work in progress for shape operations

A    experimental/Intersection
A    experimental/Intersection/Intersections.h
A    experimental/Intersection/DataTypes.cpp
A    experimental/Intersection/QuadraticReduceOrder.cpp
A    experimental/Intersection/IntersectionUtilities.cpp
A    experimental/Intersection/CubicIntersection_Tests.h
A    experimental/Intersection/LineParameteters_Test.cpp
A    experimental/Intersection/ReduceOrder.cpp
A    experimental/Intersection/QuadraticIntersection.cpp
A    experimental/Intersection/Extrema.h
A    experimental/Intersection/CubicIntersection_TestData.h
A    experimental/Intersection/QuadraticParameterization_Test.cpp
A    experimental/Intersection/TestUtilities.cpp
A    experimental/Intersection/CubicRoots.cpp
A    experimental/Intersection/QuadraticParameterization.cpp
A    experimental/Intersection/QuadraticSubDivide.cpp
A    experimental/Intersection/LineIntersection_Test.cpp
A    experimental/Intersection/LineIntersection.cpp
A    experimental/Intersection/CubicParameterizationCode.cpp
A    experimental/Intersection/LineParameters.h
A    experimental/Intersection/CubicIntersection.h
A    experimental/Intersection/CubeRoot.cpp
A    experimental/Intersection/SkAntiEdge.h
A    experimental/Intersection/ConvexHull_Test.cpp
A    experimental/Intersection/CubicBezierClip_Test.cpp
A    experimental/Intersection/CubicIntersection_Tests.cpp
A    experimental/Intersection/CubicBezierClip.cpp
A    experimental/Intersection/CubicIntersectionT.cpp
A    experimental/Intersection/Inline_Tests.cpp
A    experimental/Intersection/ReduceOrder_Test.cpp
A    experimental/Intersection/QuadraticIntersection_TestData.h
A    experimental/Intersection/DataTypes.h
A    experimental/Intersection/Extrema.cpp
A    experimental/Intersection/EdgeApp.cpp
A    experimental/Intersection/CubicIntersection_TestData.cpp
A    experimental/Intersection/IntersectionUtilities.h
A    experimental/Intersection/CubicReduceOrder.cpp
A    experimental/Intersection/CubicCoincidence.cpp
A    experimental/Intersection/CubicIntersection_Test.cpp
A    experimental/Intersection/CubicIntersection.cpp
A    experimental/Intersection/QuadraticUtilities.h
A    experimental/Intersection/SkAntiEdge.cpp
A    experimental/Intersection/TestUtilities.h
A    experimental/Intersection/CubicParameterization_Test.cpp
A    experimental/Intersection/LineIntersection.h
A    experimental/Intersection/CubicSubDivide.cpp
A    experimental/Intersection/CubicParameterization.cpp
A    experimental/Intersection/QuadraticBezierClip_Test.cpp
A    experimental/Intersection/QuadraticBezierClip.cpp
A    experimental/Intersection/BezierClip_Test.cpp
A    experimental/Intersection/ConvexHull.cpp
A    experimental/Intersection/BezierClip.cpp
A    experimental/Intersection/QuadraticIntersection_TestData.cpp



git-svn-id: http://skia.googlecode.com/svn/trunk@3005 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/experimental/Intersection/ReduceOrder.cpp b/experimental/Intersection/ReduceOrder.cpp
new file mode 100644
index 0000000..e742a26
--- /dev/null
+++ b/experimental/Intersection/ReduceOrder.cpp
@@ -0,0 +1,238 @@
+#include "CubicIntersection.h"
+#include "Extrema.h"
+#include "IntersectionUtilities.h"
+#include "LineParameters.h"
+
+#ifdef MAYBE_USEFUL_IN_THE_FUTURE
+static double interp_quad_coords(double a, double b, double c, double t)
+{
+    double ab = interp(a, b, t);
+    double bc = interp(b, c, t);
+    return interp(ab, bc, t);
+}
+#endif
+
+static double interp_cubic_coords(const double* src, double t)
+{
+    double ab = interp(src[0], src[2], t);
+    double bc = interp(src[2], src[4], t);
+    double cd = interp(src[4], src[6], t);
+    double abc = interp(ab, bc, t);
+    double bcd = interp(bc, cd, t);
+    return interp(abc, bcd, t);
+}
+
+static int coincident_line(const Cubic& cubic, Cubic& reduction) {
+    reduction[0] = reduction[1] = cubic[0];
+    return 1;
+}
+
+static int vertical_line(const Cubic& cubic, Cubic& reduction) {
+    double tValues[2];
+    reduction[0] = cubic[0];
+    reduction[1] = cubic[3];
+    int smaller = reduction[1].y > reduction[0].y;
+    int larger = smaller ^ 1;
+    int roots = SkFindCubicExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues);
+    for (int index = 0; index < roots; ++index) {
+        double yExtrema = interp_cubic_coords(&cubic[0].y, tValues[index]);
+        if (reduction[smaller].y > yExtrema) {
+            reduction[smaller].y = yExtrema;
+            continue;
+        } 
+        if (reduction[larger].y < yExtrema) {
+            reduction[larger].y = yExtrema;
+        }
+    }
+    return 2;
+}
+
+static int horizontal_line(const Cubic& cubic, Cubic& reduction) {
+    double tValues[2];
+    reduction[0] = cubic[0];
+    reduction[1] = cubic[3];
+    int smaller = reduction[1].x > reduction[0].x;
+    int larger = smaller ^ 1;
+    int roots = SkFindCubicExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues);
+    for (int index = 0; index < roots; ++index) {
+        double xExtrema = interp_cubic_coords(&cubic[0].x, tValues[index]);
+        if (reduction[smaller].x > xExtrema) {
+            reduction[smaller].x = xExtrema;
+            continue;
+        } 
+        if (reduction[larger].x < xExtrema) {
+            reduction[larger].x = xExtrema;
+        }
+    }
+    return 2;
+}
+
+// check to see if it is a quadratic or a line
+static int check_quadratic(const Cubic& cubic, Cubic& reduction,
+        int minX, int maxX, int minY, int maxY) {
+    double dx10 = cubic[1].x - cubic[0].x;
+    double dx23 = cubic[2].x - cubic[3].x;
+    double midX = cubic[0].x + dx10 * 3 / 2;
+    if (!approximately_equal(midX - cubic[3].x, dx23 * 3 / 2)) {
+        return 0;
+    }
+    double dy10 = cubic[1].y - cubic[0].y;
+    double dy23 = cubic[2].y - cubic[3].y;
+    double midY = cubic[0].y + dy10 * 3 / 2;
+    if (!approximately_equal(midY - cubic[3].y, dy23 * 3 / 2)) {
+        return 0;
+    }
+    reduction[0] = cubic[0];
+    reduction[1].x = midX;
+    reduction[1].y = midY;
+    reduction[2] = cubic[3];
+    return 3;
+}
+
+static int check_linear(const Cubic& cubic, Cubic& reduction,
+        int minX, int maxX, int minY, int maxY) {
+    int startIndex = 0;
+    int endIndex = 3;
+    while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) {
+        --endIndex;
+        if (endIndex == 0) {
+            printf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
+            assert(0);
+        }
+    }
+    LineParameters lineParameters;
+    lineParameters.cubicEndPoints(cubic, startIndex, endIndex);
+    double normalSquared = lineParameters.normalSquared();
+    double distance[2]; // distance is not normalized
+    int mask = other_two(startIndex, endIndex);
+    int inner1 = startIndex ^ mask;
+    int inner2 = endIndex ^ mask;
+    lineParameters.controlPtDistance(cubic, inner1, inner2, distance);
+    double limit = normalSquared * SquaredEpsilon;
+    int index;
+    for (index = 0; index < 2; ++index) {
+        double distSq = distance[index];
+        distSq *= distSq;
+        if (distSq > limit) {
+            return 0;
+        }
+    }
+    // four are colinear: return line formed by outside
+    reduction[0] = cubic[0];
+    reduction[1] = cubic[3];
+    int sameSide1;
+    int sameSide2;
+    bool useX = cubic[maxX].x - cubic[minX].x >= cubic[maxY].y - cubic[minY].y;
+    if (useX) {
+        sameSide1 = sign(cubic[0].x - cubic[1].x) + sign(cubic[3].x - cubic[1].x);
+        sameSide2 = sign(cubic[0].x - cubic[2].x) + sign(cubic[3].x - cubic[2].x);
+    } else {
+        sameSide1 = sign(cubic[0].y - cubic[1].y) + sign(cubic[3].y - cubic[1].y);
+        sameSide2 = sign(cubic[0].y - cubic[2].y) + sign(cubic[3].y - cubic[2].y);
+    }
+    if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) {
+        return 2;
+    }
+    double tValues[2];
+    int roots;
+    if (useX) {
+        roots = SkFindCubicExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues);
+    } else {
+        roots = SkFindCubicExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues);
+    }
+    for (index = 0; index < roots; ++index) {
+        _Point extrema;
+        extrema.x = interp_cubic_coords(&cubic[0].x, tValues[index]);
+        extrema.y = interp_cubic_coords(&cubic[0].y, tValues[index]);
+        // sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller
+        int replace;
+        if (useX) {
+            if (extrema.x < cubic[0].x ^ extrema.x < cubic[3].x) {
+                continue;
+            }
+            replace = (extrema.x < cubic[0].x | extrema.x < cubic[3].x)
+                    ^ cubic[0].x < cubic[3].x;
+        } else {
+            if (extrema.y < cubic[0].y ^ extrema.y < cubic[3].y) {
+                continue;
+            }
+            replace = (extrema.y < cubic[0].y | extrema.y < cubic[3].y)
+                    ^ cubic[0].y < cubic[3].y;
+        }
+        reduction[replace] = extrema;
+    }
+    return 2;
+}
+
+/* food for thought:
+http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html
+
+Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
+corresponding quadratic Bezier are (given in convex combinations of
+points):
+
+q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
+q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
+q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4
+
+Of course, this curve does not interpolate the end-points, but it would
+be interesting to see the behaviour of such a curve in an applet.
+
+--
+Kalle Rutanen
+http://kaba.hilvi.org
+
+*/
+
+// reduce to a quadratic or smaller
+// look for identical points
+// look for all four points in a line 
+    // note that three points in a line doesn't simplify a cubic
+// look for approximation with single quadratic
+    // save approximation with multiple quadratics for later
+int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQuadratics) {
+    int index, minX, maxX, minY, maxY;
+    int minXSet, minYSet;
+    minX = maxX = minY = maxY = 0;
+    minXSet = minYSet = 0;
+    for (index = 1; index < 4; ++index) {
+        if (cubic[minX].x > cubic[index].x) {
+            minX = index;
+        }
+        if (cubic[minY].y > cubic[index].y) {
+            minY = index;
+        }
+        if (cubic[maxX].x < cubic[index].x) {
+            maxX = index;
+        }
+        if (cubic[maxY].y < cubic[index].y) {
+            maxY = index;
+        }
+    }
+    for (index = 0; index < 4; ++index) {
+        if (approximately_equal(cubic[index].x, cubic[minX].x)) {
+            minXSet |= 1 << index;
+        }
+        if (approximately_equal(cubic[index].y, cubic[minY].y)) {
+            minYSet |= 1 << index;
+        }
+    }
+    if (minXSet == 0xF) { // test for vertical line
+        if (minYSet == 0xF) { // return 1 if all four are coincident
+            return coincident_line(cubic, reduction);
+        }
+        return vertical_line(cubic, reduction);
+    }
+    if (minYSet == 0xF) { // test for horizontal line
+        return horizontal_line(cubic, reduction);
+    }
+    int result = check_linear(cubic, reduction, minX, maxX, minY, maxY);
+    if (result) {
+        return result;
+    }
+    if (allowQuadratics && (result = check_quadratic(cubic, reduction, minX, maxX, minY, maxY))) {
+        return result;
+    }
+    memcpy(reduction, cubic, sizeof(Cubic));
+    return 4;
+}