zero flag. |
| 208 | if (ccode == kCondLe || ccode == kCondGt) { |
| 209 | // Compute (r3:r2) = (r3:r2) - (r1:r0) |
| 210 | OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0 |
| 211 | OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF |
| 212 | } else { |
| 213 | // Compute (r1:r0) = (r1:r0) - (r3:r2) |
| 214 | OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2 |
| 215 | OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF |
| 216 | } |
| 217 | switch (ccode) { |
| 218 | case kCondEq: |
| 219 | case kCondNe: |
| 220 | OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1 |
| 221 | break; |
| 222 | case kCondLe: |
| 223 | ccode = kCondGe; |
| 224 | break; |
| 225 | case kCondGt: |
| 226 | ccode = kCondLt; |
| 227 | break; |
| 228 | case kCondLt: |
| 229 | case kCondGe: |
| 230 | break; |
| 231 | default: |
| 232 | LOG(FATAL) << "Unexpected ccode: " << ccode; |
| 233 | } |
| 234 | OpCondBranch(ccode, taken); |
| 235 | } |
| 236 | |
Mark Mendell | 412d4f8 | 2013-12-18 13:32:36 -0800 | [diff] [blame] | 237 | void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1, |
| 238 | int64_t val, ConditionCode ccode) { |
| 239 | int32_t val_lo = Low32Bits(val); |
| 240 | int32_t val_hi = High32Bits(val); |
| 241 | LIR* taken = &block_label_list_[bb->taken]; |
| 242 | LIR* not_taken = &block_label_list_[bb->fall_through]; |
| 243 | rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| 244 | int32_t low_reg = rl_src1.low_reg; |
| 245 | int32_t high_reg = rl_src1.high_reg; |
| 246 | |
| 247 | if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) { |
| 248 | int t_reg = AllocTemp(); |
| 249 | OpRegRegReg(kOpOr, t_reg, low_reg, high_reg); |
| 250 | FreeTemp(t_reg); |
| 251 | OpCondBranch(ccode, taken); |
| 252 | return; |
| 253 | } |
| 254 | |
| 255 | OpRegImm(kOpCmp, high_reg, val_hi); |
| 256 | switch (ccode) { |
| 257 | case kCondEq: |
| 258 | case kCondNe: |
| 259 | OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken); |
| 260 | break; |
| 261 | case kCondLt: |
| 262 | OpCondBranch(kCondLt, taken); |
| 263 | OpCondBranch(kCondGt, not_taken); |
| 264 | ccode = kCondUlt; |
| 265 | break; |
| 266 | case kCondLe: |
| 267 | OpCondBranch(kCondLt, taken); |
| 268 | OpCondBranch(kCondGt, not_taken); |
| 269 | ccode = kCondLs; |
| 270 | break; |
| 271 | case kCondGt: |
| 272 | OpCondBranch(kCondGt, taken); |
| 273 | OpCondBranch(kCondLt, not_taken); |
| 274 | ccode = kCondHi; |
| 275 | break; |
| 276 | case kCondGe: |
| 277 | OpCondBranch(kCondGt, taken); |
| 278 | OpCondBranch(kCondLt, not_taken); |
| 279 | ccode = kCondUge; |
| 280 | break; |
| 281 | default: |
| 282 | LOG(FATAL) << "Unexpected ccode: " << ccode; |
| 283 | } |
| 284 | OpCmpImmBranch(ccode, low_reg, val_lo, taken); |
| 285 | } |
| 286 | |
Mark Mendell | 2bf31e6 | 2014-01-23 12:13:40 -0800 | [diff] [blame] | 287 | void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) { |
| 288 | // It does not make sense to calculate magic and shift for zero divisor. |
| 289 | DCHECK_NE(divisor, 0); |
| 290 | |
| 291 | /* According to H.S.Warren's Hacker's Delight Chapter 10 and |
| 292 | * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication. |
| 293 | * The magic number M and shift S can be calculated in the following way: |
| 294 | * Let nc be the most positive value of numerator(n) such that nc = kd - 1, |
| 295 | * where divisor(d) >=2. |
| 296 | * Let nc be the most negative value of numerator(n) such that nc = kd + 1, |
| 297 | * where divisor(d) <= -2. |
| 298 | * Thus nc can be calculated like: |
| 299 | * nc = 2^31 + 2^31 % d - 1, where d >= 2 |
| 300 | * nc = -2^31 + (2^31 + 1) % d, where d >= 2. |
| 301 | * |
| 302 | * So the shift p is the smallest p satisfying |
| 303 | * 2^p > nc * (d - 2^p % d), where d >= 2 |
| 304 | * 2^p > nc * (d + 2^p % d), where d <= -2. |
| 305 | * |
| 306 | * the magic number M is calcuated by |
| 307 | * M = (2^p + d - 2^p % d) / d, where d >= 2 |
| 308 | * M = (2^p - d - 2^p % d) / d, where d <= -2. |
| 309 | * |
| 310 | * Notice that p is always bigger than or equal to 32, so we just return 32-p as |
| 311 | * the shift number S. |
| 312 | */ |
| 313 | |
| 314 | int32_t p = 31; |
| 315 | const uint32_t two31 = 0x80000000U; |
| 316 | |
| 317 | // Initialize the computations. |
| 318 | uint32_t abs_d = (divisor >= 0) ? divisor : -divisor; |
| 319 | uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31); |
| 320 | uint32_t abs_nc = tmp - 1 - tmp % abs_d; |
| 321 | uint32_t quotient1 = two31 / abs_nc; |
| 322 | uint32_t remainder1 = two31 % abs_nc; |
| 323 | uint32_t quotient2 = two31 / abs_d; |
| 324 | uint32_t remainder2 = two31 % abs_d; |
| 325 | |
| 326 | /* |
| 327 | * To avoid handling both positive and negative divisor, Hacker's Delight |
| 328 | * introduces a method to handle these 2 cases together to avoid duplication. |
| 329 | */ |
| 330 | uint32_t delta; |
| 331 | do { |
| 332 | p++; |
| 333 | quotient1 = 2 * quotient1; |
| 334 | remainder1 = 2 * remainder1; |
| 335 | if (remainder1 >= abs_nc) { |
| 336 | quotient1++; |
| 337 | remainder1 = remainder1 - abs_nc; |
| 338 | } |
| 339 | quotient2 = 2 * quotient2; |
| 340 | remainder2 = 2 * remainder2; |
| 341 | if (remainder2 >= abs_d) { |
| 342 | quotient2++; |
| 343 | remainder2 = remainder2 - abs_d; |
| 344 | } |
| 345 | delta = abs_d - remainder2; |
| 346 | } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); |
| 347 | |
| 348 | magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); |
| 349 | shift = p - 32; |
| 350 | } |
| 351 | |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 352 | RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 353 | int lit, bool is_div) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 354 | LOG(FATAL) << "Unexpected use of GenDivRemLit for x86"; |
| 355 | return rl_dest; |
| 356 | } |
| 357 | |
Mark Mendell | 2bf31e6 | 2014-01-23 12:13:40 -0800 | [diff] [blame] | 358 | RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, |
| 359 | int imm, bool is_div) { |
| 360 | // Use a multiply (and fixup) to perform an int div/rem by a constant. |
| 361 | |
| 362 | // We have to use fixed registers, so flush all the temps. |
| 363 | FlushAllRegs(); |
| 364 | LockCallTemps(); // Prepare for explicit register usage. |
| 365 | |
| 366 | // Assume that the result will be in EDX. |
| 367 | RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, |
| 368 | r2, INVALID_REG, INVALID_SREG, INVALID_SREG}; |
| 369 | |
| 370 | // handle 0x80000000 / -1 special case. |
| 371 | LIR *minint_branch = 0; |
| 372 | if (imm == -1) { |
| 373 | if (is_div) { |
| 374 | LoadValueDirectFixed(rl_src, r0); |
| 375 | OpRegImm(kOpCmp, r0, 0x80000000); |
| 376 | minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq); |
| 377 | |
| 378 | // for x != MIN_INT, x / -1 == -x. |
| 379 | NewLIR1(kX86Neg32R, r0); |
| 380 | |
| 381 | LIR* branch_around = NewLIR1(kX86Jmp8, 0); |
| 382 | // The target for cmp/jmp above. |
| 383 | minint_branch->target = NewLIR0(kPseudoTargetLabel); |
| 384 | // EAX already contains the right value (0x80000000), |
| 385 | branch_around->target = NewLIR0(kPseudoTargetLabel); |
| 386 | } else { |
| 387 | // x % -1 == 0. |
| 388 | LoadConstantNoClobber(r0, 0); |
| 389 | } |
| 390 | // For this case, return the result in EAX. |
| 391 | rl_result.low_reg = r0; |
| 392 | } else { |
| 393 | DCHECK(imm <= -2 || imm >= 2); |
| 394 | // Use H.S.Warren's Hacker's Delight Chapter 10 and |
| 395 | // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication. |
| 396 | int magic, shift; |
| 397 | CalculateMagicAndShift(imm, magic, shift); |
| 398 | |
| 399 | /* |
| 400 | * For imm >= 2, |
| 401 | * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0 |
| 402 | * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0. |
| 403 | * For imm <= -2, |
| 404 | * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0 |
| 405 | * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0. |
| 406 | * We implement this algorithm in the following way: |
| 407 | * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX |
| 408 | * 2. if imm > 0 and magic < 0, add numerator to EDX |
| 409 | * if imm < 0 and magic > 0, sub numerator from EDX |
| 410 | * 3. if S !=0, SAR S bits for EDX |
| 411 | * 4. add 1 to EDX if EDX < 0 |
| 412 | * 5. Thus, EDX is the quotient |
| 413 | */ |
| 414 | |
| 415 | // Numerator into EAX. |
| 416 | int numerator_reg = -1; |
| 417 | if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) { |
| 418 | // We will need the value later. |
| 419 | if (rl_src.location == kLocPhysReg) { |
| 420 | // We can use it directly. |
| 421 | DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2); |
| 422 | numerator_reg = rl_src.low_reg; |
| 423 | } else { |
| 424 | LoadValueDirectFixed(rl_src, r1); |
| 425 | numerator_reg = r1; |
| 426 | } |
| 427 | OpRegCopy(r0, numerator_reg); |
| 428 | } else { |
| 429 | // Only need this once. Just put it into EAX. |
| 430 | LoadValueDirectFixed(rl_src, r0); |
| 431 | } |
| 432 | |
| 433 | // EDX = magic. |
| 434 | LoadConstantNoClobber(r2, magic); |
| 435 | |
| 436 | // EDX:EAX = magic & dividend. |
| 437 | NewLIR1(kX86Imul32DaR, r2); |
| 438 | |
| 439 | if (imm > 0 && magic < 0) { |
| 440 | // Add numerator to EDX. |
| 441 | DCHECK_NE(numerator_reg, -1); |
| 442 | NewLIR2(kX86Add32RR, r2, numerator_reg); |
| 443 | } else if (imm < 0 && magic > 0) { |
| 444 | DCHECK_NE(numerator_reg, -1); |
| 445 | NewLIR2(kX86Sub32RR, r2, numerator_reg); |
| 446 | } |
| 447 | |
| 448 | // Do we need the shift? |
| 449 | if (shift != 0) { |
| 450 | // Shift EDX by 'shift' bits. |
| 451 | NewLIR2(kX86Sar32RI, r2, shift); |
| 452 | } |
| 453 | |
| 454 | // Add 1 to EDX if EDX < 0. |
| 455 | |
| 456 | // Move EDX to EAX. |
| 457 | OpRegCopy(r0, r2); |
| 458 | |
| 459 | // Move sign bit to bit 0, zeroing the rest. |
| 460 | NewLIR2(kX86Shr32RI, r2, 31); |
| 461 | |
| 462 | // EDX = EDX + EAX. |
| 463 | NewLIR2(kX86Add32RR, r2, r0); |
| 464 | |
| 465 | // Quotient is in EDX. |
| 466 | if (!is_div) { |
| 467 | // We need to compute the remainder. |
| 468 | // Remainder is divisor - (quotient * imm). |
| 469 | DCHECK_NE(numerator_reg, -1); |
| 470 | OpRegCopy(r0, numerator_reg); |
| 471 | |
| 472 | // EAX = numerator * imm. |
| 473 | OpRegRegImm(kOpMul, r2, r2, imm); |
| 474 | |
| 475 | // EDX -= EAX. |
| 476 | NewLIR2(kX86Sub32RR, r0, r2); |
| 477 | |
| 478 | // For this case, return the result in EAX. |
| 479 | rl_result.low_reg = r0; |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | return rl_result; |
| 484 | } |
| 485 | |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 486 | RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 487 | int reg_hi, bool is_div) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 488 | LOG(FATAL) << "Unexpected use of GenDivRem for x86"; |
| 489 | return rl_dest; |
| 490 | } |
| 491 | |
Mark Mendell | 2bf31e6 | 2014-01-23 12:13:40 -0800 | [diff] [blame] | 492 | RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1, |
| 493 | RegLocation rl_src2, bool is_div, bool check_zero) { |
| 494 | // We have to use fixed registers, so flush all the temps. |
| 495 | FlushAllRegs(); |
| 496 | LockCallTemps(); // Prepare for explicit register usage. |
| 497 | |
| 498 | // Load LHS into EAX. |
| 499 | LoadValueDirectFixed(rl_src1, r0); |
| 500 | |
| 501 | // Load RHS into EBX. |
| 502 | LoadValueDirectFixed(rl_src2, r1); |
| 503 | |
| 504 | // Copy LHS sign bit into EDX. |
| 505 | NewLIR0(kx86Cdq32Da); |
| 506 | |
| 507 | if (check_zero) { |
| 508 | // Handle division by zero case. |
| 509 | GenImmedCheck(kCondEq, r1, 0, kThrowDivZero); |
| 510 | } |
| 511 | |
| 512 | // Have to catch 0x80000000/-1 case, or we will get an exception! |
| 513 | OpRegImm(kOpCmp, r1, -1); |
| 514 | LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe); |
| 515 | |
| 516 | // RHS is -1. |
| 517 | OpRegImm(kOpCmp, r0, 0x80000000); |
| 518 | LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe); |
| 519 | |
| 520 | // In 0x80000000/-1 case. |
| 521 | if (!is_div) { |
| 522 | // For DIV, EAX is already right. For REM, we need EDX 0. |
| 523 | LoadConstantNoClobber(r2, 0); |
| 524 | } |
| 525 | LIR* done = NewLIR1(kX86Jmp8, 0); |
| 526 | |
| 527 | // Expected case. |
| 528 | minus_one_branch->target = NewLIR0(kPseudoTargetLabel); |
| 529 | minint_branch->target = minus_one_branch->target; |
| 530 | NewLIR1(kX86Idivmod32DaR, r1); |
| 531 | done->target = NewLIR0(kPseudoTargetLabel); |
| 532 | |
| 533 | // Result is in EAX for div and EDX for rem. |
| 534 | RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, |
| 535 | r0, INVALID_REG, INVALID_SREG, INVALID_SREG}; |
| 536 | if (!is_div) { |
| 537 | rl_result.low_reg = r2; |
| 538 | } |
| 539 | return rl_result; |
| 540 | } |
| 541 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 542 | bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 543 | DCHECK_EQ(cu_->instruction_set, kX86); |
Razvan A Lupusoru | bd288c2 | 2013-12-20 17:27:23 -0800 | [diff] [blame] | 544 | |
| 545 | // Get the two arguments to the invoke and place them in GP registers. |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 546 | RegLocation rl_src1 = info->args[0]; |
| 547 | RegLocation rl_src2 = info->args[1]; |
| 548 | rl_src1 = LoadValue(rl_src1, kCoreReg); |
| 549 | rl_src2 = LoadValue(rl_src2, kCoreReg); |
Razvan A Lupusoru | bd288c2 | 2013-12-20 17:27:23 -0800 | [diff] [blame] | 550 | |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 551 | RegLocation rl_dest = InlineTarget(info); |
| 552 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
Razvan A Lupusoru | bd288c2 | 2013-12-20 17:27:23 -0800 | [diff] [blame] | 553 | |
| 554 | /* |
| 555 | * If the result register is the same as the second element, then we need to be careful. |
| 556 | * The reason is that the first copy will inadvertently clobber the second element with |
| 557 | * the first one thus yielding the wrong result. Thus we do a swap in that case. |
| 558 | */ |
| 559 | if (rl_result.low_reg == rl_src2.low_reg) { |
| 560 | std::swap(rl_src1, rl_src2); |
| 561 | } |
| 562 | |
| 563 | // Pick the first integer as min/max. |
| 564 | OpRegCopy(rl_result.low_reg, rl_src1.low_reg); |
| 565 | |
| 566 | // If the integers are both in the same register, then there is nothing else to do |
| 567 | // because they are equal and we have already moved one into the result. |
| 568 | if (rl_src1.low_reg != rl_src2.low_reg) { |
| 569 | // It is possible we didn't pick correctly so do the actual comparison now. |
| 570 | OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg); |
| 571 | |
| 572 | // Conditionally move the other integer into the destination register. |
| 573 | ConditionCode condition_code = is_min ? kCondGt : kCondLt; |
| 574 | OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg); |
| 575 | } |
| 576 | |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 577 | StoreValue(rl_dest, rl_result); |
| 578 | return true; |
| 579 | } |
| 580 | |
Vladimir Marko | e508a20 | 2013-11-04 15:24:22 +0000 | [diff] [blame] | 581 | bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) { |
| 582 | RegLocation rl_src_address = info->args[0]; // long address |
| 583 | rl_src_address.wide = 0; // ignore high half in info->args[1] |
| 584 | RegLocation rl_dest = InlineTarget(info); |
| 585 | RegLocation rl_address = LoadValue(rl_src_address, kCoreReg); |
| 586 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 587 | if (size == kLong) { |
| 588 | // Unaligned access is allowed on x86. |
| 589 | LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); |
| 590 | StoreValueWide(rl_dest, rl_result); |
| 591 | } else { |
| 592 | DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord); |
| 593 | // Unaligned access is allowed on x86. |
| 594 | LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG); |
| 595 | StoreValue(rl_dest, rl_result); |
| 596 | } |
| 597 | return true; |
| 598 | } |
| 599 | |
| 600 | bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) { |
| 601 | RegLocation rl_src_address = info->args[0]; // long address |
| 602 | rl_src_address.wide = 0; // ignore high half in info->args[1] |
| 603 | RegLocation rl_src_value = info->args[2]; // [size] value |
| 604 | RegLocation rl_address = LoadValue(rl_src_address, kCoreReg); |
| 605 | if (size == kLong) { |
| 606 | // Unaligned access is allowed on x86. |
| 607 | RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg); |
| 608 | StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg); |
| 609 | } else { |
| 610 | DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord); |
| 611 | // Unaligned access is allowed on x86. |
| 612 | RegLocation rl_value = LoadValue(rl_src_value, kCoreReg); |
| 613 | StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size); |
| 614 | } |
| 615 | return true; |
| 616 | } |
| 617 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 618 | void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 619 | NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset); |
| 620 | } |
| 621 | |
Ian Rogers | 468532e | 2013-08-05 10:56:33 -0700 | [diff] [blame] | 622 | void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) { |
| 623 | NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 624 | } |
| 625 | |
Vladimir Marko | 1c282e2 | 2013-11-21 14:49:47 +0000 | [diff] [blame] | 626 | bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) { |
Vladimir Marko | c29bb61 | 2013-11-27 16:47:25 +0000 | [diff] [blame] | 627 | DCHECK_EQ(cu_->instruction_set, kX86); |
| 628 | // Unused - RegLocation rl_src_unsafe = info->args[0]; |
| 629 | RegLocation rl_src_obj = info->args[1]; // Object - known non-null |
| 630 | RegLocation rl_src_offset = info->args[2]; // long low |
| 631 | rl_src_offset.wide = 0; // ignore high half in info->args[3] |
| 632 | RegLocation rl_src_expected = info->args[4]; // int, long or Object |
| 633 | // If is_long, high half is in info->args[5] |
| 634 | RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object |
| 635 | // If is_long, high half is in info->args[7] |
| 636 | |
| 637 | if (is_long) { |
Vladimir Marko | 70b797d | 2013-12-03 15:25:24 +0000 | [diff] [blame] | 638 | FlushAllRegs(); |
| 639 | LockCallTemps(); |
Vladimir Marko | a6fd8ba | 2013-12-13 10:53:49 +0000 | [diff] [blame] | 640 | LoadValueDirectWideFixed(rl_src_expected, rAX, rDX); |
| 641 | LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX); |
Vladimir Marko | 70b797d | 2013-12-03 15:25:24 +0000 | [diff] [blame] | 642 | NewLIR1(kX86Push32R, rDI); |
| 643 | MarkTemp(rDI); |
| 644 | LockTemp(rDI); |
| 645 | NewLIR1(kX86Push32R, rSI); |
| 646 | MarkTemp(rSI); |
| 647 | LockTemp(rSI); |
Vladimir Marko | a6fd8ba | 2013-12-13 10:53:49 +0000 | [diff] [blame] | 648 | const int push_offset = 4 /* push edi */ + 4 /* push esi */; |
| 649 | LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI); |
| 650 | LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI); |
Vladimir Marko | 70b797d | 2013-12-03 15:25:24 +0000 | [diff] [blame] | 651 | NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0); |
| 652 | FreeTemp(rSI); |
| 653 | UnmarkTemp(rSI); |
| 654 | NewLIR1(kX86Pop32R, rSI); |
| 655 | FreeTemp(rDI); |
| 656 | UnmarkTemp(rDI); |
| 657 | NewLIR1(kX86Pop32R, rDI); |
| 658 | FreeCallTemps(); |
Vladimir Marko | c29bb61 | 2013-11-27 16:47:25 +0000 | [diff] [blame] | 659 | } else { |
| 660 | // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX. |
| 661 | FlushReg(r0); |
| 662 | LockTemp(r0); |
| 663 | |
| 664 | // Release store semantics, get the barrier out of the way. TODO: revisit |
| 665 | GenMemBarrier(kStoreLoad); |
| 666 | |
| 667 | RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); |
| 668 | RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg); |
| 669 | |
| 670 | if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) { |
| 671 | // Mark card for object assuming new value is stored. |
| 672 | FreeTemp(r0); // Temporarily release EAX for MarkGCCard(). |
| 673 | MarkGCCard(rl_new_value.low_reg, rl_object.low_reg); |
| 674 | LockTemp(r0); |
| 675 | } |
| 676 | |
| 677 | RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); |
| 678 | LoadValueDirect(rl_src_expected, r0); |
| 679 | NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg); |
| 680 | |
| 681 | FreeTemp(r0); |
| 682 | } |
| 683 | |
| 684 | // Convert ZF to boolean |
| 685 | RegLocation rl_dest = InlineTarget(info); // boolean place for result |
| 686 | RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| 687 | NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ); |
| 688 | NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg); |
| 689 | StoreValue(rl_dest, rl_result); |
| 690 | return true; |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 691 | } |
| 692 | |
| 693 | LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) { |
| 694 | LOG(FATAL) << "Unexpected use of OpPcRelLoad for x86"; |
| 695 | return NULL; |
| 696 | } |
| 697 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 698 | LIR* X86Mir2Lir::OpVldm(int rBase, int count) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 699 | LOG(FATAL) << "Unexpected use of OpVldm for x86"; |
| 700 | return NULL; |
| 701 | } |
| 702 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 703 | LIR* X86Mir2Lir::OpVstm(int rBase, int count) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 704 | LOG(FATAL) << "Unexpected use of OpVstm for x86"; |
| 705 | return NULL; |
| 706 | } |
| 707 | |
| 708 | void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src, |
| 709 | RegLocation rl_result, int lit, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 710 | int first_bit, int second_bit) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 711 | int t_reg = AllocTemp(); |
| 712 | OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit); |
| 713 | OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg); |
| 714 | FreeTemp(t_reg); |
| 715 | if (first_bit != 0) { |
| 716 | OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit); |
| 717 | } |
| 718 | } |
| 719 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 720 | void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) { |
Razvan A Lupusoru | 090dd44 | 2013-12-20 14:35:03 -0800 | [diff] [blame] | 721 | // We are not supposed to clobber either of the provided registers, so allocate |
| 722 | // a temporary to use for the check. |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 723 | int t_reg = AllocTemp(); |
Razvan A Lupusoru | 090dd44 | 2013-12-20 14:35:03 -0800 | [diff] [blame] | 724 | |
| 725 | // Doing an OR is a quick way to check if both registers are zero. This will set the flags. |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 726 | OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi); |
Razvan A Lupusoru | 090dd44 | 2013-12-20 14:35:03 -0800 | [diff] [blame] | 727 | |
| 728 | // In case of zero, throw ArithmeticException. |
| 729 | GenCheck(kCondEq, kThrowDivZero); |
| 730 | |
| 731 | // The temp is no longer needed so free it at this time. |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 732 | FreeTemp(t_reg); |
| 733 | } |
| 734 | |
| 735 | // Test suspend flag, return target of taken suspend branch |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 736 | LIR* X86Mir2Lir::OpTestSuspend(LIR* target) { |
Ian Rogers | 468532e | 2013-08-05 10:56:33 -0700 | [diff] [blame] | 737 | OpTlsCmp(Thread::ThreadFlagsOffset(), 0); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 738 | return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target); |
| 739 | } |
| 740 | |
| 741 | // Decrement register and branch on condition |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 742 | LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 743 | OpRegImm(kOpSub, reg, 1); |
| 744 | return OpCmpImmBranch(c_code, reg, 0, target); |
| 745 | } |
| 746 | |
buzbee | 11b63d1 | 2013-08-27 07:34:17 -0700 | [diff] [blame] | 747 | bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 748 | RegLocation rl_src, RegLocation rl_dest, int lit) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 749 | LOG(FATAL) << "Unexpected use of smallLiteralDive in x86"; |
| 750 | return false; |
| 751 | } |
| 752 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 753 | LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 754 | LOG(FATAL) << "Unexpected use of OpIT in x86"; |
| 755 | return NULL; |
| 756 | } |
| 757 | |
Mark Mendell | e02d48f | 2014-01-15 11:19:23 -0800 | [diff] [blame] | 758 | void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 759 | RegLocation rl_src2) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 760 | LOG(FATAL) << "Unexpected use of GenX86Long for x86"; |
| 761 | } |
Mark Mendell | e02d48f | 2014-01-15 11:19:23 -0800 | [diff] [blame] | 762 | |
| 763 | void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, |
| 764 | Instruction::Code op) { |
| 765 | DCHECK_EQ(rl_dest.location, kLocPhysReg); |
| 766 | X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false); |
| 767 | if (rl_src.location == kLocPhysReg) { |
| 768 | // Both operands are in registers. |
| 769 | if (rl_dest.low_reg == rl_src.high_reg) { |
| 770 | // The registers are the same, so we would clobber it before the use. |
| 771 | int temp_reg = AllocTemp(); |
| 772 | OpRegCopy(temp_reg, rl_dest.low_reg); |
| 773 | rl_src.high_reg = temp_reg; |
| 774 | } |
| 775 | NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg); |
| 776 | |
| 777 | x86op = GetOpcode(op, rl_dest, rl_src, true); |
| 778 | NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg); |
| 779 | FreeTemp(rl_src.low_reg); |
| 780 | FreeTemp(rl_src.high_reg); |
| 781 | return; |
| 782 | } |
| 783 | |
| 784 | // RHS is in memory. |
| 785 | DCHECK((rl_src.location == kLocDalvikFrame) || |
| 786 | (rl_src.location == kLocCompilerTemp)); |
| 787 | int rBase = TargetReg(kSp); |
| 788 | int displacement = SRegOffset(rl_src.s_reg_low); |
| 789 | |
| 790 | LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET); |
| 791 | AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2, |
| 792 | true /* is_load */, true /* is64bit */); |
| 793 | x86op = GetOpcode(op, rl_dest, rl_src, true); |
| 794 | lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET); |
| 795 | AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, |
| 796 | true /* is_load */, true /* is64bit */); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 797 | } |
| 798 | |
Mark Mendell | e02d48f | 2014-01-15 11:19:23 -0800 | [diff] [blame] | 799 | void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) { |
| 800 | rl_dest = UpdateLocWide(rl_dest); |
| 801 | if (rl_dest.location == kLocPhysReg) { |
| 802 | // Ensure we are in a register pair |
| 803 | RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| 804 | |
| 805 | rl_src = UpdateLocWide(rl_src); |
| 806 | GenLongRegOrMemOp(rl_result, rl_src, op); |
| 807 | StoreFinalValueWide(rl_dest, rl_result); |
| 808 | return; |
| 809 | } |
| 810 | |
| 811 | // It wasn't in registers, so it better be in memory. |
| 812 | DCHECK((rl_dest.location == kLocDalvikFrame) || |
| 813 | (rl_dest.location == kLocCompilerTemp)); |
| 814 | rl_src = LoadValueWide(rl_src, kCoreReg); |
| 815 | |
| 816 | // Operate directly into memory. |
| 817 | X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false); |
| 818 | int rBase = TargetReg(kSp); |
| 819 | int displacement = SRegOffset(rl_dest.s_reg_low); |
| 820 | |
| 821 | LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg); |
| 822 | AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2, |
| 823 | false /* is_load */, true /* is64bit */); |
| 824 | x86op = GetOpcode(op, rl_dest, rl_src, true); |
| 825 | lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg); |
| 826 | AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, |
| 827 | false /* is_load */, true /* is64bit */); |
| 828 | FreeTemp(rl_src.low_reg); |
| 829 | FreeTemp(rl_src.high_reg); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 830 | } |
| 831 | |
Mark Mendell | e02d48f | 2014-01-15 11:19:23 -0800 | [diff] [blame] | 832 | void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1, |
| 833 | RegLocation rl_src2, Instruction::Code op, |
| 834 | bool is_commutative) { |
| 835 | // Is this really a 2 operand operation? |
| 836 | switch (op) { |
| 837 | case Instruction::ADD_LONG_2ADDR: |
| 838 | case Instruction::SUB_LONG_2ADDR: |
| 839 | case Instruction::AND_LONG_2ADDR: |
| 840 | case Instruction::OR_LONG_2ADDR: |
| 841 | case Instruction::XOR_LONG_2ADDR: |
| 842 | GenLongArith(rl_dest, rl_src2, op); |
| 843 | return; |
| 844 | default: |
| 845 | break; |
| 846 | } |
| 847 | |
| 848 | if (rl_dest.location == kLocPhysReg) { |
| 849 | RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg); |
| 850 | |
| 851 | // We are about to clobber the LHS, so it needs to be a temp. |
| 852 | rl_result = ForceTempWide(rl_result); |
| 853 | |
| 854 | // Perform the operation using the RHS. |
| 855 | rl_src2 = UpdateLocWide(rl_src2); |
| 856 | GenLongRegOrMemOp(rl_result, rl_src2, op); |
| 857 | |
| 858 | // And now record that the result is in the temp. |
| 859 | StoreFinalValueWide(rl_dest, rl_result); |
| 860 | return; |
| 861 | } |
| 862 | |
| 863 | // It wasn't in registers, so it better be in memory. |
| 864 | DCHECK((rl_dest.location == kLocDalvikFrame) || |
| 865 | (rl_dest.location == kLocCompilerTemp)); |
| 866 | rl_src1 = UpdateLocWide(rl_src1); |
| 867 | rl_src2 = UpdateLocWide(rl_src2); |
| 868 | |
| 869 | // Get one of the source operands into temporary register. |
| 870 | rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| 871 | if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) { |
| 872 | GenLongRegOrMemOp(rl_src1, rl_src2, op); |
| 873 | } else if (is_commutative) { |
| 874 | rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| 875 | // We need at least one of them to be a temporary. |
| 876 | if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) { |
| 877 | rl_src1 = ForceTempWide(rl_src1); |
| 878 | } |
| 879 | GenLongRegOrMemOp(rl_src1, rl_src2, op); |
| 880 | } else { |
| 881 | // Need LHS to be the temp. |
| 882 | rl_src1 = ForceTempWide(rl_src1); |
| 883 | GenLongRegOrMemOp(rl_src1, rl_src2, op); |
| 884 | } |
| 885 | |
| 886 | StoreFinalValueWide(rl_dest, rl_src1); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 887 | } |
| 888 | |
Mark Mendell | e02d48f | 2014-01-15 11:19:23 -0800 | [diff] [blame] | 889 | void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 890 | RegLocation rl_src1, RegLocation rl_src2) { |
Mark Mendell | e02d48f | 2014-01-15 11:19:23 -0800 | [diff] [blame] | 891 | GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true); |
| 892 | } |
| 893 | |
| 894 | void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest, |
| 895 | RegLocation rl_src1, RegLocation rl_src2) { |
| 896 | GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false); |
| 897 | } |
| 898 | |
| 899 | void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest, |
| 900 | RegLocation rl_src1, RegLocation rl_src2) { |
| 901 | GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true); |
| 902 | } |
| 903 | |
| 904 | void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest, |
| 905 | RegLocation rl_src1, RegLocation rl_src2) { |
| 906 | GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true); |
| 907 | } |
| 908 | |
| 909 | void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest, |
| 910 | RegLocation rl_src1, RegLocation rl_src2) { |
| 911 | GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 912 | } |
| 913 | |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 914 | void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) { |
Mark Mendell | e02d48f | 2014-01-15 11:19:23 -0800 | [diff] [blame] | 915 | rl_src = LoadValueWide(rl_src, kCoreReg); |
| 916 | RegLocation rl_result = ForceTempWide(rl_src); |
| 917 | if (rl_dest.low_reg == rl_src.high_reg) { |
| 918 | // The registers are the same, so we would clobber it before the use. |
| 919 | int temp_reg = AllocTemp(); |
| 920 | OpRegCopy(temp_reg, rl_result.low_reg); |
| 921 | rl_result.high_reg = temp_reg; |
| 922 | } |
| 923 | OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg); // rLow = -rLow |
| 924 | OpRegImm(kOpAdc, rl_result.high_reg, 0); // rHigh = rHigh + CF |
| 925 | OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg); // rHigh = -rHigh |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 926 | StoreValueWide(rl_dest, rl_result); |
| 927 | } |
| 928 | |
Ian Rogers | 468532e | 2013-08-05 10:56:33 -0700 | [diff] [blame] | 929 | void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 930 | X86OpCode opcode = kX86Bkpt; |
| 931 | switch (op) { |
| 932 | case kOpCmp: opcode = kX86Cmp32RT; break; |
| 933 | case kOpMov: opcode = kX86Mov32RT; break; |
| 934 | default: |
| 935 | LOG(FATAL) << "Bad opcode: " << op; |
| 936 | break; |
| 937 | } |
Ian Rogers | 468532e | 2013-08-05 10:56:33 -0700 | [diff] [blame] | 938 | NewLIR2(opcode, r_dest, thread_offset.Int32Value()); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 939 | } |
| 940 | |
| 941 | /* |
| 942 | * Generate array load |
| 943 | */ |
| 944 | void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, |
Ian Rogers | a9a8254 | 2013-10-04 11:17:26 -0700 | [diff] [blame] | 945 | RegLocation rl_index, RegLocation rl_dest, int scale) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 946 | RegisterClass reg_class = oat_reg_class_by_size(size); |
| 947 | int len_offset = mirror::Array::LengthOffset().Int32Value(); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 948 | RegLocation rl_result; |
| 949 | rl_array = LoadValue(rl_array, kCoreReg); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 950 | |
Mark Mendell | 343adb5 | 2013-12-18 06:02:17 -0800 | [diff] [blame] | 951 | int data_offset; |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 952 | if (size == kLong || size == kDouble) { |
| 953 | data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| 954 | } else { |
| 955 | data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| 956 | } |
| 957 | |
Mark Mendell | 343adb5 | 2013-12-18 06:02:17 -0800 | [diff] [blame] | 958 | bool constant_index = rl_index.is_const; |
| 959 | int32_t constant_index_value = 0; |
| 960 | if (!constant_index) { |
| 961 | rl_index = LoadValue(rl_index, kCoreReg); |
| 962 | } else { |
| 963 | constant_index_value = mir_graph_->ConstantValue(rl_index); |
| 964 | // If index is constant, just fold it into the data offset |
| 965 | data_offset += constant_index_value << scale; |
| 966 | // treat as non array below |
| 967 | rl_index.low_reg = INVALID_REG; |
| 968 | } |
| 969 | |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 970 | /* null object? */ |
| 971 | GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags); |
| 972 | |
| 973 | if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) { |
Mark Mendell | 343adb5 | 2013-12-18 06:02:17 -0800 | [diff] [blame] | 974 | if (constant_index) { |
| 975 | GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset, |
| 976 | constant_index_value, kThrowConstantArrayBounds); |
| 977 | } else { |
| 978 | GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg, |
| 979 | len_offset, kThrowArrayBounds); |
| 980 | } |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 981 | } |
Mark Mendell | 343adb5 | 2013-12-18 06:02:17 -0800 | [diff] [blame] | 982 | rl_result = EvalLoc(rl_dest, reg_class, true); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 983 | if ((size == kLong) || (size == kDouble)) { |
Mark Mendell | 343adb5 | 2013-12-18 06:02:17 -0800 | [diff] [blame] | 984 | LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg, |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 985 | rl_result.high_reg, size, INVALID_SREG); |
| 986 | StoreValueWide(rl_dest, rl_result); |
| 987 | } else { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 988 | LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, |
| 989 | data_offset, rl_result.low_reg, INVALID_REG, size, |
| 990 | INVALID_SREG); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 991 | StoreValue(rl_dest, rl_result); |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | /* |
| 996 | * Generate array store |
| 997 | * |
| 998 | */ |
| 999 | void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, |
Ian Rogers | a9a8254 | 2013-10-04 11:17:26 -0700 | [diff] [blame] | 1000 | RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 1001 | RegisterClass reg_class = oat_reg_class_by_size(size); |
| 1002 | int len_offset = mirror::Array::LengthOffset().Int32Value(); |
| 1003 | int data_offset; |
| 1004 | |
| 1005 | if (size == kLong || size == kDouble) { |
| 1006 | data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| 1007 | } else { |
| 1008 | data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| 1009 | } |
| 1010 | |
| 1011 | rl_array = LoadValue(rl_array, kCoreReg); |
Mark Mendell | 343adb5 | 2013-12-18 06:02:17 -0800 | [diff] [blame] | 1012 | bool constant_index = rl_index.is_const; |
| 1013 | int32_t constant_index_value = 0; |
| 1014 | if (!constant_index) { |
| 1015 | rl_index = LoadValue(rl_index, kCoreReg); |
| 1016 | } else { |
| 1017 | // If index is constant, just fold it into the data offset |
| 1018 | constant_index_value = mir_graph_->ConstantValue(rl_index); |
| 1019 | data_offset += constant_index_value << scale; |
| 1020 | // treat as non array below |
| 1021 | rl_index.low_reg = INVALID_REG; |
| 1022 | } |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 1023 | |
| 1024 | /* null object? */ |
| 1025 | GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags); |
| 1026 | |
| 1027 | if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) { |
Mark Mendell | 343adb5 | 2013-12-18 06:02:17 -0800 | [diff] [blame] | 1028 | if (constant_index) { |
| 1029 | GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset, |
| 1030 | constant_index_value, kThrowConstantArrayBounds); |
| 1031 | } else { |
| 1032 | GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg, |
| 1033 | len_offset, kThrowArrayBounds); |
| 1034 | } |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 1035 | } |
| 1036 | if ((size == kLong) || (size == kDouble)) { |
| 1037 | rl_src = LoadValueWide(rl_src, reg_class); |
| 1038 | } else { |
| 1039 | rl_src = LoadValue(rl_src, reg_class); |
| 1040 | } |
| 1041 | // If the src reg can't be byte accessed, move it to a temp first. |
| 1042 | if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) { |
| 1043 | int temp = AllocTemp(); |
| 1044 | OpRegCopy(temp, rl_src.low_reg); |
| 1045 | StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp, |
| 1046 | INVALID_REG, size, INVALID_SREG); |
| 1047 | } else { |
| 1048 | StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg, |
| 1049 | rl_src.high_reg, size, INVALID_SREG); |
| 1050 | } |
Ian Rogers | a9a8254 | 2013-10-04 11:17:26 -0700 | [diff] [blame] | 1051 | if (card_mark) { |
Ian Rogers | 773aab1 | 2013-10-14 13:50:10 -0700 | [diff] [blame] | 1052 | // Free rl_index if its a temp. Ensures there are 2 free regs for card mark. |
Mark Mendell | 343adb5 | 2013-12-18 06:02:17 -0800 | [diff] [blame] | 1053 | if (!constant_index) { |
| 1054 | FreeTemp(rl_index.low_reg); |
| 1055 | } |
Ian Rogers | a9a8254 | 2013-10-04 11:17:26 -0700 | [diff] [blame] | 1056 | MarkGCCard(rl_src.low_reg, rl_array.low_reg); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 1061 | RegLocation rl_src1, RegLocation rl_shift) { |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 1062 | // Default implementation is just to ignore the constant case. |
| 1063 | GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift); |
| 1064 | } |
| 1065 | |
| 1066 | void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode, |
Brian Carlstrom | 2ce745c | 2013-07-17 17:44:30 -0700 | [diff] [blame] | 1067 | RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { |
Mark Mendell | e02d48f | 2014-01-15 11:19:23 -0800 | [diff] [blame] | 1068 | switch (opcode) { |
| 1069 | case Instruction::ADD_LONG: |
| 1070 | case Instruction::AND_LONG: |
| 1071 | case Instruction::OR_LONG: |
| 1072 | case Instruction::XOR_LONG: |
| 1073 | if (rl_src2.is_const) { |
| 1074 | GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode); |
| 1075 | } else { |
| 1076 | DCHECK(rl_src1.is_const); |
| 1077 | GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode); |
| 1078 | } |
| 1079 | break; |
| 1080 | case Instruction::SUB_LONG: |
| 1081 | case Instruction::SUB_LONG_2ADDR: |
| 1082 | if (rl_src2.is_const) { |
| 1083 | GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode); |
| 1084 | } else { |
| 1085 | GenSubLong(opcode, rl_dest, rl_src1, rl_src2); |
| 1086 | } |
| 1087 | break; |
| 1088 | case Instruction::ADD_LONG_2ADDR: |
| 1089 | case Instruction::OR_LONG_2ADDR: |
| 1090 | case Instruction::XOR_LONG_2ADDR: |
| 1091 | case Instruction::AND_LONG_2ADDR: |
| 1092 | if (rl_src2.is_const) { |
| 1093 | GenLongImm(rl_dest, rl_src2, opcode); |
| 1094 | } else { |
| 1095 | DCHECK(rl_src1.is_const); |
| 1096 | GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode); |
| 1097 | } |
| 1098 | break; |
| 1099 | default: |
| 1100 | // Default - bail to non-const handler. |
| 1101 | GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2); |
| 1102 | break; |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) { |
| 1107 | switch (op) { |
| 1108 | case Instruction::AND_LONG_2ADDR: |
| 1109 | case Instruction::AND_LONG: |
| 1110 | return value == -1; |
| 1111 | case Instruction::OR_LONG: |
| 1112 | case Instruction::OR_LONG_2ADDR: |
| 1113 | case Instruction::XOR_LONG: |
| 1114 | case Instruction::XOR_LONG_2ADDR: |
| 1115 | return value == 0; |
| 1116 | default: |
| 1117 | return false; |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs, |
| 1122 | bool is_high_op) { |
| 1123 | bool rhs_in_mem = rhs.location != kLocPhysReg; |
| 1124 | bool dest_in_mem = dest.location != kLocPhysReg; |
| 1125 | DCHECK(!rhs_in_mem || !dest_in_mem); |
| 1126 | switch (op) { |
| 1127 | case Instruction::ADD_LONG: |
| 1128 | case Instruction::ADD_LONG_2ADDR: |
| 1129 | if (dest_in_mem) { |
| 1130 | return is_high_op ? kX86Adc32MR : kX86Add32MR; |
| 1131 | } else if (rhs_in_mem) { |
| 1132 | return is_high_op ? kX86Adc32RM : kX86Add32RM; |
| 1133 | } |
| 1134 | return is_high_op ? kX86Adc32RR : kX86Add32RR; |
| 1135 | case Instruction::SUB_LONG: |
| 1136 | case Instruction::SUB_LONG_2ADDR: |
| 1137 | if (dest_in_mem) { |
| 1138 | return is_high_op ? kX86Sbb32MR : kX86Sub32MR; |
| 1139 | } else if (rhs_in_mem) { |
| 1140 | return is_high_op ? kX86Sbb32RM : kX86Sub32RM; |
| 1141 | } |
| 1142 | return is_high_op ? kX86Sbb32RR : kX86Sub32RR; |
| 1143 | case Instruction::AND_LONG_2ADDR: |
| 1144 | case Instruction::AND_LONG: |
| 1145 | if (dest_in_mem) { |
| 1146 | return kX86And32MR; |
| 1147 | } |
| 1148 | return rhs_in_mem ? kX86And32RM : kX86And32RR; |
| 1149 | case Instruction::OR_LONG: |
| 1150 | case Instruction::OR_LONG_2ADDR: |
| 1151 | if (dest_in_mem) { |
| 1152 | return kX86Or32MR; |
| 1153 | } |
| 1154 | return rhs_in_mem ? kX86Or32RM : kX86Or32RR; |
| 1155 | case Instruction::XOR_LONG: |
| 1156 | case Instruction::XOR_LONG_2ADDR: |
| 1157 | if (dest_in_mem) { |
| 1158 | return kX86Xor32MR; |
| 1159 | } |
| 1160 | return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR; |
| 1161 | default: |
| 1162 | LOG(FATAL) << "Unexpected opcode: " << op; |
| 1163 | return kX86Add32RR; |
| 1164 | } |
| 1165 | } |
| 1166 | |
| 1167 | X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, |
| 1168 | int32_t value) { |
| 1169 | bool in_mem = loc.location != kLocPhysReg; |
| 1170 | bool byte_imm = IS_SIMM8(value); |
| 1171 | DCHECK(in_mem || !IsFpReg(loc.low_reg)); |
| 1172 | switch (op) { |
| 1173 | case Instruction::ADD_LONG: |
| 1174 | case Instruction::ADD_LONG_2ADDR: |
| 1175 | if (byte_imm) { |
| 1176 | if (in_mem) { |
| 1177 | return is_high_op ? kX86Adc32MI8 : kX86Add32MI8; |
| 1178 | } |
| 1179 | return is_high_op ? kX86Adc32RI8 : kX86Add32RI8; |
| 1180 | } |
| 1181 | if (in_mem) { |
| 1182 | return is_high_op ? kX86Adc32MI : kX86Add32MI; |
| 1183 | } |
| 1184 | return is_high_op ? kX86Adc32RI : kX86Add32RI; |
| 1185 | case Instruction::SUB_LONG: |
| 1186 | case Instruction::SUB_LONG_2ADDR: |
| 1187 | if (byte_imm) { |
| 1188 | if (in_mem) { |
| 1189 | return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8; |
| 1190 | } |
| 1191 | return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8; |
| 1192 | } |
| 1193 | if (in_mem) { |
| 1194 | return is_high_op ? kX86Sbb32MI : kX86Sub32MI; |
| 1195 | } |
| 1196 | return is_high_op ? kX86Sbb32RI : kX86Sub32RI; |
| 1197 | case Instruction::AND_LONG_2ADDR: |
| 1198 | case Instruction::AND_LONG: |
| 1199 | if (byte_imm) { |
| 1200 | return in_mem ? kX86And32MI8 : kX86And32RI8; |
| 1201 | } |
| 1202 | return in_mem ? kX86And32MI : kX86And32RI; |
| 1203 | case Instruction::OR_LONG: |
| 1204 | case Instruction::OR_LONG_2ADDR: |
| 1205 | if (byte_imm) { |
| 1206 | return in_mem ? kX86Or32MI8 : kX86Or32RI8; |
| 1207 | } |
| 1208 | return in_mem ? kX86Or32MI : kX86Or32RI; |
| 1209 | case Instruction::XOR_LONG: |
| 1210 | case Instruction::XOR_LONG_2ADDR: |
| 1211 | if (byte_imm) { |
| 1212 | return in_mem ? kX86Xor32MI8 : kX86Xor32RI8; |
| 1213 | } |
| 1214 | return in_mem ? kX86Xor32MI : kX86Xor32RI; |
| 1215 | default: |
| 1216 | LOG(FATAL) << "Unexpected opcode: " << op; |
| 1217 | return kX86Add32MI; |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) { |
| 1222 | DCHECK(rl_src.is_const); |
| 1223 | int64_t val = mir_graph_->ConstantValueWide(rl_src); |
| 1224 | int32_t val_lo = Low32Bits(val); |
| 1225 | int32_t val_hi = High32Bits(val); |
| 1226 | rl_dest = UpdateLocWide(rl_dest); |
| 1227 | |
| 1228 | // Can we just do this into memory? |
| 1229 | if ((rl_dest.location == kLocDalvikFrame) || |
| 1230 | (rl_dest.location == kLocCompilerTemp)) { |
| 1231 | int rBase = TargetReg(kSp); |
| 1232 | int displacement = SRegOffset(rl_dest.s_reg_low); |
| 1233 | |
| 1234 | if (!IsNoOp(op, val_lo)) { |
| 1235 | X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo); |
| 1236 | LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo); |
| 1237 | AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2, |
| 1238 | false /* is_load */, true /* is64bit */); |
| 1239 | } |
| 1240 | if (!IsNoOp(op, val_hi)) { |
| 1241 | X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi); |
| 1242 | LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi); |
| 1243 | AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, |
| 1244 | false /* is_load */, true /* is64bit */); |
| 1245 | } |
| 1246 | return; |
| 1247 | } |
| 1248 | |
| 1249 | RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| 1250 | DCHECK_EQ(rl_result.location, kLocPhysReg); |
| 1251 | DCHECK(!IsFpReg(rl_result.low_reg)); |
| 1252 | |
| 1253 | if (!IsNoOp(op, val_lo)) { |
| 1254 | X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo); |
| 1255 | NewLIR2(x86op, rl_result.low_reg, val_lo); |
| 1256 | } |
| 1257 | if (!IsNoOp(op, val_hi)) { |
| 1258 | X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi); |
| 1259 | NewLIR2(x86op, rl_result.high_reg, val_hi); |
| 1260 | } |
| 1261 | StoreValueWide(rl_dest, rl_result); |
| 1262 | } |
| 1263 | |
| 1264 | void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, |
| 1265 | RegLocation rl_src2, Instruction::Code op) { |
| 1266 | DCHECK(rl_src2.is_const); |
| 1267 | int64_t val = mir_graph_->ConstantValueWide(rl_src2); |
| 1268 | int32_t val_lo = Low32Bits(val); |
| 1269 | int32_t val_hi = High32Bits(val); |
| 1270 | rl_dest = UpdateLocWide(rl_dest); |
| 1271 | rl_src1 = UpdateLocWide(rl_src1); |
| 1272 | |
| 1273 | // Can we do this directly into the destination registers? |
| 1274 | if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg && |
| 1275 | rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg && |
| 1276 | !IsFpReg(rl_dest.low_reg)) { |
| 1277 | if (!IsNoOp(op, val_lo)) { |
| 1278 | X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo); |
| 1279 | NewLIR2(x86op, rl_dest.low_reg, val_lo); |
| 1280 | } |
| 1281 | if (!IsNoOp(op, val_hi)) { |
| 1282 | X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi); |
| 1283 | NewLIR2(x86op, rl_dest.high_reg, val_hi); |
| 1284 | } |
| 1285 | return; |
| 1286 | } |
| 1287 | |
| 1288 | rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| 1289 | DCHECK_EQ(rl_src1.location, kLocPhysReg); |
| 1290 | |
| 1291 | // We need the values to be in a temporary |
| 1292 | RegLocation rl_result = ForceTempWide(rl_src1); |
| 1293 | if (!IsNoOp(op, val_lo)) { |
| 1294 | X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo); |
| 1295 | NewLIR2(x86op, rl_result.low_reg, val_lo); |
| 1296 | } |
| 1297 | if (!IsNoOp(op, val_hi)) { |
| 1298 | X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi); |
| 1299 | NewLIR2(x86op, rl_result.high_reg, val_hi); |
| 1300 | } |
| 1301 | |
| 1302 | StoreFinalValueWide(rl_dest, rl_result); |
Brian Carlstrom | 7940e44 | 2013-07-12 13:46:57 -0700 | [diff] [blame] | 1303 | } |
| 1304 | |
| 1305 | } // namespace art |