grab from latest android



git-svn-id: http://skia.googlecode.com/svn/trunk@27 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/src/animator/SkSVGPath.cpp b/src/animator/SkSVGPath.cpp
new file mode 100644
index 0000000..86eeee8
--- /dev/null
+++ b/src/animator/SkSVGPath.cpp
@@ -0,0 +1,243 @@
+/* libs/graphics/animator/SkSVGPath.cpp
+**
+** Copyright 2006, The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License"); 
+** you may not use this file except in compliance with the License. 
+** You may obtain a copy of the License at 
+**
+**     http://www.apache.org/licenses/LICENSE-2.0 
+**
+** Unless required by applicable law or agreed to in writing, software 
+** distributed under the License is distributed on an "AS IS" BASIS, 
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
+** See the License for the specific language governing permissions and 
+** limitations under the License.
+*/
+
+#include <ctype.h>
+#include "SkDrawPath.h"
+#include "SkParse.h"
+#include "SkPoint.h"
+#include "SkUtils.h"
+#define QUADRATIC_APPROXIMATION 1
+
+#if QUADRATIC_APPROXIMATION
+////////////////////////////////////////////////////////////////////////////////////
+//functions to approximate a cubic using two quadratics
+
+//      midPt sets the first argument to be the midpoint of the other two
+//      it is used by quadApprox
+static inline void midPt(SkPoint& dest,const SkPoint& a,const SkPoint& b)
+{
+    dest.set(SkScalarAve(a.fX, b.fX),SkScalarAve(a.fY, b.fY));
+}
+//      quadApprox - makes an approximation, which we hope is faster
+static void quadApprox(SkPath &fPath, const SkPoint &p0, const SkPoint &p1, const SkPoint &p2)
+{
+    //divide the cubic up into two cubics, then convert them into quadratics
+    //define our points
+    SkPoint c,j,k,l,m,n,o,p,q, mid;
+    fPath.getLastPt(&c);
+    midPt(j, p0, c);
+    midPt(k, p0, p1);
+    midPt(l, p1, p2);
+    midPt(o, j, k);
+    midPt(p, k, l);
+    midPt(q, o, p);
+    //compute the first half
+    m.set(SkScalarHalf(3*j.fX - c.fX), SkScalarHalf(3*j.fY - c.fY));
+    n.set(SkScalarHalf(3*o.fX -q.fX), SkScalarHalf(3*o.fY - q.fY));
+    midPt(mid,m,n);
+    fPath.quadTo(mid,q);
+    c = q;
+    //compute the second half
+    m.set(SkScalarHalf(3*p.fX - c.fX), SkScalarHalf(3*p.fY - c.fY));
+    n.set(SkScalarHalf(3*l.fX -p2.fX),SkScalarHalf(3*l.fY -p2.fY));
+    midPt(mid,m,n);
+    fPath.quadTo(mid,p2);
+}
+#endif
+
+
+static inline bool is_between(int c, int min, int max)
+{
+    return (unsigned)(c - min) <= (unsigned)(max - min);
+}
+
+static inline bool is_ws(int c)
+{
+    return is_between(c, 1, 32);
+}
+
+static inline bool is_digit(int c)
+{
+    return is_between(c, '0', '9');
+}
+
+static inline bool is_sep(int c)
+{
+    return is_ws(c) || c == ',';
+}
+
+static const char* skip_ws(const char str[])
+{
+    SkASSERT(str);
+    while (is_ws(*str))
+        str++;
+    return str;
+}
+
+static const char* skip_sep(const char str[])
+{
+    SkASSERT(str);
+    while (is_sep(*str))
+        str++;
+    return str;
+}
+
+static const char* find_points(const char str[], SkPoint value[], int count,
+     bool isRelative, SkPoint* relative)
+{
+    str = SkParse::FindScalars(str, &value[0].fX, count * 2);
+    if (isRelative) {
+        for (int index = 0; index < count; index++) {
+            value[index].fX += relative->fX;
+            value[index].fY += relative->fY;
+        }
+    }
+    return str;
+}
+
+static const char* find_scalar(const char str[], SkScalar* value, 
+    bool isRelative, SkScalar relative)
+{
+    str = SkParse::FindScalar(str, value);
+    if (isRelative)
+        *value += relative;
+    return str;
+}
+
+void SkDrawPath::parseSVG() {
+    fPath.reset();
+    const char* data = d.c_str();
+    SkPoint f = {0, 0};
+    SkPoint c = {0, 0};
+    SkPoint lastc = {0, 0};
+    SkPoint points[3];
+    char op = '\0';
+    char previousOp = '\0';
+    bool relative = false;
+    do {
+        data = skip_ws(data);
+        if (data[0] == '\0')
+            break;
+        char ch = data[0];
+        if (is_digit(ch) || ch == '-' || ch == '+') {
+            if (op == '\0')
+                return;
+        }
+        else {
+            op = ch;
+            relative = false;
+            if (islower(op)) {
+                op = (char) toupper(op);
+                relative = true;
+            }
+            data++;
+            data = skip_sep(data);
+        }
+        switch (op) {
+            case 'M':
+                data = find_points(data, points, 1, relative, &c);
+                fPath.moveTo(points[0]);
+                op = 'L';
+                c = points[0];
+                break;
+            case 'L': 
+                data = find_points(data, points, 1, relative, &c);
+                fPath.lineTo(points[0]);
+                c = points[0];
+                break;
+            case 'H': {
+                SkScalar x;
+                data = find_scalar(data, &x, relative, c.fX);
+                fPath.lineTo(x, c.fY);
+                c.fX = x;
+            }
+                break;
+            case 'V': {
+                SkScalar y;
+                data = find_scalar(data, &y, relative, c.fY);
+                fPath.lineTo(c.fX, y);
+                c.fY = y;
+            }
+                break;
+            case 'C': 
+                data = find_points(data, points, 3, relative, &c);
+                goto cubicCommon;
+            case 'S': 
+                data = find_points(data, &points[1], 2, relative, &c);
+                points[0] = c;
+                if (previousOp == 'C' || previousOp == 'S') {
+                    points[0].fX -= lastc.fX - c.fX;
+                    points[0].fY -= lastc.fY - c.fY;
+                }
+            cubicCommon:
+    //          if (data[0] == '\0')
+    //              return;
+#if QUADRATIC_APPROXIMATION
+                    quadApprox(fPath, points[0], points[1], points[2]);
+#else   //this way just does a boring, slow old cubic
+                    fPath.cubicTo(points[0], points[1], points[2]);
+#endif
+        //if we are using the quadApprox, lastc is what it would have been if we had used
+        //cubicTo
+                    lastc = points[1];
+                    c = points[2];
+                break;
+            case 'Q':  // Quadratic Bezier Curve
+                data = find_points(data, points, 2, relative, &c);
+                goto quadraticCommon;
+            case 'T':
+                data = find_points(data, &points[1], 1, relative, &c);
+                points[0] = points[1];
+                if (previousOp == 'Q' || previousOp == 'T') {
+                    points[0].fX = c.fX * 2 - lastc.fX;
+                    points[0].fY = c.fY * 2 - lastc.fY;
+                }
+            quadraticCommon:
+                fPath.quadTo(points[0], points[1]);
+                lastc = points[0];
+                c = points[1];
+                break;
+            case 'Z':
+                fPath.close();
+#if 0   // !!! still a bug?
+                if (fPath.isEmpty() && (f.fX != 0 || f.fY != 0)) {
+                    c.fX -= SkScalar.Epsilon;   // !!! enough?
+                    fPath.moveTo(c);
+                    fPath.lineTo(f);
+                    fPath.close();
+                }
+#endif
+                c = f;
+                op = '\0';
+                break;
+            case '~': {
+                SkPoint args[2];
+                data = find_points(data, args, 2, false, NULL);
+                fPath.moveTo(args[0].fX, args[0].fY);
+                fPath.lineTo(args[1].fX, args[1].fY);
+            }
+                break;
+            default:
+                SkASSERT(0);
+                return;
+        }
+        if (previousOp == 0)
+            f = c;
+        previousOp = op;
+    } while (data[0] > 0);
+}
+