auto import from //depot/cupcake/@135843
diff --git a/libm/bsdsrc/b_tgamma.c b/libm/bsdsrc/b_tgamma.c
new file mode 100644
index 0000000..ff6c5ac
--- /dev/null
+++ b/libm/bsdsrc/b_tgamma.c
@@ -0,0 +1,316 @@
+/*-
+ * Copyright (c) 1992, 1993
+ *	The Regents of the University of California.  All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ *    must display the following acknowledgement:
+ *	This product includes software developed by the University of
+ *	California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ *    may be used to endorse or promote products derived from this software
+ *    without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)gamma.c	8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+#include <sys/cdefs.h>
+/* __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_tgamma.c,v 1.7 2005/09/19 11:28:19 bde Exp $"); */
+
+/*
+ * This code by P. McIlroy, Oct 1992;
+ *
+ * The financial support of UUNET Communications Services is greatfully
+ * acknowledged.
+ */
+
+//#include <math.h>
+#include "../include/math.h"
+#include "mathimpl.h"
+#include <errno.h>
+
+/* METHOD:
+ * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
+ * 	At negative integers, return +Inf, and set errno.
+ *
+ * x < 6.5:
+ *	Use argument reduction G(x+1) = xG(x) to reach the
+ *	range [1.066124,2.066124].  Use a rational
+ *	approximation centered at the minimum (x0+1) to
+ *	ensure monotonicity.
+ *
+ * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
+ *	adjusted for equal-ripples:
+ *
+ *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
+ *
+ *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
+ *	avoid premature round-off.
+ *
+ * Special values:
+ *	non-positive integer:	Set overflow trap; return +Inf;
+ *	x > 171.63:		Set overflow trap; return +Inf;
+ *	NaN: 			Set invalid trap;  return NaN
+ *
+ * Accuracy: Gamma(x) is accurate to within
+ *	x > 0:  error provably < 0.9ulp.
+ *	Maximum observed in 1,000,000 trials was .87ulp.
+ *	x < 0:
+ *	Maximum observed error < 4ulp in 1,000,000 trials.
+ */
+
+static double neg_gam(double);
+static double small_gam(double);
+static double smaller_gam(double);
+static struct Double large_gam(double);
+static struct Double ratfun_gam(double, double);
+
+/*
+ * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
+ * [1.066.., 2.066..] accurate to 4.25e-19.
+ */
+#define LEFT -.3955078125	/* left boundary for rat. approx */
+#define x0 .461632144968362356785	/* xmin - 1 */
+
+#define a0_hi 0.88560319441088874992
+#define a0_lo -.00000000000000004996427036469019695
+#define P0	 6.21389571821820863029017800727e-01
+#define P1	 2.65757198651533466104979197553e-01
+#define P2	 5.53859446429917461063308081748e-03
+#define P3	 1.38456698304096573887145282811e-03
+#define P4	 2.40659950032711365819348969808e-03
+#define Q0	 1.45019531250000000000000000000e+00
+#define Q1	 1.06258521948016171343454061571e+00
+#define Q2	-2.07474561943859936441469926649e-01
+#define Q3	-1.46734131782005422506287573015e-01
+#define Q4	 3.07878176156175520361557573779e-02
+#define Q5	 5.12449347980666221336054633184e-03
+#define Q6	-1.76012741431666995019222898833e-03
+#define Q7	 9.35021023573788935372153030556e-05
+#define Q8	 6.13275507472443958924745652239e-06
+/*
+ * Constants for large x approximation (x in [6, Inf])
+ * (Accurate to 2.8*10^-19 absolute)
+ */
+#define lns2pi_hi 0.418945312500000
+#define lns2pi_lo -.000006779295327258219670263595
+#define Pa0	 8.33333333333333148296162562474e-02
+#define Pa1	-2.77777777774548123579378966497e-03
+#define Pa2	 7.93650778754435631476282786423e-04
+#define Pa3	-5.95235082566672847950717262222e-04
+#define Pa4	 8.41428560346653702135821806252e-04
+#define Pa5	-1.89773526463879200348872089421e-03
+#define Pa6	 5.69394463439411649408050664078e-03
+#define Pa7	-1.44705562421428915453880392761e-02
+
+static const double zero = 0., one = 1.0, tiny = 1e-300;
+
+double
+tgamma(x)
+	double x;
+{
+	struct Double u;
+
+	if (x >= 6) {
+		if(x > 171.63)
+			return(one/zero);
+		u = large_gam(x);
+		return(__exp__D(u.a, u.b));
+	} else if (x >= 1.0 + LEFT + x0)
+		return (small_gam(x));
+	else if (x > 1.e-17)
+		return (smaller_gam(x));
+	else if (x > -1.e-17) {
+		if (x == 0.0)
+			return (one/x);
+		one+1e-20;		/* Raise inexact flag. */
+		return (one/x);
+	} else if (!finite(x))
+		return (x*x);		/* x = NaN, -Inf */
+	else
+		return (neg_gam(x));
+}
+/*
+ * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
+ */
+static struct Double
+large_gam(x)
+	double x;
+{
+	double z, p;
+	struct Double t, u, v;
+
+	z = one/(x*x);
+	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
+	p = p/x;
+
+	u = __log__D(x);
+	u.a -= one;
+	v.a = (x -= .5);
+	TRUNC(v.a);
+	v.b = x - v.a;
+	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
+	t.b = v.b*u.a + x*u.b;
+	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
+	t.b += lns2pi_lo; t.b += p;
+	u.a = lns2pi_hi + t.b; u.a += t.a;
+	u.b = t.a - u.a;
+	u.b += lns2pi_hi; u.b += t.b;
+	return (u);
+}
+/*
+ * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
+ * It also has correct monotonicity.
+ */
+static double
+small_gam(x)
+	double x;
+{
+	double y, ym1, t;
+	struct Double yy, r;
+	y = x - one;
+	ym1 = y - one;
+	if (y <= 1.0 + (LEFT + x0)) {
+		yy = ratfun_gam(y - x0, 0);
+		return (yy.a + yy.b);
+	}
+	r.a = y;
+	TRUNC(r.a);
+	yy.a = r.a - one;
+	y = ym1;
+	yy.b = r.b = y - yy.a;
+	/* Argument reduction: G(x+1) = x*G(x) */
+	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
+		t = r.a*yy.a;
+		r.b = r.a*yy.b + y*r.b;
+		r.a = t;
+		TRUNC(r.a);
+		r.b += (t - r.a);
+	}
+	/* Return r*tgamma(y). */
+	yy = ratfun_gam(y - x0, 0);
+	y = r.b*(yy.a + yy.b) + r.a*yy.b;
+	y += yy.a*r.a;
+	return (y);
+}
+/*
+ * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
+ */
+static double
+smaller_gam(x)
+	double x;
+{
+	double t, d;
+	struct Double r, xx;
+	if (x < x0 + LEFT) {
+		t = x, TRUNC(t);
+		d = (t+x)*(x-t);
+		t *= t;
+		xx.a = (t + x), TRUNC(xx.a);
+		xx.b = x - xx.a; xx.b += t; xx.b += d;
+		t = (one-x0); t += x;
+		d = (one-x0); d -= t; d += x;
+		x = xx.a + xx.b;
+	} else {
+		xx.a =  x, TRUNC(xx.a);
+		xx.b = x - xx.a;
+		t = x - x0;
+		d = (-x0 -t); d += x;
+	}
+	r = ratfun_gam(t, d);
+	d = r.a/x, TRUNC(d);
+	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
+	return (d + r.a/x);
+}
+/*
+ * returns (z+c)^2 * P(z)/Q(z) + a0
+ */
+static struct Double
+ratfun_gam(z, c)
+	double z, c;
+{
+	double p, q;
+	struct Double r, t;
+
+	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
+	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
+
+	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
+	p = p/q;
+	t.a = z, TRUNC(t.a);		/* t ~= z + c */
+	t.b = (z - t.a) + c;
+	t.b *= (t.a + z);
+	q = (t.a *= t.a);		/* t = (z+c)^2 */
+	TRUNC(t.a);
+	t.b += (q - t.a);
+	r.a = p, TRUNC(r.a);		/* r = P/Q */
+	r.b = p - r.a;
+	t.b = t.b*p + t.a*r.b + a0_lo;
+	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
+	r.a = t.a + a0_hi, TRUNC(r.a);
+	r.b = ((a0_hi-r.a) + t.a) + t.b;
+	return (r);			/* r = a0 + t */
+}
+
+static double
+neg_gam(x)
+	double x;
+{
+	int sgn = 1;
+	struct Double lg, lsine;
+	double y, z;
+
+	y = floor(x + .5);
+	if (y == x)		/* Negative integer. */
+		return (one/zero);
+	z = fabs(x - y);
+	y = .5*ceil(x);
+	if (y == ceil(y))
+		sgn = -1;
+	if (z < .25)
+		z = sin(M_PI*z);
+	else
+		z = cos(M_PI*(0.5-z));
+	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
+	if (x < -170) {
+		if (x < -190)
+			return ((double)sgn*tiny*tiny);
+		y = one - x;		/* exact: 128 < |x| < 255 */
+		lg = large_gam(y);
+		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
+		lg.a -= lsine.a;		/* exact (opposite signs) */
+		lg.b -= lsine.b;
+		y = -(lg.a + lg.b);
+		z = (y + lg.a) + lg.b;
+		y = __exp__D(y, z);
+		if (sgn < 0) y = -y;
+		return (y);
+	}
+	y = one-x;
+	if (one-y == x)
+		y = tgamma(y);
+	else		/* 1-x is inexact */
+		y = -x*tgamma(-x);
+	if (sgn < 0) y = -y;
+	return (M_PI / (y*z));
+}