1 of 25

Android 2.1 Compatibility Definition

Google Inc.
compatibility@android.com

1. Introduction

This document enumerates the requirements that must be met in order for mobile
phones to be compatible with Android 2.1.

The use of "must"”, "must not", "required"”, "shall", "shall not", "should", "should not",
"recommended"”, "may" and "optional" is per the IETF standard defined in RFC2119
[Resources, 1].

As used in this document, a "device implementer" or "implementer" is a person or
organization developing a hardware/software solution running Android 2.1. A "device
implementation” or "implementation" is the hardware/software solution so
developed.

To be considered compatible with Android 2.1, device implementations:

e MUST meet the requirements presented in this Compatibility Definition,
including any documents incorporated via reference.

e MUST pass the most recent version of the Android Compatibility Test Suite (CTS)
available at the time of the device implementation's software is completed. (The
CTS is available as part of the Android Open Source Project [Resources, 2].) The
CTS tests many, but not all, of the components outlined in this document.

Where this definition or the CTS is silent, ambiguous, or incomplete, it is the
responsibility of the device implementer to ensure compatibility with existing
implementations. For this reason, the Android Open Source Project [Resources, 3] is
both the reference and preferred implementation of Android. Device implementers
are strongly encouraged to base their implementations on the "upstream" source
code available from the Android Open Source Project. While some components can
hypothetically be replaced with alternate implementations this practice is strongly
discouraged, as passing the CTS tests will become substantially more difficult. It is
the implementer's responsibility to ensure full behavioral compatibility with the
standard Android implementation, including and beyond the Compatibility Test Suite.
Finally, note that certain component substitutions and modifications are explicitly
forbidden by this document.

2. Resources

=

. [ETF RFC2119 Requirement Levels: http://www.ietf.org/rfc/rfc2119.txt
2. Android Compatibility Program Overview: http://source.android.com/compatibility
[index.html
3. Android Open Source Project: http://source.android.com/
4. API definitions and documentation: http://developer.android.com/reference
[packages.html
5. Android Permissions reference: http://developer.android.com/reference/android
[Manifest.permission.html
6. android.os.Build reference: http://developer.android.com/reference/android
[os/Build.html
7. Android 2.1 allowed version strings: http://source.android.com/compatibility
[2.1/versions.xhtml
8. android.webkit.WebView class: http://developer.android.com/reference/android
[webkit/WebView.html
9. HTML5: http://www.whatwg.org/specs/web-apps/current-work/multipage/
10. Dalvik Virtual Machine specification: available in the Android source code, at
dalvik/docs
11. AppWidgets: http://developer.android.com/quide/practices/ui_guidelines
[widget_design.html
12. Notifications: http://developer.android.com/gquide/topics/ui/notifiers
[notifications.html
13. Application Resources: http://code.google.com/android/reference/available-
resources.html
14. Status Bar icon style guide: http://developer.android.com/quide/practices
[ui_guideline /icon_design.html#statusbarstructure
15. Search Manager: http://developer.android.com/reference/android
[app/SearchManager.html

16. Toasts: http://developer.android.com/reference/android/widget/Toast.html

17. Live Wallpapers: http://developer.android.com/resources/articles/live-
wallpapers.html

18. Apps for Android: http://code.google.com/p/apps-for-android

19. Reference tool documentation (for adb, aapt, ddms):
http://developer.android.com/quide/developing/tools/index.html

20. Android apk file description: http://developer.android.com/guide/topics
[fundamentals.html

21. Manifest files: http://developer.android.com/quide/topics/manifest/manifest-
intro.html

22. Monkey testing tool: http://developer.android.com/guide/developing/tools
[monkey.html

23. Supporting Multiple Screens: http://developer.android.com/quide/practices
[screens_support.html

24. android.content.res.Configuration: http://developer.android.com/reference
[android/content/res/Configuration.html

25. android.util.DisplayMetrics: http://developer.android.com/reference/android

2 of 25

3 of 25

[util/DisplayMetrics.html

26. android.hardware.Camera: http://developer.android.com/reference/android
[hardware/Camera.html

27. Sensor coordinate space: http://developer.android.com/reference/android
[hardware/SensorEvent.html

28. Android Security and Permissions reference: http://developer.android.com/guide
[topics/security/security.html

Many of these resources are derived directly or indirectly from the Android 2.1 SDK,
and will be functionally identical to the information in that SDK's documentation. In
any cases where this Compatibility Definition or the Compatibility Test Suite
disagrees with the SDK documentation, the SDK documentation is considered
authoritative. Any technical details provided in the references included above are
considered by inclusion to be part of this Compatibility Definition.

3. Software

The Android platform includes a set of managed APIs, a set of native APIs, and a
body of so-called "soft" APIs such as the Intent system and web-application APIs.
This section details the hard and soft APIs that are integral to compatibility, as well
as certain other relevant technical and user interface behaviors. Device
implementations MUST comply with all the requirements in this section.

3.1. Managed APl Compatibility

The managed (Dalvik-based) execution environment is the primary vehicle for
Android applications. The Android application programming interface (API) is the set
of Android platform interfaces exposed to applications running in the managed VM
environment. Device implementations MUST provide complete implementations,
including all documented behaviors, of any documented APl exposed by the Android
2.1 SDK[Resources, 4].

Device implementations MUST NOT omit any managed APIs, alter APl interfaces or
signatures, deviate from the documented behavior, or include no-ops, except where
specifically allowed by this Compatibility Definition.

3.2. Soft APl Compatibility

In addition to the managed APIs from Section 3.1, Android also includes a significant
runtime-only "soft" API, in the form of such things such as Intents, permissions, and
similar aspects of Android applications that cannot be enforced at application
compile time. This section details the "soft" APIs and system behaviors required for
compatibility with Android 2.1. Device implementations MUST meet all the
requirements presented in this section.

4 of 25

3.2.1. Permissions

Device implementers MUST support and enforce all permission constants as
documented by the Permission reference page [Resources, 5]. Note that Section 10
lists addtional requirements related to the Android security model.

3.2.2. Build Parameters

The Android APIs include a number of constants on the android.os.Build class
[Resources, 6] that are intended to describe the current device. To provide
consistent, meaningful values across device implementations, the table below
includes additional restrictions on the formats of these values to which device

implementations MUST conform.

Parameter

android.os.Build.VERSION.RELEASE

android.os.Build.VERSION.SDK

android.os.Build.VERSION.INCREMENTAL

android.os.Build.BOARD

Comments

The version of the currently-executing
Android system, in human-readable
format. This field MUST have one of the
string values defined in [Resources, 7].

The version of the currently-executing
Android system, in a format accessible
to third-party application code. For
Android 2.1, this field MUST have the
integer value 7.

A value chosen by the device
implementer designating the specific
build of the currently-executing Android
system, in human-readable format. This
value MUST NOT be re-used for different
builds shipped to end users. A typical
use of this field is to indicate which
build number or source-control change
identifier was used to generate the
build. There are no requirements on the
specific format of this field, except that
it MUST NOT be null or the empty string
(").

A value chosen by the device
implementer identifying the specific
internal hardware used by the device, in
human-readable format. A possible use
of this field is to indicate the specific
revision of the board powering the
device. There are no requirements on

5 of 25

android.os.Build.BRAND

android.os.Build.DEVICE

android.os.Build.FINGERPRINT

android.os.Build.HOST

the specific format of this field, except
that it MUST NOT be null or the empty
string ("").

A value chosen by the device
implementer identifying the name of the
company, organization, individual, etc.
who produced the device, in human-
readable format. A possible use of this
field is to indicate the OEM and/or
carrier who sold the device. There are
no requirements on the specific format
of this field, except that it MUST NOT be
null or the empty string ("").

A value chosen by the device
implementer identifying the specific
configuration or revision of the body
(sometimes called "industrial design")
of the device. There are no
requirements on the specific format of
this field, except that it MUST NOT be
null or the empty string ("").

A string that uniquely identifies this
build. It SHOULD be reasonably human-
readable. It MUST follow this template:
$(BRAND) /$ (PRODUCT) /$ (DEVICE)

/$(BOARD) : $(VERSION.RELEASE) /$(ID)

/$(VERSION. INCREMENTAL) : $(TYPE) /$ (TAGS)

For example:
acme/mydevice/generic/generic:2.1-updatel/ERC77
/3359:userdebug/test-keys

The fingerprint MUST NOT include
spaces. If other fields included in the
template above have spaces, they
SHOULD be replaced with the ASCII
underscore (" ") character in the
fingerprint.

A string that uniquely identifies the host
the build was built on, in human
readable format. There are no
requirements on the specific format of
this field, except that it MUST NOT be
null or the empty string ("").

6 of 25

android.os.Build.ID

android.os.Build.MODEL

android.os.Build.PRODUCT

android.os.Build. TAGS

android.os.Build.TIME

android.os.Build. TYPE

An identifier chosen by the device
implementer to refer to a specific
release, in human readable format. This
field can be the same as
android.os.Build.VERSION.INCREMENTAL,
but SHOULD be a value sufficiently
meaningful for end users to distinguish
between software builds. There are no
requirements on the specific format of
this field, except that it MUST NOT be
null or the empty string ("").

A value chosen by the device
implementer containing the name of
the device as known to the end user.
This SHOULD be the same name under
which the device is marketed and sold
to end users. There are no
requirements on the specific format of
this field, except that it MUST NOT be
null or the empty string ("").

A value chosen by the device
implementer containing the
development name or code name of the
device. MUST be human-readable, but is
not necessarily intended for view by end
users. There are no requirements on
the specific format of this field, except
that it MUST NOT be null or the empty
string ("").

A comma-separated list of tags chosen
by the device implementer that further
distinguish the build. For example,
"unsigned,debug". This field MUST NOT
be null or the empty string ("), but a
single tag (such as "release") is fine.

A value representing the timestamp of
when the build occurred.

A value chosen by the device
implementer specifying the runtime
configuration of the build. This field
SHOULD have one of the values
corresponding to the three typical
Android runtime configurations: "user",

7 of 25

"userdebug", or "eng".

A name or user ID of the user (or
automated user) that generated the
build. There are no requirements on the
specific format of this field, except that
it MUST NOT be null or the empty string
(").

android.os.Build.USER

3.2.3. Intent Compatibility

Android uses Intents to achieve loosely-coupled integration between applications.
This section describes requirements related to the Intent patterns that MUST be
honored by device implementations. By "honored", it is meant that the device
implementer MUST provide an Android Activity or Service that specifies a matching
Intent filter and binds to and implements correct behavior for each specified Intent
pattern.

3.2.3.1. Core Application Intents

The Android upstream project defines a number of core applications, such as a
phone dialer, calendar, contacts book, music player, and so on. Device
implementers MAY replace these applications with alternative versions.

However, any such alternative versions MUST honor the same Intent patterns
provided by the upstream project. For example, if a device contains an alternative
music player, it must still honor the Intent pattern issued by third-party applications
to pick a song.

The following applications are considered core Android system applications:

Desk Clock

Browser

Calendar

Calculator

Camera

Contacts

Email

Gallery

GlobalSearch

Launcher

LivePicker (that is, the Live Wallpaper picker application; MAY be omitted if the
device does not support Live Wallpapers, per Section 3.8.5.)
e Messaging (AKA "Mms")

e Music

e Phone

8 of 25

e Settings
e SoundRecorder

The core Android system applications include various Activity, or Service components
that are considered "public". That is, the attribute "android:exported" may be
absent, or may have the value "true".

For every Activity or Service defined in one of the core Android system apps that is
not marked as non-public via an android:exported attribute with the value "false",
device implementations MUST include a compontent of the same type implementing
the same Intent filter patterns as the core Android system app.

In other words, a device implementation MAY replace core Android system apps;
however, if it does, the device implementation MUST support all Intent patterns
defined by each core Android system app being replaced.

3.2.3.2. Intent Overrides

As Android is an extensible platform, device implementers MUST allow each Intent
pattern described in Appendix A to be overridden by third-party applications. The
upstream Android open source project allows this by default; device implementers
MUST NOT attach special privileges to system applications' use of these Intent
patterns, or prevent third-party applications from binding to and assuming control of
these patterns. This prohibition specifically includes but is not limited to disabling
the "Chooser" user interface which allows the user to select between multiple
applications which all handle the same Intent pattern.

3.2.3.3. Intent Namespaces

Device implementers MUST NOT include any Android component that honors any new
Intent or Broadcast Intent patterns using an ACTION, CATEGORY, or other key string
in the android.* namespace. Device implementers MUST NOT include any Android
components that honor any new Intent or Broadcast Intent patterns using an
ACTION, CATEGORY, or other key string in a package space belonging to another
organization. Device implementers MUST NOT alter or extend any of the Intent
patterns used by the core apps listed in Section 3.2.3.1.

This prohibition is analogous to that specified for Java language classes in Section
3.6.

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify
them of changes in the hardware or software environment. Android-compatible
devices MUST broadcast the public broadcast Intents in response to appropriate
system events. Broadcast Intents are described in the SDK documentation.

9 of 25

3.3. Native APl Compatibility

Managed code running in Dalvik can call into native code provided in the application
.apk file as an ELF .so file compiled for the appropriate device hardware
architecture. Device implementations MUST include support for code running in the
managed environment to call into native code, using the standard Java Native
Interface (JNI) semantics. The following APIs MUST be available to native code:

e libc (C library)

e libm (math library)

¢ JNI interface

e libz (Zlib compression)

e liblog (Android logging)

e Minimal support for C++

e Support for OpenGL, as described below

Device implementations MUST support OpenGL ES 1.0. Devices that lack hardware
acceleration MUST implement OpenGL ES 1.0 using a software renderer. Device
implementations SHOULD implement as much of OpenGL ES 1.1 as the device
hardware supports. Device implementations SHOULD provide an implementation for
OpenGLES 2.0, if the hardware is capable of reasonable performance on those APIs.

These libraries MUST be source-compatible (i.e. header compatible) and binary-
compatible (for a given processor architecture) with the versions provided in Bionic
by the Android Open Source project. Since the Bionic implementations are not fully
compatible with other implementations such as the GNU C library, device
implementers SHOULD use the Android implementation. If device implementers use a
different implementation of these libraries, they MUST ensure header, binary, and
behavioral compatibility.

Device implementations MUST accurately report the native Application Binary
Interface (ABI) supported by the device, via the android.os.Build.cpPu ABI API. The ABI
MUST be one of the entries documented in the latest version of the Android NDK, in
the file docs/cPu-ARCH-ABIS.txt. Note that additional releases of the Android NDK may
introduce support for additional ABIs.

Native code compatibility is challenging. For this reason, it should be repeated that
device implementers are VERY strongly encouraged to use the upstream
implementations of the libraries listed above, to help ensure compatibility.

3.4. Web APl Compatibility

Many developers and applications rely on the behavior of the android.webkit.Webview Class
[Resources, 8] for their user interfaces, so the WebView implementation must be
compatible across Android implementations. The Android Open Source
implementation uses the WebKit rendering engine to implement the WebView.

10 of 25

Because it is not feasible to develop a comprehensive test suite for a web browser,
device implementers MUST use the specific upstream build of WebKit in the WebView
implementation. Specifically:

e WebView MUST use the 530.17 WebKit build from the upstream Android Open
Source tree for Android 2.1. This build includes a specific set of functionality
and security fixes for the WebView.

e The user agent string reported by the WebView MUST be in this format:
Mozilla/5.0 (Linux; U; Android $(VERSION); $(LOCALE); $(MODEL) Build/$(BUILD)) AppleWebKit/530.17
(KHTML, 1like Gecko) Version/4.0 Mobile Safari/530.17

o The value of the $(VERSION) string MUST be the same as the value for
android.os.Build.VERSION.RELEASE

o The value of the $(LOCALE) string SHOULD follow the ISO conventions for
country code and language, and SHOULD refer to the current configured
locale of the device

o The value of the $(MODEL) string MUST be the same as the value for
android.os.Build.MODEL

o The value of the $(BUILD) string MUST be the same as the value for
android.os.Build.ID

Implementations MAY ship a custom user agent string in the standalone Browser
application. What's more, the standalone Browser MAY be based on an alternate
browser technology (such as Firefox, Opera, etc.) However, even if an alternate
Browser application is shipped, the WebView component provided to third-party
applications MUST be based on WebKit, as above.

The WebView configuration MUST include support for the HTML5 database,
application cache, and geolocation APIs [Resources, 9]. The WebView MUST include
support for the HTML5 <video> tag in some form. The standalone Browser application
(whether based on the upstream WebKit Browser application or a third-party
replacement) MUST include support for the same HTMLS features just listed for
WebView.

3.5. APl Behavioral Compatibility

The behaviors of each of the APl types (managed, soft, native, and web) must be
consistent with the preferred implementation of the upstream Android open-source
project [Resources, 3]. Some specific areas of compatibility are:

e Devices MUST NOT change the behavior or meaning of a standard Intent

e Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of
system component (such as Service, Activity, ContentProvider, etc.)

e Devices MUST NOT change the semantics of a particular permission

The above list is not comprehensive, and the onus is on device implementers to
ensure behavioral compatibility. For this reason, device implementers SHOULD use
the source code available via the Android Open Source Project where possible,

rather than re-implement significant parts of the system.

The Compatibility Test Suite (CTS) tests significant portions of the platform for
behavioral compatibility, but not all. It is the responsibility of the implementer to
ensure behavioral compatibility with the Android Open Source Project.

3.6. APl Namespaces

Android follows the package and class namespace conventions defined by the Java
programming language. To ensure compatibility with third-party applications, device
implementers MUST NOT make any prohibited modifications (see below) to these
package namespaces:

e java.*

® javax.*

e sun.*

e android.*

e com.android.*

Prohibited modifications include:

e Device implementations MUST NOT modify the publicly exposed APIs on the
Android platform by changing any method or class signatures, or by removing
classes or class fields.

e Device implementers MAY modify the underlying implementation of the APIs, but
such modifications MUST NOT impact the stated behavior and Java-language
signature of any publicly exposed APIs.

e Device implementers MUST NOT add any publicly exposed elements (such as
classes or interfaces, or fields or methods to existing classes or interfaces) to
the APIs above.

A "publicly exposed element" is any construct which is not decorated with the
"@hide" marker in the upstream Android source code. In other words, device
implementers MUST NOT expose new APIs or alter existing APIs in the namespaces
noted above. Device implementers MAY make internal-only modifications, but those
modifications MUST NOT be advertised or otherwise exposed to developers.

Device implementers MAY add custom APIs, but any such APIs MUST NOT be in a
namespace owned by or referring to another organization. For instance, device
implementers MUST NOT add APIs to the com.google.* or similar namespace; only
Google may do so. Similarly, Google MUST NOT add APIs to other companies'’
namespaces.

If a device implementer proposes to improve one of the package namespaces above
(such as by adding useful new functionality to an existing API, or adding a new API),
the implementer SHOULD visit source.android.com and begin the process for
contributing changes and code, according to the information on that site.

11 of 25

12 of 25

Note that the restrictions above correspond to standard conventions for naming
APIs in the Java programming language; this section simply aims to reinforce those
conventions and make them binding through inclusion in this compatibility definition.

3.7. Virtual Machine Compatibility

Device implementations MUST support the full Dalvik Executable (DEX) bytecode
specification and Dalvik Virtual Machine semantics [Resources, 10].

Device implementations MUST configure Dalvik to allocate at least 16 MB of memory
to each application on devices with screens classified as medium- or low-density.
Device implementations MUST configure Dalvik to allocate at least 24MB of memory
to each application on devices with screens classified as high-density. Note that
device implementations MAY allocate more memory than these figures, but are not
required to.

3.8. User Interface Compatibility

The Android platform includes some developer APIs that allow developers to hook
into the system user interface. Device implementations MUST incorporate these
standard Ul APIs into custom user interfaces they develop, as explained below.

3.8.1. Widgets

Android defines a component type and corresponding APl and lifecycle that allows
applications to expose an "AppWidget" to the end user [Resources, 11]. The Android
Open Source reference release includes a Launcher application that includes user
interface elements allowing the user to add, view, and remove AppWidgets from the
home screen.

Device implementers MAY substitute an alternative to the reference Launcher (i.e.
home screen). Alternative Launchers SHOULD include built-in support for
AppWidgets, and expose user interface elements to add, configure, view, and
remove AppWidgets directly within the Launcher. Alternative Launchers MAY omit
these user interface elements; however, if they are omitted, the device implementer
MUST provide a separate application accessible from the Launcher that allows users
to add, configure, view, and remove AppWidgets.

3.8.2. Notifications
Android includes APIs that allow developers to notify users of notable events

[Resources, 12]. Device implementers MUST provide support for each class of
notification so defined; specifically: sounds, vibration, light and status bar.

Additionally, the implementation MUST correctly render all resources (icons, sound
files, etc.) provided for in the APIs [Resources, 13], or in the Status Bar icon style

13 of 25

guide [Resources, 14]. Device implementers MAY provide an alternative user

experience for notifications than that provided by the reference Android Open
Source implementation; however, such alternative notification systems MUST

support existing notification resources, as above.

3.8.3. Search

Android includes APIs [Resources, 15] that allow developers to incorporate search
into their applications, and expose their application's data into the global system
search. Generally speaking, this functionality consists of a single, system-wide user
interface that allows users to enter queries, displays suggestions as users type, and
displays results. The Android APIs allow developers to reuse this interface to provide
search within their own apps, and allow developers to supply results to the common
global search user interface.

Device implementations MUST include a single, shared, system-wide search user
interface capable of real-time suggestions in response to user input. Device
implementations MUST implement the APIs that allow developers to reuse this user
interface to provide search within their own applications. Device implementations
MUST implement the APIs that allow third-party applications to add suggestions to
the search box when it is run in global search mode. If no third-party applications
are installed that make use of this functionality, the default behavior SHOULD be to
display web search engine results and suggestions.

Device implementations MAY ship alternate search user interfaces, but SHOULD
include a hard or soft dedicated search button, that can be used at any time within
any app to invoke the search framework, with the behavior provided for in the API
documentation.

3.8.4. Toasts

Applications can use the "Toast" API (defined in [Resources, 16]) to display short
non-modal strings to the end user, that disappear after a brief period of time.
Device implementations MUST display Toasts from applications to end users in some
high-visibility manner.

3.8.5. Live Wallpapers

Android defines a component type and corresponding APl and lifecycle that allows
applications to expose one or more "Live Wallpapers" to the end user [Resources,
17]. Live Wallpapers are animations, patterns, or similar images with limited input
capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live
wallpapers, with no limitations on functionality, at a reasonable framerate with no
adverse affects on other applications. If limitations in the hardware cause
wallpapers and/or applications to crash, malfunction, consume excessive CPU or

14 of 25

battery power, or run at unacceptably low frame rates, the hardware is considered
incapable of running live wallpaper. As an example, some live wallpapers may use an
Open GL 1.0 or 2.0 context to render their content. Live wallpaper will not run reliably
on hardware that does not support multiple OpenGL contexts because the live
wallpaper use of an OpenGL context may conflict with other applications that also
use an OpenGL context.

Device implemenations capable of running live wallpapers reliably as described
above SHOULD implement live wallpapers. Device implementations determined to not
run live wallpapers reliably as described above MUST NOT implement live wallpapers.

4. Reference Software Compatibility

Device implementers MUST test implementation compatibility using the following
open-source applications:

e Calculator (included in SDK)
e Lunar Lander (included in SDK)
e The "Apps for Android" applications [Resources, 18].

Each app above MUST launch and behave correctly on the implementation, for the
implementation to be considered compatible.

Additionally, device implementations MUST test each menu item (including all
sub-menus) of each of these smoke-test applications:

e ApiDemos (included in SDK)
e ManualSmokeTests (included in CTS)

Each test case in the applications above MUST run correctly on the device
implementation.

5. Application Packaging Compatibility

Device implementations MUST install and run Android ".apk" files as generated by
the "aapt" tool included in the official Android SDK [Resources, 19].

Devices implementations MUST NOT extend either the .apk [Resources, 20], Android
Manifest [Resources, 21], or Dalvik bytecode [Resources, 10] formats in such a way
that would prevent those files from installing and running correctly on other
compatible devices. Device implementers SHOULD use the reference upstream
implementation of Dalvik, and the reference implementation's package management
system.

6. Multimedia Compatibility

15 of 25

Device implemenations MUST support the following multimedia codecs. All of these
codecs are provided as software implementations in the preferred Android
implementation from the Android Open Source Project.

Please note that neither Google nor the Open Handset Alliance make any

representation that these codecs are unencumbered by third-party patents. Those
intending to use this source code in hardware or software products are advised that
implementations of this code, including in open source software or shareware, may
require patent licenses from the relevant patent holders.

Audio

Name

AAC LC/LTP

HE-AACv1
(AAC+)

HE-AACV2
(enhanced
AAC+H+)

AMR-NB

AMR-WB

MP3

MIDI

0Ogg Vorbis

PCM

Encoder

Decoder

X

X

Details

Mono/Stereo
content in any
combination of
standard bit rates
up to 160 kbps
and sampling
rates between 8
to 48kHz

4.75 to 12.2 kbps
sampled @ 8kHz

9 rates from 6.60
kbit/s to 23.85
kbit/s sampled @
16kHz

Mono/Stereo
8-320Kbps
constant (CBR) or
variable bit-rate
(VBR)

MIDI Type 0 and 1.
DLS Version 1 and
2. XMF and Mobile
XMF. Support for
ringtone formats
RTTTL/RTX, OTA,
and iMelody

8- and 16-bit
linear PCM (rates
up to limit of
hardware)

File/Container
Format

3GPP (.3gp)
and MPEG-4
(.mp4, .m4a).
No support for
raw AAC (.aac)

3GPP (.3gp)

3GPP (.3gp)

MP3 (.mp3)

Type 0 and 1
(.mid, .xmf,
.mxmf). Also
RTTTL/RTX
(.rtttl, .rtx), OTA
(.ota), and
iMelody (.imy)

Ogg (.099)

WAVE (.wav)

JPEG X X base+progressive

GIF X

PNG X X

BMP X

H.263 X X 3GPP (-39p)
files
3GPP (.3gp)

Video H.264 X and MPEG-4

(.mp4) files

MPEG4

Simple X 3GPP (.3gp) file

Profile

Note that the table above does not list specific bitrate requirements for most video
codecs. The reason for this is that in practice, current device hardware does not
necessarily support bitrates that map exactly to the required bitrates specified by
the relevant standards. Instead, device implementations SHOULD support the
highest bitrate practical on the hardware, up to the limits defined by the
specifications.

7. Developer Tool Compatibility

Device implemenations MUST support the Android Developer Tools provided in the
Android SDK. Specifically, Android-compatible devices MUST be compatible with:

e Android Debug Bridge (known as adb) [Resources, 19]
Device implementations MUST support all adb functions as documented in the
Android SDK. The device-side adb daemon SHOULD be inactive by default, but
there MUST be a user-accessible mechanism to turn on the Android Debug
Bridge.

e Dalvik Debug Monitor Service (known as ddms) [Resources, 19]
Device implementations MUST support all ddms features as documented in the
Android SDK. As ddms uses adb, support for ddns SHOULD be inactive by default, but
MUST be supported whenever the user has activated the Android Debug Bridge,
as above.

e Monkey [Resources, 22]
Device implementations MUST include the Monkey framework, and make it
available for applications to use.

8. Hardware Compatibility

16 of 25

17 of 25

Android is intended to support device implementers creating innovative form factors
and configurations. At the same time Android developers expect certain hardware,
sensors and APIs across all Android device. This section lists the hardware features
that all Android 2.1 compatible devices must support.

If a device includes a particular hardware component that has a corresponding API
for third-party developers, the device implementation MUST implement that API as
defined in the Android SDK documentation. If an APl in the SDK interacts with a
hardware component that is stated to be optional and the device implementation
does not possess that component:

e class definitions for the component's APIs MUST be present

e the API's behaviors MUST be implemented as no-ops in some reasonable
fashion

e APl methods MUST return null values where permitted by the SDK
documentation

e APl methods MUST return no-op implementations of classes where null values
are not permitted by the SDK documentation

A typical example of a scenario where these requirements apply is the telephony API:
even on non-phone devices, these APIs must be implemented as reasonable no-ops.

Device implementations MUST accurate report accurate hardware configuration
information via the getSystemAvailableFeatures() and hasSystemFeature(String) methods on the
android.content.pm.PackageManager Class.

8.1. Display

Android 2.1 includes facilities that perform certain automatic scaling and
transformation operations under some circumstances, to ensure that third-party
applications run reasonably well on a variety of hardware configurations [Resources,
23]. Devices MUST properly implement these behaviors, as detailed in this section.

For Android 2.1, this are the most common display configurations:

Screen Width Height Diagonal Length || Screen Scregn
Type (Pixels) (Pixels) Range (inches) Size Group Density
Group
QVGA 240 320 2.6-3.0 Small Low
WQVGA 240 400 3.2-35 Normal Low
FWQVGA 240 432 3.5-3.8 Normal Low
HVGA 320 480 3.0-3.5 Normal Medium
WVGA 480 800 3.3-4.0 Normal High

18 of 25

FWVGA 480 854 3.5-4.0 Normal High
WVGA 480 800 4.8-5.5 Large Medium
FWVGA 480 854 5.0-5.8 Large Medium

Device implementations corresponding to one of the standard configurations above
MUST be configured to report the indicated screen size to applications via the
android.content. res.Configuration [Resources, 24] class.

Some .apk packages have manifests that do not identify them as supporting a
specific density range. When running such applications, the following constraints

apply:

e Device implementations MUST interpret resources in a .apk that lack a density
qualifier as defaulting to "medium" (known as "mdpi" in the SDK
documentation.)

e When operating on a "low" density screen, device implementations MUST scale
down medium/mdpi assets by a factor of 0.75.

e When operating on a "high" density screen, device implementations MUST scale
up medium/mdpi assets by a factor of 1.5.

e Device implementations MUST NOT scale assets within a density range, and
MUST scale assets by exactly these factors between density ranges.

8.1.2. Non-Standard Display Configurations

Display configurations that do not match one of the standard configurations listed in
Section 8.1.1 require additional consideration and work to be compatible. Device
implementers MUST contact Android Compatibility Team as provided for in Section 12
to obtain classifications for screen-size bucket, density, and scaling factor. When
provided with this information, device implementations MUST implement them as
specified.

Note that some display configurations (such as very large or very small screens, and
some aspect ratios) are fundamentally incompatible with Android 2.1; therefore
device implementers are encouraged to contact Android Compatibility Team as early
as possible in the development process.

8.1.3. Display Metrics

Device implementations MUST report correct valuesfor all display metrics defined in
android.util.DisplayMetrics [Resources, 25].

8.2. Keyboard

Device implementations:

19 of 25

e MUST include support for the Input Management Framework (which allows third

party developers to create Input Management Engines -- i.e. soft keyboard) as

detailed at developer.android.com

MUST provide at least one soft keyboard implementation (regardless of whether

a hard keyboard is present)

MAY include additional soft keyboard implementations

MAY include a hardware keyboard

e MUST NOT include a hardware keyboard that does not match one of the formats
specified in android.content.res.Configuration.keyboard [Resources, 24] (that is, QWERTY,
or 12-key)

8.3. Non-touch Navigation

Device implementations:

e MAY omit a non-touch navigation options (that is, may omit a trackball, d-pad,
or wheel)

e MUST report the correct value for android.content.res.Configuration.navigation
[Resources, 24]

8.4. Screen Orientation

Compatible devices MUST support dynamic orientation by applications to either
portrait or landscape screen orientation. That is, the device must respect the
application's request for a specific screen orientation. Device implementations MAY
select either portrait or landscape orientation as the default.

Devices MUST report the correct value for the device's current orientation, whenever
gueried via the android.content.res.Configuration.orientation,
android.view.Display.getOrientation(), or other APIs.

8.5. Touchscreen input

Device implementations:

e MUST have a touchscreen

e MAY have either capacative or resistive touchscreen

e MUST report the value of android.content.res.Configuration [Resources, 24] reflecting
corresponding to the type of the specific touchscreen on the device

8.6. USB

Device implementations:

e MUST implement a USB client, connectable to a USB host with a standard USB-A

20 of 25

port

e MUST implement the Android Debug Bridge over USB (as described in Section 7)

e MUST implement the USB mass storage specification, to allow a host connected
to the device to access the contents of the /sdcard volume

e SHOULD use the micro USB form factor on the device side

e MAY include a non-standard port on the device side, but if so MUST ship with a
cable capable of connecting the custom pinout to standard USB-A port

8.7. Navigation keys

The Home, Menu and Back functions are essential to the Android navigation
paradigm. Device implementations MUST make these functions available to the user
at all times, regardless of application state. These functions SHOULD be
implemented via dedicated buttons. They MAY be implemented using software,
gestures, touch panel, etc., but if so they MUST be always accessible and not
obscure or interfere with the available application display area.

Device implementers SHOULD also provide a dedicated search key. Device
implementers MAY also provide send and end keys for phone calls.

8.8. Wireless Data Networking

Device implementations MUST include support for wireless high-speed data
networking. Specifically, device implementations MUST include support for at least
one wireless data standard capable of 200Kbit/sec or greater. Examples of
technologies that satisfy this requirement include EDGE, HSPA, EV-DO, 802.11¢q, etc.

If a device implementation includes a particular modality for which the Android SDK
includes an API (that is, WiFi, GSM, or CDMA), the implementation MUST support the
API.

Devices MAY implement more than one form of wireless data connectivity. Devices
MAY implement wired data connectivity (such as Ethernet), but MUST nonetheless
include at least one form of wireless connectivity, as above.

8.9. Camera

Device implementations MUST include a camera. The included camera:

e MUST have a resolution of at least 2 megapixels

e SHOULD have either hardware auto-focus, or software auto-focus implemented
in the camera driver (transparent to application software)

e MAY have fixed-focus or EDOF (extended depth of field) hardware

e MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be
lit while an android.hardware.Camera.PreviewCallback instance has been

21 of 25

registered on a Camera preview surface, unless the application has explicitly
enabled the flash by enabling the FLASH MODE AUTO Or FLASH MODE ON attributes of a
Camera.Parameters Object. Note that this constraint does not apply to the device's
built-in system camera application, but only to third-party applications using
Camera.PreviewCallback.

Device implementations MUST implement the following behaviors for the camera-
related APIs:

1. If an application has never called
android.hardware.Camera.Parameters.setPreviewFormat(int), then the device
MUST use android.hardware.PixelFormat.YCbCr 420 SP for preview data
provided to application callbacks.

2. If an application registers an android.hardware.Camera.PreviewCallback
instance and the system calls the onPreviewFrame() method when the preview
format is YCbCr 420 SP, the data in the byte[] passed into onPreviewFrame()
must further be in the NV21 encoding format. (This is the format used natively
by the 7k hardware family.) That is, NV21 MUST be the default.

Device implementations MUST implement the full Camera APl included in the Android
2.1 SDKdocumentation [Resources, 26]), regardless of whether the device includes
hardware autofocus or other capabilities. For instance, cameras that lack autofocus
MUST still call any registered android.hardware.Camera.AutoFocusCallback instances (even
though this has no relevance to a non-autofocus camera.)

Device implementations MUST recognize and honor each parameter name defined
as a constant on the android.hardware.Camera.Parameters class, if the underlying hardware
supports the feature. If the device hardware does not support a feature, the API
must behave as documented. Conversely, Device implementations MUST NOT honor
or recognize string constants passed to the android.hardware.Camera.setParameters() method
other than those documented as constants on the android.hardware.Camera.Parameters,
unless the constants are prefixed with a string indicating the name of the device
implementer. That is, device implementations MUST support all standard Camera
parameters if the hardware allows, and MUST NOT support custom Camera
parameter types unless the parameter names are clearly indicated via a string prefix
to be non-standard.

8.10. Accelerometer

Device implementations MUST include a 3-axis accelerometer and MUST be able to
deliver events at 50 Hz or greater. The coordinate system used by the
accelerometer MUST comply with the Android sensor coordinate system as detailed
in the Android APIs (see [Resources, 27]).

8.11. Compass

22 of 25

Device implementations MUST include a 3-axis compass and MUST be able to deliver
events 10 Hzor greater. The coordinate system used by the compass MUST comply
with the Android sensor coordinate system as defined in the Android API (see
[Resources, 27]).

8.12. GPS

Device implementations MUST include a GPS, and SHOULD include some form of
"assisted GPS" technique to minimize GPS lock-on time.

8.13. Telephony

Android 2.1 MAY be used on devices that do not include telephony hardware. That
is, Android 2.1 is compatible with devices that are not phones. However, if a device
implementation does include GSM or CDMA telephony, it MUST implement the full
support for the API for that technology. Device implementations that do not include
telephony hardware MUST implement the full APIs as no-ops.

See also Section 8.8, Wireless Data Networking.

8.14. Memory and Storage

Device implementations MUST have at least 92MB of memory available to the kernel
and userspace. The 92MB MUST be in addition to any memory dedicated to
hardware components such as radio, memory, and so on that is not under the
kernel's control.

Device implementations MUST have at least 290MB of non-volatile storage available
for user data. That is, the /data partition must be at least 290MB.

9. Performance Compatibility

One of the goals of the Android Compatibility Program is to enable consistent
application experience to consumers. Compatible implementations must ensure not
only that applications simply run correctly on the device, but that they do so with
reasonable performance and overall good user experience. Device implementations
MUST meet the key performance metrics of an Android 2.1 compatible device
defined in the table below:

Metric Performance Threshold Comments

23 of 25

The following applications

should launch within the The launch time is measured as
specified time. the total time to complete
) loading the default activity for
N e Browser: less than L . .
Application the application, including the
: 1300ms . . .
Launch Time time it takes to start the Linux
e MMS/SMS: less than :
process, load the Android

700ms . .
e AlarmClock: less than package into the Dalvik VM,
and call onCreate.
650ms

When multiple applications
have been launched,
re-launching an already-
running application after it
has been launched must take
less than the original launch
time.

Simultaneous
Applications

10. Security Model Compatibility

Device implementations MUST implement a security model consistent with the
Android platform security model as defined in Security and Permissions reference
document in the APIs [Resources, 28] in the Android developer documentation.
Device implementations MUST support installation of self-signed applications without
requiring any additional permissions/certificates from any third parties/authorities.
Specifically, compatible devices MUST support the security mechanisms described in
the follow sub-sections.

10.1. Permissions

Device implementations MUST support the Android permissions model as defined in
the Android developer documentation [Resources, 28]. Specifically, implementations
MUST enforce each permission defined as described in the SDK documentation; no
permissions may be omitted, altered, or ignored. Implementations MAY add
additional permissions, provided the new permission ID strings are not in the
android.* namespace.

10.2. UID and Process Isolation

Device implementations MUST support the Android application sandbox model, in
which each application runs as a unique Unix-style UID and in a separate process.

Device implementations MUST support running multiple applications as the same
Linux user ID, provided that the applications are properly signed and constructed, as
defined in the Security and Permissions reference [Resources, 28].

10.3. Filesystem Permissions

Device implementations MUST support the Android file access permissions model as
defined in as defined in the Security and Permissions reference [Resources, 28].

11. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS)
[Resources, 2] available from the Android Open Source Project, using the final
shipping software on the device. Additionally, device implementers SHOULD use the
reference implementation in the Android Open Source tree as much as possible, and
MUST ensure compatibility in cases of ambiguity in CTS and for any
reimplementations of parts of the reference source code.

The CTS is designed to be run on an actual device. Like any software, the CTS may
itself contain bugs. The CTS will be versioned independently of this Compatibility
Definition, and multiple revisions of the CTS may be released for Android 2.1. Device
implementations MUST pass the latest CTS version available at the time the device
software is completed.

12. Updatable Software

Device implementations MUST include a mechanism to replace the entirety of the
system software. The mechanism need not perform "live" upgrades -- that is, a
device restart MAY be required.

Any method can be used, provided that it can replace the entirety of the software
preinstalled on the device. For instance, any of the following approaches will satisfy
this requirement:

e Over-the-air (OTA) downloads with offline update via reboot
e "Tethered" updates over USB from a host PC
e "Offline" updates via a reboot and update from a file on removable storage

The update mechanism used MUST support updates without wiping user data. Note
that the upstream Android software includes an update mechanism that satisfies
this requirement.

If an error is found in a device implementation after it has been released but within
its reasonable product lifetime that is determined in consultation with the Android
Compatibility Team to affect the compatibility of thid-party applications, the device

24 of 25

implementer MUST correct the error via a software update available that can be
applied per the mechanism just described.

13. Contact Us

You can contact the document authors at compatibility@android.com for
clarifications and to bring up anyissues that you think the document does not
cover.

25 of 25

