blob: 496cd1c8d058a2f97b13ef023fda8f126c5f7253 [file] [log] [blame]
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07001/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28/*
29 This is a version (aka dlmalloc) of malloc/free/realloc written by
30 Doug Lea and released to the public domain, as explained at
31 http://creativecommons.org/licenses/publicdomain. Send questions,
32 comments, complaints, performance data, etc to dl@cs.oswego.edu
33
34* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
35
36 Note: There may be an updated version of this malloc obtainable at
37 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
38 Check before installing!
39
40* Quickstart
41
42 This library is all in one file to simplify the most common usage:
43 ftp it, compile it (-O3), and link it into another program. All of
44 the compile-time options default to reasonable values for use on
45 most platforms. You might later want to step through various
46 compile-time and dynamic tuning options.
47
48 For convenience, an include file for code using this malloc is at:
49 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
50 You don't really need this .h file unless you call functions not
51 defined in your system include files. The .h file contains only the
52 excerpts from this file needed for using this malloc on ANSI C/C++
53 systems, so long as you haven't changed compile-time options about
54 naming and tuning parameters. If you do, then you can create your
55 own malloc.h that does include all settings by cutting at the point
56 indicated below. Note that you may already by default be using a C
57 library containing a malloc that is based on some version of this
58 malloc (for example in linux). You might still want to use the one
59 in this file to customize settings or to avoid overheads associated
60 with library versions.
61
62* Vital statistics:
63
64 Supported pointer/size_t representation: 4 or 8 bytes
65 size_t MUST be an unsigned type of the same width as
66 pointers. (If you are using an ancient system that declares
67 size_t as a signed type, or need it to be a different width
68 than pointers, you can use a previous release of this malloc
69 (e.g. 2.7.2) supporting these.)
70
71 Alignment: 8 bytes (default)
72 This suffices for nearly all current machines and C compilers.
73 However, you can define MALLOC_ALIGNMENT to be wider than this
74 if necessary (up to 128bytes), at the expense of using more space.
75
76 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
77 8 or 16 bytes (if 8byte sizes)
78 Each malloced chunk has a hidden word of overhead holding size
79 and status information, and additional cross-check word
80 if FOOTERS is defined.
81
82 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
83 8-byte ptrs: 32 bytes (including overhead)
84
85 Even a request for zero bytes (i.e., malloc(0)) returns a
86 pointer to something of the minimum allocatable size.
87 The maximum overhead wastage (i.e., number of extra bytes
88 allocated than were requested in malloc) is less than or equal
89 to the minimum size, except for requests >= mmap_threshold that
90 are serviced via mmap(), where the worst case wastage is about
91 32 bytes plus the remainder from a system page (the minimal
92 mmap unit); typically 4096 or 8192 bytes.
93
94 Security: static-safe; optionally more or less
95 The "security" of malloc refers to the ability of malicious
96 code to accentuate the effects of errors (for example, freeing
97 space that is not currently malloc'ed or overwriting past the
98 ends of chunks) in code that calls malloc. This malloc
99 guarantees not to modify any memory locations below the base of
100 heap, i.e., static variables, even in the presence of usage
101 errors. The routines additionally detect most improper frees
102 and reallocs. All this holds as long as the static bookkeeping
103 for malloc itself is not corrupted by some other means. This
104 is only one aspect of security -- these checks do not, and
105 cannot, detect all possible programming errors.
106
107 If FOOTERS is defined nonzero, then each allocated chunk
108 carries an additional check word to verify that it was malloced
109 from its space. These check words are the same within each
110 execution of a program using malloc, but differ across
111 executions, so externally crafted fake chunks cannot be
112 freed. This improves security by rejecting frees/reallocs that
113 could corrupt heap memory, in addition to the checks preventing
114 writes to statics that are always on. This may further improve
115 security at the expense of time and space overhead. (Note that
116 FOOTERS may also be worth using with MSPACES.)
117
118 By default detected errors cause the program to abort (calling
119 "abort()"). You can override this to instead proceed past
120 errors by defining PROCEED_ON_ERROR. In this case, a bad free
121 has no effect, and a malloc that encounters a bad address
122 caused by user overwrites will ignore the bad address by
123 dropping pointers and indices to all known memory. This may
124 be appropriate for programs that should continue if at all
125 possible in the face of programming errors, although they may
126 run out of memory because dropped memory is never reclaimed.
127
128 If you don't like either of these options, you can define
129 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
130 else. And if if you are sure that your program using malloc has
131 no errors or vulnerabilities, you can define INSECURE to 1,
132 which might (or might not) provide a small performance improvement.
133
134 Thread-safety: NOT thread-safe unless USE_LOCKS defined
135 When USE_LOCKS is defined, each public call to malloc, free,
136 etc is surrounded with either a pthread mutex or a win32
137 spinlock (depending on WIN32). This is not especially fast, and
138 can be a major bottleneck. It is designed only to provide
139 minimal protection in concurrent environments, and to provide a
140 basis for extensions. If you are using malloc in a concurrent
141 program, consider instead using ptmalloc, which is derived from
142 a version of this malloc. (See http://www.malloc.de).
143
144 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
145 This malloc can use unix sbrk or any emulation (invoked using
146 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
147 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
148 memory. On most unix systems, it tends to work best if both
149 MORECORE and MMAP are enabled. On Win32, it uses emulations
150 based on VirtualAlloc. It also uses common C library functions
151 like memset.
152
153 Compliance: I believe it is compliant with the Single Unix Specification
154 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
155 others as well.
156
157* Overview of algorithms
158
159 This is not the fastest, most space-conserving, most portable, or
160 most tunable malloc ever written. However it is among the fastest
161 while also being among the most space-conserving, portable and
162 tunable. Consistent balance across these factors results in a good
163 general-purpose allocator for malloc-intensive programs.
164
165 In most ways, this malloc is a best-fit allocator. Generally, it
166 chooses the best-fitting existing chunk for a request, with ties
167 broken in approximately least-recently-used order. (This strategy
168 normally maintains low fragmentation.) However, for requests less
169 than 256bytes, it deviates from best-fit when there is not an
170 exactly fitting available chunk by preferring to use space adjacent
171 to that used for the previous small request, as well as by breaking
172 ties in approximately most-recently-used order. (These enhance
173 locality of series of small allocations.) And for very large requests
174 (>= 256Kb by default), it relies on system memory mapping
175 facilities, if supported. (This helps avoid carrying around and
176 possibly fragmenting memory used only for large chunks.)
177
178 All operations (except malloc_stats and mallinfo) have execution
179 times that are bounded by a constant factor of the number of bits in
180 a size_t, not counting any clearing in calloc or copying in realloc,
181 or actions surrounding MORECORE and MMAP that have times
182 proportional to the number of non-contiguous regions returned by
183 system allocation routines, which is often just 1.
184
185 The implementation is not very modular and seriously overuses
186 macros. Perhaps someday all C compilers will do as good a job
187 inlining modular code as can now be done by brute-force expansion,
188 but now, enough of them seem not to.
189
190 Some compilers issue a lot of warnings about code that is
191 dead/unreachable only on some platforms, and also about intentional
192 uses of negation on unsigned types. All known cases of each can be
193 ignored.
194
195 For a longer but out of date high-level description, see
196 http://gee.cs.oswego.edu/dl/html/malloc.html
197
198* MSPACES
199 If MSPACES is defined, then in addition to malloc, free, etc.,
200 this file also defines mspace_malloc, mspace_free, etc. These
201 are versions of malloc routines that take an "mspace" argument
202 obtained using create_mspace, to control all internal bookkeeping.
203 If ONLY_MSPACES is defined, only these versions are compiled.
204 So if you would like to use this allocator for only some allocations,
205 and your system malloc for others, you can compile with
206 ONLY_MSPACES and then do something like...
207 static mspace mymspace = create_mspace(0,0); // for example
208 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
209
210 (Note: If you only need one instance of an mspace, you can instead
211 use "USE_DL_PREFIX" to relabel the global malloc.)
212
213 You can similarly create thread-local allocators by storing
214 mspaces as thread-locals. For example:
215 static __thread mspace tlms = 0;
216 void* tlmalloc(size_t bytes) {
217 if (tlms == 0) tlms = create_mspace(0, 0);
218 return mspace_malloc(tlms, bytes);
219 }
220 void tlfree(void* mem) { mspace_free(tlms, mem); }
221
222 Unless FOOTERS is defined, each mspace is completely independent.
223 You cannot allocate from one and free to another (although
224 conformance is only weakly checked, so usage errors are not always
225 caught). If FOOTERS is defined, then each chunk carries around a tag
226 indicating its originating mspace, and frees are directed to their
227 originating spaces.
228
229 ------------------------- Compile-time options ---------------------------
230
231Be careful in setting #define values for numerical constants of type
232size_t. On some systems, literal values are not automatically extended
233to size_t precision unless they are explicitly casted.
234
235WIN32 default: defined if _WIN32 defined
236 Defining WIN32 sets up defaults for MS environment and compilers.
237 Otherwise defaults are for unix.
238
239MALLOC_ALIGNMENT default: (size_t)8
240 Controls the minimum alignment for malloc'ed chunks. It must be a
241 power of two and at least 8, even on machines for which smaller
242 alignments would suffice. It may be defined as larger than this
243 though. Note however that code and data structures are optimized for
244 the case of 8-byte alignment.
245
246MSPACES default: 0 (false)
247 If true, compile in support for independent allocation spaces.
248 This is only supported if HAVE_MMAP is true.
249
250ONLY_MSPACES default: 0 (false)
251 If true, only compile in mspace versions, not regular versions.
252
253USE_LOCKS default: 0 (false)
254 Causes each call to each public routine to be surrounded with
255 pthread or WIN32 mutex lock/unlock. (If set true, this can be
256 overridden on a per-mspace basis for mspace versions.)
257
258FOOTERS default: 0
259 If true, provide extra checking and dispatching by placing
260 information in the footers of allocated chunks. This adds
261 space and time overhead.
262
263INSECURE default: 0
264 If true, omit checks for usage errors and heap space overwrites.
265
266USE_DL_PREFIX default: NOT defined
267 Causes compiler to prefix all public routines with the string 'dl'.
268 This can be useful when you only want to use this malloc in one part
269 of a program, using your regular system malloc elsewhere.
270
271ABORT default: defined as abort()
272 Defines how to abort on failed checks. On most systems, a failed
273 check cannot die with an "assert" or even print an informative
274 message, because the underlying print routines in turn call malloc,
275 which will fail again. Generally, the best policy is to simply call
276 abort(). It's not very useful to do more than this because many
277 errors due to overwriting will show up as address faults (null, odd
278 addresses etc) rather than malloc-triggered checks, so will also
279 abort. Also, most compilers know that abort() does not return, so
280 can better optimize code conditionally calling it.
281
282PROCEED_ON_ERROR default: defined as 0 (false)
283 Controls whether detected bad addresses cause them to bypassed
284 rather than aborting. If set, detected bad arguments to free and
285 realloc are ignored. And all bookkeeping information is zeroed out
286 upon a detected overwrite of freed heap space, thus losing the
287 ability to ever return it from malloc again, but enabling the
288 application to proceed. If PROCEED_ON_ERROR is defined, the
289 static variable malloc_corruption_error_count is compiled in
290 and can be examined to see if errors have occurred. This option
291 generates slower code than the default abort policy.
292
293DEBUG default: NOT defined
294 The DEBUG setting is mainly intended for people trying to modify
295 this code or diagnose problems when porting to new platforms.
296 However, it may also be able to better isolate user errors than just
297 using runtime checks. The assertions in the check routines spell
298 out in more detail the assumptions and invariants underlying the
299 algorithms. The checking is fairly extensive, and will slow down
300 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
301 set will attempt to check every non-mmapped allocated and free chunk
302 in the course of computing the summaries.
303
304ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
305 Debugging assertion failures can be nearly impossible if your
306 version of the assert macro causes malloc to be called, which will
307 lead to a cascade of further failures, blowing the runtime stack.
308 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
309 which will usually make debugging easier.
310
311MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
312 The action to take before "return 0" when malloc fails to be able to
313 return memory because there is none available.
314
315HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
316 True if this system supports sbrk or an emulation of it.
317
318MORECORE default: sbrk
319 The name of the sbrk-style system routine to call to obtain more
320 memory. See below for guidance on writing custom MORECORE
321 functions. The type of the argument to sbrk/MORECORE varies across
322 systems. It cannot be size_t, because it supports negative
323 arguments, so it is normally the signed type of the same width as
324 size_t (sometimes declared as "intptr_t"). It doesn't much matter
325 though. Internally, we only call it with arguments less than half
326 the max value of a size_t, which should work across all reasonable
327 possibilities, although sometimes generating compiler warnings. See
328 near the end of this file for guidelines for creating a custom
329 version of MORECORE.
330
331MORECORE_CONTIGUOUS default: 1 (true)
332 If true, take advantage of fact that consecutive calls to MORECORE
333 with positive arguments always return contiguous increasing
334 addresses. This is true of unix sbrk. It does not hurt too much to
335 set it true anyway, since malloc copes with non-contiguities.
336 Setting it false when definitely non-contiguous saves time
337 and possibly wasted space it would take to discover this though.
338
339MORECORE_CANNOT_TRIM default: NOT defined
340 True if MORECORE cannot release space back to the system when given
341 negative arguments. This is generally necessary only if you are
342 using a hand-crafted MORECORE function that cannot handle negative
343 arguments.
344
345HAVE_MMAP default: 1 (true)
346 True if this system supports mmap or an emulation of it. If so, and
347 HAVE_MORECORE is not true, MMAP is used for all system
348 allocation. If set and HAVE_MORECORE is true as well, MMAP is
349 primarily used to directly allocate very large blocks. It is also
350 used as a backup strategy in cases where MORECORE fails to provide
351 space from system. Note: A single call to MUNMAP is assumed to be
352 able to unmap memory that may have be allocated using multiple calls
353 to MMAP, so long as they are adjacent.
354
355HAVE_MREMAP default: 1 on linux, else 0
356 If true realloc() uses mremap() to re-allocate large blocks and
357 extend or shrink allocation spaces.
358
359MMAP_CLEARS default: 1 on unix
360 True if mmap clears memory so calloc doesn't need to. This is true
361 for standard unix mmap using /dev/zero.
362
363USE_BUILTIN_FFS default: 0 (i.e., not used)
364 Causes malloc to use the builtin ffs() function to compute indices.
365 Some compilers may recognize and intrinsify ffs to be faster than the
366 supplied C version. Also, the case of x86 using gcc is special-cased
367 to an asm instruction, so is already as fast as it can be, and so
368 this setting has no effect. (On most x86s, the asm version is only
369 slightly faster than the C version.)
370
371malloc_getpagesize default: derive from system includes, or 4096.
372 The system page size. To the extent possible, this malloc manages
373 memory from the system in page-size units. This may be (and
374 usually is) a function rather than a constant. This is ignored
375 if WIN32, where page size is determined using getSystemInfo during
376 initialization.
377
378USE_DEV_RANDOM default: 0 (i.e., not used)
379 Causes malloc to use /dev/random to initialize secure magic seed for
380 stamping footers. Otherwise, the current time is used.
381
382NO_MALLINFO default: 0
383 If defined, don't compile "mallinfo". This can be a simple way
384 of dealing with mismatches between system declarations and
385 those in this file.
386
387MALLINFO_FIELD_TYPE default: size_t
388 The type of the fields in the mallinfo struct. This was originally
389 defined as "int" in SVID etc, but is more usefully defined as
390 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
391
392REALLOC_ZERO_BYTES_FREES default: not defined
Vladimir Chtchetkineb74ceb22009-11-17 14:13:38 -0800393 This should be set if a call to realloc with zero bytes should
394 be the same as a call to free. Some people think it should. Otherwise,
395 since this malloc returns a unique pointer for malloc(0), so does
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -0700396 realloc(p, 0).
397
398LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
399LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
400LACKS_STDLIB_H default: NOT defined unless on WIN32
401 Define these if your system does not have these header files.
402 You might need to manually insert some of the declarations they provide.
403
404DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
405 system_info.dwAllocationGranularity in WIN32,
406 otherwise 64K.
407 Also settable using mallopt(M_GRANULARITY, x)
408 The unit for allocating and deallocating memory from the system. On
409 most systems with contiguous MORECORE, there is no reason to
410 make this more than a page. However, systems with MMAP tend to
411 either require or encourage larger granularities. You can increase
412 this value to prevent system allocation functions to be called so
413 often, especially if they are slow. The value must be at least one
414 page and must be a power of two. Setting to 0 causes initialization
415 to either page size or win32 region size. (Note: In previous
416 versions of malloc, the equivalent of this option was called
417 "TOP_PAD")
418
419DEFAULT_TRIM_THRESHOLD default: 2MB
420 Also settable using mallopt(M_TRIM_THRESHOLD, x)
421 The maximum amount of unused top-most memory to keep before
422 releasing via malloc_trim in free(). Automatic trimming is mainly
423 useful in long-lived programs using contiguous MORECORE. Because
424 trimming via sbrk can be slow on some systems, and can sometimes be
425 wasteful (in cases where programs immediately afterward allocate
426 more large chunks) the value should be high enough so that your
427 overall system performance would improve by releasing this much
428 memory. As a rough guide, you might set to a value close to the
429 average size of a process (program) running on your system.
430 Releasing this much memory would allow such a process to run in
431 memory. Generally, it is worth tuning trim thresholds when a
432 program undergoes phases where several large chunks are allocated
433 and released in ways that can reuse each other's storage, perhaps
434 mixed with phases where there are no such chunks at all. The trim
435 value must be greater than page size to have any useful effect. To
436 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
437 some people use of mallocing a huge space and then freeing it at
438 program startup, in an attempt to reserve system memory, doesn't
439 have the intended effect under automatic trimming, since that memory
440 will immediately be returned to the system.
441
442DEFAULT_MMAP_THRESHOLD default: 256K
443 Also settable using mallopt(M_MMAP_THRESHOLD, x)
444 The request size threshold for using MMAP to directly service a
445 request. Requests of at least this size that cannot be allocated
446 using already-existing space will be serviced via mmap. (If enough
447 normal freed space already exists it is used instead.) Using mmap
448 segregates relatively large chunks of memory so that they can be
449 individually obtained and released from the host system. A request
450 serviced through mmap is never reused by any other request (at least
451 not directly; the system may just so happen to remap successive
452 requests to the same locations). Segregating space in this way has
453 the benefits that: Mmapped space can always be individually released
454 back to the system, which helps keep the system level memory demands
455 of a long-lived program low. Also, mapped memory doesn't become
456 `locked' between other chunks, as can happen with normally allocated
457 chunks, which means that even trimming via malloc_trim would not
458 release them. However, it has the disadvantage that the space
459 cannot be reclaimed, consolidated, and then used to service later
460 requests, as happens with normal chunks. The advantages of mmap
461 nearly always outweigh disadvantages for "large" chunks, but the
462 value of "large" may vary across systems. The default is an
463 empirically derived value that works well in most systems. You can
464 disable mmap by setting to MAX_SIZE_T.
465
466*/
467
468#ifndef WIN32
469#ifdef _WIN32
470#define WIN32 1
471#endif /* _WIN32 */
472#endif /* WIN32 */
473#ifdef WIN32
474#define WIN32_LEAN_AND_MEAN
475#include <windows.h>
476#define HAVE_MMAP 1
477#define HAVE_MORECORE 0
478#define LACKS_UNISTD_H
479#define LACKS_SYS_PARAM_H
480#define LACKS_SYS_MMAN_H
481#define LACKS_STRING_H
482#define LACKS_STRINGS_H
483#define LACKS_SYS_TYPES_H
484#define LACKS_ERRNO_H
485#define MALLOC_FAILURE_ACTION
486#define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
487#endif /* WIN32 */
488
489#if defined(DARWIN) || defined(_DARWIN)
490/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
491#ifndef HAVE_MORECORE
492#define HAVE_MORECORE 0
493#define HAVE_MMAP 1
494#endif /* HAVE_MORECORE */
495#endif /* DARWIN */
496
497#ifndef LACKS_SYS_TYPES_H
498#include <sys/types.h> /* For size_t */
499#endif /* LACKS_SYS_TYPES_H */
500
501/* The maximum possible size_t value has all bits set */
502#define MAX_SIZE_T (~(size_t)0)
503
504#ifndef ONLY_MSPACES
505#define ONLY_MSPACES 0
506#endif /* ONLY_MSPACES */
507#ifndef MSPACES
508#if ONLY_MSPACES
509#define MSPACES 1
510#else /* ONLY_MSPACES */
511#define MSPACES 0
512#endif /* ONLY_MSPACES */
513#endif /* MSPACES */
514#ifndef MALLOC_ALIGNMENT
515#define MALLOC_ALIGNMENT ((size_t)8U)
516#endif /* MALLOC_ALIGNMENT */
517#ifndef FOOTERS
518#define FOOTERS 0
519#endif /* FOOTERS */
520#ifndef USE_MAX_ALLOWED_FOOTPRINT
521#define USE_MAX_ALLOWED_FOOTPRINT 0
522#endif
523#ifndef ABORT
524#define ABORT abort()
525#endif /* ABORT */
526#ifndef ABORT_ON_ASSERT_FAILURE
527#define ABORT_ON_ASSERT_FAILURE 1
528#endif /* ABORT_ON_ASSERT_FAILURE */
529#ifndef PROCEED_ON_ERROR
530#define PROCEED_ON_ERROR 0
531#endif /* PROCEED_ON_ERROR */
532#ifndef USE_LOCKS
533#define USE_LOCKS 0
534#endif /* USE_LOCKS */
535#ifndef INSECURE
536#define INSECURE 0
537#endif /* INSECURE */
538#ifndef HAVE_MMAP
539#define HAVE_MMAP 1
540#endif /* HAVE_MMAP */
541#ifndef MMAP_CLEARS
542#define MMAP_CLEARS 1
543#endif /* MMAP_CLEARS */
544#ifndef HAVE_MREMAP
545#ifdef linux
546#define HAVE_MREMAP 1
547#else /* linux */
548#define HAVE_MREMAP 0
549#endif /* linux */
550#endif /* HAVE_MREMAP */
551#ifndef MALLOC_FAILURE_ACTION
552#define MALLOC_FAILURE_ACTION errno = ENOMEM;
553#endif /* MALLOC_FAILURE_ACTION */
554#ifndef HAVE_MORECORE
555#if ONLY_MSPACES
556#define HAVE_MORECORE 0
557#else /* ONLY_MSPACES */
558#define HAVE_MORECORE 1
559#endif /* ONLY_MSPACES */
560#endif /* HAVE_MORECORE */
561#if !HAVE_MORECORE
562#define MORECORE_CONTIGUOUS 0
563#else /* !HAVE_MORECORE */
564#ifndef MORECORE
565#define MORECORE sbrk
566#endif /* MORECORE */
567#ifndef MORECORE_CONTIGUOUS
568#define MORECORE_CONTIGUOUS 1
569#endif /* MORECORE_CONTIGUOUS */
570#endif /* HAVE_MORECORE */
571#ifndef DEFAULT_GRANULARITY
572#if MORECORE_CONTIGUOUS
573#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
574#else /* MORECORE_CONTIGUOUS */
575#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
576#endif /* MORECORE_CONTIGUOUS */
577#endif /* DEFAULT_GRANULARITY */
578#ifndef DEFAULT_TRIM_THRESHOLD
579#ifndef MORECORE_CANNOT_TRIM
580#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
581#else /* MORECORE_CANNOT_TRIM */
582#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
583#endif /* MORECORE_CANNOT_TRIM */
584#endif /* DEFAULT_TRIM_THRESHOLD */
585#ifndef DEFAULT_MMAP_THRESHOLD
586#if HAVE_MMAP
587#define DEFAULT_MMAP_THRESHOLD ((size_t)64U * (size_t)1024U)
588#else /* HAVE_MMAP */
589#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
590#endif /* HAVE_MMAP */
591#endif /* DEFAULT_MMAP_THRESHOLD */
592#ifndef USE_BUILTIN_FFS
593#define USE_BUILTIN_FFS 0
594#endif /* USE_BUILTIN_FFS */
595#ifndef USE_DEV_RANDOM
596#define USE_DEV_RANDOM 0
597#endif /* USE_DEV_RANDOM */
598#ifndef NO_MALLINFO
599#define NO_MALLINFO 0
600#endif /* NO_MALLINFO */
601#ifndef MALLINFO_FIELD_TYPE
602#define MALLINFO_FIELD_TYPE size_t
603#endif /* MALLINFO_FIELD_TYPE */
604
605/*
606 mallopt tuning options. SVID/XPG defines four standard parameter
607 numbers for mallopt, normally defined in malloc.h. None of these
608 are used in this malloc, so setting them has no effect. But this
609 malloc does support the following options.
610*/
611
612#define M_TRIM_THRESHOLD (-1)
613#define M_GRANULARITY (-2)
614#define M_MMAP_THRESHOLD (-3)
615
616/* ------------------------ Mallinfo declarations ------------------------ */
617
618#if !NO_MALLINFO
619/*
620 This version of malloc supports the standard SVID/XPG mallinfo
621 routine that returns a struct containing usage properties and
622 statistics. It should work on any system that has a
623 /usr/include/malloc.h defining struct mallinfo. The main
624 declaration needed is the mallinfo struct that is returned (by-copy)
625 by mallinfo(). The malloinfo struct contains a bunch of fields that
626 are not even meaningful in this version of malloc. These fields are
627 are instead filled by mallinfo() with other numbers that might be of
628 interest.
629
630 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
631 /usr/include/malloc.h file that includes a declaration of struct
632 mallinfo. If so, it is included; else a compliant version is
633 declared below. These must be precisely the same for mallinfo() to
634 work. The original SVID version of this struct, defined on most
635 systems with mallinfo, declares all fields as ints. But some others
636 define as unsigned long. If your system defines the fields using a
637 type of different width than listed here, you MUST #include your
638 system version and #define HAVE_USR_INCLUDE_MALLOC_H.
639*/
640
641/* #define HAVE_USR_INCLUDE_MALLOC_H */
642
643#if !ANDROID
644#ifdef HAVE_USR_INCLUDE_MALLOC_H
645#include "/usr/include/malloc.h"
646#else /* HAVE_USR_INCLUDE_MALLOC_H */
647
648struct mallinfo {
649 MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
650 MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
651 MALLINFO_FIELD_TYPE smblks; /* always 0 */
652 MALLINFO_FIELD_TYPE hblks; /* always 0 */
653 MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
654 MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
655 MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
656 MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
657 MALLINFO_FIELD_TYPE fordblks; /* total free space */
658 MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
659};
660
661#endif /* HAVE_USR_INCLUDE_MALLOC_H */
662#endif /* NO_MALLINFO */
663#endif /* ANDROID */
664
665#ifdef __cplusplus
666extern "C" {
667#endif /* __cplusplus */
668
669#if !ONLY_MSPACES
670
671/* ------------------- Declarations of public routines ------------------- */
672
673/* Check an additional macro for the five primary functions */
Vladimir Chtchetkineb74ceb22009-11-17 14:13:38 -0800674#ifndef USE_DL_PREFIX
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -0700675#define dlcalloc calloc
676#define dlfree free
677#define dlmalloc malloc
678#define dlmemalign memalign
679#define dlrealloc realloc
680#endif
681
682#ifndef USE_DL_PREFIX
683#define dlvalloc valloc
684#define dlpvalloc pvalloc
685#define dlmallinfo mallinfo
686#define dlmallopt mallopt
687#define dlmalloc_trim malloc_trim
688#define dlmalloc_walk_free_pages \
689 malloc_walk_free_pages
690#define dlmalloc_walk_heap \
691 malloc_walk_heap
692#define dlmalloc_stats malloc_stats
693#define dlmalloc_usable_size malloc_usable_size
694#define dlmalloc_footprint malloc_footprint
695#define dlmalloc_max_allowed_footprint \
696 malloc_max_allowed_footprint
697#define dlmalloc_set_max_allowed_footprint \
698 malloc_set_max_allowed_footprint
699#define dlmalloc_max_footprint malloc_max_footprint
700#define dlindependent_calloc independent_calloc
701#define dlindependent_comalloc independent_comalloc
702#endif /* USE_DL_PREFIX */
703
704
705/*
706 malloc(size_t n)
707 Returns a pointer to a newly allocated chunk of at least n bytes, or
708 null if no space is available, in which case errno is set to ENOMEM
709 on ANSI C systems.
710
711 If n is zero, malloc returns a minimum-sized chunk. (The minimum
712 size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
713 systems.) Note that size_t is an unsigned type, so calls with
714 arguments that would be negative if signed are interpreted as
715 requests for huge amounts of space, which will often fail. The
716 maximum supported value of n differs across systems, but is in all
717 cases less than the maximum representable value of a size_t.
718*/
719void* dlmalloc(size_t);
720
721/*
722 free(void* p)
723 Releases the chunk of memory pointed to by p, that had been previously
724 allocated using malloc or a related routine such as realloc.
725 It has no effect if p is null. If p was not malloced or already
726 freed, free(p) will by default cause the current program to abort.
727*/
728void dlfree(void*);
729
730/*
731 calloc(size_t n_elements, size_t element_size);
732 Returns a pointer to n_elements * element_size bytes, with all locations
733 set to zero.
734*/
735void* dlcalloc(size_t, size_t);
736
737/*
738 realloc(void* p, size_t n)
739 Returns a pointer to a chunk of size n that contains the same data
740 as does chunk p up to the minimum of (n, p's size) bytes, or null
741 if no space is available.
742
743 The returned pointer may or may not be the same as p. The algorithm
744 prefers extending p in most cases when possible, otherwise it
745 employs the equivalent of a malloc-copy-free sequence.
746
747 If p is null, realloc is equivalent to malloc.
748
749 If space is not available, realloc returns null, errno is set (if on
750 ANSI) and p is NOT freed.
751
752 if n is for fewer bytes than already held by p, the newly unused
753 space is lopped off and freed if possible. realloc with a size
754 argument of zero (re)allocates a minimum-sized chunk.
755
756 The old unix realloc convention of allowing the last-free'd chunk
757 to be used as an argument to realloc is not supported.
758*/
759
760void* dlrealloc(void*, size_t);
761
762/*
763 memalign(size_t alignment, size_t n);
764 Returns a pointer to a newly allocated chunk of n bytes, aligned
765 in accord with the alignment argument.
766
767 The alignment argument should be a power of two. If the argument is
768 not a power of two, the nearest greater power is used.
769 8-byte alignment is guaranteed by normal malloc calls, so don't
770 bother calling memalign with an argument of 8 or less.
771
772 Overreliance on memalign is a sure way to fragment space.
773*/
774void* dlmemalign(size_t, size_t);
775
776/*
Ken Sumrall85aad902011-12-14 20:50:01 -0800777 int posix_memalign(void **memptr, size_t alignment, size_t size);
778 Places a pointer to a newly allocated chunk of size bytes, aligned
779 in accord with the alignment argument, in *memptr.
780
781 The return value is 0 on success, and ENOMEM on failure.
782
783 The alignment argument should be a power of two. If the argument is
784 not a power of two, the nearest greater power is used.
785 8-byte alignment is guaranteed by normal malloc calls, so don't
786 bother calling memalign with an argument of 8 or less.
787
788 Overreliance on posix_memalign is a sure way to fragment space.
789*/
790int posix_memalign(void **memptr, size_t alignment, size_t size);
791
792/*
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -0700793 valloc(size_t n);
794 Equivalent to memalign(pagesize, n), where pagesize is the page
795 size of the system. If the pagesize is unknown, 4096 is used.
796*/
797void* dlvalloc(size_t);
798
799/*
800 mallopt(int parameter_number, int parameter_value)
801 Sets tunable parameters The format is to provide a
802 (parameter-number, parameter-value) pair. mallopt then sets the
803 corresponding parameter to the argument value if it can (i.e., so
804 long as the value is meaningful), and returns 1 if successful else
805 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
806 normally defined in malloc.h. None of these are use in this malloc,
807 so setting them has no effect. But this malloc also supports other
808 options in mallopt. See below for details. Briefly, supported
809 parameters are as follows (listed defaults are for "typical"
810 configurations).
811
812 Symbol param # default allowed param values
813 M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables)
814 M_GRANULARITY -2 page size any power of 2 >= page size
815 M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
816*/
817int dlmallopt(int, int);
818
819/*
820 malloc_footprint();
821 Returns the number of bytes obtained from the system. The total
822 number of bytes allocated by malloc, realloc etc., is less than this
823 value. Unlike mallinfo, this function returns only a precomputed
824 result, so can be called frequently to monitor memory consumption.
825 Even if locks are otherwise defined, this function does not use them,
826 so results might not be up to date.
827*/
828size_t dlmalloc_footprint(void);
829
830#if USE_MAX_ALLOWED_FOOTPRINT
831/*
832 malloc_max_allowed_footprint();
833 Returns the number of bytes that the heap is allowed to obtain
834 from the system. malloc_footprint() should always return a
835 size less than or equal to max_allowed_footprint, unless the
836 max_allowed_footprint was set to a value smaller than the
837 footprint at the time.
838*/
839size_t dlmalloc_max_allowed_footprint();
840
841/*
842 malloc_set_max_allowed_footprint();
843 Set the maximum number of bytes that the heap is allowed to
844 obtain from the system. The size will be rounded up to a whole
845 page, and the rounded number will be returned from future calls
846 to malloc_max_allowed_footprint(). If the new max_allowed_footprint
847 is larger than the current footprint, the heap will never grow
848 larger than max_allowed_footprint. If the new max_allowed_footprint
849 is smaller than the current footprint, the heap will not grow
850 further.
851
852 TODO: try to force the heap to give up memory in the shrink case,
853 and update this comment once that happens.
854*/
855void dlmalloc_set_max_allowed_footprint(size_t bytes);
856#endif /* USE_MAX_ALLOWED_FOOTPRINT */
857
858/*
859 malloc_max_footprint();
860 Returns the maximum number of bytes obtained from the system. This
861 value will be greater than current footprint if deallocated space
862 has been reclaimed by the system. The peak number of bytes allocated
863 by malloc, realloc etc., is less than this value. Unlike mallinfo,
864 this function returns only a precomputed result, so can be called
865 frequently to monitor memory consumption. Even if locks are
866 otherwise defined, this function does not use them, so results might
867 not be up to date.
868*/
869size_t dlmalloc_max_footprint(void);
870
871#if !NO_MALLINFO
872/*
873 mallinfo()
874 Returns (by copy) a struct containing various summary statistics:
875
876 arena: current total non-mmapped bytes allocated from system
877 ordblks: the number of free chunks
878 smblks: always zero.
879 hblks: current number of mmapped regions
880 hblkhd: total bytes held in mmapped regions
881 usmblks: the maximum total allocated space. This will be greater
882 than current total if trimming has occurred.
883 fsmblks: always zero
884 uordblks: current total allocated space (normal or mmapped)
885 fordblks: total free space
886 keepcost: the maximum number of bytes that could ideally be released
887 back to system via malloc_trim. ("ideally" means that
888 it ignores page restrictions etc.)
889
890 Because these fields are ints, but internal bookkeeping may
891 be kept as longs, the reported values may wrap around zero and
892 thus be inaccurate.
893*/
894struct mallinfo dlmallinfo(void);
895#endif /* NO_MALLINFO */
896
897/*
898 independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
899
900 independent_calloc is similar to calloc, but instead of returning a
901 single cleared space, it returns an array of pointers to n_elements
902 independent elements that can hold contents of size elem_size, each
903 of which starts out cleared, and can be independently freed,
904 realloc'ed etc. The elements are guaranteed to be adjacently
905 allocated (this is not guaranteed to occur with multiple callocs or
906 mallocs), which may also improve cache locality in some
907 applications.
908
909 The "chunks" argument is optional (i.e., may be null, which is
910 probably the most typical usage). If it is null, the returned array
911 is itself dynamically allocated and should also be freed when it is
912 no longer needed. Otherwise, the chunks array must be of at least
913 n_elements in length. It is filled in with the pointers to the
914 chunks.
915
916 In either case, independent_calloc returns this pointer array, or
917 null if the allocation failed. If n_elements is zero and "chunks"
918 is null, it returns a chunk representing an array with zero elements
919 (which should be freed if not wanted).
920
921 Each element must be individually freed when it is no longer
922 needed. If you'd like to instead be able to free all at once, you
923 should instead use regular calloc and assign pointers into this
924 space to represent elements. (In this case though, you cannot
925 independently free elements.)
926
927 independent_calloc simplifies and speeds up implementations of many
928 kinds of pools. It may also be useful when constructing large data
929 structures that initially have a fixed number of fixed-sized nodes,
930 but the number is not known at compile time, and some of the nodes
931 may later need to be freed. For example:
932
933 struct Node { int item; struct Node* next; };
934
935 struct Node* build_list() {
936 struct Node** pool;
937 int n = read_number_of_nodes_needed();
938 if (n <= 0) return 0;
939 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
940 if (pool == 0) die();
941 // organize into a linked list...
942 struct Node* first = pool[0];
943 for (i = 0; i < n-1; ++i)
944 pool[i]->next = pool[i+1];
945 free(pool); // Can now free the array (or not, if it is needed later)
946 return first;
947 }
948*/
949void** dlindependent_calloc(size_t, size_t, void**);
950
951/*
952 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
953
954 independent_comalloc allocates, all at once, a set of n_elements
955 chunks with sizes indicated in the "sizes" array. It returns
956 an array of pointers to these elements, each of which can be
957 independently freed, realloc'ed etc. The elements are guaranteed to
958 be adjacently allocated (this is not guaranteed to occur with
959 multiple callocs or mallocs), which may also improve cache locality
960 in some applications.
961
962 The "chunks" argument is optional (i.e., may be null). If it is null
963 the returned array is itself dynamically allocated and should also
964 be freed when it is no longer needed. Otherwise, the chunks array
965 must be of at least n_elements in length. It is filled in with the
966 pointers to the chunks.
967
968 In either case, independent_comalloc returns this pointer array, or
969 null if the allocation failed. If n_elements is zero and chunks is
970 null, it returns a chunk representing an array with zero elements
971 (which should be freed if not wanted).
972
973 Each element must be individually freed when it is no longer
974 needed. If you'd like to instead be able to free all at once, you
975 should instead use a single regular malloc, and assign pointers at
976 particular offsets in the aggregate space. (In this case though, you
977 cannot independently free elements.)
978
979 independent_comallac differs from independent_calloc in that each
980 element may have a different size, and also that it does not
981 automatically clear elements.
982
983 independent_comalloc can be used to speed up allocation in cases
984 where several structs or objects must always be allocated at the
985 same time. For example:
986
987 struct Head { ... }
988 struct Foot { ... }
989
990 void send_message(char* msg) {
991 int msglen = strlen(msg);
992 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
993 void* chunks[3];
994 if (independent_comalloc(3, sizes, chunks) == 0)
995 die();
996 struct Head* head = (struct Head*)(chunks[0]);
997 char* body = (char*)(chunks[1]);
998 struct Foot* foot = (struct Foot*)(chunks[2]);
999 // ...
1000 }
1001
1002 In general though, independent_comalloc is worth using only for
1003 larger values of n_elements. For small values, you probably won't
1004 detect enough difference from series of malloc calls to bother.
1005
1006 Overuse of independent_comalloc can increase overall memory usage,
1007 since it cannot reuse existing noncontiguous small chunks that
1008 might be available for some of the elements.
1009*/
1010void** dlindependent_comalloc(size_t, size_t*, void**);
1011
1012
1013/*
1014 pvalloc(size_t n);
1015 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1016 round up n to nearest pagesize.
1017 */
1018void* dlpvalloc(size_t);
1019
1020/*
1021 malloc_trim(size_t pad);
1022
1023 If possible, gives memory back to the system (via negative arguments
1024 to sbrk) if there is unused memory at the `high' end of the malloc
1025 pool or in unused MMAP segments. You can call this after freeing
1026 large blocks of memory to potentially reduce the system-level memory
1027 requirements of a program. However, it cannot guarantee to reduce
1028 memory. Under some allocation patterns, some large free blocks of
1029 memory will be locked between two used chunks, so they cannot be
1030 given back to the system.
1031
1032 The `pad' argument to malloc_trim represents the amount of free
1033 trailing space to leave untrimmed. If this argument is zero, only
1034 the minimum amount of memory to maintain internal data structures
1035 will be left. Non-zero arguments can be supplied to maintain enough
1036 trailing space to service future expected allocations without having
1037 to re-obtain memory from the system.
1038
1039 Malloc_trim returns 1 if it actually released any memory, else 0.
1040*/
1041int dlmalloc_trim(size_t);
1042
1043/*
1044 malloc_walk_free_pages(handler, harg)
1045
1046 Calls the provided handler on each free region in the heap. The
1047 memory between start and end are guaranteed not to contain any
1048 important data, so the handler is free to alter the contents
1049 in any way. This can be used to advise the OS that large free
1050 regions may be swapped out.
1051
1052 The value in harg will be passed to each call of the handler.
1053 */
1054void dlmalloc_walk_free_pages(void(*)(void*, void*, void*), void*);
1055
1056/*
1057 malloc_walk_heap(handler, harg)
1058
1059 Calls the provided handler on each object or free region in the
1060 heap. The handler will receive the chunk pointer and length, the
1061 object pointer and length, and the value in harg on each call.
1062 */
1063void dlmalloc_walk_heap(void(*)(const void*, size_t,
1064 const void*, size_t, void*),
1065 void*);
1066
1067/*
1068 malloc_usable_size(void* p);
1069
1070 Returns the number of bytes you can actually use in
1071 an allocated chunk, which may be more than you requested (although
1072 often not) due to alignment and minimum size constraints.
1073 You can use this many bytes without worrying about
1074 overwriting other allocated objects. This is not a particularly great
1075 programming practice. malloc_usable_size can be more useful in
1076 debugging and assertions, for example:
1077
1078 p = malloc(n);
1079 assert(malloc_usable_size(p) >= 256);
1080*/
1081size_t dlmalloc_usable_size(void*);
1082
1083/*
1084 malloc_stats();
1085 Prints on stderr the amount of space obtained from the system (both
1086 via sbrk and mmap), the maximum amount (which may be more than
1087 current if malloc_trim and/or munmap got called), and the current
1088 number of bytes allocated via malloc (or realloc, etc) but not yet
1089 freed. Note that this is the number of bytes allocated, not the
1090 number requested. It will be larger than the number requested
1091 because of alignment and bookkeeping overhead. Because it includes
1092 alignment wastage as being in use, this figure may be greater than
1093 zero even when no user-level chunks are allocated.
1094
1095 The reported current and maximum system memory can be inaccurate if
1096 a program makes other calls to system memory allocation functions
1097 (normally sbrk) outside of malloc.
1098
1099 malloc_stats prints only the most commonly interesting statistics.
1100 More information can be obtained by calling mallinfo.
1101*/
1102void dlmalloc_stats(void);
1103
1104#endif /* ONLY_MSPACES */
1105
1106#if MSPACES
1107
1108/*
1109 mspace is an opaque type representing an independent
1110 region of space that supports mspace_malloc, etc.
1111*/
1112typedef void* mspace;
1113
1114/*
1115 create_mspace creates and returns a new independent space with the
1116 given initial capacity, or, if 0, the default granularity size. It
1117 returns null if there is no system memory available to create the
1118 space. If argument locked is non-zero, the space uses a separate
1119 lock to control access. The capacity of the space will grow
1120 dynamically as needed to service mspace_malloc requests. You can
1121 control the sizes of incremental increases of this space by
1122 compiling with a different DEFAULT_GRANULARITY or dynamically
1123 setting with mallopt(M_GRANULARITY, value).
1124*/
1125mspace create_mspace(size_t capacity, int locked);
1126
1127/*
1128 destroy_mspace destroys the given space, and attempts to return all
1129 of its memory back to the system, returning the total number of
1130 bytes freed. After destruction, the results of access to all memory
1131 used by the space become undefined.
1132*/
1133size_t destroy_mspace(mspace msp);
1134
1135/*
1136 create_mspace_with_base uses the memory supplied as the initial base
1137 of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1138 space is used for bookkeeping, so the capacity must be at least this
1139 large. (Otherwise 0 is returned.) When this initial space is
1140 exhausted, additional memory will be obtained from the system.
1141 Destroying this space will deallocate all additionally allocated
1142 space (if possible) but not the initial base.
1143*/
1144mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1145
1146/*
1147 mspace_malloc behaves as malloc, but operates within
1148 the given space.
1149*/
1150void* mspace_malloc(mspace msp, size_t bytes);
1151
1152/*
1153 mspace_free behaves as free, but operates within
1154 the given space.
1155
1156 If compiled with FOOTERS==1, mspace_free is not actually needed.
1157 free may be called instead of mspace_free because freed chunks from
1158 any space are handled by their originating spaces.
1159*/
1160void mspace_free(mspace msp, void* mem);
1161
1162/*
1163 mspace_realloc behaves as realloc, but operates within
1164 the given space.
1165
1166 If compiled with FOOTERS==1, mspace_realloc is not actually
1167 needed. realloc may be called instead of mspace_realloc because
1168 realloced chunks from any space are handled by their originating
1169 spaces.
1170*/
1171void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1172
Barry Hayesf30dae92009-05-26 10:33:04 -07001173#if ANDROID /* Added for Android, not part of dlmalloc as released */
1174/*
1175 mspace_merge_objects will merge allocated memory mema and memb
1176 together, provided memb immediately follows mema. It is roughly as
1177 if memb has been freed and mema has been realloced to a larger size.
1178 On successfully merging, mema will be returned. If either argument
1179 is null or memb does not immediately follow mema, null will be
1180 returned.
1181
1182 Both mema and memb should have been previously allocated using
1183 malloc or a related routine such as realloc. If either mema or memb
1184 was not malloced or was previously freed, the result is undefined,
1185 but like mspace_free, the default is to abort the program.
1186*/
1187void* mspace_merge_objects(mspace msp, void* mema, void* memb);
1188#endif
1189
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07001190/*
1191 mspace_calloc behaves as calloc, but operates within
1192 the given space.
1193*/
1194void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1195
1196/*
1197 mspace_memalign behaves as memalign, but operates within
1198 the given space.
1199*/
1200void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1201
1202/*
1203 mspace_independent_calloc behaves as independent_calloc, but
1204 operates within the given space.
1205*/
1206void** mspace_independent_calloc(mspace msp, size_t n_elements,
1207 size_t elem_size, void* chunks[]);
1208
1209/*
1210 mspace_independent_comalloc behaves as independent_comalloc, but
1211 operates within the given space.
1212*/
1213void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1214 size_t sizes[], void* chunks[]);
1215
1216/*
1217 mspace_footprint() returns the number of bytes obtained from the
1218 system for this space.
1219*/
1220size_t mspace_footprint(mspace msp);
1221
1222/*
1223 mspace_max_footprint() returns the peak number of bytes obtained from the
1224 system for this space.
1225*/
1226size_t mspace_max_footprint(mspace msp);
1227
1228
1229#if !NO_MALLINFO
1230/*
1231 mspace_mallinfo behaves as mallinfo, but reports properties of
1232 the given space.
1233*/
1234struct mallinfo mspace_mallinfo(mspace msp);
1235#endif /* NO_MALLINFO */
1236
1237/*
1238 mspace_malloc_stats behaves as malloc_stats, but reports
1239 properties of the given space.
1240*/
1241void mspace_malloc_stats(mspace msp);
1242
1243/*
1244 mspace_trim behaves as malloc_trim, but
1245 operates within the given space.
1246*/
1247int mspace_trim(mspace msp, size_t pad);
1248
1249/*
1250 An alias for mallopt.
1251*/
1252int mspace_mallopt(int, int);
1253
1254#endif /* MSPACES */
1255
1256#ifdef __cplusplus
1257}; /* end of extern "C" */
1258#endif /* __cplusplus */
1259
1260/*
1261 ========================================================================
1262 To make a fully customizable malloc.h header file, cut everything
1263 above this line, put into file malloc.h, edit to suit, and #include it
1264 on the next line, as well as in programs that use this malloc.
1265 ========================================================================
1266*/
1267
1268/* #include "malloc.h" */
1269
1270/*------------------------------ internal #includes ---------------------- */
1271
1272#ifdef WIN32
1273#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1274#endif /* WIN32 */
1275
1276#include <stdio.h> /* for printing in malloc_stats */
1277
1278#ifndef LACKS_ERRNO_H
1279#include <errno.h> /* for MALLOC_FAILURE_ACTION */
1280#endif /* LACKS_ERRNO_H */
1281#if FOOTERS
1282#include <time.h> /* for magic initialization */
1283#endif /* FOOTERS */
1284#ifndef LACKS_STDLIB_H
1285#include <stdlib.h> /* for abort() */
1286#endif /* LACKS_STDLIB_H */
1287#ifdef DEBUG
1288#if ABORT_ON_ASSERT_FAILURE
1289#define assert(x) if(!(x)) ABORT
1290#else /* ABORT_ON_ASSERT_FAILURE */
1291#include <assert.h>
1292#endif /* ABORT_ON_ASSERT_FAILURE */
1293#else /* DEBUG */
1294#define assert(x)
1295#endif /* DEBUG */
1296#ifndef LACKS_STRING_H
1297#include <string.h> /* for memset etc */
1298#endif /* LACKS_STRING_H */
1299#if USE_BUILTIN_FFS
1300#ifndef LACKS_STRINGS_H
1301#include <strings.h> /* for ffs */
1302#endif /* LACKS_STRINGS_H */
1303#endif /* USE_BUILTIN_FFS */
1304#if HAVE_MMAP
1305#ifndef LACKS_SYS_MMAN_H
1306#include <sys/mman.h> /* for mmap */
1307#endif /* LACKS_SYS_MMAN_H */
1308#ifndef LACKS_FCNTL_H
1309#include <fcntl.h>
1310#endif /* LACKS_FCNTL_H */
1311#endif /* HAVE_MMAP */
1312#if HAVE_MORECORE
1313#ifndef LACKS_UNISTD_H
1314#include <unistd.h> /* for sbrk */
1315#else /* LACKS_UNISTD_H */
1316#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1317extern void* sbrk(ptrdiff_t);
1318#endif /* FreeBSD etc */
1319#endif /* LACKS_UNISTD_H */
1320#endif /* HAVE_MMAP */
1321
1322#ifndef WIN32
1323#ifndef malloc_getpagesize
1324# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
1325# ifndef _SC_PAGE_SIZE
1326# define _SC_PAGE_SIZE _SC_PAGESIZE
1327# endif
1328# endif
1329# ifdef _SC_PAGE_SIZE
1330# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1331# else
1332# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1333 extern size_t getpagesize();
1334# define malloc_getpagesize getpagesize()
1335# else
1336# ifdef WIN32 /* use supplied emulation of getpagesize */
1337# define malloc_getpagesize getpagesize()
1338# else
1339# ifndef LACKS_SYS_PARAM_H
1340# include <sys/param.h>
1341# endif
1342# ifdef EXEC_PAGESIZE
1343# define malloc_getpagesize EXEC_PAGESIZE
1344# else
1345# ifdef NBPG
1346# ifndef CLSIZE
1347# define malloc_getpagesize NBPG
1348# else
1349# define malloc_getpagesize (NBPG * CLSIZE)
1350# endif
1351# else
1352# ifdef NBPC
1353# define malloc_getpagesize NBPC
1354# else
1355# ifdef PAGESIZE
1356# define malloc_getpagesize PAGESIZE
1357# else /* just guess */
1358# define malloc_getpagesize ((size_t)4096U)
1359# endif
1360# endif
1361# endif
1362# endif
1363# endif
1364# endif
1365# endif
1366#endif
1367#endif
1368
1369/* ------------------- size_t and alignment properties -------------------- */
1370
1371/* The byte and bit size of a size_t */
1372#define SIZE_T_SIZE (sizeof(size_t))
1373#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
1374
1375/* Some constants coerced to size_t */
1376/* Annoying but necessary to avoid errors on some plaftorms */
1377#define SIZE_T_ZERO ((size_t)0)
1378#define SIZE_T_ONE ((size_t)1)
1379#define SIZE_T_TWO ((size_t)2)
1380#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
1381#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
1382#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1383#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
1384
1385/* The bit mask value corresponding to MALLOC_ALIGNMENT */
1386#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
1387
1388/* True if address a has acceptable alignment */
1389#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1390
1391/* the number of bytes to offset an address to align it */
1392#define align_offset(A)\
1393 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1394 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1395
1396/* -------------------------- MMAP preliminaries ------------------------- */
1397
1398/*
1399 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1400 checks to fail so compiler optimizer can delete code rather than
1401 using so many "#if"s.
1402*/
1403
1404
1405/* MORECORE and MMAP must return MFAIL on failure */
1406#define MFAIL ((void*)(MAX_SIZE_T))
1407#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
1408
1409#if !HAVE_MMAP
1410#define IS_MMAPPED_BIT (SIZE_T_ZERO)
1411#define USE_MMAP_BIT (SIZE_T_ZERO)
1412#define CALL_MMAP(s) MFAIL
1413#define CALL_MUNMAP(a, s) (-1)
1414#define DIRECT_MMAP(s) MFAIL
1415
1416#else /* HAVE_MMAP */
1417#define IS_MMAPPED_BIT (SIZE_T_ONE)
1418#define USE_MMAP_BIT (SIZE_T_ONE)
1419
1420#ifndef WIN32
1421#define CALL_MUNMAP(a, s) munmap((a), (s))
1422#define MMAP_PROT (PROT_READ|PROT_WRITE)
1423#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1424#define MAP_ANONYMOUS MAP_ANON
1425#endif /* MAP_ANON */
1426#ifdef MAP_ANONYMOUS
1427#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
1428#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1429#else /* MAP_ANONYMOUS */
1430/*
1431 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1432 is unlikely to be needed, but is supplied just in case.
1433*/
1434#define MMAP_FLAGS (MAP_PRIVATE)
1435static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1436#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
1437 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1438 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1439 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1440#endif /* MAP_ANONYMOUS */
1441
1442#define DIRECT_MMAP(s) CALL_MMAP(s)
1443#else /* WIN32 */
1444
1445/* Win32 MMAP via VirtualAlloc */
1446static void* win32mmap(size_t size) {
1447 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
1448 return (ptr != 0)? ptr: MFAIL;
1449}
1450
1451/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
1452static void* win32direct_mmap(size_t size) {
1453 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1454 PAGE_READWRITE);
1455 return (ptr != 0)? ptr: MFAIL;
1456}
1457
1458/* This function supports releasing coalesed segments */
1459static int win32munmap(void* ptr, size_t size) {
1460 MEMORY_BASIC_INFORMATION minfo;
1461 char* cptr = ptr;
1462 while (size) {
1463 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1464 return -1;
1465 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1466 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1467 return -1;
1468 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1469 return -1;
1470 cptr += minfo.RegionSize;
1471 size -= minfo.RegionSize;
1472 }
1473 return 0;
1474}
1475
1476#define CALL_MMAP(s) win32mmap(s)
1477#define CALL_MUNMAP(a, s) win32munmap((a), (s))
1478#define DIRECT_MMAP(s) win32direct_mmap(s)
1479#endif /* WIN32 */
1480#endif /* HAVE_MMAP */
1481
1482#if HAVE_MMAP && HAVE_MREMAP
1483#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1484#else /* HAVE_MMAP && HAVE_MREMAP */
1485#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
1486#endif /* HAVE_MMAP && HAVE_MREMAP */
1487
1488#if HAVE_MORECORE
1489#define CALL_MORECORE(S) MORECORE(S)
1490#else /* HAVE_MORECORE */
1491#define CALL_MORECORE(S) MFAIL
1492#endif /* HAVE_MORECORE */
1493
1494/* mstate bit set if continguous morecore disabled or failed */
1495#define USE_NONCONTIGUOUS_BIT (4U)
1496
1497/* segment bit set in create_mspace_with_base */
1498#define EXTERN_BIT (8U)
1499
1500
1501/* --------------------------- Lock preliminaries ------------------------ */
1502
1503#if USE_LOCKS
1504
1505/*
1506 When locks are defined, there are up to two global locks:
1507
1508 * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
1509 MORECORE. In many cases sys_alloc requires two calls, that should
1510 not be interleaved with calls by other threads. This does not
1511 protect against direct calls to MORECORE by other threads not
1512 using this lock, so there is still code to cope the best we can on
1513 interference.
1514
1515 * magic_init_mutex ensures that mparams.magic and other
1516 unique mparams values are initialized only once.
1517*/
1518
1519#ifndef WIN32
1520/* By default use posix locks */
1521#include <pthread.h>
1522#define MLOCK_T pthread_mutex_t
1523#define INITIAL_LOCK(l) pthread_mutex_init(l, NULL)
1524#define ACQUIRE_LOCK(l) pthread_mutex_lock(l)
1525#define RELEASE_LOCK(l) pthread_mutex_unlock(l)
1526
1527#if HAVE_MORECORE
1528static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
1529#endif /* HAVE_MORECORE */
1530
1531static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
1532
1533#else /* WIN32 */
1534/*
1535 Because lock-protected regions have bounded times, and there
1536 are no recursive lock calls, we can use simple spinlocks.
1537*/
1538
1539#define MLOCK_T long
1540static int win32_acquire_lock (MLOCK_T *sl) {
1541 for (;;) {
1542#ifdef InterlockedCompareExchangePointer
1543 if (!InterlockedCompareExchange(sl, 1, 0))
1544 return 0;
1545#else /* Use older void* version */
1546 if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0))
1547 return 0;
1548#endif /* InterlockedCompareExchangePointer */
1549 Sleep (0);
1550 }
1551}
1552
1553static void win32_release_lock (MLOCK_T *sl) {
1554 InterlockedExchange (sl, 0);
1555}
1556
1557#define INITIAL_LOCK(l) *(l)=0
1558#define ACQUIRE_LOCK(l) win32_acquire_lock(l)
1559#define RELEASE_LOCK(l) win32_release_lock(l)
1560#if HAVE_MORECORE
1561static MLOCK_T morecore_mutex;
1562#endif /* HAVE_MORECORE */
1563static MLOCK_T magic_init_mutex;
1564#endif /* WIN32 */
1565
1566#define USE_LOCK_BIT (2U)
1567#else /* USE_LOCKS */
1568#define USE_LOCK_BIT (0U)
1569#define INITIAL_LOCK(l)
1570#endif /* USE_LOCKS */
1571
1572#if USE_LOCKS && HAVE_MORECORE
1573#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
1574#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
1575#else /* USE_LOCKS && HAVE_MORECORE */
1576#define ACQUIRE_MORECORE_LOCK()
1577#define RELEASE_MORECORE_LOCK()
1578#endif /* USE_LOCKS && HAVE_MORECORE */
1579
1580#if USE_LOCKS
1581#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
1582#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
1583#else /* USE_LOCKS */
1584#define ACQUIRE_MAGIC_INIT_LOCK()
1585#define RELEASE_MAGIC_INIT_LOCK()
1586#endif /* USE_LOCKS */
1587
1588
1589/* ----------------------- Chunk representations ------------------------ */
1590
1591/*
1592 (The following includes lightly edited explanations by Colin Plumb.)
1593
1594 The malloc_chunk declaration below is misleading (but accurate and
1595 necessary). It declares a "view" into memory allowing access to
1596 necessary fields at known offsets from a given base.
1597
1598 Chunks of memory are maintained using a `boundary tag' method as
1599 originally described by Knuth. (See the paper by Paul Wilson
1600 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
1601 techniques.) Sizes of free chunks are stored both in the front of
1602 each chunk and at the end. This makes consolidating fragmented
1603 chunks into bigger chunks fast. The head fields also hold bits
1604 representing whether chunks are free or in use.
1605
1606 Here are some pictures to make it clearer. They are "exploded" to
1607 show that the state of a chunk can be thought of as extending from
1608 the high 31 bits of the head field of its header through the
1609 prev_foot and PINUSE_BIT bit of the following chunk header.
1610
1611 A chunk that's in use looks like:
1612
1613 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1614 | Size of previous chunk (if P = 1) |
1615 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1616 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1617 | Size of this chunk 1| +-+
1618 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1619 | |
1620 +- -+
1621 | |
1622 +- -+
1623 | :
1624 +- size - sizeof(size_t) available payload bytes -+
1625 : |
1626 chunk-> +- -+
1627 | |
1628 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1629 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
1630 | Size of next chunk (may or may not be in use) | +-+
1631 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1632
1633 And if it's free, it looks like this:
1634
1635 chunk-> +- -+
1636 | User payload (must be in use, or we would have merged!) |
1637 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1638 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1639 | Size of this chunk 0| +-+
1640 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1641 | Next pointer |
1642 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1643 | Prev pointer |
1644 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1645 | :
1646 +- size - sizeof(struct chunk) unused bytes -+
1647 : |
1648 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1649 | Size of this chunk |
1650 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1651 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
1652 | Size of next chunk (must be in use, or we would have merged)| +-+
1653 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1654 | :
1655 +- User payload -+
1656 : |
1657 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1658 |0|
1659 +-+
1660 Note that since we always merge adjacent free chunks, the chunks
1661 adjacent to a free chunk must be in use.
1662
1663 Given a pointer to a chunk (which can be derived trivially from the
1664 payload pointer) we can, in O(1) time, find out whether the adjacent
1665 chunks are free, and if so, unlink them from the lists that they
1666 are on and merge them with the current chunk.
1667
1668 Chunks always begin on even word boundaries, so the mem portion
1669 (which is returned to the user) is also on an even word boundary, and
1670 thus at least double-word aligned.
1671
1672 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
1673 chunk size (which is always a multiple of two words), is an in-use
1674 bit for the *previous* chunk. If that bit is *clear*, then the
1675 word before the current chunk size contains the previous chunk
1676 size, and can be used to find the front of the previous chunk.
1677 The very first chunk allocated always has this bit set, preventing
1678 access to non-existent (or non-owned) memory. If pinuse is set for
1679 any given chunk, then you CANNOT determine the size of the
1680 previous chunk, and might even get a memory addressing fault when
1681 trying to do so.
1682
1683 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
1684 the chunk size redundantly records whether the current chunk is
1685 inuse. This redundancy enables usage checks within free and realloc,
1686 and reduces indirection when freeing and consolidating chunks.
1687
1688 Each freshly allocated chunk must have both cinuse and pinuse set.
1689 That is, each allocated chunk borders either a previously allocated
1690 and still in-use chunk, or the base of its memory arena. This is
1691 ensured by making all allocations from the the `lowest' part of any
1692 found chunk. Further, no free chunk physically borders another one,
1693 so each free chunk is known to be preceded and followed by either
1694 inuse chunks or the ends of memory.
1695
1696 Note that the `foot' of the current chunk is actually represented
1697 as the prev_foot of the NEXT chunk. This makes it easier to
1698 deal with alignments etc but can be very confusing when trying
1699 to extend or adapt this code.
1700
1701 The exceptions to all this are
1702
1703 1. The special chunk `top' is the top-most available chunk (i.e.,
1704 the one bordering the end of available memory). It is treated
1705 specially. Top is never included in any bin, is used only if
1706 no other chunk is available, and is released back to the
1707 system if it is very large (see M_TRIM_THRESHOLD). In effect,
1708 the top chunk is treated as larger (and thus less well
1709 fitting) than any other available chunk. The top chunk
1710 doesn't update its trailing size field since there is no next
1711 contiguous chunk that would have to index off it. However,
1712 space is still allocated for it (TOP_FOOT_SIZE) to enable
1713 separation or merging when space is extended.
1714
1715 3. Chunks allocated via mmap, which have the lowest-order bit
1716 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
1717 PINUSE_BIT in their head fields. Because they are allocated
1718 one-by-one, each must carry its own prev_foot field, which is
1719 also used to hold the offset this chunk has within its mmapped
1720 region, which is needed to preserve alignment. Each mmapped
1721 chunk is trailed by the first two fields of a fake next-chunk
1722 for sake of usage checks.
1723
1724*/
1725
1726struct malloc_chunk {
1727 size_t prev_foot; /* Size of previous chunk (if free). */
1728 size_t head; /* Size and inuse bits. */
1729 struct malloc_chunk* fd; /* double links -- used only if free. */
1730 struct malloc_chunk* bk;
1731};
1732
1733typedef struct malloc_chunk mchunk;
1734typedef struct malloc_chunk* mchunkptr;
1735typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
1736typedef unsigned int bindex_t; /* Described below */
1737typedef unsigned int binmap_t; /* Described below */
1738typedef unsigned int flag_t; /* The type of various bit flag sets */
1739
1740/* ------------------- Chunks sizes and alignments ----------------------- */
1741
1742#define MCHUNK_SIZE (sizeof(mchunk))
1743
1744#if FOOTERS
1745#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1746#else /* FOOTERS */
1747#define CHUNK_OVERHEAD (SIZE_T_SIZE)
1748#endif /* FOOTERS */
1749
1750/* MMapped chunks need a second word of overhead ... */
1751#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1752/* ... and additional padding for fake next-chunk at foot */
1753#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
1754
1755/* The smallest size we can malloc is an aligned minimal chunk */
1756#define MIN_CHUNK_SIZE\
1757 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1758
1759/* conversion from malloc headers to user pointers, and back */
1760#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
1761#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
1762/* chunk associated with aligned address A */
1763#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
1764
1765/* Bounds on request (not chunk) sizes. */
1766#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
1767#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
1768
1769/* pad request bytes into a usable size */
1770#define pad_request(req) \
1771 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1772
1773/* pad request, checking for minimum (but not maximum) */
1774#define request2size(req) \
1775 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
1776
1777
1778/* ------------------ Operations on head and foot fields ----------------- */
1779
1780/*
1781 The head field of a chunk is or'ed with PINUSE_BIT when previous
1782 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1783 use. If the chunk was obtained with mmap, the prev_foot field has
1784 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1785 mmapped region to the base of the chunk.
1786*/
1787
1788#define PINUSE_BIT (SIZE_T_ONE)
1789#define CINUSE_BIT (SIZE_T_TWO)
1790#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
1791
1792/* Head value for fenceposts */
1793#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
1794
1795/* extraction of fields from head words */
1796#define cinuse(p) ((p)->head & CINUSE_BIT)
1797#define pinuse(p) ((p)->head & PINUSE_BIT)
1798#define chunksize(p) ((p)->head & ~(INUSE_BITS))
1799
1800#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
1801#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
1802
1803/* Treat space at ptr +/- offset as a chunk */
1804#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1805#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1806
1807/* Ptr to next or previous physical malloc_chunk. */
1808#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1809#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1810
1811/* extract next chunk's pinuse bit */
1812#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
1813
1814/* Get/set size at footer */
1815#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1816#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1817
1818/* Set size, pinuse bit, and foot */
1819#define set_size_and_pinuse_of_free_chunk(p, s)\
1820 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1821
1822/* Set size, pinuse bit, foot, and clear next pinuse */
1823#define set_free_with_pinuse(p, s, n)\
1824 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1825
1826#define is_mmapped(p)\
1827 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1828
1829/* Get the internal overhead associated with chunk p */
1830#define overhead_for(p)\
1831 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1832
1833/* Return true if malloced space is not necessarily cleared */
1834#if MMAP_CLEARS
1835#define calloc_must_clear(p) (!is_mmapped(p))
1836#else /* MMAP_CLEARS */
1837#define calloc_must_clear(p) (1)
1838#endif /* MMAP_CLEARS */
1839
1840/* ---------------------- Overlaid data structures ----------------------- */
1841
1842/*
1843 When chunks are not in use, they are treated as nodes of either
1844 lists or trees.
1845
1846 "Small" chunks are stored in circular doubly-linked lists, and look
1847 like this:
1848
1849 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1850 | Size of previous chunk |
1851 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1852 `head:' | Size of chunk, in bytes |P|
1853 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1854 | Forward pointer to next chunk in list |
1855 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1856 | Back pointer to previous chunk in list |
1857 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1858 | Unused space (may be 0 bytes long) .
1859 . .
1860 . |
1861nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1862 `foot:' | Size of chunk, in bytes |
1863 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1864
1865 Larger chunks are kept in a form of bitwise digital trees (aka
1866 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
1867 free chunks greater than 256 bytes, their size doesn't impose any
1868 constraints on user chunk sizes. Each node looks like:
1869
1870 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1871 | Size of previous chunk |
1872 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1873 `head:' | Size of chunk, in bytes |P|
1874 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1875 | Forward pointer to next chunk of same size |
1876 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1877 | Back pointer to previous chunk of same size |
1878 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1879 | Pointer to left child (child[0]) |
1880 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1881 | Pointer to right child (child[1]) |
1882 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1883 | Pointer to parent |
1884 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1885 | bin index of this chunk |
1886 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1887 | Unused space .
1888 . |
1889nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1890 `foot:' | Size of chunk, in bytes |
1891 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1892
1893 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
1894 of the same size are arranged in a circularly-linked list, with only
1895 the oldest chunk (the next to be used, in our FIFO ordering)
1896 actually in the tree. (Tree members are distinguished by a non-null
1897 parent pointer.) If a chunk with the same size an an existing node
1898 is inserted, it is linked off the existing node using pointers that
1899 work in the same way as fd/bk pointers of small chunks.
1900
1901 Each tree contains a power of 2 sized range of chunk sizes (the
1902 smallest is 0x100 <= x < 0x180), which is is divided in half at each
1903 tree level, with the chunks in the smaller half of the range (0x100
1904 <= x < 0x140 for the top nose) in the left subtree and the larger
1905 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
1906 done by inspecting individual bits.
1907
1908 Using these rules, each node's left subtree contains all smaller
1909 sizes than its right subtree. However, the node at the root of each
1910 subtree has no particular ordering relationship to either. (The
1911 dividing line between the subtree sizes is based on trie relation.)
1912 If we remove the last chunk of a given size from the interior of the
1913 tree, we need to replace it with a leaf node. The tree ordering
1914 rules permit a node to be replaced by any leaf below it.
1915
1916 The smallest chunk in a tree (a common operation in a best-fit
1917 allocator) can be found by walking a path to the leftmost leaf in
1918 the tree. Unlike a usual binary tree, where we follow left child
1919 pointers until we reach a null, here we follow the right child
1920 pointer any time the left one is null, until we reach a leaf with
1921 both child pointers null. The smallest chunk in the tree will be
1922 somewhere along that path.
1923
1924 The worst case number of steps to add, find, or remove a node is
1925 bounded by the number of bits differentiating chunks within
1926 bins. Under current bin calculations, this ranges from 6 up to 21
1927 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1928 is of course much better.
1929*/
1930
1931struct malloc_tree_chunk {
1932 /* The first four fields must be compatible with malloc_chunk */
1933 size_t prev_foot;
1934 size_t head;
1935 struct malloc_tree_chunk* fd;
1936 struct malloc_tree_chunk* bk;
1937
1938 struct malloc_tree_chunk* child[2];
1939 struct malloc_tree_chunk* parent;
1940 bindex_t index;
1941};
1942
1943typedef struct malloc_tree_chunk tchunk;
1944typedef struct malloc_tree_chunk* tchunkptr;
1945typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1946
1947/* A little helper macro for trees */
1948#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1949
1950/* ----------------------------- Segments -------------------------------- */
1951
1952/*
1953 Each malloc space may include non-contiguous segments, held in a
1954 list headed by an embedded malloc_segment record representing the
1955 top-most space. Segments also include flags holding properties of
1956 the space. Large chunks that are directly allocated by mmap are not
1957 included in this list. They are instead independently created and
1958 destroyed without otherwise keeping track of them.
1959
1960 Segment management mainly comes into play for spaces allocated by
1961 MMAP. Any call to MMAP might or might not return memory that is
1962 adjacent to an existing segment. MORECORE normally contiguously
1963 extends the current space, so this space is almost always adjacent,
1964 which is simpler and faster to deal with. (This is why MORECORE is
1965 used preferentially to MMAP when both are available -- see
1966 sys_alloc.) When allocating using MMAP, we don't use any of the
1967 hinting mechanisms (inconsistently) supported in various
1968 implementations of unix mmap, or distinguish reserving from
1969 committing memory. Instead, we just ask for space, and exploit
1970 contiguity when we get it. It is probably possible to do
1971 better than this on some systems, but no general scheme seems
1972 to be significantly better.
1973
1974 Management entails a simpler variant of the consolidation scheme
1975 used for chunks to reduce fragmentation -- new adjacent memory is
1976 normally prepended or appended to an existing segment. However,
1977 there are limitations compared to chunk consolidation that mostly
1978 reflect the fact that segment processing is relatively infrequent
1979 (occurring only when getting memory from system) and that we
1980 don't expect to have huge numbers of segments:
1981
1982 * Segments are not indexed, so traversal requires linear scans. (It
1983 would be possible to index these, but is not worth the extra
1984 overhead and complexity for most programs on most platforms.)
1985 * New segments are only appended to old ones when holding top-most
1986 memory; if they cannot be prepended to others, they are held in
1987 different segments.
1988
1989 Except for the top-most segment of an mstate, each segment record
1990 is kept at the tail of its segment. Segments are added by pushing
1991 segment records onto the list headed by &mstate.seg for the
1992 containing mstate.
1993
1994 Segment flags control allocation/merge/deallocation policies:
1995 * If EXTERN_BIT set, then we did not allocate this segment,
1996 and so should not try to deallocate or merge with others.
1997 (This currently holds only for the initial segment passed
1998 into create_mspace_with_base.)
1999 * If IS_MMAPPED_BIT set, the segment may be merged with
2000 other surrounding mmapped segments and trimmed/de-allocated
2001 using munmap.
2002 * If neither bit is set, then the segment was obtained using
2003 MORECORE so can be merged with surrounding MORECORE'd segments
2004 and deallocated/trimmed using MORECORE with negative arguments.
2005*/
2006
2007struct malloc_segment {
2008 char* base; /* base address */
2009 size_t size; /* allocated size */
2010 struct malloc_segment* next; /* ptr to next segment */
2011 flag_t sflags; /* mmap and extern flag */
2012};
2013
2014#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
2015#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
2016
2017typedef struct malloc_segment msegment;
2018typedef struct malloc_segment* msegmentptr;
2019
2020/* ---------------------------- malloc_state ----------------------------- */
2021
2022/*
2023 A malloc_state holds all of the bookkeeping for a space.
2024 The main fields are:
2025
2026 Top
2027 The topmost chunk of the currently active segment. Its size is
2028 cached in topsize. The actual size of topmost space is
2029 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
2030 fenceposts and segment records if necessary when getting more
2031 space from the system. The size at which to autotrim top is
2032 cached from mparams in trim_check, except that it is disabled if
2033 an autotrim fails.
2034
2035 Designated victim (dv)
2036 This is the preferred chunk for servicing small requests that
2037 don't have exact fits. It is normally the chunk split off most
2038 recently to service another small request. Its size is cached in
2039 dvsize. The link fields of this chunk are not maintained since it
2040 is not kept in a bin.
2041
2042 SmallBins
2043 An array of bin headers for free chunks. These bins hold chunks
2044 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
2045 chunks of all the same size, spaced 8 bytes apart. To simplify
2046 use in double-linked lists, each bin header acts as a malloc_chunk
2047 pointing to the real first node, if it exists (else pointing to
2048 itself). This avoids special-casing for headers. But to avoid
2049 waste, we allocate only the fd/bk pointers of bins, and then use
2050 repositioning tricks to treat these as the fields of a chunk.
2051
2052 TreeBins
2053 Treebins are pointers to the roots of trees holding a range of
2054 sizes. There are 2 equally spaced treebins for each power of two
2055 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
2056 larger.
2057
2058 Bin maps
2059 There is one bit map for small bins ("smallmap") and one for
2060 treebins ("treemap). Each bin sets its bit when non-empty, and
2061 clears the bit when empty. Bit operations are then used to avoid
2062 bin-by-bin searching -- nearly all "search" is done without ever
2063 looking at bins that won't be selected. The bit maps
2064 conservatively use 32 bits per map word, even if on 64bit system.
2065 For a good description of some of the bit-based techniques used
2066 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
2067 supplement at http://hackersdelight.org/). Many of these are
2068 intended to reduce the branchiness of paths through malloc etc, as
2069 well as to reduce the number of memory locations read or written.
2070
2071 Segments
2072 A list of segments headed by an embedded malloc_segment record
2073 representing the initial space.
2074
2075 Address check support
2076 The least_addr field is the least address ever obtained from
2077 MORECORE or MMAP. Attempted frees and reallocs of any address less
2078 than this are trapped (unless INSECURE is defined).
2079
2080 Magic tag
2081 A cross-check field that should always hold same value as mparams.magic.
2082
2083 Flags
2084 Bits recording whether to use MMAP, locks, or contiguous MORECORE
2085
2086 Statistics
2087 Each space keeps track of current and maximum system memory
2088 obtained via MORECORE or MMAP.
2089
2090 Locking
2091 If USE_LOCKS is defined, the "mutex" lock is acquired and released
2092 around every public call using this mspace.
2093*/
2094
2095/* Bin types, widths and sizes */
2096#define NSMALLBINS (32U)
2097#define NTREEBINS (32U)
2098#define SMALLBIN_SHIFT (3U)
2099#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
2100#define TREEBIN_SHIFT (8U)
2101#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
2102#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
2103#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
2104
2105struct malloc_state {
2106 binmap_t smallmap;
2107 binmap_t treemap;
2108 size_t dvsize;
2109 size_t topsize;
2110 char* least_addr;
2111 mchunkptr dv;
2112 mchunkptr top;
2113 size_t trim_check;
2114 size_t magic;
2115 mchunkptr smallbins[(NSMALLBINS+1)*2];
2116 tbinptr treebins[NTREEBINS];
2117 size_t footprint;
2118#if USE_MAX_ALLOWED_FOOTPRINT
2119 size_t max_allowed_footprint;
2120#endif
2121 size_t max_footprint;
2122 flag_t mflags;
2123#if USE_LOCKS
2124 MLOCK_T mutex; /* locate lock among fields that rarely change */
2125#endif /* USE_LOCKS */
2126 msegment seg;
2127};
2128
2129typedef struct malloc_state* mstate;
2130
2131/* ------------- Global malloc_state and malloc_params ------------------- */
2132
2133/*
2134 malloc_params holds global properties, including those that can be
2135 dynamically set using mallopt. There is a single instance, mparams,
2136 initialized in init_mparams.
2137*/
2138
2139struct malloc_params {
2140 size_t magic;
2141 size_t page_size;
2142 size_t granularity;
2143 size_t mmap_threshold;
2144 size_t trim_threshold;
2145 flag_t default_mflags;
2146};
2147
2148static struct malloc_params mparams;
2149
2150/* The global malloc_state used for all non-"mspace" calls */
2151static struct malloc_state _gm_
2152#if USE_MAX_ALLOWED_FOOTPRINT
2153 = { .max_allowed_footprint = MAX_SIZE_T };
2154#else
2155 ;
2156#endif
2157
2158#define gm (&_gm_)
2159#define is_global(M) ((M) == &_gm_)
2160#define is_initialized(M) ((M)->top != 0)
2161
2162/* -------------------------- system alloc setup ------------------------- */
2163
2164/* Operations on mflags */
2165
2166#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
2167#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
2168#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
2169
2170#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
2171#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
2172#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
2173
2174#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
2175#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
2176
2177#define set_lock(M,L)\
2178 ((M)->mflags = (L)?\
2179 ((M)->mflags | USE_LOCK_BIT) :\
2180 ((M)->mflags & ~USE_LOCK_BIT))
2181
2182/* page-align a size */
2183#define page_align(S)\
2184 (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
2185
2186/* granularity-align a size */
2187#define granularity_align(S)\
2188 (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
2189
2190#define is_page_aligned(S)\
2191 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2192#define is_granularity_aligned(S)\
2193 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2194
2195/* True if segment S holds address A */
2196#define segment_holds(S, A)\
2197 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2198
2199/* Return segment holding given address */
2200static msegmentptr segment_holding(mstate m, char* addr) {
2201 msegmentptr sp = &m->seg;
2202 for (;;) {
2203 if (addr >= sp->base && addr < sp->base + sp->size)
2204 return sp;
2205 if ((sp = sp->next) == 0)
2206 return 0;
2207 }
2208}
2209
2210/* Return true if segment contains a segment link */
2211static int has_segment_link(mstate m, msegmentptr ss) {
2212 msegmentptr sp = &m->seg;
2213 for (;;) {
2214 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2215 return 1;
2216 if ((sp = sp->next) == 0)
2217 return 0;
2218 }
2219}
2220
2221#ifndef MORECORE_CANNOT_TRIM
2222#define should_trim(M,s) ((s) > (M)->trim_check)
2223#else /* MORECORE_CANNOT_TRIM */
2224#define should_trim(M,s) (0)
2225#endif /* MORECORE_CANNOT_TRIM */
2226
2227/*
2228 TOP_FOOT_SIZE is padding at the end of a segment, including space
2229 that may be needed to place segment records and fenceposts when new
2230 noncontiguous segments are added.
2231*/
2232#define TOP_FOOT_SIZE\
2233 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2234
2235
2236/* ------------------------------- Hooks -------------------------------- */
2237
2238/*
2239 PREACTION should be defined to return 0 on success, and nonzero on
2240 failure. If you are not using locking, you can redefine these to do
2241 anything you like.
2242*/
2243
2244#if USE_LOCKS
2245
2246/* Ensure locks are initialized */
2247#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
2248
2249#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2250#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2251#else /* USE_LOCKS */
2252
2253#ifndef PREACTION
2254#define PREACTION(M) (0)
2255#endif /* PREACTION */
2256
2257#ifndef POSTACTION
2258#define POSTACTION(M)
2259#endif /* POSTACTION */
2260
2261#endif /* USE_LOCKS */
2262
2263/*
2264 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2265 USAGE_ERROR_ACTION is triggered on detected bad frees and
2266 reallocs. The argument p is an address that might have triggered the
2267 fault. It is ignored by the two predefined actions, but might be
2268 useful in custom actions that try to help diagnose errors.
2269*/
2270
2271#if PROCEED_ON_ERROR
2272
2273/* A count of the number of corruption errors causing resets */
2274int malloc_corruption_error_count;
2275
2276/* default corruption action */
2277static void reset_on_error(mstate m);
2278
2279#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
2280#define USAGE_ERROR_ACTION(m, p)
2281
2282#else /* PROCEED_ON_ERROR */
2283
David 'Digit' Turner7708a892011-06-30 18:32:03 +02002284/* The following Android-specific code is used to print an informative
2285 * fatal error message to the log when we detect that a heap corruption
2286 * was detected. We need to be careful about not using a log function
2287 * that may require an allocation here!
2288 */
David 'Digit' Turnerc51871d2011-07-06 19:02:15 +02002289#ifdef LOG_ON_HEAP_ERROR
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07002290
David 'Digit' Turner7708a892011-06-30 18:32:03 +02002291# include <private/logd.h>
2292
2293static void __bionic_heap_error(const char* msg, const char* function)
2294{
2295 /* We format the buffer explicitely, i.e. without using snprintf()
2296 * which may use malloc() internally. Not something we can trust
2297 * if we just detected a corrupted heap.
2298 */
2299 char buffer[256];
2300 strlcpy(buffer, "@@@ ABORTING: ", sizeof(buffer));
2301 strlcat(buffer, msg, sizeof(buffer));
2302 if (function != NULL) {
2303 strlcat(buffer, " IN ", sizeof(buffer));
2304 strlcat(buffer, function, sizeof(buffer));
2305 }
David 'Digit' Turnera4824462011-07-06 17:54:35 +02002306 __libc_android_log_write(ANDROID_LOG_FATAL,"libc",buffer);
David 'Digit' Turner7708a892011-06-30 18:32:03 +02002307 abort();
2308}
2309
2310# ifndef CORRUPTION_ERROR_ACTION
2311# define CORRUPTION_ERROR_ACTION(m) \
2312 __bionic_heap_error("HEAP MEMORY CORRUPTION", __FUNCTION__)
2313# endif
2314# ifndef USAGE_ERROR_ACTION
2315# define USAGE_ERROR_ACTION(m,p) \
2316 __bionic_heap_error("INVALID HEAP ADDRESS", __FUNCTION__)
2317# endif
2318
David 'Digit' Turnerc51871d2011-07-06 19:02:15 +02002319#else /* !LOG_ON_HEAP_ERROR */
David 'Digit' Turner7708a892011-06-30 18:32:03 +02002320
2321# ifndef CORRUPTION_ERROR_ACTION
2322# define CORRUPTION_ERROR_ACTION(m) ABORT
2323# endif /* CORRUPTION_ERROR_ACTION */
2324
2325# ifndef USAGE_ERROR_ACTION
2326# define USAGE_ERROR_ACTION(m,p) ABORT
2327# endif /* USAGE_ERROR_ACTION */
2328
David 'Digit' Turnerc51871d2011-07-06 19:02:15 +02002329#endif /* !LOG_ON_HEAP_ERROR */
David 'Digit' Turner7708a892011-06-30 18:32:03 +02002330
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07002331
2332#endif /* PROCEED_ON_ERROR */
2333
2334/* -------------------------- Debugging setup ---------------------------- */
2335
2336#if ! DEBUG
2337
2338#define check_free_chunk(M,P)
2339#define check_inuse_chunk(M,P)
2340#define check_malloced_chunk(M,P,N)
2341#define check_mmapped_chunk(M,P)
2342#define check_malloc_state(M)
2343#define check_top_chunk(M,P)
2344
2345#else /* DEBUG */
2346#define check_free_chunk(M,P) do_check_free_chunk(M,P)
2347#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
2348#define check_top_chunk(M,P) do_check_top_chunk(M,P)
2349#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2350#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
2351#define check_malloc_state(M) do_check_malloc_state(M)
2352
2353static void do_check_any_chunk(mstate m, mchunkptr p);
2354static void do_check_top_chunk(mstate m, mchunkptr p);
2355static void do_check_mmapped_chunk(mstate m, mchunkptr p);
2356static void do_check_inuse_chunk(mstate m, mchunkptr p);
2357static void do_check_free_chunk(mstate m, mchunkptr p);
2358static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
2359static void do_check_tree(mstate m, tchunkptr t);
2360static void do_check_treebin(mstate m, bindex_t i);
2361static void do_check_smallbin(mstate m, bindex_t i);
2362static void do_check_malloc_state(mstate m);
2363static int bin_find(mstate m, mchunkptr x);
2364static size_t traverse_and_check(mstate m);
2365#endif /* DEBUG */
2366
2367/* ---------------------------- Indexing Bins ---------------------------- */
2368
2369#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2370#define small_index(s) ((s) >> SMALLBIN_SHIFT)
2371#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
2372#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
2373
2374/* addressing by index. See above about smallbin repositioning */
2375#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
2376#define treebin_at(M,i) (&((M)->treebins[i]))
2377
2378/* assign tree index for size S to variable I */
2379#if defined(__GNUC__) && defined(i386)
2380#define compute_tree_index(S, I)\
2381{\
2382 size_t X = S >> TREEBIN_SHIFT;\
2383 if (X == 0)\
2384 I = 0;\
2385 else if (X > 0xFFFF)\
2386 I = NTREEBINS-1;\
2387 else {\
2388 unsigned int K;\
2389 __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
2390 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2391 }\
2392}
2393#else /* GNUC */
2394#define compute_tree_index(S, I)\
2395{\
2396 size_t X = S >> TREEBIN_SHIFT;\
2397 if (X == 0)\
2398 I = 0;\
2399 else if (X > 0xFFFF)\
2400 I = NTREEBINS-1;\
2401 else {\
2402 unsigned int Y = (unsigned int)X;\
2403 unsigned int N = ((Y - 0x100) >> 16) & 8;\
2404 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2405 N += K;\
2406 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2407 K = 14 - N + ((Y <<= K) >> 15);\
2408 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2409 }\
2410}
2411#endif /* GNUC */
2412
2413/* Bit representing maximum resolved size in a treebin at i */
2414#define bit_for_tree_index(i) \
2415 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2416
2417/* Shift placing maximum resolved bit in a treebin at i as sign bit */
2418#define leftshift_for_tree_index(i) \
2419 ((i == NTREEBINS-1)? 0 : \
2420 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2421
2422/* The size of the smallest chunk held in bin with index i */
2423#define minsize_for_tree_index(i) \
2424 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
2425 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2426
2427
2428/* ------------------------ Operations on bin maps ----------------------- */
2429
2430/* bit corresponding to given index */
2431#define idx2bit(i) ((binmap_t)(1) << (i))
2432
2433/* Mark/Clear bits with given index */
2434#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
2435#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
2436#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
2437
2438#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
2439#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
2440#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
2441
2442/* index corresponding to given bit */
2443
2444#if defined(__GNUC__) && defined(i386)
2445#define compute_bit2idx(X, I)\
2446{\
2447 unsigned int J;\
2448 __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
2449 I = (bindex_t)J;\
2450}
2451
2452#else /* GNUC */
2453#if USE_BUILTIN_FFS
2454#define compute_bit2idx(X, I) I = ffs(X)-1
2455
2456#else /* USE_BUILTIN_FFS */
2457#define compute_bit2idx(X, I)\
2458{\
2459 unsigned int Y = X - 1;\
2460 unsigned int K = Y >> (16-4) & 16;\
2461 unsigned int N = K; Y >>= K;\
2462 N += K = Y >> (8-3) & 8; Y >>= K;\
2463 N += K = Y >> (4-2) & 4; Y >>= K;\
2464 N += K = Y >> (2-1) & 2; Y >>= K;\
2465 N += K = Y >> (1-0) & 1; Y >>= K;\
2466 I = (bindex_t)(N + Y);\
2467}
2468#endif /* USE_BUILTIN_FFS */
2469#endif /* GNUC */
2470
2471/* isolate the least set bit of a bitmap */
2472#define least_bit(x) ((x) & -(x))
2473
2474/* mask with all bits to left of least bit of x on */
2475#define left_bits(x) ((x<<1) | -(x<<1))
2476
2477/* mask with all bits to left of or equal to least bit of x on */
2478#define same_or_left_bits(x) ((x) | -(x))
2479
2480
2481/* ----------------------- Runtime Check Support ------------------------- */
2482
2483/*
2484 For security, the main invariant is that malloc/free/etc never
2485 writes to a static address other than malloc_state, unless static
2486 malloc_state itself has been corrupted, which cannot occur via
2487 malloc (because of these checks). In essence this means that we
2488 believe all pointers, sizes, maps etc held in malloc_state, but
2489 check all of those linked or offsetted from other embedded data
2490 structures. These checks are interspersed with main code in a way
2491 that tends to minimize their run-time cost.
2492
2493 When FOOTERS is defined, in addition to range checking, we also
2494 verify footer fields of inuse chunks, which can be used guarantee
2495 that the mstate controlling malloc/free is intact. This is a
2496 streamlined version of the approach described by William Robertson
2497 et al in "Run-time Detection of Heap-based Overflows" LISA'03
2498 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
2499 of an inuse chunk holds the xor of its mstate and a random seed,
2500 that is checked upon calls to free() and realloc(). This is
2501 (probablistically) unguessable from outside the program, but can be
2502 computed by any code successfully malloc'ing any chunk, so does not
2503 itself provide protection against code that has already broken
2504 security through some other means. Unlike Robertson et al, we
2505 always dynamically check addresses of all offset chunks (previous,
2506 next, etc). This turns out to be cheaper than relying on hashes.
2507*/
2508
2509#if !INSECURE
2510/* Check if address a is at least as high as any from MORECORE or MMAP */
2511#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
2512/* Check if address of next chunk n is higher than base chunk p */
2513#define ok_next(p, n) ((char*)(p) < (char*)(n))
2514/* Check if p has its cinuse bit on */
2515#define ok_cinuse(p) cinuse(p)
2516/* Check if p has its pinuse bit on */
2517#define ok_pinuse(p) pinuse(p)
2518
2519#else /* !INSECURE */
2520#define ok_address(M, a) (1)
2521#define ok_next(b, n) (1)
2522#define ok_cinuse(p) (1)
2523#define ok_pinuse(p) (1)
2524#endif /* !INSECURE */
2525
2526#if (FOOTERS && !INSECURE)
2527/* Check if (alleged) mstate m has expected magic field */
2528#define ok_magic(M) ((M)->magic == mparams.magic)
2529#else /* (FOOTERS && !INSECURE) */
2530#define ok_magic(M) (1)
2531#endif /* (FOOTERS && !INSECURE) */
2532
2533
2534/* In gcc, use __builtin_expect to minimize impact of checks */
2535#if !INSECURE
2536#if defined(__GNUC__) && __GNUC__ >= 3
2537#define RTCHECK(e) __builtin_expect(e, 1)
2538#else /* GNUC */
2539#define RTCHECK(e) (e)
2540#endif /* GNUC */
2541#else /* !INSECURE */
2542#define RTCHECK(e) (1)
2543#endif /* !INSECURE */
2544
2545/* macros to set up inuse chunks with or without footers */
2546
2547#if !FOOTERS
2548
2549#define mark_inuse_foot(M,p,s)
2550
2551/* Set cinuse bit and pinuse bit of next chunk */
2552#define set_inuse(M,p,s)\
2553 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2554 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2555
2556/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
2557#define set_inuse_and_pinuse(M,p,s)\
2558 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2559 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2560
2561/* Set size, cinuse and pinuse bit of this chunk */
2562#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2563 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
2564
2565#else /* FOOTERS */
2566
2567/* Set foot of inuse chunk to be xor of mstate and seed */
2568#define mark_inuse_foot(M,p,s)\
2569 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
2570
2571#define get_mstate_for(p)\
2572 ((mstate)(((mchunkptr)((char*)(p) +\
2573 (chunksize(p))))->prev_foot ^ mparams.magic))
2574
2575#define set_inuse(M,p,s)\
2576 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2577 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
2578 mark_inuse_foot(M,p,s))
2579
2580#define set_inuse_and_pinuse(M,p,s)\
2581 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2582 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
2583 mark_inuse_foot(M,p,s))
2584
2585#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2586 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2587 mark_inuse_foot(M, p, s))
2588
2589#endif /* !FOOTERS */
2590
2591/* ---------------------------- setting mparams -------------------------- */
2592
2593/* Initialize mparams */
2594static int init_mparams(void) {
2595 if (mparams.page_size == 0) {
2596 size_t s;
2597
2598 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
2599 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
2600#if MORECORE_CONTIGUOUS
2601 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
2602#else /* MORECORE_CONTIGUOUS */
2603 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
2604#endif /* MORECORE_CONTIGUOUS */
2605
2606#if (FOOTERS && !INSECURE)
2607 {
2608#if USE_DEV_RANDOM
2609 int fd;
2610 unsigned char buf[sizeof(size_t)];
2611 /* Try to use /dev/urandom, else fall back on using time */
2612 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
2613 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
2614 s = *((size_t *) buf);
2615 close(fd);
2616 }
2617 else
2618#endif /* USE_DEV_RANDOM */
2619 s = (size_t)(time(0) ^ (size_t)0x55555555U);
2620
2621 s |= (size_t)8U; /* ensure nonzero */
2622 s &= ~(size_t)7U; /* improve chances of fault for bad values */
2623
2624 }
2625#else /* (FOOTERS && !INSECURE) */
2626 s = (size_t)0x58585858U;
2627#endif /* (FOOTERS && !INSECURE) */
2628 ACQUIRE_MAGIC_INIT_LOCK();
2629 if (mparams.magic == 0) {
2630 mparams.magic = s;
2631 /* Set up lock for main malloc area */
2632 INITIAL_LOCK(&gm->mutex);
2633 gm->mflags = mparams.default_mflags;
2634 }
2635 RELEASE_MAGIC_INIT_LOCK();
2636
2637#ifndef WIN32
2638 mparams.page_size = malloc_getpagesize;
2639 mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
2640 DEFAULT_GRANULARITY : mparams.page_size);
2641#else /* WIN32 */
2642 {
2643 SYSTEM_INFO system_info;
2644 GetSystemInfo(&system_info);
2645 mparams.page_size = system_info.dwPageSize;
2646 mparams.granularity = system_info.dwAllocationGranularity;
2647 }
2648#endif /* WIN32 */
2649
2650 /* Sanity-check configuration:
2651 size_t must be unsigned and as wide as pointer type.
2652 ints must be at least 4 bytes.
2653 alignment must be at least 8.
2654 Alignment, min chunk size, and page size must all be powers of 2.
2655 */
2656 if ((sizeof(size_t) != sizeof(char*)) ||
2657 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
2658 (sizeof(int) < 4) ||
2659 (MALLOC_ALIGNMENT < (size_t)8U) ||
2660 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
2661 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
2662 ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
2663 ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
2664 ABORT;
2665 }
2666 return 0;
2667}
2668
2669/* support for mallopt */
2670static int change_mparam(int param_number, int value) {
2671 size_t val = (size_t)value;
2672 init_mparams();
2673 switch(param_number) {
2674 case M_TRIM_THRESHOLD:
2675 mparams.trim_threshold = val;
2676 return 1;
2677 case M_GRANULARITY:
2678 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
2679 mparams.granularity = val;
2680 return 1;
2681 }
2682 else
2683 return 0;
2684 case M_MMAP_THRESHOLD:
2685 mparams.mmap_threshold = val;
2686 return 1;
2687 default:
2688 return 0;
2689 }
2690}
2691
2692#if DEBUG
2693/* ------------------------- Debugging Support --------------------------- */
2694
2695/* Check properties of any chunk, whether free, inuse, mmapped etc */
2696static void do_check_any_chunk(mstate m, mchunkptr p) {
2697 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2698 assert(ok_address(m, p));
2699}
2700
2701/* Check properties of top chunk */
2702static void do_check_top_chunk(mstate m, mchunkptr p) {
2703 msegmentptr sp = segment_holding(m, (char*)p);
2704 size_t sz = chunksize(p);
2705 assert(sp != 0);
2706 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2707 assert(ok_address(m, p));
2708 assert(sz == m->topsize);
2709 assert(sz > 0);
2710 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
2711 assert(pinuse(p));
2712 assert(!next_pinuse(p));
2713}
2714
2715/* Check properties of (inuse) mmapped chunks */
2716static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
2717 size_t sz = chunksize(p);
2718 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
2719 assert(is_mmapped(p));
2720 assert(use_mmap(m));
2721 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2722 assert(ok_address(m, p));
2723 assert(!is_small(sz));
2724 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
2725 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
2726 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
2727}
2728
2729/* Check properties of inuse chunks */
2730static void do_check_inuse_chunk(mstate m, mchunkptr p) {
2731 do_check_any_chunk(m, p);
2732 assert(cinuse(p));
2733 assert(next_pinuse(p));
2734 /* If not pinuse and not mmapped, previous chunk has OK offset */
2735 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
2736 if (is_mmapped(p))
2737 do_check_mmapped_chunk(m, p);
2738}
2739
2740/* Check properties of free chunks */
2741static void do_check_free_chunk(mstate m, mchunkptr p) {
2742 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2743 mchunkptr next = chunk_plus_offset(p, sz);
2744 do_check_any_chunk(m, p);
2745 assert(!cinuse(p));
2746 assert(!next_pinuse(p));
2747 assert (!is_mmapped(p));
2748 if (p != m->dv && p != m->top) {
2749 if (sz >= MIN_CHUNK_SIZE) {
2750 assert((sz & CHUNK_ALIGN_MASK) == 0);
2751 assert(is_aligned(chunk2mem(p)));
2752 assert(next->prev_foot == sz);
2753 assert(pinuse(p));
2754 assert (next == m->top || cinuse(next));
2755 assert(p->fd->bk == p);
2756 assert(p->bk->fd == p);
2757 }
2758 else /* markers are always of size SIZE_T_SIZE */
2759 assert(sz == SIZE_T_SIZE);
2760 }
2761}
2762
2763/* Check properties of malloced chunks at the point they are malloced */
2764static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
2765 if (mem != 0) {
2766 mchunkptr p = mem2chunk(mem);
2767 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2768 do_check_inuse_chunk(m, p);
2769 assert((sz & CHUNK_ALIGN_MASK) == 0);
2770 assert(sz >= MIN_CHUNK_SIZE);
2771 assert(sz >= s);
2772 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
2773 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
2774 }
2775}
2776
2777/* Check a tree and its subtrees. */
2778static void do_check_tree(mstate m, tchunkptr t) {
2779 tchunkptr head = 0;
2780 tchunkptr u = t;
2781 bindex_t tindex = t->index;
2782 size_t tsize = chunksize(t);
2783 bindex_t idx;
2784 compute_tree_index(tsize, idx);
2785 assert(tindex == idx);
2786 assert(tsize >= MIN_LARGE_SIZE);
2787 assert(tsize >= minsize_for_tree_index(idx));
2788 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
2789
2790 do { /* traverse through chain of same-sized nodes */
2791 do_check_any_chunk(m, ((mchunkptr)u));
2792 assert(u->index == tindex);
2793 assert(chunksize(u) == tsize);
2794 assert(!cinuse(u));
2795 assert(!next_pinuse(u));
2796 assert(u->fd->bk == u);
2797 assert(u->bk->fd == u);
2798 if (u->parent == 0) {
2799 assert(u->child[0] == 0);
2800 assert(u->child[1] == 0);
2801 }
2802 else {
2803 assert(head == 0); /* only one node on chain has parent */
2804 head = u;
2805 assert(u->parent != u);
2806 assert (u->parent->child[0] == u ||
2807 u->parent->child[1] == u ||
2808 *((tbinptr*)(u->parent)) == u);
2809 if (u->child[0] != 0) {
2810 assert(u->child[0]->parent == u);
2811 assert(u->child[0] != u);
2812 do_check_tree(m, u->child[0]);
2813 }
2814 if (u->child[1] != 0) {
2815 assert(u->child[1]->parent == u);
2816 assert(u->child[1] != u);
2817 do_check_tree(m, u->child[1]);
2818 }
2819 if (u->child[0] != 0 && u->child[1] != 0) {
2820 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
2821 }
2822 }
2823 u = u->fd;
2824 } while (u != t);
2825 assert(head != 0);
2826}
2827
2828/* Check all the chunks in a treebin. */
2829static void do_check_treebin(mstate m, bindex_t i) {
2830 tbinptr* tb = treebin_at(m, i);
2831 tchunkptr t = *tb;
2832 int empty = (m->treemap & (1U << i)) == 0;
2833 if (t == 0)
2834 assert(empty);
2835 if (!empty)
2836 do_check_tree(m, t);
2837}
2838
2839/* Check all the chunks in a smallbin. */
2840static void do_check_smallbin(mstate m, bindex_t i) {
2841 sbinptr b = smallbin_at(m, i);
2842 mchunkptr p = b->bk;
2843 unsigned int empty = (m->smallmap & (1U << i)) == 0;
2844 if (p == b)
2845 assert(empty);
2846 if (!empty) {
2847 for (; p != b; p = p->bk) {
2848 size_t size = chunksize(p);
2849 mchunkptr q;
2850 /* each chunk claims to be free */
2851 do_check_free_chunk(m, p);
2852 /* chunk belongs in bin */
2853 assert(small_index(size) == i);
2854 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2855 /* chunk is followed by an inuse chunk */
2856 q = next_chunk(p);
2857 if (q->head != FENCEPOST_HEAD)
2858 do_check_inuse_chunk(m, q);
2859 }
2860 }
2861}
2862
2863/* Find x in a bin. Used in other check functions. */
2864static int bin_find(mstate m, mchunkptr x) {
2865 size_t size = chunksize(x);
2866 if (is_small(size)) {
2867 bindex_t sidx = small_index(size);
2868 sbinptr b = smallbin_at(m, sidx);
2869 if (smallmap_is_marked(m, sidx)) {
2870 mchunkptr p = b;
2871 do {
2872 if (p == x)
2873 return 1;
2874 } while ((p = p->fd) != b);
2875 }
2876 }
2877 else {
2878 bindex_t tidx;
2879 compute_tree_index(size, tidx);
2880 if (treemap_is_marked(m, tidx)) {
2881 tchunkptr t = *treebin_at(m, tidx);
2882 size_t sizebits = size << leftshift_for_tree_index(tidx);
2883 while (t != 0 && chunksize(t) != size) {
2884 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2885 sizebits <<= 1;
2886 }
2887 if (t != 0) {
2888 tchunkptr u = t;
2889 do {
2890 if (u == (tchunkptr)x)
2891 return 1;
2892 } while ((u = u->fd) != t);
2893 }
2894 }
2895 }
2896 return 0;
2897}
2898
2899/* Traverse each chunk and check it; return total */
2900static size_t traverse_and_check(mstate m) {
2901 size_t sum = 0;
2902 if (is_initialized(m)) {
2903 msegmentptr s = &m->seg;
2904 sum += m->topsize + TOP_FOOT_SIZE;
2905 while (s != 0) {
2906 mchunkptr q = align_as_chunk(s->base);
2907 mchunkptr lastq = 0;
2908 assert(pinuse(q));
2909 while (segment_holds(s, q) &&
2910 q != m->top && q->head != FENCEPOST_HEAD) {
2911 sum += chunksize(q);
2912 if (cinuse(q)) {
2913 assert(!bin_find(m, q));
2914 do_check_inuse_chunk(m, q);
2915 }
2916 else {
2917 assert(q == m->dv || bin_find(m, q));
2918 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2919 do_check_free_chunk(m, q);
2920 }
2921 lastq = q;
2922 q = next_chunk(q);
2923 }
2924 s = s->next;
2925 }
2926 }
2927 return sum;
2928}
2929
2930/* Check all properties of malloc_state. */
2931static void do_check_malloc_state(mstate m) {
2932 bindex_t i;
2933 size_t total;
2934 /* check bins */
2935 for (i = 0; i < NSMALLBINS; ++i)
2936 do_check_smallbin(m, i);
2937 for (i = 0; i < NTREEBINS; ++i)
2938 do_check_treebin(m, i);
2939
2940 if (m->dvsize != 0) { /* check dv chunk */
2941 do_check_any_chunk(m, m->dv);
2942 assert(m->dvsize == chunksize(m->dv));
2943 assert(m->dvsize >= MIN_CHUNK_SIZE);
2944 assert(bin_find(m, m->dv) == 0);
2945 }
2946
2947 if (m->top != 0) { /* check top chunk */
2948 do_check_top_chunk(m, m->top);
2949 assert(m->topsize == chunksize(m->top));
2950 assert(m->topsize > 0);
2951 assert(bin_find(m, m->top) == 0);
2952 }
2953
2954 total = traverse_and_check(m);
2955 assert(total <= m->footprint);
2956 assert(m->footprint <= m->max_footprint);
2957#if USE_MAX_ALLOWED_FOOTPRINT
2958 //TODO: change these assertions if we allow for shrinking.
2959 assert(m->footprint <= m->max_allowed_footprint);
2960 assert(m->max_footprint <= m->max_allowed_footprint);
2961#endif
2962}
2963#endif /* DEBUG */
2964
2965/* ----------------------------- statistics ------------------------------ */
2966
2967#if !NO_MALLINFO
2968static struct mallinfo internal_mallinfo(mstate m) {
2969 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2970 if (!PREACTION(m)) {
2971 check_malloc_state(m);
2972 if (is_initialized(m)) {
2973 size_t nfree = SIZE_T_ONE; /* top always free */
2974 size_t mfree = m->topsize + TOP_FOOT_SIZE;
2975 size_t sum = mfree;
2976 msegmentptr s = &m->seg;
2977 while (s != 0) {
2978 mchunkptr q = align_as_chunk(s->base);
2979 while (segment_holds(s, q) &&
2980 q != m->top && q->head != FENCEPOST_HEAD) {
2981 size_t sz = chunksize(q);
2982 sum += sz;
2983 if (!cinuse(q)) {
2984 mfree += sz;
2985 ++nfree;
2986 }
2987 q = next_chunk(q);
2988 }
2989 s = s->next;
2990 }
2991
2992 nm.arena = sum;
2993 nm.ordblks = nfree;
2994 nm.hblkhd = m->footprint - sum;
2995 nm.usmblks = m->max_footprint;
2996 nm.uordblks = m->footprint - mfree;
2997 nm.fordblks = mfree;
2998 nm.keepcost = m->topsize;
2999 }
3000
3001 POSTACTION(m);
3002 }
3003 return nm;
3004}
3005#endif /* !NO_MALLINFO */
3006
3007static void internal_malloc_stats(mstate m) {
3008 if (!PREACTION(m)) {
3009 size_t maxfp = 0;
3010 size_t fp = 0;
3011 size_t used = 0;
3012 check_malloc_state(m);
3013 if (is_initialized(m)) {
3014 msegmentptr s = &m->seg;
3015 maxfp = m->max_footprint;
3016 fp = m->footprint;
3017 used = fp - (m->topsize + TOP_FOOT_SIZE);
3018
3019 while (s != 0) {
3020 mchunkptr q = align_as_chunk(s->base);
3021 while (segment_holds(s, q) &&
3022 q != m->top && q->head != FENCEPOST_HEAD) {
3023 if (!cinuse(q))
3024 used -= chunksize(q);
3025 q = next_chunk(q);
3026 }
3027 s = s->next;
3028 }
3029 }
3030
3031 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
3032 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
3033 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
3034
3035 POSTACTION(m);
3036 }
3037}
3038
3039/* ----------------------- Operations on smallbins ----------------------- */
3040
3041/*
3042 Various forms of linking and unlinking are defined as macros. Even
3043 the ones for trees, which are very long but have very short typical
3044 paths. This is ugly but reduces reliance on inlining support of
3045 compilers.
3046*/
3047
3048/* Link a free chunk into a smallbin */
3049#define insert_small_chunk(M, P, S) {\
3050 bindex_t I = small_index(S);\
3051 mchunkptr B = smallbin_at(M, I);\
3052 mchunkptr F = B;\
3053 assert(S >= MIN_CHUNK_SIZE);\
3054 if (!smallmap_is_marked(M, I))\
3055 mark_smallmap(M, I);\
3056 else if (RTCHECK(ok_address(M, B->fd)))\
3057 F = B->fd;\
3058 else {\
3059 CORRUPTION_ERROR_ACTION(M);\
3060 }\
3061 B->fd = P;\
3062 F->bk = P;\
3063 P->fd = F;\
3064 P->bk = B;\
3065}
3066
3067/* Unlink a chunk from a smallbin
3068 * Added check: if F->bk != P or B->fd != P, we have double linked list
3069 * corruption, and abort.
3070 */
3071#define unlink_small_chunk(M, P, S) {\
3072 mchunkptr F = P->fd;\
3073 mchunkptr B = P->bk;\
3074 bindex_t I = small_index(S);\
3075 if (__builtin_expect (F->bk != P || B->fd != P, 0))\
3076 CORRUPTION_ERROR_ACTION(M);\
3077 assert(P != B);\
3078 assert(P != F);\
3079 assert(chunksize(P) == small_index2size(I));\
3080 if (F == B)\
3081 clear_smallmap(M, I);\
3082 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
3083 (B == smallbin_at(M,I) || ok_address(M, B)))) {\
3084 F->bk = B;\
3085 B->fd = F;\
3086 }\
3087 else {\
3088 CORRUPTION_ERROR_ACTION(M);\
3089 }\
3090}
3091
3092/* Unlink the first chunk from a smallbin
3093 * Added check: if F->bk != P or B->fd != P, we have double linked list
3094 * corruption, and abort.
3095 */
3096#define unlink_first_small_chunk(M, B, P, I) {\
3097 mchunkptr F = P->fd;\
3098 if (__builtin_expect (F->bk != P || B->fd != P, 0))\
3099 CORRUPTION_ERROR_ACTION(M);\
3100 assert(P != B);\
3101 assert(P != F);\
3102 assert(chunksize(P) == small_index2size(I));\
3103 if (B == F)\
3104 clear_smallmap(M, I);\
3105 else if (RTCHECK(ok_address(M, F))) {\
3106 B->fd = F;\
3107 F->bk = B;\
3108 }\
3109 else {\
3110 CORRUPTION_ERROR_ACTION(M);\
3111 }\
3112}
3113
3114/* Replace dv node, binning the old one */
3115/* Used only when dvsize known to be small */
3116#define replace_dv(M, P, S) {\
3117 size_t DVS = M->dvsize;\
3118 if (DVS != 0) {\
3119 mchunkptr DV = M->dv;\
3120 assert(is_small(DVS));\
3121 insert_small_chunk(M, DV, DVS);\
3122 }\
3123 M->dvsize = S;\
3124 M->dv = P;\
3125}
3126
3127/* ------------------------- Operations on trees ------------------------- */
3128
3129/* Insert chunk into tree */
3130#define insert_large_chunk(M, X, S) {\
3131 tbinptr* H;\
3132 bindex_t I;\
3133 compute_tree_index(S, I);\
3134 H = treebin_at(M, I);\
3135 X->index = I;\
3136 X->child[0] = X->child[1] = 0;\
3137 if (!treemap_is_marked(M, I)) {\
3138 mark_treemap(M, I);\
3139 *H = X;\
3140 X->parent = (tchunkptr)H;\
3141 X->fd = X->bk = X;\
3142 }\
3143 else {\
3144 tchunkptr T = *H;\
3145 size_t K = S << leftshift_for_tree_index(I);\
3146 for (;;) {\
3147 if (chunksize(T) != S) {\
3148 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
3149 K <<= 1;\
3150 if (*C != 0)\
3151 T = *C;\
3152 else if (RTCHECK(ok_address(M, C))) {\
3153 *C = X;\
3154 X->parent = T;\
3155 X->fd = X->bk = X;\
3156 break;\
3157 }\
3158 else {\
3159 CORRUPTION_ERROR_ACTION(M);\
3160 break;\
3161 }\
3162 }\
3163 else {\
3164 tchunkptr F = T->fd;\
3165 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
3166 T->fd = F->bk = X;\
3167 X->fd = F;\
3168 X->bk = T;\
3169 X->parent = 0;\
3170 break;\
3171 }\
3172 else {\
3173 CORRUPTION_ERROR_ACTION(M);\
3174 break;\
3175 }\
3176 }\
3177 }\
3178 }\
3179}
3180
3181/*
3182 Unlink steps:
3183
3184 1. If x is a chained node, unlink it from its same-sized fd/bk links
3185 and choose its bk node as its replacement.
3186 2. If x was the last node of its size, but not a leaf node, it must
3187 be replaced with a leaf node (not merely one with an open left or
3188 right), to make sure that lefts and rights of descendents
3189 correspond properly to bit masks. We use the rightmost descendent
3190 of x. We could use any other leaf, but this is easy to locate and
3191 tends to counteract removal of leftmosts elsewhere, and so keeps
3192 paths shorter than minimally guaranteed. This doesn't loop much
3193 because on average a node in a tree is near the bottom.
3194 3. If x is the base of a chain (i.e., has parent links) relink
3195 x's parent and children to x's replacement (or null if none).
3196
3197 Added check: if F->bk != X or R->fd != X, we have double linked list
3198 corruption, and abort.
3199*/
3200
3201#define unlink_large_chunk(M, X) {\
3202 tchunkptr XP = X->parent;\
3203 tchunkptr R;\
3204 if (X->bk != X) {\
3205 tchunkptr F = X->fd;\
3206 R = X->bk;\
3207 if (__builtin_expect (F->bk != X || R->fd != X, 0))\
3208 CORRUPTION_ERROR_ACTION(M);\
3209 if (RTCHECK(ok_address(M, F))) {\
3210 F->bk = R;\
3211 R->fd = F;\
3212 }\
3213 else {\
3214 CORRUPTION_ERROR_ACTION(M);\
3215 }\
3216 }\
3217 else {\
3218 tchunkptr* RP;\
3219 if (((R = *(RP = &(X->child[1]))) != 0) ||\
3220 ((R = *(RP = &(X->child[0]))) != 0)) {\
3221 tchunkptr* CP;\
3222 while ((*(CP = &(R->child[1])) != 0) ||\
3223 (*(CP = &(R->child[0])) != 0)) {\
3224 R = *(RP = CP);\
3225 }\
3226 if (RTCHECK(ok_address(M, RP)))\
3227 *RP = 0;\
3228 else {\
3229 CORRUPTION_ERROR_ACTION(M);\
3230 }\
3231 }\
3232 }\
3233 if (XP != 0) {\
3234 tbinptr* H = treebin_at(M, X->index);\
3235 if (X == *H) {\
3236 if ((*H = R) == 0) \
3237 clear_treemap(M, X->index);\
3238 }\
3239 else if (RTCHECK(ok_address(M, XP))) {\
3240 if (XP->child[0] == X) \
3241 XP->child[0] = R;\
3242 else \
3243 XP->child[1] = R;\
3244 }\
3245 else\
3246 CORRUPTION_ERROR_ACTION(M);\
3247 if (R != 0) {\
3248 if (RTCHECK(ok_address(M, R))) {\
3249 tchunkptr C0, C1;\
3250 R->parent = XP;\
3251 if ((C0 = X->child[0]) != 0) {\
3252 if (RTCHECK(ok_address(M, C0))) {\
3253 R->child[0] = C0;\
3254 C0->parent = R;\
3255 }\
3256 else\
3257 CORRUPTION_ERROR_ACTION(M);\
3258 }\
3259 if ((C1 = X->child[1]) != 0) {\
3260 if (RTCHECK(ok_address(M, C1))) {\
3261 R->child[1] = C1;\
3262 C1->parent = R;\
3263 }\
3264 else\
3265 CORRUPTION_ERROR_ACTION(M);\
3266 }\
3267 }\
3268 else\
3269 CORRUPTION_ERROR_ACTION(M);\
3270 }\
3271 }\
3272}
3273
3274/* Relays to large vs small bin operations */
3275
3276#define insert_chunk(M, P, S)\
3277 if (is_small(S)) insert_small_chunk(M, P, S)\
3278 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3279
3280#define unlink_chunk(M, P, S)\
3281 if (is_small(S)) unlink_small_chunk(M, P, S)\
3282 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3283
3284
3285/* Relays to internal calls to malloc/free from realloc, memalign etc */
3286
3287#if ONLY_MSPACES
3288#define internal_malloc(m, b) mspace_malloc(m, b)
3289#define internal_free(m, mem) mspace_free(m,mem);
3290#else /* ONLY_MSPACES */
3291#if MSPACES
3292#define internal_malloc(m, b)\
3293 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
3294#define internal_free(m, mem)\
3295 if (m == gm) dlfree(mem); else mspace_free(m,mem);
3296#else /* MSPACES */
3297#define internal_malloc(m, b) dlmalloc(b)
3298#define internal_free(m, mem) dlfree(mem)
3299#endif /* MSPACES */
3300#endif /* ONLY_MSPACES */
3301
3302/* ----------------------- Direct-mmapping chunks ----------------------- */
3303
3304/*
3305 Directly mmapped chunks are set up with an offset to the start of
3306 the mmapped region stored in the prev_foot field of the chunk. This
3307 allows reconstruction of the required argument to MUNMAP when freed,
3308 and also allows adjustment of the returned chunk to meet alignment
3309 requirements (especially in memalign). There is also enough space
3310 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
3311 the PINUSE bit so frees can be checked.
3312*/
3313
3314/* Malloc using mmap */
3315static void* mmap_alloc(mstate m, size_t nb) {
3316 size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3317#if USE_MAX_ALLOWED_FOOTPRINT
3318 size_t new_footprint = m->footprint + mmsize;
3319 if (new_footprint <= m->footprint || /* Check for wrap around 0 */
3320 new_footprint > m->max_allowed_footprint)
3321 return 0;
3322#endif
3323 if (mmsize > nb) { /* Check for wrap around 0 */
3324 char* mm = (char*)(DIRECT_MMAP(mmsize));
3325 if (mm != CMFAIL) {
3326 size_t offset = align_offset(chunk2mem(mm));
3327 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3328 mchunkptr p = (mchunkptr)(mm + offset);
3329 p->prev_foot = offset | IS_MMAPPED_BIT;
3330 (p)->head = (psize|CINUSE_BIT);
3331 mark_inuse_foot(m, p, psize);
3332 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3333 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3334
3335 if (mm < m->least_addr)
3336 m->least_addr = mm;
3337 if ((m->footprint += mmsize) > m->max_footprint)
3338 m->max_footprint = m->footprint;
3339 assert(is_aligned(chunk2mem(p)));
3340 check_mmapped_chunk(m, p);
3341 return chunk2mem(p);
3342 }
3343 }
3344 return 0;
3345}
3346
3347/* Realloc using mmap */
3348static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
3349 size_t oldsize = chunksize(oldp);
3350 if (is_small(nb)) /* Can't shrink mmap regions below small size */
3351 return 0;
3352 /* Keep old chunk if big enough but not too big */
3353 if (oldsize >= nb + SIZE_T_SIZE &&
3354 (oldsize - nb) <= (mparams.granularity << 1))
3355 return oldp;
3356 else {
3357 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
3358 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3359 size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
3360 CHUNK_ALIGN_MASK);
3361 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3362 oldmmsize, newmmsize, 1);
3363 if (cp != CMFAIL) {
3364 mchunkptr newp = (mchunkptr)(cp + offset);
3365 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3366 newp->head = (psize|CINUSE_BIT);
3367 mark_inuse_foot(m, newp, psize);
3368 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3369 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3370
3371 if (cp < m->least_addr)
3372 m->least_addr = cp;
3373 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3374 m->max_footprint = m->footprint;
3375 check_mmapped_chunk(m, newp);
3376 return newp;
3377 }
3378 }
3379 return 0;
3380}
3381
3382/* -------------------------- mspace management -------------------------- */
3383
3384/* Initialize top chunk and its size */
3385static void init_top(mstate m, mchunkptr p, size_t psize) {
3386 /* Ensure alignment */
3387 size_t offset = align_offset(chunk2mem(p));
3388 p = (mchunkptr)((char*)p + offset);
3389 psize -= offset;
3390
3391 m->top = p;
3392 m->topsize = psize;
3393 p->head = psize | PINUSE_BIT;
3394 /* set size of fake trailing chunk holding overhead space only once */
3395 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3396 m->trim_check = mparams.trim_threshold; /* reset on each update */
3397}
3398
3399/* Initialize bins for a new mstate that is otherwise zeroed out */
3400static void init_bins(mstate m) {
3401 /* Establish circular links for smallbins */
3402 bindex_t i;
3403 for (i = 0; i < NSMALLBINS; ++i) {
3404 sbinptr bin = smallbin_at(m,i);
3405 bin->fd = bin->bk = bin;
3406 }
3407}
3408
3409#if PROCEED_ON_ERROR
3410
3411/* default corruption action */
3412static void reset_on_error(mstate m) {
3413 int i;
3414 ++malloc_corruption_error_count;
3415 /* Reinitialize fields to forget about all memory */
3416 m->smallbins = m->treebins = 0;
3417 m->dvsize = m->topsize = 0;
3418 m->seg.base = 0;
3419 m->seg.size = 0;
3420 m->seg.next = 0;
3421 m->top = m->dv = 0;
3422 for (i = 0; i < NTREEBINS; ++i)
3423 *treebin_at(m, i) = 0;
3424 init_bins(m);
3425}
3426#endif /* PROCEED_ON_ERROR */
3427
3428/* Allocate chunk and prepend remainder with chunk in successor base. */
3429static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3430 size_t nb) {
3431 mchunkptr p = align_as_chunk(newbase);
3432 mchunkptr oldfirst = align_as_chunk(oldbase);
3433 size_t psize = (char*)oldfirst - (char*)p;
3434 mchunkptr q = chunk_plus_offset(p, nb);
3435 size_t qsize = psize - nb;
3436 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3437
3438 assert((char*)oldfirst > (char*)q);
3439 assert(pinuse(oldfirst));
3440 assert(qsize >= MIN_CHUNK_SIZE);
3441
3442 /* consolidate remainder with first chunk of old base */
3443 if (oldfirst == m->top) {
3444 size_t tsize = m->topsize += qsize;
3445 m->top = q;
3446 q->head = tsize | PINUSE_BIT;
3447 check_top_chunk(m, q);
3448 }
3449 else if (oldfirst == m->dv) {
3450 size_t dsize = m->dvsize += qsize;
3451 m->dv = q;
3452 set_size_and_pinuse_of_free_chunk(q, dsize);
3453 }
3454 else {
3455 if (!cinuse(oldfirst)) {
3456 size_t nsize = chunksize(oldfirst);
3457 unlink_chunk(m, oldfirst, nsize);
3458 oldfirst = chunk_plus_offset(oldfirst, nsize);
3459 qsize += nsize;
3460 }
3461 set_free_with_pinuse(q, qsize, oldfirst);
3462 insert_chunk(m, q, qsize);
3463 check_free_chunk(m, q);
3464 }
3465
3466 check_malloced_chunk(m, chunk2mem(p), nb);
3467 return chunk2mem(p);
3468}
3469
3470
3471/* Add a segment to hold a new noncontiguous region */
3472static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
3473 /* Determine locations and sizes of segment, fenceposts, old top */
3474 char* old_top = (char*)m->top;
3475 msegmentptr oldsp = segment_holding(m, old_top);
3476 char* old_end = oldsp->base + oldsp->size;
3477 size_t ssize = pad_request(sizeof(struct malloc_segment));
3478 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3479 size_t offset = align_offset(chunk2mem(rawsp));
3480 char* asp = rawsp + offset;
3481 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
3482 mchunkptr sp = (mchunkptr)csp;
3483 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
3484 mchunkptr tnext = chunk_plus_offset(sp, ssize);
3485 mchunkptr p = tnext;
3486 int nfences = 0;
3487
3488 /* reset top to new space */
3489 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3490
3491 /* Set up segment record */
3492 assert(is_aligned(ss));
3493 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
3494 *ss = m->seg; /* Push current record */
3495 m->seg.base = tbase;
3496 m->seg.size = tsize;
3497 m->seg.sflags = mmapped;
3498 m->seg.next = ss;
3499
3500 /* Insert trailing fenceposts */
3501 for (;;) {
3502 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
3503 p->head = FENCEPOST_HEAD;
3504 ++nfences;
3505 if ((char*)(&(nextp->head)) < old_end)
3506 p = nextp;
3507 else
3508 break;
3509 }
3510 assert(nfences >= 2);
3511
3512 /* Insert the rest of old top into a bin as an ordinary free chunk */
3513 if (csp != old_top) {
3514 mchunkptr q = (mchunkptr)old_top;
3515 size_t psize = csp - old_top;
3516 mchunkptr tn = chunk_plus_offset(q, psize);
3517 set_free_with_pinuse(q, psize, tn);
3518 insert_chunk(m, q, psize);
3519 }
3520
3521 check_top_chunk(m, m->top);
3522}
3523
3524/* -------------------------- System allocation -------------------------- */
3525
3526/* Get memory from system using MORECORE or MMAP */
3527static void* sys_alloc(mstate m, size_t nb) {
3528 char* tbase = CMFAIL;
3529 size_t tsize = 0;
3530 flag_t mmap_flag = 0;
3531
3532 init_mparams();
3533
3534 /* Directly map large chunks */
3535 if (use_mmap(m) && nb >= mparams.mmap_threshold) {
3536 void* mem = mmap_alloc(m, nb);
3537 if (mem != 0)
3538 return mem;
3539 }
3540
3541#if USE_MAX_ALLOWED_FOOTPRINT
3542 /* Make sure the footprint doesn't grow past max_allowed_footprint.
3543 * This covers all cases except for where we need to page align, below.
3544 */
3545 {
3546 size_t new_footprint = m->footprint +
3547 granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
3548 if (new_footprint <= m->footprint || /* Check for wrap around 0 */
3549 new_footprint > m->max_allowed_footprint)
3550 return 0;
3551 }
3552#endif
3553
3554 /*
3555 Try getting memory in any of three ways (in most-preferred to
3556 least-preferred order):
3557 1. A call to MORECORE that can normally contiguously extend memory.
3558 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
3559 or main space is mmapped or a previous contiguous call failed)
3560 2. A call to MMAP new space (disabled if not HAVE_MMAP).
3561 Note that under the default settings, if MORECORE is unable to
3562 fulfill a request, and HAVE_MMAP is true, then mmap is
3563 used as a noncontiguous system allocator. This is a useful backup
3564 strategy for systems with holes in address spaces -- in this case
3565 sbrk cannot contiguously expand the heap, but mmap may be able to
3566 find space.
3567 3. A call to MORECORE that cannot usually contiguously extend memory.
3568 (disabled if not HAVE_MORECORE)
3569 */
3570
3571 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
3572 char* br = CMFAIL;
3573 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
3574 size_t asize = 0;
3575 ACQUIRE_MORECORE_LOCK();
3576
3577 if (ss == 0) { /* First time through or recovery */
3578 char* base = (char*)CALL_MORECORE(0);
3579 if (base != CMFAIL) {
3580 asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
3581 /* Adjust to end on a page boundary */
3582 if (!is_page_aligned(base)) {
3583 asize += (page_align((size_t)base) - (size_t)base);
3584#if USE_MAX_ALLOWED_FOOTPRINT
3585 /* If the alignment pushes us over max_allowed_footprint,
3586 * poison the upcoming call to MORECORE and continue.
3587 */
3588 {
3589 size_t new_footprint = m->footprint + asize;
3590 if (new_footprint <= m->footprint || /* Check for wrap around 0 */
3591 new_footprint > m->max_allowed_footprint) {
3592 asize = HALF_MAX_SIZE_T;
3593 }
3594 }
3595#endif
3596 }
3597 /* Can't call MORECORE if size is negative when treated as signed */
3598 if (asize < HALF_MAX_SIZE_T &&
3599 (br = (char*)(CALL_MORECORE(asize))) == base) {
3600 tbase = base;
3601 tsize = asize;
3602 }
3603 }
3604 }
3605 else {
3606 /* Subtract out existing available top space from MORECORE request. */
3607 asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
3608 /* Use mem here only if it did continuously extend old space */
3609 if (asize < HALF_MAX_SIZE_T &&
3610 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
3611 tbase = br;
3612 tsize = asize;
3613 }
3614 }
3615
3616 if (tbase == CMFAIL) { /* Cope with partial failure */
3617 if (br != CMFAIL) { /* Try to use/extend the space we did get */
3618 if (asize < HALF_MAX_SIZE_T &&
3619 asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
3620 size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
3621 if (esize < HALF_MAX_SIZE_T) {
3622 char* end = (char*)CALL_MORECORE(esize);
3623 if (end != CMFAIL)
3624 asize += esize;
3625 else { /* Can't use; try to release */
3626 CALL_MORECORE(-asize);
3627 br = CMFAIL;
3628 }
3629 }
3630 }
3631 }
3632 if (br != CMFAIL) { /* Use the space we did get */
3633 tbase = br;
3634 tsize = asize;
3635 }
3636 else
3637 disable_contiguous(m); /* Don't try contiguous path in the future */
3638 }
3639
3640 RELEASE_MORECORE_LOCK();
3641 }
3642
3643 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
3644 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
3645 size_t rsize = granularity_align(req);
3646 if (rsize > nb) { /* Fail if wraps around zero */
3647 char* mp = (char*)(CALL_MMAP(rsize));
3648 if (mp != CMFAIL) {
3649 tbase = mp;
3650 tsize = rsize;
3651 mmap_flag = IS_MMAPPED_BIT;
3652 }
3653 }
3654 }
3655
3656 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
3657 size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
3658 if (asize < HALF_MAX_SIZE_T) {
3659 char* br = CMFAIL;
3660 char* end = CMFAIL;
3661 ACQUIRE_MORECORE_LOCK();
3662 br = (char*)(CALL_MORECORE(asize));
3663 end = (char*)(CALL_MORECORE(0));
3664 RELEASE_MORECORE_LOCK();
3665 if (br != CMFAIL && end != CMFAIL && br < end) {
3666 size_t ssize = end - br;
3667 if (ssize > nb + TOP_FOOT_SIZE) {
3668 tbase = br;
3669 tsize = ssize;
3670 }
3671 }
3672 }
3673 }
3674
3675 if (tbase != CMFAIL) {
3676
3677 if ((m->footprint += tsize) > m->max_footprint)
3678 m->max_footprint = m->footprint;
3679
3680 if (!is_initialized(m)) { /* first-time initialization */
3681 m->seg.base = m->least_addr = tbase;
3682 m->seg.size = tsize;
3683 m->seg.sflags = mmap_flag;
3684 m->magic = mparams.magic;
3685 init_bins(m);
Vladimir Chtchetkineb74ceb22009-11-17 14:13:38 -08003686 if (is_global(m))
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07003687 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3688 else {
3689 /* Offset top by embedded malloc_state */
3690 mchunkptr mn = next_chunk(mem2chunk(m));
3691 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
3692 }
3693 }
3694
3695 else {
3696 /* Try to merge with an existing segment */
3697 msegmentptr sp = &m->seg;
3698 while (sp != 0 && tbase != sp->base + sp->size)
3699 sp = sp->next;
3700 if (sp != 0 &&
3701 !is_extern_segment(sp) &&
3702 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
3703 segment_holds(sp, m->top)) { /* append */
3704 sp->size += tsize;
3705 init_top(m, m->top, m->topsize + tsize);
3706 }
3707 else {
3708 if (tbase < m->least_addr)
3709 m->least_addr = tbase;
3710 sp = &m->seg;
3711 while (sp != 0 && sp->base != tbase + tsize)
3712 sp = sp->next;
3713 if (sp != 0 &&
3714 !is_extern_segment(sp) &&
3715 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
3716 char* oldbase = sp->base;
3717 sp->base = tbase;
3718 sp->size += tsize;
3719 return prepend_alloc(m, tbase, oldbase, nb);
3720 }
3721 else
3722 add_segment(m, tbase, tsize, mmap_flag);
3723 }
3724 }
3725
3726 if (nb < m->topsize) { /* Allocate from new or extended top space */
3727 size_t rsize = m->topsize -= nb;
3728 mchunkptr p = m->top;
3729 mchunkptr r = m->top = chunk_plus_offset(p, nb);
3730 r->head = rsize | PINUSE_BIT;
3731 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3732 check_top_chunk(m, m->top);
3733 check_malloced_chunk(m, chunk2mem(p), nb);
3734 return chunk2mem(p);
3735 }
3736 }
3737
3738 MALLOC_FAILURE_ACTION;
3739 return 0;
3740}
3741
3742/* ----------------------- system deallocation -------------------------- */
3743
3744/* Unmap and unlink any mmapped segments that don't contain used chunks */
3745static size_t release_unused_segments(mstate m) {
3746 size_t released = 0;
3747 msegmentptr pred = &m->seg;
3748 msegmentptr sp = pred->next;
3749 while (sp != 0) {
3750 char* base = sp->base;
3751 size_t size = sp->size;
3752 msegmentptr next = sp->next;
3753 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
3754 mchunkptr p = align_as_chunk(base);
3755 size_t psize = chunksize(p);
3756 /* Can unmap if first chunk holds entire segment and not pinned */
3757 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
3758 tchunkptr tp = (tchunkptr)p;
3759 assert(segment_holds(sp, (char*)sp));
3760 if (p == m->dv) {
3761 m->dv = 0;
3762 m->dvsize = 0;
3763 }
3764 else {
3765 unlink_large_chunk(m, tp);
3766 }
3767 if (CALL_MUNMAP(base, size) == 0) {
3768 released += size;
3769 m->footprint -= size;
3770 /* unlink obsoleted record */
3771 sp = pred;
3772 sp->next = next;
3773 }
3774 else { /* back out if cannot unmap */
3775 insert_large_chunk(m, tp, psize);
3776 }
3777 }
3778 }
3779 pred = sp;
3780 sp = next;
3781 }
3782 return released;
3783}
3784
3785static int sys_trim(mstate m, size_t pad) {
3786 size_t released = 0;
3787 if (pad < MAX_REQUEST && is_initialized(m)) {
3788 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
3789
3790 if (m->topsize > pad) {
3791 /* Shrink top space in granularity-size units, keeping at least one */
3792 size_t unit = mparams.granularity;
3793 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
3794 SIZE_T_ONE) * unit;
3795 msegmentptr sp = segment_holding(m, (char*)m->top);
3796
3797 if (!is_extern_segment(sp)) {
3798 if (is_mmapped_segment(sp)) {
3799 if (HAVE_MMAP &&
3800 sp->size >= extra &&
3801 !has_segment_link(m, sp)) { /* can't shrink if pinned */
3802 size_t newsize = sp->size - extra;
3803 /* Prefer mremap, fall back to munmap */
3804 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
3805 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
3806 released = extra;
3807 }
3808 }
3809 }
3810 else if (HAVE_MORECORE) {
3811 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
3812 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
3813 ACQUIRE_MORECORE_LOCK();
3814 {
3815 /* Make sure end of memory is where we last set it. */
3816 char* old_br = (char*)(CALL_MORECORE(0));
3817 if (old_br == sp->base + sp->size) {
3818 char* rel_br = (char*)(CALL_MORECORE(-extra));
3819 char* new_br = (char*)(CALL_MORECORE(0));
3820 if (rel_br != CMFAIL && new_br < old_br)
3821 released = old_br - new_br;
3822 }
3823 }
3824 RELEASE_MORECORE_LOCK();
3825 }
3826 }
3827
3828 if (released != 0) {
3829 sp->size -= released;
3830 m->footprint -= released;
3831 init_top(m, m->top, m->topsize - released);
3832 check_top_chunk(m, m->top);
3833 }
3834 }
3835
3836 /* Unmap any unused mmapped segments */
Vladimir Chtchetkineb74ceb22009-11-17 14:13:38 -08003837 if (HAVE_MMAP)
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07003838 released += release_unused_segments(m);
3839
3840 /* On failure, disable autotrim to avoid repeated failed future calls */
3841 if (released == 0)
3842 m->trim_check = MAX_SIZE_T;
3843 }
3844
3845 return (released != 0)? 1 : 0;
3846}
3847
3848/* ---------------------------- malloc support --------------------------- */
3849
3850/* allocate a large request from the best fitting chunk in a treebin */
3851static void* tmalloc_large(mstate m, size_t nb) {
3852 tchunkptr v = 0;
3853 size_t rsize = -nb; /* Unsigned negation */
3854 tchunkptr t;
3855 bindex_t idx;
3856 compute_tree_index(nb, idx);
3857
3858 if ((t = *treebin_at(m, idx)) != 0) {
3859 /* Traverse tree for this bin looking for node with size == nb */
3860 size_t sizebits = nb << leftshift_for_tree_index(idx);
3861 tchunkptr rst = 0; /* The deepest untaken right subtree */
3862 for (;;) {
3863 tchunkptr rt;
3864 size_t trem = chunksize(t) - nb;
3865 if (trem < rsize) {
3866 v = t;
3867 if ((rsize = trem) == 0)
3868 break;
3869 }
3870 rt = t->child[1];
3871 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3872 if (rt != 0 && rt != t)
3873 rst = rt;
3874 if (t == 0) {
3875 t = rst; /* set t to least subtree holding sizes > nb */
3876 break;
3877 }
3878 sizebits <<= 1;
3879 }
3880 }
3881
3882 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
3883 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3884 if (leftbits != 0) {
3885 bindex_t i;
3886 binmap_t leastbit = least_bit(leftbits);
3887 compute_bit2idx(leastbit, i);
3888 t = *treebin_at(m, i);
3889 }
3890 }
3891
3892 while (t != 0) { /* find smallest of tree or subtree */
3893 size_t trem = chunksize(t) - nb;
3894 if (trem < rsize) {
3895 rsize = trem;
3896 v = t;
3897 }
3898 t = leftmost_child(t);
3899 }
3900
3901 /* If dv is a better fit, return 0 so malloc will use it */
3902 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3903 if (RTCHECK(ok_address(m, v))) { /* split */
3904 mchunkptr r = chunk_plus_offset(v, nb);
3905 assert(chunksize(v) == rsize + nb);
3906 if (RTCHECK(ok_next(v, r))) {
3907 unlink_large_chunk(m, v);
3908 if (rsize < MIN_CHUNK_SIZE)
3909 set_inuse_and_pinuse(m, v, (rsize + nb));
3910 else {
3911 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3912 set_size_and_pinuse_of_free_chunk(r, rsize);
3913 insert_chunk(m, r, rsize);
3914 }
3915 return chunk2mem(v);
3916 }
3917 }
3918 CORRUPTION_ERROR_ACTION(m);
3919 }
3920 return 0;
3921}
3922
3923/* allocate a small request from the best fitting chunk in a treebin */
3924static void* tmalloc_small(mstate m, size_t nb) {
3925 tchunkptr t, v;
3926 size_t rsize;
3927 bindex_t i;
3928 binmap_t leastbit = least_bit(m->treemap);
3929 compute_bit2idx(leastbit, i);
3930
3931 v = t = *treebin_at(m, i);
3932 rsize = chunksize(t) - nb;
3933
3934 while ((t = leftmost_child(t)) != 0) {
3935 size_t trem = chunksize(t) - nb;
3936 if (trem < rsize) {
3937 rsize = trem;
3938 v = t;
3939 }
3940 }
3941
3942 if (RTCHECK(ok_address(m, v))) {
3943 mchunkptr r = chunk_plus_offset(v, nb);
3944 assert(chunksize(v) == rsize + nb);
3945 if (RTCHECK(ok_next(v, r))) {
3946 unlink_large_chunk(m, v);
3947 if (rsize < MIN_CHUNK_SIZE)
3948 set_inuse_and_pinuse(m, v, (rsize + nb));
3949 else {
3950 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3951 set_size_and_pinuse_of_free_chunk(r, rsize);
3952 replace_dv(m, r, rsize);
3953 }
3954 return chunk2mem(v);
3955 }
3956 }
3957
3958 CORRUPTION_ERROR_ACTION(m);
3959 return 0;
3960}
3961
3962/* --------------------------- realloc support --------------------------- */
3963
3964static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3965 if (bytes >= MAX_REQUEST) {
3966 MALLOC_FAILURE_ACTION;
3967 return 0;
3968 }
3969 if (!PREACTION(m)) {
3970 mchunkptr oldp = mem2chunk(oldmem);
3971 size_t oldsize = chunksize(oldp);
3972 mchunkptr next = chunk_plus_offset(oldp, oldsize);
3973 mchunkptr newp = 0;
3974 void* extra = 0;
3975
3976 /* Try to either shrink or extend into top. Else malloc-copy-free */
3977
3978 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3979 ok_next(oldp, next) && ok_pinuse(next))) {
3980 size_t nb = request2size(bytes);
3981 if (is_mmapped(oldp))
3982 newp = mmap_resize(m, oldp, nb);
3983 else if (oldsize >= nb) { /* already big enough */
3984 size_t rsize = oldsize - nb;
3985 newp = oldp;
3986 if (rsize >= MIN_CHUNK_SIZE) {
3987 mchunkptr remainder = chunk_plus_offset(newp, nb);
3988 set_inuse(m, newp, nb);
3989 set_inuse(m, remainder, rsize);
3990 extra = chunk2mem(remainder);
3991 }
3992 }
3993 else if (next == m->top && oldsize + m->topsize > nb) {
3994 /* Expand into top */
3995 size_t newsize = oldsize + m->topsize;
3996 size_t newtopsize = newsize - nb;
3997 mchunkptr newtop = chunk_plus_offset(oldp, nb);
3998 set_inuse(m, oldp, nb);
3999 newtop->head = newtopsize |PINUSE_BIT;
4000 m->top = newtop;
4001 m->topsize = newtopsize;
4002 newp = oldp;
4003 }
4004 }
4005 else {
4006 USAGE_ERROR_ACTION(m, oldmem);
4007 POSTACTION(m);
4008 return 0;
4009 }
4010
4011 POSTACTION(m);
4012
4013 if (newp != 0) {
4014 if (extra != 0) {
4015 internal_free(m, extra);
4016 }
4017 check_inuse_chunk(m, newp);
4018 return chunk2mem(newp);
4019 }
4020 else {
4021 void* newmem = internal_malloc(m, bytes);
4022 if (newmem != 0) {
4023 size_t oc = oldsize - overhead_for(oldp);
4024 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
4025 internal_free(m, oldmem);
4026 }
4027 return newmem;
4028 }
4029 }
4030 return 0;
4031}
4032
4033/* --------------------------- memalign support -------------------------- */
4034
4035static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
4036 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
4037 return internal_malloc(m, bytes);
4038 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
4039 alignment = MIN_CHUNK_SIZE;
4040 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
4041 size_t a = MALLOC_ALIGNMENT << 1;
4042 while (a < alignment) a <<= 1;
4043 alignment = a;
4044 }
Vladimir Chtchetkineb74ceb22009-11-17 14:13:38 -08004045
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07004046 if (bytes >= MAX_REQUEST - alignment) {
4047 if (m != 0) { /* Test isn't needed but avoids compiler warning */
4048 MALLOC_FAILURE_ACTION;
4049 }
4050 }
4051 else {
4052 size_t nb = request2size(bytes);
4053 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
4054 char* mem = (char*)internal_malloc(m, req);
4055 if (mem != 0) {
4056 void* leader = 0;
4057 void* trailer = 0;
4058 mchunkptr p = mem2chunk(mem);
4059
4060 if (PREACTION(m)) return 0;
4061 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
4062 /*
4063 Find an aligned spot inside chunk. Since we need to give
4064 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
4065 the first calculation places us at a spot with less than
4066 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
4067 We've allocated enough total room so that this is always
4068 possible.
4069 */
4070 char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
4071 alignment -
4072 SIZE_T_ONE)) &
4073 -alignment));
4074 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
4075 br : br+alignment;
4076 mchunkptr newp = (mchunkptr)pos;
4077 size_t leadsize = pos - (char*)(p);
4078 size_t newsize = chunksize(p) - leadsize;
4079
4080 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
4081 newp->prev_foot = p->prev_foot + leadsize;
4082 newp->head = (newsize|CINUSE_BIT);
4083 }
4084 else { /* Otherwise, give back leader, use the rest */
4085 set_inuse(m, newp, newsize);
4086 set_inuse(m, p, leadsize);
4087 leader = chunk2mem(p);
4088 }
4089 p = newp;
4090 }
4091
4092 /* Give back spare room at the end */
4093 if (!is_mmapped(p)) {
4094 size_t size = chunksize(p);
4095 if (size > nb + MIN_CHUNK_SIZE) {
4096 size_t remainder_size = size - nb;
4097 mchunkptr remainder = chunk_plus_offset(p, nb);
4098 set_inuse(m, p, nb);
4099 set_inuse(m, remainder, remainder_size);
4100 trailer = chunk2mem(remainder);
4101 }
4102 }
4103
4104 assert (chunksize(p) >= nb);
4105 assert((((size_t)(chunk2mem(p))) % alignment) == 0);
4106 check_inuse_chunk(m, p);
4107 POSTACTION(m);
4108 if (leader != 0) {
4109 internal_free(m, leader);
4110 }
4111 if (trailer != 0) {
4112 internal_free(m, trailer);
4113 }
4114 return chunk2mem(p);
4115 }
4116 }
4117 return 0;
4118}
4119
4120/* ------------------------ comalloc/coalloc support --------------------- */
4121
4122static void** ialloc(mstate m,
4123 size_t n_elements,
4124 size_t* sizes,
4125 int opts,
4126 void* chunks[]) {
4127 /*
4128 This provides common support for independent_X routines, handling
4129 all of the combinations that can result.
4130
4131 The opts arg has:
4132 bit 0 set if all elements are same size (using sizes[0])
4133 bit 1 set if elements should be zeroed
4134 */
4135
4136 size_t element_size; /* chunksize of each element, if all same */
4137 size_t contents_size; /* total size of elements */
4138 size_t array_size; /* request size of pointer array */
4139 void* mem; /* malloced aggregate space */
4140 mchunkptr p; /* corresponding chunk */
4141 size_t remainder_size; /* remaining bytes while splitting */
4142 void** marray; /* either "chunks" or malloced ptr array */
4143 mchunkptr array_chunk; /* chunk for malloced ptr array */
4144 flag_t was_enabled; /* to disable mmap */
4145 size_t size;
4146 size_t i;
4147
4148 /* compute array length, if needed */
4149 if (chunks != 0) {
4150 if (n_elements == 0)
4151 return chunks; /* nothing to do */
4152 marray = chunks;
4153 array_size = 0;
4154 }
4155 else {
4156 /* if empty req, must still return chunk representing empty array */
4157 if (n_elements == 0)
4158 return (void**)internal_malloc(m, 0);
4159 marray = 0;
4160 array_size = request2size(n_elements * (sizeof(void*)));
4161 }
4162
4163 /* compute total element size */
4164 if (opts & 0x1) { /* all-same-size */
4165 element_size = request2size(*sizes);
4166 contents_size = n_elements * element_size;
4167 }
4168 else { /* add up all the sizes */
4169 element_size = 0;
4170 contents_size = 0;
4171 for (i = 0; i != n_elements; ++i)
4172 contents_size += request2size(sizes[i]);
4173 }
4174
4175 size = contents_size + array_size;
4176
4177 /*
4178 Allocate the aggregate chunk. First disable direct-mmapping so
4179 malloc won't use it, since we would not be able to later
4180 free/realloc space internal to a segregated mmap region.
4181 */
4182 was_enabled = use_mmap(m);
4183 disable_mmap(m);
4184 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
4185 if (was_enabled)
4186 enable_mmap(m);
4187 if (mem == 0)
4188 return 0;
4189
4190 if (PREACTION(m)) return 0;
4191 p = mem2chunk(mem);
4192 remainder_size = chunksize(p);
4193
4194 assert(!is_mmapped(p));
4195
4196 if (opts & 0x2) { /* optionally clear the elements */
4197 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
4198 }
4199
4200 /* If not provided, allocate the pointer array as final part of chunk */
4201 if (marray == 0) {
4202 size_t array_chunk_size;
4203 array_chunk = chunk_plus_offset(p, contents_size);
4204 array_chunk_size = remainder_size - contents_size;
4205 marray = (void**) (chunk2mem(array_chunk));
4206 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
4207 remainder_size = contents_size;
4208 }
4209
4210 /* split out elements */
4211 for (i = 0; ; ++i) {
4212 marray[i] = chunk2mem(p);
4213 if (i != n_elements-1) {
4214 if (element_size != 0)
4215 size = element_size;
4216 else
4217 size = request2size(sizes[i]);
4218 remainder_size -= size;
4219 set_size_and_pinuse_of_inuse_chunk(m, p, size);
4220 p = chunk_plus_offset(p, size);
4221 }
4222 else { /* the final element absorbs any overallocation slop */
4223 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
4224 break;
4225 }
4226 }
4227
4228#if DEBUG
4229 if (marray != chunks) {
4230 /* final element must have exactly exhausted chunk */
4231 if (element_size != 0) {
4232 assert(remainder_size == element_size);
4233 }
4234 else {
4235 assert(remainder_size == request2size(sizes[i]));
4236 }
4237 check_inuse_chunk(m, mem2chunk(marray));
4238 }
4239 for (i = 0; i != n_elements; ++i)
4240 check_inuse_chunk(m, mem2chunk(marray[i]));
4241
4242#endif /* DEBUG */
4243
4244 POSTACTION(m);
4245 return marray;
4246}
4247
4248
4249/* -------------------------- public routines ---------------------------- */
4250
4251#if !ONLY_MSPACES
4252
4253void* dlmalloc(size_t bytes) {
4254 /*
4255 Basic algorithm:
4256 If a small request (< 256 bytes minus per-chunk overhead):
4257 1. If one exists, use a remainderless chunk in associated smallbin.
4258 (Remainderless means that there are too few excess bytes to
4259 represent as a chunk.)
4260 2. If it is big enough, use the dv chunk, which is normally the
4261 chunk adjacent to the one used for the most recent small request.
4262 3. If one exists, split the smallest available chunk in a bin,
4263 saving remainder in dv.
4264 4. If it is big enough, use the top chunk.
4265 5. If available, get memory from system and use it
4266 Otherwise, for a large request:
4267 1. Find the smallest available binned chunk that fits, and use it
4268 if it is better fitting than dv chunk, splitting if necessary.
4269 2. If better fitting than any binned chunk, use the dv chunk.
4270 3. If it is big enough, use the top chunk.
4271 4. If request size >= mmap threshold, try to directly mmap this chunk.
4272 5. If available, get memory from system and use it
4273
4274 The ugly goto's here ensure that postaction occurs along all paths.
4275 */
4276
4277 if (!PREACTION(gm)) {
4278 void* mem;
4279 size_t nb;
4280 if (bytes <= MAX_SMALL_REQUEST) {
4281 bindex_t idx;
4282 binmap_t smallbits;
4283 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4284 idx = small_index(nb);
4285 smallbits = gm->smallmap >> idx;
4286
4287 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4288 mchunkptr b, p;
4289 idx += ~smallbits & 1; /* Uses next bin if idx empty */
4290 b = smallbin_at(gm, idx);
4291 p = b->fd;
4292 assert(chunksize(p) == small_index2size(idx));
4293 unlink_first_small_chunk(gm, b, p, idx);
4294 set_inuse_and_pinuse(gm, p, small_index2size(idx));
4295 mem = chunk2mem(p);
4296 check_malloced_chunk(gm, mem, nb);
4297 goto postaction;
4298 }
4299
4300 else if (nb > gm->dvsize) {
4301 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4302 mchunkptr b, p, r;
4303 size_t rsize;
4304 bindex_t i;
4305 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4306 binmap_t leastbit = least_bit(leftbits);
4307 compute_bit2idx(leastbit, i);
4308 b = smallbin_at(gm, i);
4309 p = b->fd;
4310 assert(chunksize(p) == small_index2size(i));
4311 unlink_first_small_chunk(gm, b, p, i);
4312 rsize = small_index2size(i) - nb;
4313 /* Fit here cannot be remainderless if 4byte sizes */
4314 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4315 set_inuse_and_pinuse(gm, p, small_index2size(i));
4316 else {
4317 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4318 r = chunk_plus_offset(p, nb);
4319 set_size_and_pinuse_of_free_chunk(r, rsize);
4320 replace_dv(gm, r, rsize);
4321 }
4322 mem = chunk2mem(p);
4323 check_malloced_chunk(gm, mem, nb);
4324 goto postaction;
4325 }
4326
4327 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4328 check_malloced_chunk(gm, mem, nb);
4329 goto postaction;
4330 }
4331 }
4332 }
4333 else if (bytes >= MAX_REQUEST)
4334 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4335 else {
4336 nb = pad_request(bytes);
4337 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4338 check_malloced_chunk(gm, mem, nb);
4339 goto postaction;
4340 }
4341 }
4342
4343 if (nb <= gm->dvsize) {
4344 size_t rsize = gm->dvsize - nb;
4345 mchunkptr p = gm->dv;
4346 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4347 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4348 gm->dvsize = rsize;
4349 set_size_and_pinuse_of_free_chunk(r, rsize);
4350 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4351 }
4352 else { /* exhaust dv */
4353 size_t dvs = gm->dvsize;
4354 gm->dvsize = 0;
4355 gm->dv = 0;
4356 set_inuse_and_pinuse(gm, p, dvs);
4357 }
4358 mem = chunk2mem(p);
4359 check_malloced_chunk(gm, mem, nb);
4360 goto postaction;
4361 }
4362
4363 else if (nb < gm->topsize) { /* Split top */
4364 size_t rsize = gm->topsize -= nb;
4365 mchunkptr p = gm->top;
4366 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4367 r->head = rsize | PINUSE_BIT;
4368 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4369 mem = chunk2mem(p);
4370 check_top_chunk(gm, gm->top);
4371 check_malloced_chunk(gm, mem, nb);
4372 goto postaction;
4373 }
4374
4375 mem = sys_alloc(gm, nb);
4376
4377 postaction:
4378 POSTACTION(gm);
4379 return mem;
4380 }
4381
4382 return 0;
4383}
4384
4385void dlfree(void* mem) {
4386 /*
4387 Consolidate freed chunks with preceeding or succeeding bordering
4388 free chunks, if they exist, and then place in a bin. Intermixed
4389 with special cases for top, dv, mmapped chunks, and usage errors.
4390 */
4391
4392 if (mem != 0) {
4393 mchunkptr p = mem2chunk(mem);
4394#if FOOTERS
4395 mstate fm = get_mstate_for(p);
4396 if (!ok_magic(fm)) {
4397 USAGE_ERROR_ACTION(fm, p);
4398 return;
4399 }
4400#else /* FOOTERS */
4401#define fm gm
4402#endif /* FOOTERS */
4403 if (!PREACTION(fm)) {
4404 check_inuse_chunk(fm, p);
4405 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4406 size_t psize = chunksize(p);
4407 mchunkptr next = chunk_plus_offset(p, psize);
4408 if (!pinuse(p)) {
4409 size_t prevsize = p->prev_foot;
4410 if ((prevsize & IS_MMAPPED_BIT) != 0) {
4411 prevsize &= ~IS_MMAPPED_BIT;
4412 psize += prevsize + MMAP_FOOT_PAD;
4413 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4414 fm->footprint -= psize;
4415 goto postaction;
4416 }
4417 else {
4418 mchunkptr prev = chunk_minus_offset(p, prevsize);
4419 psize += prevsize;
4420 p = prev;
4421 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4422 if (p != fm->dv) {
4423 unlink_chunk(fm, p, prevsize);
4424 }
4425 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4426 fm->dvsize = psize;
4427 set_free_with_pinuse(p, psize, next);
4428 goto postaction;
4429 }
4430 }
4431 else
4432 goto erroraction;
4433 }
4434 }
4435
4436 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4437 if (!cinuse(next)) { /* consolidate forward */
4438 if (next == fm->top) {
4439 size_t tsize = fm->topsize += psize;
4440 fm->top = p;
4441 p->head = tsize | PINUSE_BIT;
4442 if (p == fm->dv) {
4443 fm->dv = 0;
4444 fm->dvsize = 0;
4445 }
4446 if (should_trim(fm, tsize))
4447 sys_trim(fm, 0);
4448 goto postaction;
4449 }
4450 else if (next == fm->dv) {
4451 size_t dsize = fm->dvsize += psize;
4452 fm->dv = p;
4453 set_size_and_pinuse_of_free_chunk(p, dsize);
4454 goto postaction;
4455 }
4456 else {
4457 size_t nsize = chunksize(next);
4458 psize += nsize;
4459 unlink_chunk(fm, next, nsize);
4460 set_size_and_pinuse_of_free_chunk(p, psize);
4461 if (p == fm->dv) {
4462 fm->dvsize = psize;
4463 goto postaction;
4464 }
4465 }
4466 }
4467 else
4468 set_free_with_pinuse(p, psize, next);
4469 insert_chunk(fm, p, psize);
4470 check_free_chunk(fm, p);
4471 goto postaction;
4472 }
4473 }
4474 erroraction:
4475 USAGE_ERROR_ACTION(fm, p);
4476 postaction:
4477 POSTACTION(fm);
4478 }
4479 }
4480#if !FOOTERS
4481#undef fm
4482#endif /* FOOTERS */
4483}
4484
4485void* dlcalloc(size_t n_elements, size_t elem_size) {
4486 void *mem;
4487 if (n_elements && MAX_SIZE_T / n_elements < elem_size) {
4488 /* Fail on overflow */
4489 MALLOC_FAILURE_ACTION;
4490 return NULL;
4491 }
4492 elem_size *= n_elements;
4493 mem = dlmalloc(elem_size);
4494 if (mem && calloc_must_clear(mem2chunk(mem)))
4495 memset(mem, 0, elem_size);
4496 return mem;
4497}
4498
4499void* dlrealloc(void* oldmem, size_t bytes) {
4500 if (oldmem == 0)
4501 return dlmalloc(bytes);
4502#ifdef REALLOC_ZERO_BYTES_FREES
4503 if (bytes == 0) {
4504 dlfree(oldmem);
4505 return 0;
4506 }
4507#endif /* REALLOC_ZERO_BYTES_FREES */
4508 else {
4509#if ! FOOTERS
4510 mstate m = gm;
4511#else /* FOOTERS */
4512 mstate m = get_mstate_for(mem2chunk(oldmem));
4513 if (!ok_magic(m)) {
4514 USAGE_ERROR_ACTION(m, oldmem);
4515 return 0;
4516 }
4517#endif /* FOOTERS */
4518 return internal_realloc(m, oldmem, bytes);
4519 }
4520}
4521
4522void* dlmemalign(size_t alignment, size_t bytes) {
4523 return internal_memalign(gm, alignment, bytes);
4524}
4525
Ken Sumrall85aad902011-12-14 20:50:01 -08004526int posix_memalign(void **memptr, size_t alignment, size_t size) {
4527 int ret = 0;
4528
4529 *memptr = dlmemalign(alignment, size);
4530
4531 if (*memptr == 0) {
4532 ret = ENOMEM;
4533 }
4534
4535 return ret;
4536}
4537
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07004538void** dlindependent_calloc(size_t n_elements, size_t elem_size,
4539 void* chunks[]) {
4540 size_t sz = elem_size; /* serves as 1-element array */
4541 return ialloc(gm, n_elements, &sz, 3, chunks);
4542}
4543
4544void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
4545 void* chunks[]) {
4546 return ialloc(gm, n_elements, sizes, 0, chunks);
4547}
4548
4549void* dlvalloc(size_t bytes) {
4550 size_t pagesz;
4551 init_mparams();
4552 pagesz = mparams.page_size;
4553 return dlmemalign(pagesz, bytes);
4554}
4555
4556void* dlpvalloc(size_t bytes) {
4557 size_t pagesz;
4558 init_mparams();
4559 pagesz = mparams.page_size;
4560 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
4561}
4562
4563int dlmalloc_trim(size_t pad) {
4564 int result = 0;
4565 if (!PREACTION(gm)) {
4566 result = sys_trim(gm, pad);
4567 POSTACTION(gm);
4568 }
4569 return result;
4570}
4571
4572size_t dlmalloc_footprint(void) {
4573 return gm->footprint;
4574}
4575
4576#if USE_MAX_ALLOWED_FOOTPRINT
4577size_t dlmalloc_max_allowed_footprint(void) {
4578 return gm->max_allowed_footprint;
4579}
4580
4581void dlmalloc_set_max_allowed_footprint(size_t bytes) {
4582 if (bytes > gm->footprint) {
4583 /* Increase the size in multiples of the granularity,
4584 * which is the smallest unit we request from the system.
4585 */
4586 gm->max_allowed_footprint = gm->footprint +
4587 granularity_align(bytes - gm->footprint);
4588 }
4589 else {
4590 //TODO: allow for reducing the max footprint
4591 gm->max_allowed_footprint = gm->footprint;
4592 }
4593}
4594#endif
4595
4596size_t dlmalloc_max_footprint(void) {
4597 return gm->max_footprint;
4598}
4599
4600#if !NO_MALLINFO
4601struct mallinfo dlmallinfo(void) {
4602 return internal_mallinfo(gm);
4603}
4604#endif /* NO_MALLINFO */
4605
4606void dlmalloc_stats() {
4607 internal_malloc_stats(gm);
4608}
4609
4610size_t dlmalloc_usable_size(void* mem) {
4611 if (mem != 0) {
4612 mchunkptr p = mem2chunk(mem);
4613 if (cinuse(p))
4614 return chunksize(p) - overhead_for(p);
4615 }
4616 return 0;
4617}
4618
4619int dlmallopt(int param_number, int value) {
4620 return change_mparam(param_number, value);
4621}
4622
4623#endif /* !ONLY_MSPACES */
4624
4625/* ----------------------------- user mspaces ---------------------------- */
4626
4627#if MSPACES
4628
4629static mstate init_user_mstate(char* tbase, size_t tsize) {
4630 size_t msize = pad_request(sizeof(struct malloc_state));
4631 mchunkptr mn;
4632 mchunkptr msp = align_as_chunk(tbase);
4633 mstate m = (mstate)(chunk2mem(msp));
4634 memset(m, 0, msize);
4635 INITIAL_LOCK(&m->mutex);
4636 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
4637 m->seg.base = m->least_addr = tbase;
4638 m->seg.size = m->footprint = m->max_footprint = tsize;
4639#if USE_MAX_ALLOWED_FOOTPRINT
4640 m->max_allowed_footprint = MAX_SIZE_T;
4641#endif
4642 m->magic = mparams.magic;
4643 m->mflags = mparams.default_mflags;
4644 disable_contiguous(m);
4645 init_bins(m);
4646 mn = next_chunk(mem2chunk(m));
4647 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
4648 check_top_chunk(m, m->top);
4649 return m;
4650}
4651
4652mspace create_mspace(size_t capacity, int locked) {
4653 mstate m = 0;
4654 size_t msize = pad_request(sizeof(struct malloc_state));
4655 init_mparams(); /* Ensure pagesize etc initialized */
4656
4657 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4658 size_t rs = ((capacity == 0)? mparams.granularity :
4659 (capacity + TOP_FOOT_SIZE + msize));
4660 size_t tsize = granularity_align(rs);
4661 char* tbase = (char*)(CALL_MMAP(tsize));
4662 if (tbase != CMFAIL) {
4663 m = init_user_mstate(tbase, tsize);
4664 m->seg.sflags = IS_MMAPPED_BIT;
4665 set_lock(m, locked);
4666 }
4667 }
4668 return (mspace)m;
4669}
4670
4671mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
4672 mstate m = 0;
4673 size_t msize = pad_request(sizeof(struct malloc_state));
4674 init_mparams(); /* Ensure pagesize etc initialized */
4675
4676 if (capacity > msize + TOP_FOOT_SIZE &&
4677 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4678 m = init_user_mstate((char*)base, capacity);
4679 m->seg.sflags = EXTERN_BIT;
4680 set_lock(m, locked);
4681 }
4682 return (mspace)m;
4683}
4684
4685size_t destroy_mspace(mspace msp) {
4686 size_t freed = 0;
4687 mstate ms = (mstate)msp;
4688 if (ok_magic(ms)) {
4689 msegmentptr sp = &ms->seg;
4690 while (sp != 0) {
4691 char* base = sp->base;
4692 size_t size = sp->size;
4693 flag_t flag = sp->sflags;
4694 sp = sp->next;
4695 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
4696 CALL_MUNMAP(base, size) == 0)
4697 freed += size;
4698 }
4699 }
4700 else {
4701 USAGE_ERROR_ACTION(ms,ms);
4702 }
4703 return freed;
4704}
4705
4706/*
4707 mspace versions of routines are near-clones of the global
4708 versions. This is not so nice but better than the alternatives.
4709*/
4710
4711
4712void* mspace_malloc(mspace msp, size_t bytes) {
4713 mstate ms = (mstate)msp;
4714 if (!ok_magic(ms)) {
4715 USAGE_ERROR_ACTION(ms,ms);
4716 return 0;
4717 }
4718 if (!PREACTION(ms)) {
4719 void* mem;
4720 size_t nb;
4721 if (bytes <= MAX_SMALL_REQUEST) {
4722 bindex_t idx;
4723 binmap_t smallbits;
4724 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4725 idx = small_index(nb);
4726 smallbits = ms->smallmap >> idx;
4727
4728 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4729 mchunkptr b, p;
4730 idx += ~smallbits & 1; /* Uses next bin if idx empty */
4731 b = smallbin_at(ms, idx);
4732 p = b->fd;
4733 assert(chunksize(p) == small_index2size(idx));
4734 unlink_first_small_chunk(ms, b, p, idx);
4735 set_inuse_and_pinuse(ms, p, small_index2size(idx));
4736 mem = chunk2mem(p);
4737 check_malloced_chunk(ms, mem, nb);
4738 goto postaction;
4739 }
4740
4741 else if (nb > ms->dvsize) {
4742 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4743 mchunkptr b, p, r;
4744 size_t rsize;
4745 bindex_t i;
4746 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4747 binmap_t leastbit = least_bit(leftbits);
4748 compute_bit2idx(leastbit, i);
4749 b = smallbin_at(ms, i);
4750 p = b->fd;
4751 assert(chunksize(p) == small_index2size(i));
4752 unlink_first_small_chunk(ms, b, p, i);
4753 rsize = small_index2size(i) - nb;
4754 /* Fit here cannot be remainderless if 4byte sizes */
4755 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4756 set_inuse_and_pinuse(ms, p, small_index2size(i));
4757 else {
4758 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4759 r = chunk_plus_offset(p, nb);
4760 set_size_and_pinuse_of_free_chunk(r, rsize);
4761 replace_dv(ms, r, rsize);
4762 }
4763 mem = chunk2mem(p);
4764 check_malloced_chunk(ms, mem, nb);
4765 goto postaction;
4766 }
4767
4768 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
4769 check_malloced_chunk(ms, mem, nb);
4770 goto postaction;
4771 }
4772 }
4773 }
4774 else if (bytes >= MAX_REQUEST)
4775 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4776 else {
4777 nb = pad_request(bytes);
4778 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
4779 check_malloced_chunk(ms, mem, nb);
4780 goto postaction;
4781 }
4782 }
4783
4784 if (nb <= ms->dvsize) {
4785 size_t rsize = ms->dvsize - nb;
4786 mchunkptr p = ms->dv;
4787 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4788 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
4789 ms->dvsize = rsize;
4790 set_size_and_pinuse_of_free_chunk(r, rsize);
4791 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4792 }
4793 else { /* exhaust dv */
4794 size_t dvs = ms->dvsize;
4795 ms->dvsize = 0;
4796 ms->dv = 0;
4797 set_inuse_and_pinuse(ms, p, dvs);
4798 }
4799 mem = chunk2mem(p);
4800 check_malloced_chunk(ms, mem, nb);
4801 goto postaction;
4802 }
4803
4804 else if (nb < ms->topsize) { /* Split top */
4805 size_t rsize = ms->topsize -= nb;
4806 mchunkptr p = ms->top;
4807 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
4808 r->head = rsize | PINUSE_BIT;
4809 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4810 mem = chunk2mem(p);
4811 check_top_chunk(ms, ms->top);
4812 check_malloced_chunk(ms, mem, nb);
4813 goto postaction;
4814 }
4815
4816 mem = sys_alloc(ms, nb);
4817
4818 postaction:
4819 POSTACTION(ms);
4820 return mem;
4821 }
4822
4823 return 0;
4824}
4825
4826void mspace_free(mspace msp, void* mem) {
4827 if (mem != 0) {
4828 mchunkptr p = mem2chunk(mem);
4829#if FOOTERS
4830 mstate fm = get_mstate_for(p);
4831#else /* FOOTERS */
4832 mstate fm = (mstate)msp;
4833#endif /* FOOTERS */
4834 if (!ok_magic(fm)) {
4835 USAGE_ERROR_ACTION(fm, p);
4836 return;
4837 }
4838 if (!PREACTION(fm)) {
4839 check_inuse_chunk(fm, p);
4840 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4841 size_t psize = chunksize(p);
4842 mchunkptr next = chunk_plus_offset(p, psize);
4843 if (!pinuse(p)) {
4844 size_t prevsize = p->prev_foot;
4845 if ((prevsize & IS_MMAPPED_BIT) != 0) {
4846 prevsize &= ~IS_MMAPPED_BIT;
4847 psize += prevsize + MMAP_FOOT_PAD;
4848 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4849 fm->footprint -= psize;
4850 goto postaction;
4851 }
4852 else {
4853 mchunkptr prev = chunk_minus_offset(p, prevsize);
4854 psize += prevsize;
4855 p = prev;
4856 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4857 if (p != fm->dv) {
4858 unlink_chunk(fm, p, prevsize);
4859 }
4860 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4861 fm->dvsize = psize;
4862 set_free_with_pinuse(p, psize, next);
4863 goto postaction;
4864 }
4865 }
4866 else
4867 goto erroraction;
4868 }
4869 }
4870
4871 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4872 if (!cinuse(next)) { /* consolidate forward */
4873 if (next == fm->top) {
4874 size_t tsize = fm->topsize += psize;
4875 fm->top = p;
4876 p->head = tsize | PINUSE_BIT;
4877 if (p == fm->dv) {
4878 fm->dv = 0;
4879 fm->dvsize = 0;
4880 }
4881 if (should_trim(fm, tsize))
4882 sys_trim(fm, 0);
4883 goto postaction;
4884 }
4885 else if (next == fm->dv) {
4886 size_t dsize = fm->dvsize += psize;
4887 fm->dv = p;
4888 set_size_and_pinuse_of_free_chunk(p, dsize);
4889 goto postaction;
4890 }
4891 else {
4892 size_t nsize = chunksize(next);
4893 psize += nsize;
4894 unlink_chunk(fm, next, nsize);
4895 set_size_and_pinuse_of_free_chunk(p, psize);
4896 if (p == fm->dv) {
4897 fm->dvsize = psize;
4898 goto postaction;
4899 }
4900 }
4901 }
4902 else
4903 set_free_with_pinuse(p, psize, next);
4904 insert_chunk(fm, p, psize);
4905 check_free_chunk(fm, p);
4906 goto postaction;
4907 }
4908 }
4909 erroraction:
4910 USAGE_ERROR_ACTION(fm, p);
4911 postaction:
4912 POSTACTION(fm);
4913 }
4914 }
4915}
4916
4917void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4918 void *mem;
4919 mstate ms = (mstate)msp;
4920 if (!ok_magic(ms)) {
4921 USAGE_ERROR_ACTION(ms,ms);
4922 return 0;
4923 }
4924 if (n_elements && MAX_SIZE_T / n_elements < elem_size) {
4925 /* Fail on overflow */
4926 MALLOC_FAILURE_ACTION;
4927 return NULL;
4928 }
4929 elem_size *= n_elements;
4930 mem = internal_malloc(ms, elem_size);
4931 if (mem && calloc_must_clear(mem2chunk(mem)))
4932 memset(mem, 0, elem_size);
4933 return mem;
4934}
4935
4936void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4937 if (oldmem == 0)
4938 return mspace_malloc(msp, bytes);
4939#ifdef REALLOC_ZERO_BYTES_FREES
4940 if (bytes == 0) {
4941 mspace_free(msp, oldmem);
4942 return 0;
4943 }
4944#endif /* REALLOC_ZERO_BYTES_FREES */
4945 else {
4946#if FOOTERS
4947 mchunkptr p = mem2chunk(oldmem);
4948 mstate ms = get_mstate_for(p);
4949#else /* FOOTERS */
4950 mstate ms = (mstate)msp;
4951#endif /* FOOTERS */
4952 if (!ok_magic(ms)) {
4953 USAGE_ERROR_ACTION(ms,ms);
4954 return 0;
4955 }
4956 return internal_realloc(ms, oldmem, bytes);
4957 }
4958}
4959
Barry Hayesf30dae92009-05-26 10:33:04 -07004960#if ANDROID
4961void* mspace_merge_objects(mspace msp, void* mema, void* memb)
4962{
4963 /* PREACTION/POSTACTION aren't necessary because we are only
4964 modifying fields of inuse chunks owned by the current thread, in
4965 which case no other malloc operations can touch them.
4966 */
4967 if (mema == NULL || memb == NULL) {
4968 return NULL;
4969 }
4970 mchunkptr pa = mem2chunk(mema);
4971 mchunkptr pb = mem2chunk(memb);
4972
4973#if FOOTERS
4974 mstate fm = get_mstate_for(pa);
4975#else /* FOOTERS */
4976 mstate fm = (mstate)msp;
4977#endif /* FOOTERS */
4978 if (!ok_magic(fm)) {
4979 USAGE_ERROR_ACTION(fm, pa);
4980 return NULL;
4981 }
4982 check_inuse_chunk(fm, pa);
4983 if (RTCHECK(ok_address(fm, pa) && ok_cinuse(pa))) {
4984 if (next_chunk(pa) != pb) {
4985 /* Since pb may not be in fm, we can't check ok_address(fm, pb);
4986 since ok_cinuse(pb) would be unsafe before an address check,
4987 return NULL rather than invoke USAGE_ERROR_ACTION if pb is not
4988 in use or is a bogus address.
4989 */
4990 return NULL;
4991 }
4992 /* Since b follows a, they share the mspace. */
4993#if FOOTERS
4994 assert(fm == get_mstate_for(pb));
4995#endif /* FOOTERS */
4996 check_inuse_chunk(fm, pb);
4997 if (RTCHECK(ok_address(fm, pb) && ok_cinuse(pb))) {
4998 size_t sz = chunksize(pb);
4999 pa->head += sz;
5000 /* Make sure pa still passes. */
5001 check_inuse_chunk(fm, pa);
5002 return mema;
5003 }
5004 else {
5005 USAGE_ERROR_ACTION(fm, pb);
5006 return NULL;
5007 }
5008 }
5009 else {
5010 USAGE_ERROR_ACTION(fm, pa);
5011 return NULL;
5012 }
5013}
5014#endif /* ANDROID */
5015
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07005016void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
5017 mstate ms = (mstate)msp;
5018 if (!ok_magic(ms)) {
5019 USAGE_ERROR_ACTION(ms,ms);
5020 return 0;
5021 }
5022 return internal_memalign(ms, alignment, bytes);
5023}
5024
5025void** mspace_independent_calloc(mspace msp, size_t n_elements,
5026 size_t elem_size, void* chunks[]) {
5027 size_t sz = elem_size; /* serves as 1-element array */
5028 mstate ms = (mstate)msp;
5029 if (!ok_magic(ms)) {
5030 USAGE_ERROR_ACTION(ms,ms);
5031 return 0;
5032 }
5033 return ialloc(ms, n_elements, &sz, 3, chunks);
5034}
5035
5036void** mspace_independent_comalloc(mspace msp, size_t n_elements,
5037 size_t sizes[], void* chunks[]) {
5038 mstate ms = (mstate)msp;
5039 if (!ok_magic(ms)) {
5040 USAGE_ERROR_ACTION(ms,ms);
5041 return 0;
5042 }
5043 return ialloc(ms, n_elements, sizes, 0, chunks);
5044}
5045
5046int mspace_trim(mspace msp, size_t pad) {
5047 int result = 0;
5048 mstate ms = (mstate)msp;
5049 if (ok_magic(ms)) {
5050 if (!PREACTION(ms)) {
5051 result = sys_trim(ms, pad);
5052 POSTACTION(ms);
5053 }
5054 }
5055 else {
5056 USAGE_ERROR_ACTION(ms,ms);
5057 }
5058 return result;
5059}
5060
5061void mspace_malloc_stats(mspace msp) {
5062 mstate ms = (mstate)msp;
5063 if (ok_magic(ms)) {
5064 internal_malloc_stats(ms);
5065 }
5066 else {
5067 USAGE_ERROR_ACTION(ms,ms);
5068 }
5069}
5070
5071size_t mspace_footprint(mspace msp) {
5072 size_t result;
5073 mstate ms = (mstate)msp;
5074 if (ok_magic(ms)) {
5075 result = ms->footprint;
5076 }
5077 else {
5078 USAGE_ERROR_ACTION(ms,ms);
5079 }
5080 return result;
5081}
5082
5083#if USE_MAX_ALLOWED_FOOTPRINT
5084size_t mspace_max_allowed_footprint(mspace msp) {
5085 size_t result;
5086 mstate ms = (mstate)msp;
5087 if (ok_magic(ms)) {
5088 result = ms->max_allowed_footprint;
5089 }
5090 else {
5091 USAGE_ERROR_ACTION(ms,ms);
5092 }
5093 return result;
5094}
5095
5096void mspace_set_max_allowed_footprint(mspace msp, size_t bytes) {
5097 mstate ms = (mstate)msp;
5098 if (ok_magic(ms)) {
5099 if (bytes > ms->footprint) {
5100 /* Increase the size in multiples of the granularity,
5101 * which is the smallest unit we request from the system.
5102 */
5103 ms->max_allowed_footprint = ms->footprint +
5104 granularity_align(bytes - ms->footprint);
5105 }
5106 else {
5107 //TODO: allow for reducing the max footprint
5108 ms->max_allowed_footprint = ms->footprint;
5109 }
5110 }
5111 else {
5112 USAGE_ERROR_ACTION(ms,ms);
5113 }
5114}
5115#endif
5116
5117size_t mspace_max_footprint(mspace msp) {
5118 size_t result;
5119 mstate ms = (mstate)msp;
5120 if (ok_magic(ms)) {
5121 result = ms->max_footprint;
5122 }
5123 else {
5124 USAGE_ERROR_ACTION(ms,ms);
5125 }
5126 return result;
5127}
5128
5129
5130#if !NO_MALLINFO
5131struct mallinfo mspace_mallinfo(mspace msp) {
5132 mstate ms = (mstate)msp;
5133 if (!ok_magic(ms)) {
5134 USAGE_ERROR_ACTION(ms,ms);
5135 }
5136 return internal_mallinfo(ms);
5137}
5138#endif /* NO_MALLINFO */
5139
5140int mspace_mallopt(int param_number, int value) {
5141 return change_mparam(param_number, value);
5142}
5143
5144#endif /* MSPACES */
5145
5146#if MSPACES && ONLY_MSPACES
5147void mspace_walk_free_pages(mspace msp,
5148 void(*handler)(void *start, void *end, void *arg), void *harg)
5149{
5150 mstate m = (mstate)msp;
5151 if (!ok_magic(m)) {
5152 USAGE_ERROR_ACTION(m,m);
5153 return;
5154 }
5155#else
5156void dlmalloc_walk_free_pages(void(*handler)(void *start, void *end, void *arg),
5157 void *harg)
5158{
5159 mstate m = (mstate)gm;
5160#endif
5161 if (!PREACTION(m)) {
5162 if (is_initialized(m)) {
5163 msegmentptr s = &m->seg;
5164 while (s != 0) {
5165 mchunkptr p = align_as_chunk(s->base);
5166 while (segment_holds(s, p) &&
5167 p != m->top && p->head != FENCEPOST_HEAD) {
5168 void *chunkptr, *userptr;
5169 size_t chunklen, userlen;
5170 chunkptr = p;
5171 chunklen = chunksize(p);
5172 if (!cinuse(p)) {
5173 void *start;
5174 if (is_small(chunklen)) {
5175 start = (void *)(p + 1);
5176 }
5177 else {
5178 start = (void *)((tchunkptr)p + 1);
5179 }
5180 handler(start, next_chunk(p), harg);
5181 }
5182 p = next_chunk(p);
5183 }
5184 if (p == m->top) {
5185 handler((void *)(p + 1), next_chunk(p), harg);
5186 }
5187 s = s->next;
5188 }
5189 }
5190 POSTACTION(m);
5191 }
5192}
5193
5194
5195#if MSPACES && ONLY_MSPACES
5196void mspace_walk_heap(mspace msp,
5197 void(*handler)(const void *chunkptr, size_t chunklen,
5198 const void *userptr, size_t userlen,
5199 void *arg),
5200 void *harg)
5201{
5202 msegmentptr s;
5203 mstate m = (mstate)msp;
5204 if (!ok_magic(m)) {
5205 USAGE_ERROR_ACTION(m,m);
5206 return;
5207 }
5208#else
5209void dlmalloc_walk_heap(void(*handler)(const void *chunkptr, size_t chunklen,
5210 const void *userptr, size_t userlen,
5211 void *arg),
5212 void *harg)
5213{
5214 msegmentptr s;
5215 mstate m = (mstate)gm;
5216#endif
5217
5218 s = &m->seg;
5219 while (s != 0) {
5220 mchunkptr p = align_as_chunk(s->base);
5221 while (segment_holds(s, p) &&
5222 p != m->top && p->head != FENCEPOST_HEAD) {
5223 void *chunkptr, *userptr;
5224 size_t chunklen, userlen;
5225 chunkptr = p;
5226 chunklen = chunksize(p);
5227 if (cinuse(p)) {
5228 userptr = chunk2mem(p);
5229 userlen = chunklen - overhead_for(p);
5230 }
5231 else {
5232 userptr = NULL;
5233 userlen = 0;
5234 }
5235 handler(chunkptr, chunklen, userptr, userlen, harg);
5236 p = next_chunk(p);
5237 }
5238 if (p == m->top) {
5239 /* The top chunk is just a big free chunk for our purposes.
5240 */
5241 handler(m->top, m->topsize, NULL, 0, harg);
5242 }
5243 s = s->next;
5244 }
5245}
5246
5247/* -------------------- Alternative MORECORE functions ------------------- */
5248
5249/*
5250 Guidelines for creating a custom version of MORECORE:
5251
5252 * For best performance, MORECORE should allocate in multiples of pagesize.
5253 * MORECORE may allocate more memory than requested. (Or even less,
5254 but this will usually result in a malloc failure.)
5255 * MORECORE must not allocate memory when given argument zero, but
5256 instead return one past the end address of memory from previous
5257 nonzero call.
5258 * For best performance, consecutive calls to MORECORE with positive
5259 arguments should return increasing addresses, indicating that
5260 space has been contiguously extended.
5261 * Even though consecutive calls to MORECORE need not return contiguous
5262 addresses, it must be OK for malloc'ed chunks to span multiple
5263 regions in those cases where they do happen to be contiguous.
5264 * MORECORE need not handle negative arguments -- it may instead
5265 just return MFAIL when given negative arguments.
5266 Negative arguments are always multiples of pagesize. MORECORE
5267 must not misinterpret negative args as large positive unsigned
5268 args. You can suppress all such calls from even occurring by defining
5269 MORECORE_CANNOT_TRIM,
5270
5271 As an example alternative MORECORE, here is a custom allocator
5272 kindly contributed for pre-OSX macOS. It uses virtually but not
5273 necessarily physically contiguous non-paged memory (locked in,
5274 present and won't get swapped out). You can use it by uncommenting
5275 this section, adding some #includes, and setting up the appropriate
5276 defines above:
5277
5278 #define MORECORE osMoreCore
5279
5280 There is also a shutdown routine that should somehow be called for
5281 cleanup upon program exit.
5282
5283 #define MAX_POOL_ENTRIES 100
5284 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
5285 static int next_os_pool;
5286 void *our_os_pools[MAX_POOL_ENTRIES];
5287
5288 void *osMoreCore(int size)
5289 {
5290 void *ptr = 0;
5291 static void *sbrk_top = 0;
5292
5293 if (size > 0)
5294 {
5295 if (size < MINIMUM_MORECORE_SIZE)
5296 size = MINIMUM_MORECORE_SIZE;
5297 if (CurrentExecutionLevel() == kTaskLevel)
5298 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5299 if (ptr == 0)
5300 {
5301 return (void *) MFAIL;
5302 }
5303 // save ptrs so they can be freed during cleanup
5304 our_os_pools[next_os_pool] = ptr;
5305 next_os_pool++;
5306 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5307 sbrk_top = (char *) ptr + size;
5308 return ptr;
5309 }
5310 else if (size < 0)
5311 {
5312 // we don't currently support shrink behavior
5313 return (void *) MFAIL;
5314 }
5315 else
5316 {
5317 return sbrk_top;
5318 }
5319 }
5320
5321 // cleanup any allocated memory pools
5322 // called as last thing before shutting down driver
5323
5324 void osCleanupMem(void)
5325 {
5326 void **ptr;
5327
5328 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5329 if (*ptr)
5330 {
5331 PoolDeallocate(*ptr);
5332 *ptr = 0;
5333 }
5334 }
5335
5336*/
5337
5338
5339/* -----------------------------------------------------------------------
5340History:
5341 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
5342 * Add max_footprint functions
5343 * Ensure all appropriate literals are size_t
5344 * Fix conditional compilation problem for some #define settings
5345 * Avoid concatenating segments with the one provided
5346 in create_mspace_with_base
5347 * Rename some variables to avoid compiler shadowing warnings
5348 * Use explicit lock initialization.
5349 * Better handling of sbrk interference.
5350 * Simplify and fix segment insertion, trimming and mspace_destroy
5351 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
5352 * Thanks especially to Dennis Flanagan for help on these.
5353
5354 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
5355 * Fix memalign brace error.
5356
5357 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
5358 * Fix improper #endif nesting in C++
5359 * Add explicit casts needed for C++
5360
5361 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
5362 * Use trees for large bins
5363 * Support mspaces
5364 * Use segments to unify sbrk-based and mmap-based system allocation,
5365 removing need for emulation on most platforms without sbrk.
5366 * Default safety checks
5367 * Optional footer checks. Thanks to William Robertson for the idea.
5368 * Internal code refactoring
5369 * Incorporate suggestions and platform-specific changes.
5370 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
5371 Aaron Bachmann, Emery Berger, and others.
5372 * Speed up non-fastbin processing enough to remove fastbins.
5373 * Remove useless cfree() to avoid conflicts with other apps.
5374 * Remove internal memcpy, memset. Compilers handle builtins better.
5375 * Remove some options that no one ever used and rename others.
5376
5377 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
5378 * Fix malloc_state bitmap array misdeclaration
5379
5380 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
5381 * Allow tuning of FIRST_SORTED_BIN_SIZE
5382 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
5383 * Better detection and support for non-contiguousness of MORECORE.
5384 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
5385 * Bypass most of malloc if no frees. Thanks To Emery Berger.
5386 * Fix freeing of old top non-contiguous chunk im sysmalloc.
5387 * Raised default trim and map thresholds to 256K.
5388 * Fix mmap-related #defines. Thanks to Lubos Lunak.
5389 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
5390 * Branch-free bin calculation
5391 * Default trim and mmap thresholds now 256K.
5392
5393 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
5394 * Introduce independent_comalloc and independent_calloc.
5395 Thanks to Michael Pachos for motivation and help.
5396 * Make optional .h file available
5397 * Allow > 2GB requests on 32bit systems.
5398 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
5399 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
5400 and Anonymous.
5401 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
5402 helping test this.)
5403 * memalign: check alignment arg
5404 * realloc: don't try to shift chunks backwards, since this
5405 leads to more fragmentation in some programs and doesn't
5406 seem to help in any others.
5407 * Collect all cases in malloc requiring system memory into sysmalloc
5408 * Use mmap as backup to sbrk
5409 * Place all internal state in malloc_state
5410 * Introduce fastbins (although similar to 2.5.1)
5411 * Many minor tunings and cosmetic improvements
5412 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
5413 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
5414 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
5415 * Include errno.h to support default failure action.
5416
5417 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
5418 * return null for negative arguments
5419 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
5420 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
5421 (e.g. WIN32 platforms)
5422 * Cleanup header file inclusion for WIN32 platforms
5423 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
5424 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
5425 memory allocation routines
5426 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
5427 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
5428 usage of 'assert' in non-WIN32 code
5429 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
5430 avoid infinite loop
5431 * Always call 'fREe()' rather than 'free()'
5432
5433 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
5434 * Fixed ordering problem with boundary-stamping
5435
5436 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
5437 * Added pvalloc, as recommended by H.J. Liu
5438 * Added 64bit pointer support mainly from Wolfram Gloger
5439 * Added anonymously donated WIN32 sbrk emulation
5440 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
5441 * malloc_extend_top: fix mask error that caused wastage after
5442 foreign sbrks
5443 * Add linux mremap support code from HJ Liu
5444
5445 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
5446 * Integrated most documentation with the code.
5447 * Add support for mmap, with help from
5448 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5449 * Use last_remainder in more cases.
5450 * Pack bins using idea from colin@nyx10.cs.du.edu
5451 * Use ordered bins instead of best-fit threshhold
5452 * Eliminate block-local decls to simplify tracing and debugging.
5453 * Support another case of realloc via move into top
5454 * Fix error occuring when initial sbrk_base not word-aligned.
5455 * Rely on page size for units instead of SBRK_UNIT to
5456 avoid surprises about sbrk alignment conventions.
5457 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
5458 (raymond@es.ele.tue.nl) for the suggestion.
5459 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
5460 * More precautions for cases where other routines call sbrk,
5461 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5462 * Added macros etc., allowing use in linux libc from
5463 H.J. Lu (hjl@gnu.ai.mit.edu)
5464 * Inverted this history list
5465
5466 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
5467 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
5468 * Removed all preallocation code since under current scheme
5469 the work required to undo bad preallocations exceeds
5470 the work saved in good cases for most test programs.
5471 * No longer use return list or unconsolidated bins since
5472 no scheme using them consistently outperforms those that don't
5473 given above changes.
5474 * Use best fit for very large chunks to prevent some worst-cases.
5475 * Added some support for debugging
5476
5477 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
5478 * Removed footers when chunks are in use. Thanks to
5479 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
5480
5481 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
5482 * Added malloc_trim, with help from Wolfram Gloger
5483 (wmglo@Dent.MED.Uni-Muenchen.DE).
5484
5485 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
5486
5487 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
5488 * realloc: try to expand in both directions
5489 * malloc: swap order of clean-bin strategy;
5490 * realloc: only conditionally expand backwards
5491 * Try not to scavenge used bins
5492 * Use bin counts as a guide to preallocation
5493 * Occasionally bin return list chunks in first scan
5494 * Add a few optimizations from colin@nyx10.cs.du.edu
5495
5496 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
5497 * faster bin computation & slightly different binning
5498 * merged all consolidations to one part of malloc proper
5499 (eliminating old malloc_find_space & malloc_clean_bin)
5500 * Scan 2 returns chunks (not just 1)
5501 * Propagate failure in realloc if malloc returns 0
5502 * Add stuff to allow compilation on non-ANSI compilers
5503 from kpv@research.att.com
5504
5505 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
5506 * removed potential for odd address access in prev_chunk
5507 * removed dependency on getpagesize.h
5508 * misc cosmetics and a bit more internal documentation
5509 * anticosmetics: mangled names in macros to evade debugger strangeness
5510 * tested on sparc, hp-700, dec-mips, rs6000
5511 with gcc & native cc (hp, dec only) allowing
5512 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
5513
5514 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
5515 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
5516 structure of old version, but most details differ.)
Vladimir Chtchetkineb74ceb22009-11-17 14:13:38 -08005517
The Android Open Source Projecta27d2ba2008-10-21 07:00:00 -07005518*/