Result of running tools/sanitize_source_files.py (which was added in https://codereview.appspot.com/6465078/)
This CL is part II of IV (I broke down the 1280 files into 4 CLs).
Review URL: https://codereview.appspot.com/6474054
git-svn-id: http://skia.googlecode.com/svn/trunk@5263 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/experimental/Intersection/LineCubicIntersection.cpp b/experimental/Intersection/LineCubicIntersection.cpp
index aaee2a1..a210fb3 100644
--- a/experimental/Intersection/LineCubicIntersection.cpp
+++ b/experimental/Intersection/LineCubicIntersection.cpp
@@ -19,12 +19,12 @@
line:
(in) Resultant[
- a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
(out) -e + j +
3 e t - 3 f t -
3 e t^2 + 6 f t^2 - 3 g t^2 +
- e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
+ e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
i ( a -
3 a t + 3 b t +
3 a t^2 - 6 b t^2 + 3 c t^2 -
@@ -33,14 +33,14 @@
if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
(in) Resultant[
- a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
- (out) a - j -
- 3 a t + 3 b t +
+ (out) a - j -
+ 3 a t + 3 b t +
3 a t^2 - 6 b t^2 + 3 c t^2 -
- a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
- i ( e -
- 3 e t + 3 f t +
+ a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
+ i ( e -
+ 3 e t + 3 f t +
3 e t^2 - 6 f t^2 + 3 g t^2 -
e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
@@ -58,13 +58,13 @@
B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
C = 3*( (-a + b ) - i*(-e + f ) )
D = ( ( a ) - i*( e ) - j )
-
+
For horizontal lines:
(in) Resultant[
- a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
(out) e - j -
- 3 e t + 3 f t +
+ 3 e t + 3 f t +
3 e t^2 - 6 f t^2 + 3 g t^2 -
e t^3 + 3 f t^3 - 3 g t^3 + h t^3
So the cubic coefficients are: