blob: d8a3166a2d7cd0e813fc10d19327910215079374 [file] [log] [blame]
The Android Open Source Project1dc9e472009-03-03 19:28:35 -08001/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28#include <sys/types.h>
29#include <unistd.h>
30#include <signal.h>
31#include <stdint.h>
32#include <stdio.h>
33#include <stdlib.h>
34#include <errno.h>
35#include <sys/atomics.h>
36#include <bionic_tls.h>
37#include <sys/mman.h>
38#include <pthread.h>
39#include <time.h>
40#include "pthread_internal.h"
41#include "thread_private.h"
42#include <limits.h>
43#include <memory.h>
44#include <assert.h>
45#include <malloc.h>
46
47extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
48extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
49extern void _exit_thread(int retCode);
50extern int __set_errno(int);
51
52void _thread_created_hook(pid_t thread_id) __attribute__((noinline));
53
54#define PTHREAD_ATTR_FLAG_DETACHED 0x00000001
55#define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002
56
57#define DEFAULT_STACKSIZE (1024 * 1024)
58#define STACKBASE 0x10000000
59
60static uint8_t * gStackBase = (uint8_t *)STACKBASE;
61
62static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
63
64
65static const pthread_attr_t gDefaultPthreadAttr = {
66 .flags = 0,
67 .stack_base = NULL,
68 .stack_size = DEFAULT_STACKSIZE,
69 .guard_size = PAGE_SIZE,
70 .sched_policy = SCHED_NORMAL,
71 .sched_priority = 0
72};
73
74#define INIT_THREADS 1
75
76static pthread_internal_t* gThreadList = NULL;
77static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
78static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
79
80
81/* we simply malloc/free the internal pthread_internal_t structures. we may
82 * want to use a different allocation scheme in the future, but this one should
83 * be largely enough
84 */
85static pthread_internal_t*
86_pthread_internal_alloc(void)
87{
88 pthread_internal_t* thread;
89
90 thread = calloc( sizeof(*thread), 1 );
91 if (thread)
92 thread->intern = 1;
93
94 return thread;
95}
96
97static void
98_pthread_internal_free( pthread_internal_t* thread )
99{
100 if (thread && thread->intern) {
101 thread->intern = 0; /* just in case */
102 free (thread);
103 }
104}
105
106
107static void
108_pthread_internal_remove_locked( pthread_internal_t* thread )
109{
110 thread->next->pref = thread->pref;
111 thread->pref[0] = thread->next;
112}
113
114static void
115_pthread_internal_remove( pthread_internal_t* thread )
116{
117 pthread_mutex_lock(&gThreadListLock);
118 _pthread_internal_remove_locked(thread);
119 pthread_mutex_unlock(&gThreadListLock);
120}
121
122static void
123_pthread_internal_add( pthread_internal_t* thread )
124{
125 pthread_mutex_lock(&gThreadListLock);
126 thread->pref = &gThreadList;
127 thread->next = thread->pref[0];
128 if (thread->next)
129 thread->next->pref = &thread->next;
130 thread->pref[0] = thread;
131 pthread_mutex_unlock(&gThreadListLock);
132}
133
134pthread_internal_t*
135__get_thread(void)
136{
137 void** tls = (void**)__get_tls();
138
139 return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
140}
141
142
143void*
144__get_stack_base(int *p_stack_size)
145{
146 pthread_internal_t* thread = __get_thread();
147
148 *p_stack_size = thread->attr.stack_size;
149 return thread->attr.stack_base;
150}
151
152
153void __init_tls(void** tls, void* thread)
154{
155 int nn;
156
157 ((pthread_internal_t*)thread)->tls = tls;
158
159 // slot 0 must point to the tls area, this is required by the implementation
160 // of the x86 Linux kernel thread-local-storage
161 tls[TLS_SLOT_SELF] = (void*)tls;
162 tls[TLS_SLOT_THREAD_ID] = thread;
163 for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
164 tls[nn] = 0;
165
166 __set_tls( (void*)tls );
167}
168
169
170/*
171 * This trampoline is called from the assembly clone() function
172 */
173void __thread_entry(int (*func)(void*), void *arg, void **tls)
174{
175 int retValue;
176 pthread_internal_t * thrInfo;
177
178 // Wait for our creating thread to release us. This lets it have time to
179 // notify gdb about this thread before it starts doing anything.
180 pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
181 pthread_mutex_lock(start_mutex);
182 pthread_mutex_destroy(start_mutex);
183
184 thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
185
186 __init_tls( tls, thrInfo );
187
188 pthread_exit( (void*)func(arg) );
189}
190
191void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
192{
193 if (attr == NULL) {
194 thread->attr = gDefaultPthreadAttr;
195 } else {
196 thread->attr = *attr;
197 }
198 thread->attr.stack_base = stack_base;
199 thread->kernel_id = kernel_id;
200
201 // set the scheduling policy/priority of the thread
202 if (thread->attr.sched_policy != SCHED_NORMAL) {
203 struct sched_param param;
204 param.sched_priority = thread->attr.sched_priority;
205 sched_setscheduler(kernel_id, thread->attr.sched_policy, &param);
206 }
207
208 pthread_cond_init(&thread->join_cond, NULL);
209 thread->join_count = 0;
210
211 thread->cleanup_stack = NULL;
212
213 _pthread_internal_add(thread);
214}
215
216
217/* XXX stacks not reclaimed if thread spawn fails */
218/* XXX stacks address spaces should be reused if available again */
219
220static void *mkstack(size_t size, size_t guard_size)
221{
222 void * stack;
223
224 pthread_mutex_lock(&mmap_lock);
225
226 stack = mmap((void *)gStackBase, size,
227 PROT_READ | PROT_WRITE,
228 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
229 -1, 0);
230
231 if(stack == MAP_FAILED) {
232 stack = NULL;
233 goto done;
234 }
235
236 if(mprotect(stack, guard_size, PROT_NONE)){
237 munmap(stack, size);
238 stack = NULL;
239 goto done;
240 }
241
242done:
243 pthread_mutex_unlock(&mmap_lock);
244 return stack;
245}
246
247/*
248 * Create a new thread. The thread's stack is layed out like so:
249 *
250 * +---------------------------+
251 * | pthread_internal_t |
252 * +---------------------------+
253 * | |
254 * | TLS area |
255 * | |
256 * +---------------------------+
257 * | |
258 * . .
259 * . stack area .
260 * . .
261 * | |
262 * +---------------------------+
263 * | guard page |
264 * +---------------------------+
265 *
266 * note that TLS[0] must be a pointer to itself, this is required
267 * by the thread-local storage implementation of the x86 Linux
268 * kernel, where the TLS pointer is read by reading fs:[0]
269 */
270int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
271 void *(*start_routine)(void *), void * arg)
272{
273 char* stack;
274 void** tls;
275 int tid;
276 pthread_mutex_t * start_mutex;
277 pthread_internal_t * thread;
278 int madestack = 0;
279 int old_errno = errno;
280
281 /* this will inform the rest of the C library that at least one thread
282 * was created. this will enforce certain functions to acquire/release
283 * locks (e.g. atexit()) to protect shared global structures.
284 *
285 * this works because pthread_create() is not called by the C library
286 * initialization routine that sets up the main thread's data structures.
287 */
288 __isthreaded = 1;
289
290 thread = _pthread_internal_alloc();
291 if (thread == NULL)
292 return ENOMEM;
293
294 if (attr == NULL) {
295 attr = &gDefaultPthreadAttr;
296 }
297
298 // make sure the stack is PAGE_SIZE aligned
299 size_t stackSize = (attr->stack_size +
300 (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
301
302 if (!attr->stack_base) {
303 stack = mkstack(stackSize, attr->guard_size);
304 if(stack == NULL) {
305 _pthread_internal_free(thread);
306 return ENOMEM;
307 }
308 madestack = 1;
309 } else {
310 stack = attr->stack_base;
311 }
312
313 // Make room for TLS
314 tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
315
316 // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
317 // it from doing anything until after we notify the debugger about it
318 start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
319 pthread_mutex_init(start_mutex, NULL);
320 pthread_mutex_lock(start_mutex);
321
322 tls[TLS_SLOT_THREAD_ID] = thread;
323
324 tid = __pthread_clone((int(*)(void*))start_routine, tls,
325 CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
326 | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
327 arg);
328
329 if(tid < 0) {
330 int result;
331 if (madestack)
332 munmap(stack, stackSize);
333 _pthread_internal_free(thread);
334 result = errno;
335 errno = old_errno;
336 return result;
337 }
338
339 _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
340
341 if (!madestack)
342 thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
343
344 // Notify any debuggers about the new thread
345 pthread_mutex_lock(&gDebuggerNotificationLock);
346 _thread_created_hook(tid);
347 pthread_mutex_unlock(&gDebuggerNotificationLock);
348
349 // Let the thread do it's thing
350 pthread_mutex_unlock(start_mutex);
351
352 *thread_out = (pthread_t)thread;
353 return 0;
354}
355
356
357int pthread_attr_init(pthread_attr_t * attr)
358{
359 *attr = gDefaultPthreadAttr;
360 return 0;
361}
362
363int pthread_attr_destroy(pthread_attr_t * attr)
364{
365 memset(attr, 0x42, sizeof(pthread_attr_t));
366 return 0;
367}
368
369int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
370{
371 if (state == PTHREAD_CREATE_DETACHED) {
372 attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
373 } else if (state == PTHREAD_CREATE_JOINABLE) {
374 attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
375 } else {
376 return EINVAL;
377 }
378 return 0;
379}
380
381int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
382{
383 *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
384 ? PTHREAD_CREATE_DETACHED
385 : PTHREAD_CREATE_JOINABLE;
386 return 0;
387}
388
389int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
390{
391 attr->sched_policy = policy;
392 return 0;
393}
394
395int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
396{
397 *policy = attr->sched_policy;
398 return 0;
399}
400
401int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
402{
403 attr->sched_priority = param->sched_priority;
404 return 0;
405}
406
407int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
408{
409 param->sched_priority = attr->sched_priority;
410 return 0;
411}
412
413int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
414{
415 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
416 return EINVAL;
417 }
418 attr->stack_size = stack_size;
419 return 0;
420}
421
422int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
423{
424 *stack_size = attr->stack_size;
425 return 0;
426}
427
428int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
429{
430#if 1
431 // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
432 return ENOSYS;
433#else
434 if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
435 return EINVAL;
436 }
437 attr->stack_base = stack_addr;
438 return 0;
439#endif
440}
441
442int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
443{
444 *stack_addr = attr->stack_base + attr->stack_size;
445 return 0;
446}
447
448int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
449{
450 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
451 return EINVAL;
452 }
453 if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
454 return EINVAL;
455 }
456 attr->stack_base = stack_base;
457 attr->stack_size = stack_size;
458 return 0;
459}
460
461int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
462{
463 *stack_base = attr->stack_base;
464 *stack_size = attr->stack_size;
465 return 0;
466}
467
468int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
469{
470 if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
471 return EINVAL;
472 }
473
474 attr->guard_size = guard_size;
475 return 0;
476}
477
478int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
479{
480 *guard_size = attr->guard_size;
481 return 0;
482}
483
484int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
485{
486 pthread_internal_t * thread = (pthread_internal_t *)thid;
487 *attr = thread->attr;
488 return 0;
489}
490
491int pthread_attr_setscope(pthread_attr_t *attr, int scope)
492{
493 if (scope == PTHREAD_SCOPE_SYSTEM)
494 return 0;
495 if (scope == PTHREAD_SCOPE_PROCESS)
496 return ENOTSUP;
497
498 return EINVAL;
499}
500
501int pthread_attr_getscope(pthread_attr_t const *attr)
502{
503 return PTHREAD_SCOPE_SYSTEM;
504}
505
506
507/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
508 * and thread cancelation
509 */
510
511void __pthread_cleanup_push( __pthread_cleanup_t* c,
512 __pthread_cleanup_func_t routine,
513 void* arg )
514{
515 pthread_internal_t* thread = __get_thread();
516
517 c->__cleanup_routine = routine;
518 c->__cleanup_arg = arg;
519 c->__cleanup_prev = thread->cleanup_stack;
520 thread->cleanup_stack = c;
521}
522
523void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute )
524{
525 pthread_internal_t* thread = __get_thread();
526
527 thread->cleanup_stack = c->__cleanup_prev;
528 if (execute)
529 c->__cleanup_routine(c->__cleanup_arg);
530}
531
532/* used by pthread_exit() to clean all TLS keys of the current thread */
533static void pthread_key_clean_all(void);
534
535void pthread_exit(void * retval)
536{
537 pthread_internal_t* thread = __get_thread();
538 void* stack_base = thread->attr.stack_base;
539 int stack_size = thread->attr.stack_size;
540 int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
541
542 // call the cleanup handlers first
543 while (thread->cleanup_stack) {
544 __pthread_cleanup_t* c = thread->cleanup_stack;
545 thread->cleanup_stack = c->__cleanup_prev;
546 c->__cleanup_routine(c->__cleanup_arg);
547 }
548
549 // call the TLS destructors, it is important to do that before removing this
550 // thread from the global list. this will ensure that if someone else deletes
551 // a TLS key, the corresponding value will be set to NULL in this thread's TLS
552 // space (see pthread_key_delete)
553 pthread_key_clean_all();
554
555 // if the thread is detached, destroy the pthread_internal_t
556 // otherwise, keep it in memory and signal any joiners
557 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
558 _pthread_internal_remove(thread);
559 _pthread_internal_free(thread);
560 } else {
561 /* the join_count field is used to store the number of threads waiting for
562 * the termination of this thread with pthread_join(),
563 *
564 * if it is positive we need to signal the waiters, and we do not touch
565 * the count (it will be decremented by the waiters, the last one will
566 * also remove/free the thread structure
567 *
568 * if it is zero, we set the count value to -1 to indicate that the
569 * thread is in 'zombie' state: it has stopped executing, and its stack
570 * is gone (as well as its TLS area). when another thread calls pthread_join()
571 * on it, it will immediately free the thread and return.
572 */
573 pthread_mutex_lock(&gThreadListLock);
574 thread->return_value = retval;
575 if (thread->join_count > 0) {
576 pthread_cond_broadcast(&thread->join_cond);
577 } else {
578 thread->join_count = -1; /* zombie thread */
579 }
580 pthread_mutex_unlock(&gThreadListLock);
581 }
582
583 // destroy the thread stack
584 if (user_stack)
585 _exit_thread((int)retval);
586 else
587 _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
588}
589
590int pthread_join(pthread_t thid, void ** ret_val)
591{
592 pthread_internal_t* thread = (pthread_internal_t*)thid;
593 int count;
594
595 // check that the thread still exists and is not detached
596 pthread_mutex_lock(&gThreadListLock);
597
598 for (thread = gThreadList; thread != NULL; thread = thread->next)
599 if (thread == (pthread_internal_t*)thid)
600 break;
601
602 if (!thread) {
603 pthread_mutex_unlock(&gThreadListLock);
604 return ESRCH;
605 }
606
607 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
608 pthread_mutex_unlock(&gThreadListLock);
609 return EINVAL;
610 }
611
612 /* wait for thread death when needed
613 *
614 * if the 'join_count' is negative, this is a 'zombie' thread that
615 * is already dead and without stack/TLS
616 *
617 * otherwise, we need to increment 'join-count' and wait to be signaled
618 */
619 count = thread->join_count;
620 if (count >= 0) {
621 thread->join_count += 1;
622 pthread_cond_wait( &thread->join_cond, &gThreadListLock );
623 count = --thread->join_count;
624 }
625 if (ret_val)
626 *ret_val = thread->return_value;
627
628 /* remove thread descriptor when we're the last joiner or when the
629 * thread was already a zombie.
630 */
631 if (count <= 0) {
632 _pthread_internal_remove_locked(thread);
633 _pthread_internal_free(thread);
634 }
635 pthread_mutex_unlock(&gThreadListLock);
636 return 0;
637}
638
639int pthread_detach( pthread_t thid )
640{
641 pthread_internal_t* thread;
642 int result = 0;
643 int flags;
644
645 pthread_mutex_lock(&gThreadListLock);
646 for (thread = gThreadList; thread != NULL; thread = thread->next)
647 if (thread == (pthread_internal_t*)thid)
648 goto FoundIt;
649
650 result = ESRCH;
651 goto Exit;
652
653FoundIt:
654 do {
655 flags = thread->attr.flags;
656
657 if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
658 /* thread is not joinable ! */
659 result = EINVAL;
660 goto Exit;
661 }
662 }
663 while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
664 (volatile int*)&thread->attr.flags ) != 0 );
665Exit:
666 pthread_mutex_unlock(&gThreadListLock);
667 return result;
668}
669
670pthread_t pthread_self(void)
671{
672 return (pthread_t)__get_thread();
673}
674
675int pthread_equal(pthread_t one, pthread_t two)
676{
677 return (one == two ? 1 : 0);
678}
679
680int pthread_getschedparam(pthread_t thid, int * policy,
681 struct sched_param * param)
682{
683 int old_errno = errno;
684
685 pthread_internal_t * thread = (pthread_internal_t *)thid;
686 int err = sched_getparam(thread->kernel_id, param);
687 if (!err) {
688 *policy = sched_getscheduler(thread->kernel_id);
689 } else {
690 err = errno;
691 errno = old_errno;
692 }
693 return err;
694}
695
696int pthread_setschedparam(pthread_t thid, int policy,
697 struct sched_param const * param)
698{
699 pthread_internal_t * thread = (pthread_internal_t *)thid;
700 int old_errno = errno;
701 int ret;
702
703 ret = sched_setscheduler(thread->kernel_id, policy, param);
704 if (ret < 0) {
705 ret = errno;
706 errno = old_errno;
707 }
708 return ret;
709}
710
711
712int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout);
713int __futex_wake(volatile void *ftx, int count);
714
715// mutex lock states
716//
717// 0: unlocked
718// 1: locked, no waiters
719// 2: locked, maybe waiters
720
721/* a mutex is implemented as a 32-bit integer holding the following fields
722 *
723 * bits: name description
724 * 31-16 tid owner thread's kernel id (recursive and errorcheck only)
725 * 15-14 type mutex type
726 * 13-2 counter counter of recursive mutexes
727 * 1-0 state lock state (0, 1 or 2)
728 */
729
730
731#define MUTEX_OWNER(m) (((m)->value >> 16) & 0xffff)
732#define MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)
733
734#define MUTEX_TYPE_MASK 0xc000
735#define MUTEX_TYPE_NORMAL 0x0000
736#define MUTEX_TYPE_RECURSIVE 0x4000
737#define MUTEX_TYPE_ERRORCHECK 0x8000
738
739#define MUTEX_COUNTER_SHIFT 2
740#define MUTEX_COUNTER_MASK 0x3ffc
741
742
743
744
745int pthread_mutexattr_init(pthread_mutexattr_t *attr)
746{
747 if (attr) {
748 *attr = PTHREAD_MUTEX_DEFAULT;
749 return 0;
750 } else {
751 return EINVAL;
752 }
753}
754
755int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
756{
757 if (attr) {
758 *attr = -1;
759 return 0;
760 } else {
761 return EINVAL;
762 }
763}
764
765int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
766{
767 if (attr && *attr >= PTHREAD_MUTEX_NORMAL &&
768 *attr <= PTHREAD_MUTEX_ERRORCHECK ) {
769 *type = *attr;
770 return 0;
771 }
772 return EINVAL;
773}
774
775int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
776{
777 if (attr && type >= PTHREAD_MUTEX_NORMAL &&
778 type <= PTHREAD_MUTEX_ERRORCHECK ) {
779 *attr = type;
780 return 0;
781 }
782 return EINVAL;
783}
784
785/* process-shared mutexes are not supported at the moment */
786
787int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
788{
789 if (!attr)
790 return EINVAL;
791
Mathias Agopianb7681162009-07-13 22:00:33 -0700792 switch (pshared) {
793 case PTHREAD_PROCESS_PRIVATE:
794 case PTHREAD_PROCESS_SHARED:
795 /* our current implementation of pthread actually supports shared
796 * mutexes but won't cleanup if a process dies with the mutex held.
797 * Nevertheless, it's better than nothing. Shared mutexes are used
798 * by surfaceflinger and audioflinger.
799 */
800 return 0;
801 }
802
803 return ENOTSUP;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800804}
805
806int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
807{
808 if (!attr)
809 return EINVAL;
810
811 *pshared = PTHREAD_PROCESS_PRIVATE;
812 return 0;
813}
814
815int pthread_mutex_init(pthread_mutex_t *mutex,
816 const pthread_mutexattr_t *attr)
817{
818 if ( mutex ) {
819 if (attr == NULL) {
820 mutex->value = MUTEX_TYPE_NORMAL;
821 return 0;
822 }
823 switch ( *attr ) {
824 case PTHREAD_MUTEX_NORMAL:
825 mutex->value = MUTEX_TYPE_NORMAL;
826 return 0;
827
828 case PTHREAD_MUTEX_RECURSIVE:
829 mutex->value = MUTEX_TYPE_RECURSIVE;
830 return 0;
831
832 case PTHREAD_MUTEX_ERRORCHECK:
833 mutex->value = MUTEX_TYPE_ERRORCHECK;
834 return 0;
835 }
836 }
837 return EINVAL;
838}
839
840int pthread_mutex_destroy(pthread_mutex_t *mutex)
841{
842 mutex->value = 0xdead10cc;
843 return 0;
844}
845
846
847/*
848 * Lock a non-recursive mutex.
849 *
850 * As noted above, there are three states:
851 * 0 (unlocked, no contention)
852 * 1 (locked, no contention)
853 * 2 (locked, contention)
854 *
855 * Non-recursive mutexes don't use the thread-id or counter fields, and the
856 * "type" value is zero, so the only bits that will be set are the ones in
857 * the lock state field.
858 */
859static __inline__ void
860_normal_lock(pthread_mutex_t* mutex)
861{
862 /*
863 * The common case is an unlocked mutex, so we begin by trying to
864 * change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0
865 * if it made the swap successfully. If the result is nonzero, this
866 * lock is already held by another thread.
867 */
868 if (__atomic_cmpxchg(0, 1, &mutex->value ) != 0) {
869 /*
870 * We want to go to sleep until the mutex is available, which
871 * requires promoting it to state 2. We need to swap in the new
872 * state value and then wait until somebody wakes us up.
873 *
874 * __atomic_swap() returns the previous value. We swap 2 in and
875 * see if we got zero back; if so, we have acquired the lock. If
876 * not, another thread still holds the lock and we wait again.
877 *
878 * The second argument to the __futex_wait() call is compared
879 * against the current value. If it doesn't match, __futex_wait()
880 * returns immediately (otherwise, it sleeps for a time specified
881 * by the third argument; 0 means sleep forever). This ensures
882 * that the mutex is in state 2 when we go to sleep on it, which
883 * guarantees a wake-up call.
884 */
885 while (__atomic_swap(2, &mutex->value ) != 0)
886 __futex_wait(&mutex->value, 2, 0);
887 }
888}
889
890/*
891 * Release a non-recursive mutex. The caller is responsible for determining
892 * that we are in fact the owner of this lock.
893 */
894static __inline__ void
895_normal_unlock(pthread_mutex_t* mutex)
896{
897 /*
898 * The mutex value will be 1 or (rarely) 2. We use an atomic decrement
899 * to release the lock. __atomic_dec() returns the previous value;
900 * if it wasn't 1 we have to do some additional work.
901 */
902 if (__atomic_dec(&mutex->value) != 1) {
903 /*
904 * Start by releasing the lock. The decrement changed it from
905 * "contended lock" to "uncontended lock", which means we still
906 * hold it, and anybody who tries to sneak in will push it back
907 * to state 2.
908 *
909 * Once we set it to zero the lock is up for grabs. We follow
910 * this with a __futex_wake() to ensure that one of the waiting
911 * threads has a chance to grab it.
912 *
913 * This doesn't cause a race with the swap/wait pair in
914 * _normal_lock(), because the __futex_wait() call there will
915 * return immediately if the mutex value isn't 2.
916 */
917 mutex->value = 0;
918
919 /*
920 * Wake up one waiting thread. We don't know which thread will be
921 * woken or when it'll start executing -- futexes make no guarantees
922 * here. There may not even be a thread waiting.
923 *
924 * The newly-woken thread will replace the 0 we just set above
925 * with 2, which means that when it eventually releases the mutex
926 * it will also call FUTEX_WAKE. This results in one extra wake
927 * call whenever a lock is contended, but lets us avoid forgetting
928 * anyone without requiring us to track the number of sleepers.
929 *
930 * It's possible for another thread to sneak in and grab the lock
931 * between the zero assignment above and the wake call below. If
932 * the new thread is "slow" and holds the lock for a while, we'll
933 * wake up a sleeper, which will swap in a 2 and then go back to
934 * sleep since the lock is still held. If the new thread is "fast",
935 * running to completion before we call wake, the thread we
936 * eventually wake will find an unlocked mutex and will execute.
937 * Either way we have correct behavior and nobody is orphaned on
938 * the wait queue.
939 */
940 __futex_wake(&mutex->value, 1);
941 }
942}
943
944static pthread_mutex_t __recursive_lock = PTHREAD_MUTEX_INITIALIZER;
945
946static void
947_recursive_lock(void)
948{
949 _normal_lock( &__recursive_lock);
950}
951
952static void
953_recursive_unlock(void)
954{
955 _normal_unlock( &__recursive_lock );
956}
957
958#define __likely(cond) __builtin_expect(!!(cond), 1)
959#define __unlikely(cond) __builtin_expect(!!(cond), 0)
960
961int pthread_mutex_lock(pthread_mutex_t *mutex)
962{
963 if (__likely(mutex != NULL))
964 {
965 int mtype = (mutex->value & MUTEX_TYPE_MASK);
966
967 if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
968 _normal_lock(mutex);
969 }
970 else
971 {
972 int tid = __get_thread()->kernel_id;
973
974 if ( tid == MUTEX_OWNER(mutex) )
975 {
976 int oldv, counter;
977
978 if (mtype == MUTEX_TYPE_ERRORCHECK) {
979 /* trying to re-lock a mutex we already acquired */
980 return EDEADLK;
981 }
982 /*
983 * We own the mutex, but other threads are able to change
984 * the contents (e.g. promoting it to "contended"), so we
985 * need to hold the global lock.
986 */
987 _recursive_lock();
988 oldv = mutex->value;
989 counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
990 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
991 _recursive_unlock();
992 }
993 else
994 {
995 /*
996 * If the new lock is available immediately, we grab it in
997 * the "uncontended" state.
998 */
999 int new_lock_type = 1;
1000
1001 for (;;) {
1002 int oldv;
1003
1004 _recursive_lock();
1005 oldv = mutex->value;
1006 if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
1007 mutex->value = ((tid << 16) | mtype | new_lock_type);
1008 } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
1009 oldv ^= 3;
1010 mutex->value = oldv;
1011 }
1012 _recursive_unlock();
1013
1014 if (oldv == mtype)
1015 break;
1016
1017 /*
1018 * The lock was held, possibly contended by others. From
1019 * now on, if we manage to acquire the lock, we have to
1020 * assume that others are still contending for it so that
1021 * we'll wake them when we unlock it.
1022 */
1023 new_lock_type = 2;
1024
1025 __futex_wait( &mutex->value, oldv, 0 );
1026 }
1027 }
1028 }
1029 return 0;
1030 }
1031 return EINVAL;
1032}
1033
1034
1035int pthread_mutex_unlock(pthread_mutex_t *mutex)
1036{
1037 if (__likely(mutex != NULL))
1038 {
1039 int mtype = (mutex->value & MUTEX_TYPE_MASK);
1040
1041 if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
1042 _normal_unlock(mutex);
1043 }
1044 else
1045 {
1046 int tid = __get_thread()->kernel_id;
1047
1048 if ( tid == MUTEX_OWNER(mutex) )
1049 {
1050 int oldv;
1051
1052 _recursive_lock();
1053 oldv = mutex->value;
1054 if (oldv & MUTEX_COUNTER_MASK) {
1055 mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
1056 oldv = 0;
1057 } else {
1058 mutex->value = mtype;
1059 }
1060 _recursive_unlock();
1061
1062 if ((oldv & 3) == 2)
1063 __futex_wake( &mutex->value, 1 );
1064 }
1065 else {
1066 /* trying to unlock a lock we do not own */
1067 return EPERM;
1068 }
1069 }
1070 return 0;
1071 }
1072 return EINVAL;
1073}
1074
1075
1076int pthread_mutex_trylock(pthread_mutex_t *mutex)
1077{
1078 if (__likely(mutex != NULL))
1079 {
1080 int mtype = (mutex->value & MUTEX_TYPE_MASK);
1081
1082 if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1083 {
1084 if (__atomic_cmpxchg(0, 1, &mutex->value) == 0)
1085 return 0;
1086
1087 return EBUSY;
1088 }
1089 else
1090 {
1091 int tid = __get_thread()->kernel_id;
1092 int oldv;
1093
1094 if ( tid == MUTEX_OWNER(mutex) )
1095 {
1096 int oldv, counter;
1097
1098 if (mtype == MUTEX_TYPE_ERRORCHECK) {
1099 /* already locked by ourselves */
1100 return EDEADLK;
1101 }
1102
1103 _recursive_lock();
1104 oldv = mutex->value;
1105 counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1106 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1107 _recursive_unlock();
1108 return 0;
1109 }
1110
1111 /* try to lock it */
1112 _recursive_lock();
1113 oldv = mutex->value;
1114 if (oldv == mtype) /* uncontended released lock => state 1 */
1115 mutex->value = ((tid << 16) | mtype | 1);
1116 _recursive_unlock();
1117
1118 if (oldv != mtype)
1119 return EBUSY;
1120
1121 return 0;
1122 }
1123 }
1124 return EINVAL;
1125}
1126
1127
1128/* XXX *technically* there is a race condition that could allow
1129 * XXX a signal to be missed. If thread A is preempted in _wait()
1130 * XXX after unlocking the mutex and before waiting, and if other
1131 * XXX threads call signal or broadcast UINT_MAX times (exactly),
1132 * XXX before thread A is scheduled again and calls futex_wait(),
1133 * XXX then the signal will be lost.
1134 */
1135
1136int pthread_cond_init(pthread_cond_t *cond,
1137 const pthread_condattr_t *attr)
1138{
1139 cond->value = 0;
1140 return 0;
1141}
1142
1143int pthread_cond_destroy(pthread_cond_t *cond)
1144{
1145 cond->value = 0xdeadc04d;
1146 return 0;
1147}
1148
1149int pthread_cond_broadcast(pthread_cond_t *cond)
1150{
1151 __atomic_dec(&cond->value);
1152 __futex_wake(&cond->value, INT_MAX);
1153 return 0;
1154}
1155
1156int pthread_cond_signal(pthread_cond_t *cond)
1157{
1158 __atomic_dec(&cond->value);
1159 __futex_wake(&cond->value, 1);
1160 return 0;
1161}
1162
1163int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1164{
1165 return pthread_cond_timedwait(cond, mutex, NULL);
1166}
1167
1168int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1169 pthread_mutex_t * mutex,
1170 const struct timespec *reltime)
1171{
1172 int status;
1173 int oldvalue = cond->value;
1174
1175 pthread_mutex_unlock(mutex);
1176 status = __futex_wait(&cond->value, oldvalue, reltime);
1177 pthread_mutex_lock(mutex);
1178
1179 if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1180 return 0;
1181}
1182
1183int __pthread_cond_timedwait(pthread_cond_t *cond,
1184 pthread_mutex_t * mutex,
1185 const struct timespec *abstime,
1186 clockid_t clock)
1187{
1188 struct timespec ts;
1189 struct timespec * tsp;
1190
1191 if (abstime != NULL) {
1192 clock_gettime(clock, &ts);
1193 ts.tv_sec = abstime->tv_sec - ts.tv_sec;
1194 ts.tv_nsec = abstime->tv_nsec - ts.tv_nsec;
1195 if (ts.tv_nsec < 0) {
1196 ts.tv_sec--;
1197 ts.tv_nsec += 1000000000;
1198 }
1199 if((ts.tv_nsec < 0) || (ts.tv_sec < 0)) {
1200 return ETIMEDOUT;
1201 }
1202 tsp = &ts;
1203 } else {
1204 tsp = NULL;
1205 }
1206
1207 return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1208}
1209
1210int pthread_cond_timedwait(pthread_cond_t *cond,
1211 pthread_mutex_t * mutex,
1212 const struct timespec *abstime)
1213{
1214 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1215}
1216
1217
Mathias Agopiana2f5e212009-07-13 15:00:46 -07001218/* this one exists only for backward binary compatibility */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -08001219int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1220 pthread_mutex_t * mutex,
1221 const struct timespec *abstime)
1222{
1223 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1224}
1225
Mathias Agopiana2f5e212009-07-13 15:00:46 -07001226int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1227 pthread_mutex_t * mutex,
1228 const struct timespec *abstime)
1229{
1230 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1231}
1232
1233int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1234 pthread_mutex_t * mutex,
1235 const struct timespec *reltime)
1236{
1237 return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1238}
1239
The Android Open Source Project1dc9e472009-03-03 19:28:35 -08001240int pthread_cond_timeout_np(pthread_cond_t *cond,
1241 pthread_mutex_t * mutex,
1242 unsigned msecs)
1243{
1244 int oldvalue;
1245 struct timespec ts;
1246 int status;
1247
1248 ts.tv_sec = msecs / 1000;
1249 ts.tv_nsec = (msecs % 1000) * 1000000;
1250
1251 oldvalue = cond->value;
1252
1253 pthread_mutex_unlock(mutex);
1254 status = __futex_wait(&cond->value, oldvalue, &ts);
1255 pthread_mutex_lock(mutex);
1256
1257 if(status == (-ETIMEDOUT)) return ETIMEDOUT;
1258
1259 return 0;
1260}
1261
1262
1263
1264/* A technical note regarding our thread-local-storage (TLS) implementation:
1265 *
1266 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1267 * though the first TLSMAP_START keys are reserved for Bionic to hold
1268 * special thread-specific variables like errno or a pointer to
1269 * the current thread's descriptor.
1270 *
1271 * while stored in the TLS area, these entries cannot be accessed through
1272 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1273 *
1274 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1275 * to greatly simplify and speedup some OpenGL-related operations. though the
1276 * initialy value will be NULL on all threads.
1277 *
1278 * you can use pthread_getspecific()/setspecific() on these, and in theory
1279 * you could also call pthread_key_delete() as well, though this would
1280 * probably break some apps.
1281 *
1282 * The 'tlsmap_t' type defined below implements a shared global map of
1283 * currently created/allocated TLS keys and the destructors associated
1284 * with them. You should use tlsmap_lock/unlock to access it to avoid
1285 * any race condition.
1286 *
1287 * the global TLS map simply contains a bitmap of allocated keys, and
1288 * an array of destructors.
1289 *
1290 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1291 * pointers. the TLS area of the main thread is stack-allocated in
1292 * __libc_init_common, while the TLS area of other threads is placed at
1293 * the top of their stack in pthread_create.
1294 *
1295 * when pthread_key_create() is called, it finds the first free key in the
1296 * bitmap, then set it to 1, saving the destructor altogether
1297 *
1298 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1299 * and its destructor, and will also clear the key data in the TLS area of
1300 * all created threads. As mandated by Posix, it is the responsability of
1301 * the caller of pthread_key_delete() to properly reclaim the objects that
1302 * were pointed to by these data fields (either before or after the call).
1303 *
1304 */
1305
1306/* TLS Map implementation
1307 */
1308
1309#define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1)
1310#define TLSMAP_SIZE BIONIC_TLS_SLOTS
1311#define TLSMAP_BITS 32
1312#define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1313#define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS]
1314#define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1)))
1315
1316/* this macro is used to quickly check that a key belongs to a reasonable range */
1317#define TLSMAP_VALIDATE_KEY(key) \
1318 ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1319
1320/* the type of tls key destructor functions */
1321typedef void (*tls_dtor_t)(void*);
1322
1323typedef struct {
1324 int init; /* see comment in tlsmap_lock() */
1325 uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */
1326 tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */
1327} tlsmap_t;
1328
1329static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1330static tlsmap_t _tlsmap;
1331
1332/* lock the global TLS map lock and return a handle to it */
1333static __inline__ tlsmap_t* tlsmap_lock(void)
1334{
1335 tlsmap_t* m = &_tlsmap;
1336
1337 pthread_mutex_lock(&_tlsmap_lock);
1338 /* we need to initialize the first entry of the 'map' array
1339 * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1340 * when declaring _tlsmap is a bit awkward and is going to
1341 * produce warnings, so do it the first time we use the map
1342 * instead
1343 */
1344 if (__unlikely(!m->init)) {
1345 TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1346 m->init = 1;
1347 }
1348 return m;
1349}
1350
1351/* unlock the global TLS map */
1352static __inline__ void tlsmap_unlock(tlsmap_t* m)
1353{
1354 pthread_mutex_unlock(&_tlsmap_lock);
1355 (void)m; /* a good compiler is a happy compiler */
1356}
1357
1358/* test to see wether a key is allocated */
1359static __inline__ int tlsmap_test(tlsmap_t* m, int key)
1360{
1361 return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1362}
1363
1364/* set the destructor and bit flag on a newly allocated key */
1365static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor)
1366{
1367 TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1368 m->dtors[key] = dtor;
1369}
1370
1371/* clear the destructor and bit flag on an existing key */
1372static __inline__ void tlsmap_clear(tlsmap_t* m, int key)
1373{
1374 TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1375 m->dtors[key] = NULL;
1376}
1377
1378/* allocate a new TLS key, return -1 if no room left */
1379static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor)
1380{
1381 int key;
1382
1383 for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1384 if ( !tlsmap_test(m, key) ) {
1385 tlsmap_set(m, key, dtor);
1386 return key;
1387 }
1388 }
1389 return -1;
1390}
1391
1392
1393int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1394{
1395 uint32_t err = ENOMEM;
1396 tlsmap_t* map = tlsmap_lock();
1397 int k = tlsmap_alloc(map, destructor_function);
1398
1399 if (k >= 0) {
1400 *key = k;
1401 err = 0;
1402 }
1403 tlsmap_unlock(map);
1404 return err;
1405}
1406
1407
1408/* This deletes a pthread_key_t. note that the standard mandates that this does
1409 * not call the destructor of non-NULL key values. Instead, it is the
1410 * responsability of the caller to properly dispose of the corresponding data
1411 * and resources, using any mean it finds suitable.
1412 *
1413 * On the other hand, this function will clear the corresponding key data
1414 * values in all known threads. this prevents later (invalid) calls to
1415 * pthread_getspecific() to receive invalid/stale values.
1416 */
1417int pthread_key_delete(pthread_key_t key)
1418{
1419 uint32_t err;
1420 pthread_internal_t* thr;
1421 tlsmap_t* map;
1422
1423 if (!TLSMAP_VALIDATE_KEY(key)) {
1424 return EINVAL;
1425 }
1426
1427 map = tlsmap_lock();
1428
1429 if (!tlsmap_test(map, key)) {
1430 err = EINVAL;
1431 goto err1;
1432 }
1433
1434 /* clear value in all threads */
1435 pthread_mutex_lock(&gThreadListLock);
1436 for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1437 /* avoid zombie threads with a negative 'join_count'. these are really
1438 * already dead and don't have a TLS area anymore.
1439 *
1440 * similarly, it is possible to have thr->tls == NULL for threads that
1441 * were just recently created through pthread_create() but whose
1442 * startup trampoline (__thread_entry) hasn't been run yet by the
1443 * scheduler. so check for this too.
1444 */
1445 if (thr->join_count < 0 || !thr->tls)
1446 continue;
1447
1448 thr->tls[key] = NULL;
1449 }
1450 tlsmap_clear(map, key);
1451
1452 pthread_mutex_unlock(&gThreadListLock);
1453 err = 0;
1454
1455err1:
1456 tlsmap_unlock(map);
1457 return err;
1458}
1459
1460
1461int pthread_setspecific(pthread_key_t key, const void *ptr)
1462{
1463 int err = EINVAL;
1464 tlsmap_t* map;
1465
1466 if (TLSMAP_VALIDATE_KEY(key)) {
1467 /* check that we're trying to set data for an allocated key */
1468 map = tlsmap_lock();
1469 if (tlsmap_test(map, key)) {
1470 ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1471 err = 0;
1472 }
1473 tlsmap_unlock(map);
1474 }
1475 return err;
1476}
1477
1478void * pthread_getspecific(pthread_key_t key)
1479{
1480 if (!TLSMAP_VALIDATE_KEY(key)) {
1481 return NULL;
1482 }
1483
1484 /* for performance reason, we do not lock/unlock the global TLS map
1485 * to check that the key is properly allocated. if the key was not
1486 * allocated, the value read from the TLS should always be NULL
1487 * due to pthread_key_delete() clearing the values for all threads.
1488 */
1489 return (void *)(((unsigned *)__get_tls())[key]);
1490}
1491
1492/* Posix mandates that this be defined in <limits.h> but we don't have
1493 * it just yet.
1494 */
1495#ifndef PTHREAD_DESTRUCTOR_ITERATIONS
1496# define PTHREAD_DESTRUCTOR_ITERATIONS 4
1497#endif
1498
1499/* this function is called from pthread_exit() to remove all TLS key data
1500 * from this thread's TLS area. this must call the destructor of all keys
1501 * that have a non-NULL data value (and a non-NULL destructor).
1502 *
1503 * because destructors can do funky things like deleting/creating other
1504 * keys, we need to implement this in a loop
1505 */
1506static void pthread_key_clean_all(void)
1507{
1508 tlsmap_t* map;
1509 void** tls = (void**)__get_tls();
1510 int rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
1511
1512 map = tlsmap_lock();
1513
1514 for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
1515 {
1516 int kk, count = 0;
1517
1518 for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
1519 if ( tlsmap_test(map, kk) )
1520 {
1521 void* data = tls[kk];
1522 tls_dtor_t dtor = map->dtors[kk];
1523
1524 if (data != NULL && dtor != NULL)
1525 {
1526 /* we need to clear the key data now, this will prevent the
1527 * destructor (or a later one) from seeing the old value if
1528 * it calls pthread_getspecific() for some odd reason
1529 *
1530 * we do not do this if 'dtor == NULL' just in case another
1531 * destructor function might be responsible for manually
1532 * releasing the corresponding data.
1533 */
1534 tls[kk] = NULL;
1535
1536 /* because the destructor is free to call pthread_key_create
1537 * and/or pthread_key_delete, we need to temporarily unlock
1538 * the TLS map
1539 */
1540 tlsmap_unlock(map);
1541 (*dtor)(data);
1542 map = tlsmap_lock();
1543
1544 count += 1;
1545 }
1546 }
1547 }
1548
1549 /* if we didn't call any destructor, there is no need to check the
1550 * TLS data again
1551 */
1552 if (count == 0)
1553 break;
1554 }
1555 tlsmap_unlock(map);
1556}
1557
1558// man says this should be in <linux/unistd.h>, but it isn't
1559extern int tkill(int tid, int sig);
1560
1561int pthread_kill(pthread_t tid, int sig)
1562{
1563 int ret;
1564 int old_errno = errno;
1565 pthread_internal_t * thread = (pthread_internal_t *)tid;
1566
1567 ret = tkill(thread->kernel_id, sig);
1568 if (ret < 0) {
1569 ret = errno;
1570 errno = old_errno;
1571 }
1572
1573 return ret;
1574}
1575
1576extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t);
1577
1578int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
1579{
1580 return __rt_sigprocmask(how, set, oset, _NSIG / 8);
1581}
1582
1583
1584int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid)
1585{
1586 const int CLOCK_IDTYPE_BITS = 3;
1587 pthread_internal_t* thread = (pthread_internal_t*)tid;
1588
1589 if (!thread)
1590 return ESRCH;
1591
1592 *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
1593 return 0;
1594}
1595
1596
1597/* NOTE: this implementation doesn't support a init function that throws a C++ exception
1598 * or calls fork()
1599 */
1600int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) )
1601{
1602 static pthread_mutex_t once_lock = PTHREAD_MUTEX_INITIALIZER;
1603
1604 if (*once_control == PTHREAD_ONCE_INIT) {
1605 _normal_lock( &once_lock );
1606 if (*once_control == PTHREAD_ONCE_INIT) {
1607 (*init_routine)();
1608 *once_control = ~PTHREAD_ONCE_INIT;
1609 }
1610 _normal_unlock( &once_lock );
1611 }
1612 return 0;
1613}