commit | dd0155f7d4853583d8d87d734908052235078311 | [log] [tgz] |
---|---|---|
author | Neil Fuller <nfuller@google.com> | Mon Nov 07 13:24:10 2016 +0000 |
committer | Neil Fuller <nfuller@google.com> | Mon Nov 07 16:13:03 2016 +0000 |
tree | dc8ab02edb85c5905a948812470381bac35e082b | |
parent | 41e96c895b4c62ce01694968c539c0cc586432de [diff] |
DO NOT MERGE : Update timezone data to 2016i. IANA changes: Briefly: Cyprus split into two time zones on 2016-10-30, and Tonga reintroduces DST on 2016-11-06. Changes to future time stamps Pacific/Tongatapu begins DST on 2016-11-06 at 02:00, ending on 2017-01-15 at 03:00. Assume future observances in Tonga will be from the first Sunday in November through the third Sunday in January, like Fiji. (Thanks to Pulu ʻAnau.) Switch to numeric time zone abbreviations for this zone. Changes to past and future time stamps Northern Cyprus is now +03 year round, causing a split in Cyprus time zones starting 2016-10-30 at 04:00. This creates a zone Asia/Famagusta. (Thanks to Even Scharning and Matt Johnson.) Antarctica/Casey switched from +08 to +11 on 2016-10-22. (Thanks to Steffen Thorsen.) Changes to past time stamps Several corrections were made for pre-1975 time stamps in Italy. These affect Europe/Malta, Europe/Rome, Europe/San_Marino, and Europe/Vatican. First, the 1893-11-01 00:00 transition in Italy used the new UT offset (+01), not the old (+00:49:56). (Thanks to Michael Deckers.) Second, rules for daylight saving in Italy were changed to agree with Italy's National Institute of Metrological Research (INRiM) except for 1944, as follows (thanks to Pierpaolo Bernardi, Brian Inglis, and Michael Deckers): The 1916-06-03 transition was at 24:00, not 00:00. The 1916-10-01, 1919-10-05, and 1920-09-19 transitions were at 00:00, not 01:00. The 1917-09-30 and 1918-10-06 transitions were at 24:00, not 01:00. The 1944-09-17 transition was at 03:00, not 01:00. This particular change is taken from Italian law as INRiM's table, (which says 02:00) appears to have a typo here. Also, keep the 1944-04-03 transition for Europe/Rome, as Rome was controlled by Germany then. The 1967-1970 and 1972-1974 fallback transitions were at 01:00, not 00:00. Bug: 32629043 Test: CtsIcuTestCases / CtsLibcoreTestCases / CtsBionicTestCases Change-Id: Idaa395ef780c45caf9c5d15f5cb0677cec808b2b
The C library. Stuff like fopen(3)
and kill(2)
.
The math library. Traditionally Unix systems kept stuff like sin(3)
and cos(3)
in a separate library to save space in the days before shared libraries.
The dynamic linker interface library. This is actually just a bunch of stubs that the dynamic linker replaces with pointers to its own implementation at runtime. This is where stuff like dlopen(3)
lives.
The C++ ABI support functions. The C++ compiler doesn't know how to implement thread-safe static initialization and the like, so it just calls functions that are supplied by the system. Stuff like __cxa_guard_acquire
and __cxa_pure_virtual
live here.
The dynamic linker. When you run a dynamically-linked executable, its ELF file has a DT_INTERP
entry that says "use the following program to start me". On Android, that's either linker
or linker64
(depending on whether it's a 32-bit or 64-bit executable). It's responsible for loading the ELF executable into memory and resolving references to symbols (so that when your code tries to jump to fopen(3)
, say, it lands in the right place).
The tests/
directory contains unit tests. Roughly arranged as one file per publicly-exported header file.
The benchmarks/
directory contains benchmarks.
Adding a system call usually involves:
As mentioned above, this is currently a two-step process:
This is fully automated (and these days handled by the libcore team, because they own icu, and that needs to be updated in sync with bionic):
If you make a change that is likely to have a wide effect on the tree (such as a libc header change), you should run make checkbuild
. A regular make
will not build the entire tree; just the minimum number of projects that are required for the device. Tests, additional developer tools, and various other modules will not be built. Note that make checkbuild
will not be complete either, as make tests
covers a few additional modules, but generally speaking make checkbuild
is enough.
The tests are all built from the tests/ directory.
$ mma $ adb remount $ adb sync $ adb shell /data/nativetest/bionic-unit-tests/bionic-unit-tests32 $ adb shell \ /data/nativetest/bionic-unit-tests-static/bionic-unit-tests-static32 # Only for 64-bit targets $ adb shell /data/nativetest64/bionic-unit-tests/bionic-unit-tests64 $ adb shell \ /data/nativetest64/bionic-unit-tests-static/bionic-unit-tests-static64
The host tests require that you have lunch
ed either an x86 or x86_64 target.
$ mma $ mm bionic-unit-tests-run-on-host32 $ mm bionic-unit-tests-run-on-host64 # For 64-bit *targets* only.
As a way to check that our tests do in fact test the correct behavior (and not just the behavior we think is correct), it is possible to run the tests against the host's glibc. The executables are already in your path.
$ mma $ bionic-unit-tests-glibc32 $ bionic-unit-tests-glibc64
For either host or target coverage, you must first:
$ export NATIVE_COVERAGE=true
bionic_coverage=true
in libc/Android.mk
and libm/Android.mk
.$ mma $ adb sync $ adb shell \ GCOV_PREFIX=/data/local/tmp/gcov \ GCOV_PREFIX_STRIP=`echo $ANDROID_BUILD_TOP | grep -o / | wc -l` \ /data/nativetest/bionic-unit-tests/bionic-unit-tests32 $ acov
acov
will pull all coverage information from the device, push it to the right directories, run lcov
, and open the coverage report in your browser.
First, build and run the host tests as usual (see above).
$ croot $ lcov -c -d $ANDROID_PRODUCT_OUT -o coverage.info $ genhtml -o covreport coverage.info # or lcov --list coverage.info
The coverage report is now available at covreport/index.html
.
Bionic's test runner will run each test in its own process by default to prevent tests failures from impacting other tests. This also has the added benefit of running them in parallel, so they are much faster.
However, this also makes it difficult to run the tests under GDB. To prevent each test from being forked, run the tests with the flag --no-isolate
.
This probably belongs in the NDK documentation rather than here, but these are the known ABI bugs in the 32-bit ABI:
time_t
is 32-bit. http://b/5819737. In the 64-bit ABI, time_t is 64-bit.
off_t
is 32-bit. There is off64_t
, and in newer releases there is almost-complete support for _FILE_OFFSET_BITS
. Unfortunately our stdio implementation uses 32-bit offsets and -- worse -- function pointers to functions that use 32-bit offsets, so there's no good way to implement the last few pieces http://b/24807045. In the 64-bit ABI, off_t is off64_t.
sigset_t
is too small on ARM and x86 (but correct on MIPS), so support for real-time signals is broken. http://b/5828899 In the 64-bit ABI, sigset_t
is the correct size for every architecture.