VectorDrawable native rendering - Step 2 of MANY

Introduced PathData in Java, which is effectively a thin layer around the
native instance. PathData holds the verbs and points which is being used
in path morphing/interpolation. The verbs and points can be interpreted
into skia path commands, which is now done in native and therefore saves
a handful of JNI calls during path creation.

Removed the old PathDataNode mechanism and changed the PathEvaluator
to use PathData instead.

Also added tests and a microbench. Also ran CTS tests for VectorDrawable
and AnimatedVectorDrawable, and passed all of the existing tests.

Change-Id: Ia166f5172ff031fe18b154327967f911a62caec1
diff --git a/libs/hwui/VectorDrawablePath.cpp b/libs/hwui/VectorDrawablePath.cpp
index 05ea2da..c9a54ca 100644
--- a/libs/hwui/VectorDrawablePath.cpp
+++ b/libs/hwui/VectorDrawablePath.cpp
@@ -17,6 +17,7 @@
 #include "VectorDrawablePath.h"
 
 #include "PathParser.h"
+#include "utils/VectorDrawableUtils.h"
 
 #include <math.h>
 #include <utils/Log.h>
@@ -24,476 +25,35 @@
 namespace android {
 namespace uirenderer {
 
-class PathResolver {
-public:
-    float currentX = 0;
-    float currentY = 0;
-    float ctrlPointX = 0;
-    float ctrlPointY = 0;
-    float currentSegmentStartX = 0;
-    float currentSegmentStartY = 0;
-    void addCommand(SkPath* outPath, char previousCmd,
-            char cmd, const std::vector<float>* points, size_t start, size_t end);
-};
 
 VectorDrawablePath::VectorDrawablePath(const char* pathStr, size_t strLength) {
     PathParser::ParseResult result;
     PathParser::getPathDataFromString(&mData, &result, pathStr, strLength);
     if (!result.failureOccurred) {
-        verbsToPath(&mSkPath, &mData);
+        VectorDrawableUtils::verbsToPath(&mSkPath, mData);
     }
 }
 
 VectorDrawablePath::VectorDrawablePath(const PathData& data) {
     mData = data;
     // Now we need to construct a path
-    verbsToPath(&mSkPath, &data);
+    VectorDrawableUtils::verbsToPath(&mSkPath, data);
 }
 
 VectorDrawablePath::VectorDrawablePath(const VectorDrawablePath& path) {
     mData = path.mData;
-    verbsToPath(&mSkPath, &mData);
+    VectorDrawableUtils::verbsToPath(&mSkPath, mData);
 }
 
-bool VectorDrawablePath::canMorph(const PathData& morphTo) {
-    if (mData.verbs.size() != morphTo.verbs.size()) {
-        return false;
-    }
 
-    for (unsigned int i = 0; i < mData.verbs.size(); i++) {
-        if (mData.verbs[i] != morphTo.verbs[i]
-                || mData.verbSizes[i] != morphTo.verbSizes[i]) {
-            return false;
-        }
-    }
-    return true;
+bool VectorDrawablePath::canMorph(const PathData& morphTo) {
+    return VectorDrawableUtils::canMorph(mData, morphTo);
 }
 
 bool VectorDrawablePath::canMorph(const VectorDrawablePath& path) {
     return canMorph(path.mData);
 }
- /**
- * Convert an array of PathVerb to Path.
- */
-void VectorDrawablePath::verbsToPath(SkPath* outPath, const PathData* data) {
-    PathResolver resolver;
-    char previousCommand = 'm';
-    size_t start = 0;
-    outPath->reset();
-    for (unsigned int i = 0; i < data->verbs.size(); i++) {
-        size_t verbSize = data->verbSizes[i];
-        resolver.addCommand(outPath, previousCommand, data->verbs[i], &data->points, start,
-                start + verbSize);
-        previousCommand = data->verbs[i];
-        start += verbSize;
-    }
-}
 
-/**
- * The current PathVerb will be interpolated between the
- * <code>nodeFrom</code> and <code>nodeTo</code> according to the
- * <code>fraction</code>.
- *
- * @param nodeFrom The start value as a PathVerb.
- * @param nodeTo The end value as a PathVerb
- * @param fraction The fraction to interpolate.
- */
-void VectorDrawablePath::interpolatePaths(PathData* outData,
-        const PathData* from, const PathData* to, float fraction) {
-    outData->points.resize(from->points.size());
-    outData->verbSizes = from->verbSizes;
-    outData->verbs = from->verbs;
-
-    for (size_t i = 0; i < from->points.size(); i++) {
-        outData->points[i] = from->points[i] * (1 - fraction) + to->points[i] * fraction;
-    }
-}
-
-/**
- * Converts an arc to cubic Bezier segments and records them in p.
- *
- * @param p The target for the cubic Bezier segments
- * @param cx The x coordinate center of the ellipse
- * @param cy The y coordinate center of the ellipse
- * @param a The radius of the ellipse in the horizontal direction
- * @param b The radius of the ellipse in the vertical direction
- * @param e1x E(eta1) x coordinate of the starting point of the arc
- * @param e1y E(eta2) y coordinate of the starting point of the arc
- * @param theta The angle that the ellipse bounding rectangle makes with horizontal plane
- * @param start The start angle of the arc on the ellipse
- * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse
- */
-static void arcToBezier(SkPath* p,
-        double cx,
-        double cy,
-        double a,
-        double b,
-        double e1x,
-        double e1y,
-        double theta,
-        double start,
-        double sweep) {
-    // Taken from equations at: http://spaceroots.org/documents/ellipse/node8.html
-    // and http://www.spaceroots.org/documents/ellipse/node22.html
-
-    // Maximum of 45 degrees per cubic Bezier segment
-    int numSegments = ceil(fabs(sweep * 4 / M_PI));
-
-    double eta1 = start;
-    double cosTheta = cos(theta);
-    double sinTheta = sin(theta);
-    double cosEta1 = cos(eta1);
-    double sinEta1 = sin(eta1);
-    double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1);
-    double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1);
-
-    double anglePerSegment = sweep / numSegments;
-    for (int i = 0; i < numSegments; i++) {
-        double eta2 = eta1 + anglePerSegment;
-        double sinEta2 = sin(eta2);
-        double cosEta2 = cos(eta2);
-        double e2x = cx + (a * cosTheta * cosEta2) - (b * sinTheta * sinEta2);
-        double e2y = cy + (a * sinTheta * cosEta2) + (b * cosTheta * sinEta2);
-        double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2;
-        double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2;
-        double tanDiff2 = tan((eta2 - eta1) / 2);
-        double alpha =
-                sin(eta2 - eta1) * (sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3;
-        double q1x = e1x + alpha * ep1x;
-        double q1y = e1y + alpha * ep1y;
-        double q2x = e2x - alpha * ep2x;
-        double q2y = e2y - alpha * ep2y;
-
-        p->cubicTo((float) q1x,
-                (float) q1y,
-                (float) q2x,
-                (float) q2y,
-                (float) e2x,
-                (float) e2y);
-        eta1 = eta2;
-        e1x = e2x;
-        e1y = e2y;
-        ep1x = ep2x;
-        ep1y = ep2y;
-    }
-}
-
-inline double toRadians(float theta) { return theta * M_PI / 180;}
-
-static void drawArc(SkPath* p,
-        float x0,
-        float y0,
-        float x1,
-        float y1,
-        float a,
-        float b,
-        float theta,
-        bool isMoreThanHalf,
-        bool isPositiveArc) {
-
-    /* Convert rotation angle from degrees to radians */
-    double thetaD = toRadians(theta);
-    /* Pre-compute rotation matrix entries */
-    double cosTheta = cos(thetaD);
-    double sinTheta = sin(thetaD);
-    /* Transform (x0, y0) and (x1, y1) into unit space */
-    /* using (inverse) rotation, followed by (inverse) scale */
-    double x0p = (x0 * cosTheta + y0 * sinTheta) / a;
-    double y0p = (-x0 * sinTheta + y0 * cosTheta) / b;
-    double x1p = (x1 * cosTheta + y1 * sinTheta) / a;
-    double y1p = (-x1 * sinTheta + y1 * cosTheta) / b;
-
-    /* Compute differences and averages */
-    double dx = x0p - x1p;
-    double dy = y0p - y1p;
-    double xm = (x0p + x1p) / 2;
-    double ym = (y0p + y1p) / 2;
-    /* Solve for intersecting unit circles */
-    double dsq = dx * dx + dy * dy;
-    if (dsq == 0.0) {
-        ALOGW("Points are coincident");
-        return; /* Points are coincident */
-    }
-    double disc = 1.0 / dsq - 1.0 / 4.0;
-    if (disc < 0.0) {
-        ALOGW("Points are too far apart %f", dsq);
-        float adjust = (float) (sqrt(dsq) / 1.99999);
-        drawArc(p, x0, y0, x1, y1, a * adjust,
-                b * adjust, theta, isMoreThanHalf, isPositiveArc);
-        return; /* Points are too far apart */
-    }
-    double s = sqrt(disc);
-    double sdx = s * dx;
-    double sdy = s * dy;
-    double cx;
-    double cy;
-    if (isMoreThanHalf == isPositiveArc) {
-        cx = xm - sdy;
-        cy = ym + sdx;
-    } else {
-        cx = xm + sdy;
-        cy = ym - sdx;
-    }
-
-    double eta0 = atan2((y0p - cy), (x0p - cx));
-
-    double eta1 = atan2((y1p - cy), (x1p - cx));
-
-    double sweep = (eta1 - eta0);
-    if (isPositiveArc != (sweep >= 0)) {
-        if (sweep > 0) {
-            sweep -= 2 * M_PI;
-        } else {
-            sweep += 2 * M_PI;
-        }
-    }
-
-    cx *= a;
-    cy *= b;
-    double tcx = cx;
-    cx = cx * cosTheta - cy * sinTheta;
-    cy = tcx * sinTheta + cy * cosTheta;
-
-    arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep);
-}
-
-// Use the given verb, and points in the range [start, end) to insert a command into the SkPath.
-void PathResolver::addCommand(SkPath* outPath, char previousCmd,
-        char cmd, const std::vector<float>* points, size_t start, size_t end) {
-
-    int incr = 2;
-    float reflectiveCtrlPointX;
-    float reflectiveCtrlPointY;
-
-    switch (cmd) {
-    case 'z':
-    case 'Z':
-        outPath->close();
-        // Path is closed here, but we need to move the pen to the
-        // closed position. So we cache the segment's starting position,
-        // and restore it here.
-        currentX = currentSegmentStartX;
-        currentY = currentSegmentStartY;
-        ctrlPointX = currentSegmentStartX;
-        ctrlPointY = currentSegmentStartY;
-        outPath->moveTo(currentX, currentY);
-        break;
-    case 'm':
-    case 'M':
-    case 'l':
-    case 'L':
-    case 't':
-    case 'T':
-        incr = 2;
-        break;
-    case 'h':
-    case 'H':
-    case 'v':
-    case 'V':
-        incr = 1;
-        break;
-    case 'c':
-    case 'C':
-        incr = 6;
-        break;
-    case 's':
-    case 'S':
-    case 'q':
-    case 'Q':
-        incr = 4;
-        break;
-    case 'a':
-    case 'A':
-        incr = 7;
-        break;
-    }
-
-    for (unsigned int k = start; k < end; k += incr) {
-        switch (cmd) {
-        case 'm': // moveto - Start a new sub-path (relative)
-            currentX += points->at(k + 0);
-            currentY += points->at(k + 1);
-            if (k > start) {
-                // According to the spec, if a moveto is followed by multiple
-                // pairs of coordinates, the subsequent pairs are treated as
-                // implicit lineto commands.
-                outPath->rLineTo(points->at(k + 0), points->at(k + 1));
-            } else {
-                outPath->rMoveTo(points->at(k + 0), points->at(k + 1));
-                currentSegmentStartX = currentX;
-                currentSegmentStartY = currentY;
-            }
-            break;
-        case 'M': // moveto - Start a new sub-path
-            currentX = points->at(k + 0);
-            currentY = points->at(k + 1);
-            if (k > start) {
-                // According to the spec, if a moveto is followed by multiple
-                // pairs of coordinates, the subsequent pairs are treated as
-                // implicit lineto commands.
-                outPath->lineTo(points->at(k + 0), points->at(k + 1));
-            } else {
-                outPath->moveTo(points->at(k + 0), points->at(k + 1));
-                currentSegmentStartX = currentX;
-                currentSegmentStartY = currentY;
-            }
-            break;
-        case 'l': // lineto - Draw a line from the current point (relative)
-            outPath->rLineTo(points->at(k + 0), points->at(k + 1));
-            currentX += points->at(k + 0);
-            currentY += points->at(k + 1);
-            break;
-        case 'L': // lineto - Draw a line from the current point
-            outPath->lineTo(points->at(k + 0), points->at(k + 1));
-            currentX = points->at(k + 0);
-            currentY = points->at(k + 1);
-            break;
-        case 'h': // horizontal lineto - Draws a horizontal line (relative)
-            outPath->rLineTo(points->at(k + 0), 0);
-            currentX += points->at(k + 0);
-            break;
-        case 'H': // horizontal lineto - Draws a horizontal line
-            outPath->lineTo(points->at(k + 0), currentY);
-            currentX = points->at(k + 0);
-            break;
-        case 'v': // vertical lineto - Draws a vertical line from the current point (r)
-            outPath->rLineTo(0, points->at(k + 0));
-            currentY += points->at(k + 0);
-            break;
-        case 'V': // vertical lineto - Draws a vertical line from the current point
-            outPath->lineTo(currentX, points->at(k + 0));
-            currentY = points->at(k + 0);
-            break;
-        case 'c': // curveto - Draws a cubic Bézier curve (relative)
-            outPath->rCubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3),
-                    points->at(k + 4), points->at(k + 5));
-
-            ctrlPointX = currentX + points->at(k + 2);
-            ctrlPointY = currentY + points->at(k + 3);
-            currentX += points->at(k + 4);
-            currentY += points->at(k + 5);
-
-            break;
-        case 'C': // curveto - Draws a cubic Bézier curve
-            outPath->cubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3),
-                    points->at(k + 4), points->at(k + 5));
-            currentX = points->at(k + 4);
-            currentY = points->at(k + 5);
-            ctrlPointX = points->at(k + 2);
-            ctrlPointY = points->at(k + 3);
-            break;
-        case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp)
-            reflectiveCtrlPointX = 0;
-            reflectiveCtrlPointY = 0;
-            if (previousCmd == 'c' || previousCmd == 's'
-                    || previousCmd == 'C' || previousCmd == 'S') {
-                reflectiveCtrlPointX = currentX - ctrlPointX;
-                reflectiveCtrlPointY = currentY - ctrlPointY;
-            }
-            outPath->rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
-                    points->at(k + 0), points->at(k + 1),
-                    points->at(k + 2), points->at(k + 3));
-            ctrlPointX = currentX + points->at(k + 0);
-            ctrlPointY = currentY + points->at(k + 1);
-            currentX += points->at(k + 2);
-            currentY += points->at(k + 3);
-            break;
-        case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp)
-            reflectiveCtrlPointX = currentX;
-            reflectiveCtrlPointY = currentY;
-            if (previousCmd == 'c' || previousCmd == 's'
-                    || previousCmd == 'C' || previousCmd == 'S') {
-                reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
-                reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
-            }
-            outPath->cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
-                    points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3));
-            ctrlPointX = points->at(k + 0);
-            ctrlPointY = points->at(k + 1);
-            currentX = points->at(k + 2);
-            currentY = points->at(k + 3);
-            break;
-        case 'q': // Draws a quadratic Bézier (relative)
-            outPath->rQuadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3));
-            ctrlPointX = currentX + points->at(k + 0);
-            ctrlPointY = currentY + points->at(k + 1);
-            currentX += points->at(k + 2);
-            currentY += points->at(k + 3);
-            break;
-        case 'Q': // Draws a quadratic Bézier
-            outPath->quadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3));
-            ctrlPointX = points->at(k + 0);
-            ctrlPointY = points->at(k + 1);
-            currentX = points->at(k + 2);
-            currentY = points->at(k + 3);
-            break;
-        case 't': // Draws a quadratic Bézier curve(reflective control point)(relative)
-            reflectiveCtrlPointX = 0;
-            reflectiveCtrlPointY = 0;
-            if (previousCmd == 'q' || previousCmd == 't'
-                    || previousCmd == 'Q' || previousCmd == 'T') {
-                reflectiveCtrlPointX = currentX - ctrlPointX;
-                reflectiveCtrlPointY = currentY - ctrlPointY;
-            }
-            outPath->rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
-                    points->at(k + 0), points->at(k + 1));
-            ctrlPointX = currentX + reflectiveCtrlPointX;
-            ctrlPointY = currentY + reflectiveCtrlPointY;
-            currentX += points->at(k + 0);
-            currentY += points->at(k + 1);
-            break;
-        case 'T': // Draws a quadratic Bézier curve (reflective control point)
-            reflectiveCtrlPointX = currentX;
-            reflectiveCtrlPointY = currentY;
-            if (previousCmd == 'q' || previousCmd == 't'
-                    || previousCmd == 'Q' || previousCmd == 'T') {
-                reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
-                reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
-            }
-            outPath->quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
-                    points->at(k + 0), points->at(k + 1));
-            ctrlPointX = reflectiveCtrlPointX;
-            ctrlPointY = reflectiveCtrlPointY;
-            currentX = points->at(k + 0);
-            currentY = points->at(k + 1);
-            break;
-        case 'a': // Draws an elliptical arc
-            // (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
-            drawArc(outPath,
-                    currentX,
-                    currentY,
-                    points->at(k + 5) + currentX,
-                    points->at(k + 6) + currentY,
-                    points->at(k + 0),
-                    points->at(k + 1),
-                    points->at(k + 2),
-                    points->at(k + 3) != 0,
-                    points->at(k + 4) != 0);
-            currentX += points->at(k + 5);
-            currentY += points->at(k + 6);
-            ctrlPointX = currentX;
-            ctrlPointY = currentY;
-            break;
-        case 'A': // Draws an elliptical arc
-            drawArc(outPath,
-                    currentX,
-                    currentY,
-                    points->at(k + 5),
-                    points->at(k + 6),
-                    points->at(k + 0),
-                    points->at(k + 1),
-                    points->at(k + 2),
-                    points->at(k + 3) != 0,
-                    points->at(k + 4) != 0);
-            currentX = points->at(k + 5);
-            currentY = points->at(k + 6);
-            ctrlPointX = currentX;
-            ctrlPointY = currentY;
-            break;
-        }
-        previousCmd = cmd;
-    }
-}
 
 }; // namespace uirenderer
 }; // namespace android