
Android 2.1 Compatibility Definition

Google Inc.

compatibility@android.com

1. Introduction

This document enumerates the requirements that must be met in order for mobile

phones to be compatible with Android 2.1.

The use of "must", "must not", "required", "shall", "shall not", "should", "should not",

"recommended", "may" and "optional" is per the IETF standard defined in RFC2119

[Resources, 1].

As used in this document, a "device implementer" or "implementer" is a person or

organization developing a hardware/software solution running Android 2.1. A "device

implementation" or "implementation" is the hardware/software solution so

developed.

To be considered compatible with Android 2.1, device implementations:

MUST meet the requirements presented in this Compatibility Definition,

including any documents incorporated via reference.

MUST pass the most recent version of the Android Compatibility Test Suite (CTS)

available at the time of the device implementation's software is completed. (The

CTS is available as part of the Android Open Source Project [Resources, 2].) The

CTS tests many, but not all, of the components outlined in this document.

Where this definition or the CTS is silent, ambiguous, or incomplete, it is the

responsibility of the device implementer to ensure compatibility with existing

implementations. For this reason, the Android Open Source Project [Resources, 3] is

both the reference and preferred implementation of Android. Device implementers

are strongly encouraged to base their implementations on the "upstream" source

code available from the Android Open Source Project. While some components can

hypothetically be replaced with alternate implementations this practice is strongly

discouraged, as passing the CTS tests will become substantially more difficult. It is

the implementer's responsibility to ensure full behavioral compatibility with the

standard Android implementation, including and beyond the Compatibility Test Suite.

Finally, note that certain component substitutions and modifications are explicitly

forbidden by this document.

1 of 25

2. Resources

IETF RFC2119 Requirement Levels: http://www.ietf.org/rfc/rfc2119.txt1.

Android Compatibility Program Overview: http://source.android.com/compatibility

/index.html

2.

Android Open Source Project: http://source.android.com/3.

API definitions and documentation: http://developer.android.com/reference

/packages.html

4.

Android Permissions reference: http://developer.android.com/reference/android

/Manifest.permission.html

5.

android.os.Build reference: http://developer.android.com/reference/android

/os/Build.html

6.

Android 2.1 allowed version strings: http://source.android.com/compatibility

/2.1/versions.xhtml

7.

android.webkit.WebView class: http://developer.android.com/reference/android

/webkit/WebView.html

8.

HTML5: http://www.whatwg.org/specs/web-apps/current-work/multipage/9.

Dalvik Virtual Machine specification: available in the Android source code, at

dalvik/docs

10.

AppWidgets: http://developer.android.com/guide/practices/ui_guidelines

/widget_design.html

11.

Notifications: http://developer.android.com/guide/topics/ui/notifiers

/notifications.html

12.

Application Resources: http://code.google.com/android/reference/available-

resources.html

13.

Status Bar icon style guide: http://developer.android.com/guide/practices

/ui_guideline /icon_design.html#statusbarstructure

14.

Search Manager: http://developer.android.com/reference/android

/app/SearchManager.html

15.

Toasts: http://developer.android.com/reference/android/widget/Toast.html16.

Live Wallpapers: http://developer.android.com/resources/articles/live-

wallpapers.html

17.

Apps for Android: http://code.google.com/p/apps-for-android18.

Reference tool documentation (for adb, aapt, ddms):

http://developer.android.com/guide/developing/tools/index.html

19.

Android apk file description: http://developer.android.com/guide/topics

/fundamentals.html

20.

Manifest files: http://developer.android.com/guide/topics/manifest/manifest-

intro.html

21.

Monkey testing tool: http://developer.android.com/guide/developing/tools

/monkey.html

22.

Supporting Multiple Screens: http://developer.android.com/guide/practices

/screens_support.html

23.

android.content.res.Configuration: http://developer.android.com/reference

/android/content/res/Configuration.html

24.

android.util.DisplayMetrics: http://developer.android.com/reference/android25.

2 of 25

/util/DisplayMetrics.html

android.hardware.Camera: http://developer.android.com/reference/android

/hardware/Camera.html

26.

Sensor coordinate space: http://developer.android.com/reference/android

/hardware/SensorEvent.html

27.

Android Security and Permissions reference: http://developer.android.com/guide

/topics/security/security.html

28.

Many of these resources are derived directly or indirectly from the Android 2.1 SDK,

and will be functionally identical to the information in that SDK's documentation. In

any cases where this Compatibility Definition or the Compatibility Test Suite

disagrees with the SDK documentation, the SDK documentation is considered

authoritative. Any technical details provided in the references included above are

considered by inclusion to be part of this Compatibility Definition.

3. Software

The Android platform includes a set of managed APIs, a set of native APIs, and a

body of so-called "soft" APIs such as the Intent system and web-application APIs.

This section details the hard and soft APIs that are integral to compatibility, as well

as certain other relevant technical and user interface behaviors. Device

implementations MUST comply with all the requirements in this section.

3.1. Managed API Compatibility

The managed (Dalvik-based) execution environment is the primary vehicle for

Android applications. The Android application programming interface (API) is the set

of Android platform interfaces exposed to applications running in the managed VM

environment. Device implementations MUST provide complete implementations,

including all documented behaviors, of any documented API exposed by the Android

2.1 SDK [Resources, 4].

Device implementations MUST NOT omit any managed APIs, alter API interfaces or

signatures, deviate from the documented behavior, or include no-ops, except where

specifically allowed by this Compatibility Definition.

3.2. Soft API Compatibility

In addition to the managed APIs from Section 3.1, Android also includes a significant

runtime-only "soft" API, in the form of such things such as Intents, permissions, and

similar aspects of Android applications that cannot be enforced at application

compile time. This section details the "soft" APIs and system behaviors required for

compatibility with Android 2.1. Device implementations MUST meet all the

requirements presented in this section.

3 of 25

3.2.1. Permissions

Device implementers MUST support and enforce all permission constants as

documented by the Permission reference page [Resources, 5]. Note that Section 10

lists addtional requirements related to the Android security model.

3.2.2. Build Parameters

The Android APIs include a number of constants on the android.os.Build class

[Resources, 6] that are intended to describe the current device. To provide

consistent, meaningful values across device implementations, the table below

includes additional restrictions on the formats of these values to which device

implementations MUST conform.

Parameter Comments

android.os.Build.VERSION.RELEASE

The version of the currently-executing

Android system, in human-readable

format. This field MUST have one of the

string values defined in [Resources, 7].

android.os.Build.VERSION.SDK

The version of the currently-executing

Android system, in a format accessible

to third-party application code. For

Android 2.1, this field MUST have the

integer value 7.

android.os.Build.VERSION.INCREMENTAL

A value chosen by the device

implementer designating the specific

build of the currently-executing Android

system, in human-readable format. This

value MUST NOT be re-used for different

builds shipped to end users. A typical

use of this field is to indicate which

build number or source-control change

identifier was used to generate the

build. There are no requirements on the

specific format of this field, except that

it MUST NOT be null or the empty string

("").

android.os.Build.BOARD

A value chosen by the device

implementer identifying the specific

internal hardware used by the device, in

human-readable format. A possible use

of this field is to indicate the specific

revision of the board powering the

device. There are no requirements on

4 of 25

the specific format of this field, except

that it MUST NOT be null or the empty

string ("").

android.os.Build.BRAND

A value chosen by the device

implementer identifying the name of the

company, organization, individual, etc.

who produced the device, in human-

readable format. A possible use of this

field is to indicate the OEM and/or

carrier who sold the device. There are

no requirements on the specific format

of this field, except that it MUST NOT be

null or the empty string ("").

android.os.Build.DEVICE

A value chosen by the device

implementer identifying the specific

configuration or revision of the body

(sometimes called "industrial design")

of the device. There are no

requirements on the specific format of

this field, except that it MUST NOT be

null or the empty string ("").

android.os.Build.FINGERPRINT

A string that uniquely identifies this

build. It SHOULD be reasonably human-

readable. It MUST follow this template:

$(BRAND)/$(PRODUCT)/$(DEVICE)

/$(BOARD):$(VERSION.RELEASE)/$(ID)

/$(VERSION.INCREMENTAL):$(TYPE)/$(TAGS)

For example:

acme/mydevice/generic/generic:2.1-update1/ERC77

/3359:userdebug/test-keys

The fingerprint MUST NOT include

spaces. If other fields included in the

template above have spaces, they

SHOULD be replaced with the ASCII

underscore ("_") character in the

fingerprint.

android.os.Build.HOST

A string that uniquely identifies the host

the build was built on, in human

readable format. There are no

requirements on the specific format of

this field, except that it MUST NOT be

null or the empty string ("").

5 of 25

android.os.Build.ID

An identifier chosen by the device

implementer to refer to a specific

release, in human readable format. This

field can be the same as

android.os.Build.VERSION.INCREMENTAL,

but SHOULD be a value sufficiently

meaningful for end users to distinguish

between software builds. There are no

requirements on the specific format of

this field, except that it MUST NOT be

null or the empty string ("").

android.os.Build.MODEL

A value chosen by the device

implementer containing the name of

the device as known to the end user.

This SHOULD be the same name under

which the device is marketed and sold

to end users. There are no

requirements on the specific format of

this field, except that it MUST NOT be

null or the empty string ("").

android.os.Build.PRODUCT

A value chosen by the device

implementer containing the

development name or code name of the

device. MUST be human-readable, but is

not necessarily intended for view by end

users. There are no requirements on

the specific format of this field, except

that it MUST NOT be null or the empty

string ("").

android.os.Build.TAGS

A comma-separated list of tags chosen

by the device implementer that further

distinguish the build. For example,

"unsigned,debug". This field MUST NOT

be null or the empty string (""), but a

single tag (such as "release") is fine.

android.os.Build.TIME
A value representing the timestamp of

when the build occurred.

android.os.Build.TYPE

A value chosen by the device

implementer specifying the runtime

configuration of the build. This field

SHOULD have one of the values

corresponding to the three typical

Android runtime configurations: "user",

6 of 25

"userdebug", or "eng".

android.os.Build.USER

A name or user ID of the user (or

automated user) that generated the

build. There are no requirements on the

specific format of this field, except that

it MUST NOT be null or the empty string

("").

3.2.3. Intent Compatibility

Android uses Intents to achieve loosely-coupled integration between applications.

This section describes requirements related to the Intent patterns that MUST be

honored by device implementations. By "honored", it is meant that the device

implementer MUST provide an Android Activity or Service that specifies a matching

Intent filter and binds to and implements correct behavior for each specified Intent

pattern.

3.2.3.1. Core Application Intents

The Android upstream project defines a number of core applications, such as a

phone dialer, calendar, contacts book, music player, and so on. Device

implementers MAY replace these applications with alternative versions.

However, any such alternative versions MUST honor the same Intent patterns

provided by the upstream project. For example, if a device contains an alternative

music player, it must still honor the Intent pattern issued by third-party applications

to pick a song.

The following applications are considered core Android system applications:

Desk Clock

Browser

Calendar

Calculator

Camera

Contacts

Email

Gallery

GlobalSearch

Launcher

LivePicker (that is, the Live Wallpaper picker application; MAY be omitted if the

device does not support Live Wallpapers, per Section 3.8.5.)

Messaging (AKA "Mms")

Music

Phone

7 of 25

Settings

SoundRecorder

The core Android system applications include various Activity, or Service components

that are considered "public". That is, the attribute "android:exported" may be

absent, or may have the value "true".

For every Activity or Service defined in one of the core Android system apps that is

not marked as non-public via an android:exported attribute with the value "false",

device implementations MUST include a compontent of the same type implementing

the same Intent filter patterns as the core Android system app.

In other words, a device implementation MAY replace core Android system apps;

however, if it does, the device implementation MUST support all Intent patterns

defined by each core Android system app being replaced.

3.2.3.2. Intent Overrides

As Android is an extensible platform, device implementers MUST allow each Intent

pattern described in Appendix A to be overridden by third-party applications. The

upstream Android open source project allows this by default; device implementers

MUST NOT attach special privileges to system applications' use of these Intent

patterns, or prevent third-party applications from binding to and assuming control of

these patterns. This prohibition specifically includes but is not limited to disabling

the "Chooser" user interface which allows the user to select between multiple

applications which all handle the same Intent pattern.

3.2.3.3. Intent Namespaces

Device implementers MUST NOT include any Android component that honors any new

Intent or Broadcast Intent patterns using an ACTION, CATEGORY, or other key string

in the android.* namespace. Device implementers MUST NOT include any Android

components that honor any new Intent or Broadcast Intent patterns using an

ACTION, CATEGORY, or other key string in a package space belonging to another

organization. Device implementers MUST NOT alter or extend any of the Intent

patterns used by the core apps listed in Section 3.2.3.1.

This prohibition is analogous to that specified for Java language classes in Section

3.6.

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify

them of changes in the hardware or software environment. Android-compatible

devices MUST broadcast the public broadcast Intents in response to appropriate

system events. Broadcast Intents are described in the SDK documentation.

8 of 25

3.3. Native API Compatibility

Managed code running in Dalvik can call into native code provided in the application

.apk file as an ELF .so file compiled for the appropriate device hardware

architecture. Device implementations MUST include support for code running in the

managed environment to call into native code, using the standard Java Native

Interface (JNI) semantics. The following APIs MUST be available to native code:

libc (C library)

libm (math library)

JNI interface

libz (Zlib compression)

liblog (Android logging)

Minimal support for C++

Support for OpenGL, as described below

Device implementations MUST support OpenGL ES 1.0. Devices that lack hardware

acceleration MUST implement OpenGL ES 1.0 using a software renderer. Device

implementations SHOULD implement as much of OpenGL ES 1.1 as the device

hardware supports. Device implementations SHOULD provide an implementation for

OpenGL ES 2.0, if the hardware is capable of reasonable performance on those APIs.

These libraries MUST be source-compatible (i.e. header compatible) and binary-

compatible (for a given processor architecture) with the versions provided in Bionic

by the Android Open Source project. Since the Bionic implementations are not fully

compatible with other implementations such as the GNU C library, device

implementers SHOULD use the Android implementation. If device implementers use a

different implementation of these libraries, they MUST ensure header, binary, and

behavioral compatibility.

Device implementations MUST accurately report the native Application Binary

Interface (ABI) supported by the device, via the android.os.Build.CPU_ABI API. The ABI

MUST be one of the entries documented in the latest version of the Android NDK, in

the file docs/CPU-ARCH-ABIS.txt. Note that additional releases of the Android NDK may

introduce support for additional ABIs.

Native code compatibility is challenging. For this reason, it should be repeated that

device implementers are VERY strongly encouraged to use the upstream

implementations of the libraries listed above, to help ensure compatibility.

3.4. Web API Compatibility

Many developers and applications rely on the behavior of the android.webkit.WebView class

[Resources, 8] for their user interfaces, so the WebView implementation must be

compatible across Android implementations. The Android Open Source

implementation uses the WebKit rendering engine to implement the WebView.

9 of 25

Because it is not feasible to develop a comprehensive test suite for a web browser,

device implementers MUST use the specific upstream build of WebKit in the WebView

implementation. Specifically:

WebView MUST use the 530.17 WebKit build from the upstream Android Open

Source tree for Android 2.1. This build includes a specific set of functionality

and security fixes for the WebView.

The user agent string reported by the WebView MUST be in this format:

Mozilla/5.0 (Linux; U; Android $(VERSION); $(LOCALE); $(MODEL) Build/$(BUILD)) AppleWebKit/530.17

(KHTML, like Gecko) Version/4.0 Mobile Safari/530.17

The value of the $(VERSION) string MUST be the same as the value for

android.os.Build.VERSION.RELEASE

The value of the $(LOCALE) string SHOULD follow the ISO conventions for

country code and language, and SHOULD refer to the current configured

locale of the device

The value of the $(MODEL) string MUST be the same as the value for

android.os.Build.MODEL

The value of the $(BUILD) string MUST be the same as the value for

android.os.Build.ID

Implementations MAY ship a custom user agent string in the standalone Browser

application. What's more, the standalone Browser MAY be based on an alternate

browser technology (such as Firefox, Opera, etc.) However, even if an alternate

Browser application is shipped, the WebView component provided to third-party

applications MUST be based on WebKit, as above.

The WebView configuration MUST include support for the HTML5 database,

application cache, and geolocation APIs [Resources, 9]. The WebView MUST include

support for the HTML5 <video> tag in some form. The standalone Browser application

(whether based on the upstream WebKit Browser application or a third-party

replacement) MUST include support for the same HTML5 features just listed for

WebView.

3.5. API Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be

consistent with the preferred implementation of the upstream Android open-source

project [Resources, 3]. Some specific areas of compatibility are:

Devices MUST NOT change the behavior or meaning of a standard Intent

Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of

system component (such as Service, Activity, ContentProvider, etc.)

Devices MUST NOT change the semantics of a particular permission

The above list is not comprehensive, and the onus is on device implementers to

ensure behavioral compatibility. For this reason, device implementers SHOULD use

the source code available via the Android Open Source Project where possible,

10 of 25

rather than re-implement significant parts of the system.

The Compatibility Test Suite (CTS) tests significant portions of the platform for

behavioral compatibility, but not all. It is the responsibility of the implementer to

ensure behavioral compatibility with the Android Open Source Project.

3.6. API Namespaces

Android follows the package and class namespace conventions defined by the Java

programming language. To ensure compatibility with third-party applications, device

implementers MUST NOT make any prohibited modifications (see below) to these

package namespaces:

java.*

javax.*

sun.*

android.*

com.android.*

Prohibited modifications include:

Device implementations MUST NOT modify the publicly exposed APIs on the

Android platform by changing any method or class signatures, or by removing

classes or class fields.

Device implementers MAY modify the underlying implementation of the APIs, but

such modifications MUST NOT impact the stated behavior and Java-language

signature of any publicly exposed APIs.

Device implementers MUST NOT add any publicly exposed elements (such as

classes or interfaces, or fields or methods to existing classes or interfaces) to

the APIs above.

A "publicly exposed element" is any construct which is not decorated with the

"@hide" marker in the upstream Android source code. In other words, device

implementers MUST NOT expose new APIs or alter existing APIs in the namespaces

noted above. Device implementers MAY make internal-only modifications, but those

modifications MUST NOT be advertised or otherwise exposed to developers.

Device implementers MAY add custom APIs, but any such APIs MUST NOT be in a

namespace owned by or referring to another organization. For instance, device

implementers MUST NOT add APIs to the com.google.* or similar namespace; only

Google may do so. Similarly, Google MUST NOT add APIs to other companies'

namespaces.

If a device implementer proposes to improve one of the package namespaces above

(such as by adding useful new functionality to an existing API, or adding a new API),

the implementer SHOULD visit source.android.com and begin the process for

contributing changes and code, according to the information on that site.

11 of 25

Note that the restrictions above correspond to standard conventions for naming

APIs in the Java programming language; this section simply aims to reinforce those

conventions and make them binding through inclusion in this compatibility definition.

3.7. Virtual Machine Compatibility

Device implementations MUST support the full Dalvik Executable (DEX) bytecode

specification and Dalvik Virtual Machine semantics [Resources, 10].

Device implementations MUST configure Dalvik to allocate at least 16MB of memory

to each application on devices with screens classified as medium- or low-density.

Device implementations MUST configure Dalvik to allocate at least 24MB of memory

to each application on devices with screens classified as high-density. Note that

device implementations MAY allocate more memory than these figures, but are not

required to.

3.8. User Interface Compatibility

The Android platform includes some developer APIs that allow developers to hook

into the system user interface. Device implementations MUST incorporate these

standard UI APIs into custom user interfaces they develop, as explained below.

3.8.1. Widgets

Android defines a component type and corresponding API and lifecycle that allows

applications to expose an "AppWidget" to the end user [Resources, 11]. The Android

Open Source reference release includes a Launcher application that includes user

interface elements allowing the user to add, view, and remove AppWidgets from the

home screen.

Device implementers MAY substitute an alternative to the reference Launcher (i.e.

home screen). Alternative Launchers SHOULD include built-in support for

AppWidgets, and expose user interface elements to add, configure, view, and

remove AppWidgets directly within the Launcher. Alternative Launchers MAY omit

these user interface elements; however, if they are omitted, the device implementer

MUST provide a separate application accessible from the Launcher that allows users

to add, configure, view, and remove AppWidgets.

3.8.2. Notifications

Android includes APIs that allow developers to notify users of notable events

[Resources, 12]. Device implementers MUST provide support for each class of

notification so defined; specifically: sounds, vibration, light and status bar.

Additionally, the implementation MUST correctly render all resources (icons, sound

files, etc.) provided for in the APIs [Resources, 13], or in the Status Bar icon style

12 of 25

guide [Resources, 14]. Device implementers MAY provide an alternative user

experience for notifications than that provided by the reference Android Open

Source implementation; however, such alternative notification systems MUST

support existing notification resources, as above.

3.8.3. Search

Android includes APIs [Resources, 15] that allow developers to incorporate search

into their applications, and expose their application's data into the global system

search. Generally speaking, this functionality consists of a single, system-wide user

interface that allows users to enter queries, displays suggestions as users type, and

displays results. The Android APIs allow developers to reuse this interface to provide

search within their own apps, and allow developers to supply results to the common

global search user interface.

Device implementations MUST include a single, shared, system-wide search user

interface capable of real-time suggestions in response to user input. Device

implementations MUST implement the APIs that allow developers to reuse this user

interface to provide search within their own applications. Device implementations

MUST implement the APIs that allow third-party applications to add suggestions to

the search box when it is run in global search mode. If no third-party applications

are installed that make use of this functionality, the default behavior SHOULD be to

display web search engine results and suggestions.

Device implementations MAY ship alternate search user interfaces, but SHOULD

include a hard or soft dedicated search button, that can be used at any time within

any app to invoke the search framework, with the behavior provided for in the API

documentation.

3.8.4. Toasts

Applications can use the "Toast" API (defined in [Resources, 16]) to display short

non-modal strings to the end user, that disappear after a brief period of time.

Device implementations MUST display Toasts from applications to end users in some

high-visibility manner.

3.8.5. Live Wallpapers

Android defines a component type and corresponding API and lifecycle that allows

applications to expose one or more "Live Wallpapers" to the end user [Resources,

17]. Live Wallpapers are animations, patterns, or similar images with limited input

capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live

wallpapers, with no limitations on functionality, at a reasonable framerate with no

adverse affects on other applications. If limitations in the hardware cause

wallpapers and/or applications to crash, malfunction, consume excessive CPU or

13 of 25

battery power, or run at unacceptably low frame rates, the hardware is considered

incapable of running live wallpaper. As an example, some live wallpapers may use an

Open GL 1.0 or 2.0 context to render their content. Live wallpaper will not run reliably

on hardware that does not support multiple OpenGL contexts because the live

wallpaper use of an OpenGL context may conflict with other applications that also

use an OpenGL context.

Device implemenations capable of running live wallpapers reliably as described

above SHOULD implement live wallpapers. Device implementations determined to not

run live wallpapers reliably as described above MUST NOT implement live wallpapers.

4. Reference Software Compatibility

Device implementers MUST test implementation compatibility using the following

open-source applications:

Calculator (included in SDK)

Lunar Lander (included in SDK)

The "Apps for Android" applications [Resources, 18].

Each app above MUST launch and behave correctly on the implementation, for the

implementation to be considered compatible.

Additionally, device implementations MUST test each menu item (including all

sub-menus) of each of these smoke-test applications:

ApiDemos (included in SDK)

ManualSmokeTests (included in CTS)

Each test case in the applications above MUST run correctly on the device

implementation.

5. Application Packaging Compatibility

Device implementations MUST install and run Android ".apk" files as generated by

the "aapt" tool included in the official Android SDK [Resources, 19].

Devices implementations MUST NOT extend either the .apk [Resources, 20], Android

Manifest [Resources, 21], or Dalvik bytecode [Resources, 10] formats in such a way

that would prevent those files from installing and running correctly on other

compatible devices. Device implementers SHOULD use the reference upstream

implementation of Dalvik, and the reference implementation's package management

system.

6. Multimedia Compatibility

14 of 25

Device implemenations MUST support the following multimedia codecs. All of these

codecs are provided as software implementations in the preferred Android

implementation from the Android Open Source Project.

Please note that neither Google nor the Open Handset Alliance make any

representation that these codecs are unencumbered by third-party patents. Those

intending to use this source code in hardware or software products are advised that

implementations of this code, including in open source software or shareware, may

require patent licenses from the relevant patent holders.

Audio

Name Encoder Decoder Details
File/Container

Format

AAC LC/LTP X Mono/Stereo

content in any

combination of

standard bit rates

up to 160 kbps

and sampling

rates between 8

to 48kHz

3GPP (.3gp)

and MPEG-4

(.mp4, .m4a).

No support for

raw AAC (.aac)

HE-AACv1

(AAC+)
 X

HE-AACv2

(enhanced

AAC+)

 X

AMR-NB X X
4.75 to 12.2 kbps

sampled @ 8kHz
3GPP (.3gp)

AMR-WB X

9 rates from 6.60

kbit/s to 23.85

kbit/s sampled @

16kHz

3GPP (.3gp)

MP3 X

Mono/Stereo

8-320Kbps

constant (CBR) or

variable bit-rate

(VBR)

MP3 (.mp3)

MIDI X

MIDI Type 0 and 1.

DLS Version 1 and

2. XMF and Mobile

XMF. Support for

ringtone formats

RTTTL/RTX, OTA,

and iMelody

Type 0 and 1

(.mid, .xmf,

.mxmf). Also

RTTTL/RTX

(.rtttl, .rtx), OTA

(.ota), and

iMelody (.imy)

Ogg Vorbis X Ogg (.ogg)

PCM X

8- and 16-bit

linear PCM (rates

up to limit of

hardware)

WAVE (.wav)

15 of 25

JPEG X X base+progressive

GIF X

PNG X X

BMP X

Video

H.263 X X
3GPP (.3gp)

files

H.264 X

3GPP (.3gp)

and MPEG-4

(.mp4) files

MPEG4

Simple

Profile

 X 3GPP (.3gp) file

Note that the table above does not list specific bitrate requirements for most video

codecs. The reason for this is that in practice, current device hardware does not

necessarily support bitrates that map exactly to the required bitrates specified by

the relevant standards. Instead, device implementations SHOULD support the

highest bitrate practical on the hardware, up to the limits defined by the

specifications.

7. Developer Tool Compatibility

Device implemenations MUST support the Android Developer Tools provided in the

Android SDK. Specifically, Android-compatible devices MUST be compatible with:

Android Debug Bridge (known as adb) [Resources, 19]

Device implementations MUST support all adb functions as documented in the

Android SDK. The device-side adb daemon SHOULD be inactive by default, but

there MUST be a user-accessible mechanism to turn on the Android Debug

Bridge.

Dalvik Debug Monitor Service (known as ddms) [Resources, 19]

Device implementations MUST support all ddms features as documented in the

Android SDK. As ddms uses adb, support for ddms SHOULD be inactive by default, but

MUST be supported whenever the user has activated the Android Debug Bridge,

as above.

Monkey [Resources, 22]

Device implementations MUST include the Monkey framework, and make it

available for applications to use.

8. Hardware Compatibility

16 of 25

Android is intended to support device implementers creating innovative form factors

and configurations. At the same time Android developers expect certain hardware,

sensors and APIs across all Android device. This section lists the hardware features

that all Android 2.1 compatible devices must support.

If a device includes a particular hardware component that has a corresponding API

for third-party developers, the device implementation MUST implement that API as

defined in the Android SDK documentation. If an API in the SDK interacts with a

hardware component that is stated to be optional and the device implementation

does not possess that component:

class definitions for the component's APIs MUST be present

the API's behaviors MUST be implemented as no-ops in some reasonable

fashion

API methods MUST return null values where permitted by the SDK

documentation

API methods MUST return no-op implementations of classes where null values

are not permitted by the SDK documentation

A typical example of a scenario where these requirements apply is the telephony API:

even on non-phone devices, these APIs must be implemented as reasonable no-ops.

Device implementations MUST accurate report accurate hardware configuration

information via the getSystemAvailableFeatures() and hasSystemFeature(String) methods on the

android.content.pm.PackageManager class.

8.1. Display

Android 2.1 includes facilities that perform certain automatic scaling and

transformation operations under some circumstances, to ensure that third-party

applications run reasonably well on a variety of hardware configurations [Resources,

23]. Devices MUST properly implement these behaviors, as detailed in this section.

For Android 2.1, this are the most common display configurations:

Screen

Type

Width

(Pixels)

Height

(Pixels)

Diagonal Length

Range (inches)

Screen

Size Group

Screen

Density

Group

QVGA 240 320 2.6 - 3.0 Small Low

WQVGA 240 400 3.2 - 3.5 Normal Low

FWQVGA 240 432 3.5 - 3.8 Normal Low

HVGA 320 480 3.0 - 3.5 Normal Medium

WVGA 480 800 3.3 - 4.0 Normal High

17 of 25

FWVGA 480 854 3.5 - 4.0 Normal High

WVGA 480 800 4.8 - 5.5 Large Medium

FWVGA 480 854 5.0 - 5.8 Large Medium

Device implementations corresponding to one of the standard configurations above

MUST be configured to report the indicated screen size to applications via the

android.content.res.Configuration [Resources, 24] class.

Some .apk packages have manifests that do not identify them as supporting a

specific density range. When running such applications, the following constraints

apply:

Device implementations MUST interpret resources in a .apk that lack a density

qualifier as defaulting to "medium" (known as "mdpi" in the SDK

documentation.)

When operating on a "low" density screen, device implementations MUST scale

down medium/mdpi assets by a factor of 0.75.

When operating on a "high" density screen, device implementations MUST scale

up medium/mdpi assets by a factor of 1.5.

Device implementations MUST NOT scale assets within a density range, and

MUST scale assets by exactly these factors between density ranges.

8.1.2. Non-Standard Display Configurations

Display configurations that do not match one of the standard configurations listed in

Section 8.1.1 require additional consideration and work to be compatible. Device

implementers MUST contact Android Compatibility Team as provided for in Section 12

to obtain classifications for screen-size bucket, density, and scaling factor. When

provided with this information, device implementations MUST implement them as

specified.

Note that some display configurations (such as very large or very small screens, and

some aspect ratios) are fundamentally incompatible with Android 2.1; therefore

device implementers are encouraged to contact Android Compatibility Team as early

as possible in the development process.

8.1.3. Display Metrics

Device implementations MUST report correct valuesfor all display metrics defined in

android.util.DisplayMetrics [Resources, 25].

8.2. Keyboard

Device implementations:

18 of 25

MUST include support for the Input Management Framework (which allows third

party developers to create Input Management Engines -- i.e. soft keyboard) as

detailed at developer.android.com

MUST provide at least one soft keyboard implementation (regardless of whether

a hard keyboard is present)

MAY include additional soft keyboard implementations

MAY include a hardware keyboard

MUST NOT include a hardware keyboard that does not match one of the formats

specified in android.content.res.Configuration.keyboard [Resources, 24] (that is, QWERTY,

or 12-key)

8.3. Non-touch Navigation

Device implementations:

MAY omit a non-touch navigation options (that is, may omit a trackball, d-pad,

or wheel)

MUST report the correct value for android.content.res.Configuration.navigation

[Resources, 24]

8.4. Screen Orientation

Compatible devices MUST support dynamic orientation by applications to either

portrait or landscape screen orientation. That is, the device must respect the

application's request for a specific screen orientation. Device implementations MAY

select either portrait or landscape orientation as the default.

Devices MUST report the correct value for the device's current orientation, whenever

queried via the android.content.res.Configuration.orientation,

android.view.Display.getOrientation(), or other APIs.

8.5. Touchscreen input

Device implementations:

MUST have a touchscreen

MAY have either capacative or resistive touchscreen

MUST report the value of android.content.res.Configuration [Resources, 24] reflecting

corresponding to the type of the specific touchscreen on the device

8.6. USB

Device implementations:

MUST implement a USB client, connectable to a USB host with a standard USB-A

19 of 25

port

MUST implement the Android Debug Bridge over USB (as described in Section 7)

MUST implement the USB mass storage specification, to allow a host connected

to the device to access the contents of the /sdcard volume

SHOULD use the micro USB form factor on the device side

MAY include a non-standard port on the device side, but if so MUST ship with a

cable capable of connecting the custom pinout to standard USB-A port

8.7. Navigation keys

The Home, Menu and Back functions are essential to the Android navigation

paradigm. Device implementations MUST make these functions available to the user

at all times, regardless of application state. These functions SHOULD be

implemented via dedicated buttons. They MAY be implemented using software,

gestures, touch panel, etc., but if so they MUST be always accessible and not

obscure or interfere with the available application display area.

Device implementers SHOULD also provide a dedicated search key. Device

implementers MAY also provide send and end keys for phone calls.

8.8. Wireless Data Networking

Device implementations MUST include support for wireless high-speed data

networking. Specifically, device implementations MUST include support for at least

one wireless data standard capable of 200Kbit/sec or greater. Examples of

technologies that satisfy this requirement include EDGE, HSPA, EV-DO, 802.11g, etc.

If a device implementation includes a particular modality for which the Android SDK

includes an API (that is, WiFi, GSM, or CDMA), the implementation MUST support the

API.

Devices MAY implement more than one form of wireless data connectivity. Devices

MAY implement wired data connectivity (such as Ethernet), but MUST nonetheless

include at least one form of wireless connectivity, as above.

8.9. Camera

Device implementations MUST include a camera. The included camera:

MUST have a resolution of at least 2 megapixels

SHOULD have either hardware auto-focus, or software auto-focus implemented

in the camera driver (transparent to application software)

MAY have fixed-focus or EDOF (extended depth of field) hardware

MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be

lit while an android.hardware.Camera.PreviewCallback instance has been

20 of 25

registered on a Camera preview surface, unless the application has explicitly

enabled the flash by enabling the FLASH_MODE_AUTO or FLASH_MODE_ON attributes of a

Camera.Parameters object. Note that this constraint does not apply to the device's

built-in system camera application, but only to third-party applications using

Camera.PreviewCallback.

Device implementations MUST implement the following behaviors for the camera-

related APIs:

If an application has never called

android.hardware.Camera.Parameters.setPreviewFormat(int), then the device

MUST use android.hardware.PixelFormat.YCbCr_420_SP for preview data

provided to application callbacks.

1.

If an application registers an android.hardware.Camera.PreviewCallback

instance and the system calls the onPreviewFrame() method when the preview

format is YCbCr_420_SP, the data in the byte[] passed into onPreviewFrame()

must further be in the NV21 encoding format. (This is the format used natively

by the 7k hardware family.) That is, NV21 MUST be the default.

2.

Device implementations MUST implement the full Camera API included in the Android

2.1 SDK documentation [Resources, 26]), regardless of whether the device includes

hardware autofocus or other capabilities. For instance, cameras that lack autofocus

MUST still call any registered android.hardware.Camera.AutoFocusCallback instances (even

though this has no relevance to a non-autofocus camera.)

Device implementations MUST recognize and honor each parameter name defined

as a constant on the android.hardware.Camera.Parameters class, if the underlying hardware

supports the feature. If the device hardware does not support a feature, the API

must behave as documented. Conversely, Device implementations MUST NOT honor

or recognize string constants passed to the android.hardware.Camera.setParameters() method

other than those documented as constants on the android.hardware.Camera.Parameters,

unless the constants are prefixed with a string indicating the name of the device

implementer. That is, device implementations MUST support all standard Camera

parameters if the hardware allows, and MUST NOT support custom Camera

parameter types unless the parameter names are clearly indicated via a string prefix

to be non-standard.

8.10. Accelerometer

Device implementations MUST include a 3-axis accelerometer and MUST be able to

deliver events at 50 Hz or greater. The coordinate system used by the

accelerometer MUST comply with the Android sensor coordinate system as detailed

in the Android APIs (see [Resources, 27]).

8.11. Compass

21 of 25

Device implementations MUST include a 3-axis compass and MUST be able to deliver

events 10 Hz or greater. The coordinate system used by the compass MUST comply

with the Android sensor coordinate system as defined in the Android API (see

[Resources, 27]).

8.12. GPS

Device implementations MUST include a GPS, and SHOULD include some form of

"assisted GPS" technique to minimize GPS lock-on time.

8.13. Telephony

Android 2.1 MAY be used on devices that do not include telephony hardware. That

is, Android 2.1 is compatible with devices that are not phones. However, if a device

implementation does include GSM or CDMA telephony, it MUST implement the full

support for the API for that technology. Device implementations that do not include

telephony hardware MUST implement the full APIs as no-ops.

See also Section 8.8, Wireless Data Networking.

8.14. Memory and Storage

Device implementations MUST have at least 92MB of memory available to the kernel

and userspace. The 92MB MUST be in addition to any memory dedicated to

hardware components such as radio, memory, and so on that is not under the

kernel's control.

Device implementations MUST have at least 290MB of non-volatile storage available

for user data. That is, the /data partition must be at least 290MB.

9. Performance Compatibility

One of the goals of the Android Compatibility Program is to enable consistent

application experience to consumers. Compatible implementations must ensure not

only that applications simply run correctly on the device, but that they do so with

reasonable performance and overall good user experience. Device implementations

MUST meet the key performance metrics of an Android 2.1 compatible device

defined in the table below:

Metric Performance Threshold Comments

22 of 25

Application

Launch Time

The following applications

should launch within the

specified time.

Browser: less than

1300ms

MMS/SMS: less than

700ms

AlarmClock: less than

650ms

The launch time is measured as

the total time to complete

loading the default activity for

the application, including the

time it takes to start the Linux

process, load the Android

package into the Dalvik VM,

and call onCreate.

Simultaneous

Applications

When multiple applications

have been launched,

re-launching an already-

running application after it

has been launched must take

less than the original launch

time.

10. Security Model Compatibility

Device implementations MUST implement a security model consistent with the

Android platform security model as defined in Security and Permissions reference

document in the APIs [Resources, 28] in the Android developer documentation.

Device implementations MUST support installation of self-signed applications without

requiring any additional permissions/certificates from any third parties/authorities.

Specifically, compatible devices MUST support the security mechanisms described in

the follow sub-sections.

10.1. Permissions

Device implementations MUST support the Android permissions model as defined in

the Android developer documentation [Resources, 28]. Specifically, implementations

MUST enforce each permission defined as described in the SDK documentation; no

permissions may be omitted, altered, or ignored. Implementations MAY add

additional permissions, provided the new permission ID strings are not in the

android.* namespace.

10.2. UID and Process Isolation

Device implementations MUST support the Android application sandbox model, in

which each application runs as a unique Unix-style UID and in a separate process.

23 of 25

Device implementations MUST support running multiple applications as the same

Linux user ID, provided that the applications are properly signed and constructed, as

defined in the Security and Permissions reference [Resources, 28].

10.3. Filesystem Permissions

Device implementations MUST support the Android file access permissions model as

defined in as defined in the Security and Permissions reference [Resources, 28].

11. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS)

[Resources, 2] available from the Android Open Source Project, using the final

shipping software on the device. Additionally, device implementers SHOULD use the

reference implementation in the Android Open Source tree as much as possible, and

MUST ensure compatibility in cases of ambiguity in CTS and for any

reimplementations of parts of the reference source code.

The CTS is designed to be run on an actual device. Like any software, the CTS may

itself contain bugs. The CTS will be versioned independently of this Compatibility

Definition, and multiple revisions of the CTS may be released for Android 2.1. Device

implementations MUST pass the latest CTS version available at the time the device

software is completed.

12. Updatable Software

Device implementations MUST include a mechanism to replace the entirety of the

system software. The mechanism need not perform "live" upgrades -- that is, a

device restart MAY be required.

Any method can be used, provided that it can replace the entirety of the software

preinstalled on the device. For instance, any of the following approaches will satisfy

this requirement:

Over-the-air (OTA) downloads with offline update via reboot

"Tethered" updates over USB from a host PC

"Offline" updates via a reboot and update from a file on removable storage

The update mechanism used MUST support updates without wiping user data. Note

that the upstream Android software includes an update mechanism that satisfies

this requirement.

If an error is found in a device implementation after it has been released but within

its reasonable product lifetime that is determined in consultation with the Android

Compatibility Team to affect the compatibility of thid-party applications, the device

24 of 25

implementer MUST correct the error via a software update available that can be

applied per the mechanism just described.

13. Contact Us

You can contact the document authors at compatibility@android.com for

clarifications and to bring up any issues that you think the document does not

cover.

25 of 25

