Minor refactoring before starting on velocity tracker changes.

Bug: 6413587
Change-Id: I5eba2bb57193bff78cb3740de5f87aca0b31d154
diff --git a/libs/androidfw/VelocityTracker.cpp b/libs/androidfw/VelocityTracker.cpp
new file mode 100644
index 0000000..2fb094e
--- /dev/null
+++ b/libs/androidfw/VelocityTracker.cpp
@@ -0,0 +1,444 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "VelocityTracker"
+//#define LOG_NDEBUG 0
+
+// Log debug messages about velocity tracking.
+#define DEBUG_VELOCITY 0
+
+// Log debug messages about least squares fitting.
+#define DEBUG_LEAST_SQUARES 0
+
+#include <math.h>
+#include <limits.h>
+
+#include <androidfw/VelocityTracker.h>
+#include <utils/BitSet.h>
+#include <utils/String8.h>
+#include <utils/Timers.h>
+
+namespace android {
+
+// --- VelocityTracker ---
+
+const uint32_t VelocityTracker::DEFAULT_DEGREE;
+const nsecs_t VelocityTracker::DEFAULT_HORIZON;
+const uint32_t VelocityTracker::HISTORY_SIZE;
+
+static inline float vectorDot(const float* a, const float* b, uint32_t m) {
+    float r = 0;
+    while (m--) {
+        r += *(a++) * *(b++);
+    }
+    return r;
+}
+
+static inline float vectorNorm(const float* a, uint32_t m) {
+    float r = 0;
+    while (m--) {
+        float t = *(a++);
+        r += t * t;
+    }
+    return sqrtf(r);
+}
+
+#if DEBUG_LEAST_SQUARES || DEBUG_VELOCITY
+static String8 vectorToString(const float* a, uint32_t m) {
+    String8 str;
+    str.append("[");
+    while (m--) {
+        str.appendFormat(" %f", *(a++));
+        if (m) {
+            str.append(",");
+        }
+    }
+    str.append(" ]");
+    return str;
+}
+
+static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
+    String8 str;
+    str.append("[");
+    for (size_t i = 0; i < m; i++) {
+        if (i) {
+            str.append(",");
+        }
+        str.append(" [");
+        for (size_t j = 0; j < n; j++) {
+            if (j) {
+                str.append(",");
+            }
+            str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
+        }
+        str.append(" ]");
+    }
+    str.append(" ]");
+    return str;
+}
+#endif
+
+VelocityTracker::VelocityTracker() {
+    clear();
+}
+
+void VelocityTracker::clear() {
+    mIndex = 0;
+    mMovements[0].idBits.clear();
+    mActivePointerId = -1;
+}
+
+void VelocityTracker::clearPointers(BitSet32 idBits) {
+    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
+    mMovements[mIndex].idBits = remainingIdBits;
+
+    if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
+        mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
+    }
+}
+
+void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
+    if (++mIndex == HISTORY_SIZE) {
+        mIndex = 0;
+    }
+
+    while (idBits.count() > MAX_POINTERS) {
+        idBits.clearLastMarkedBit();
+    }
+
+    Movement& movement = mMovements[mIndex];
+    movement.eventTime = eventTime;
+    movement.idBits = idBits;
+    uint32_t count = idBits.count();
+    for (uint32_t i = 0; i < count; i++) {
+        movement.positions[i] = positions[i];
+    }
+
+    if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
+        mActivePointerId = count != 0 ? idBits.firstMarkedBit() : -1;
+    }
+
+#if DEBUG_VELOCITY
+    ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
+            eventTime, idBits.value, mActivePointerId);
+    for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
+        uint32_t id = iterBits.firstMarkedBit();
+        uint32_t index = idBits.getIndexOfBit(id);
+        iterBits.clearBit(id);
+        Estimator estimator;
+        getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator);
+        ALOGD("  %d: position (%0.3f, %0.3f), "
+                "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
+                id, positions[index].x, positions[index].y,
+                int(estimator.degree),
+                vectorToString(estimator.xCoeff, estimator.degree).string(),
+                vectorToString(estimator.yCoeff, estimator.degree).string(),
+                estimator.confidence);
+    }
+#endif
+}
+
+void VelocityTracker::addMovement(const MotionEvent* event) {
+    int32_t actionMasked = event->getActionMasked();
+
+    switch (actionMasked) {
+    case AMOTION_EVENT_ACTION_DOWN:
+    case AMOTION_EVENT_ACTION_HOVER_ENTER:
+        // Clear all pointers on down before adding the new movement.
+        clear();
+        break;
+    case AMOTION_EVENT_ACTION_POINTER_DOWN: {
+        // Start a new movement trace for a pointer that just went down.
+        // We do this on down instead of on up because the client may want to query the
+        // final velocity for a pointer that just went up.
+        BitSet32 downIdBits;
+        downIdBits.markBit(event->getPointerId(event->getActionIndex()));
+        clearPointers(downIdBits);
+        break;
+    }
+    case AMOTION_EVENT_ACTION_MOVE:
+    case AMOTION_EVENT_ACTION_HOVER_MOVE:
+        break;
+    default:
+        // Ignore all other actions because they do not convey any new information about
+        // pointer movement.  We also want to preserve the last known velocity of the pointers.
+        // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
+        // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
+        // pointers that remained down but we will also receive an ACTION_MOVE with this
+        // information if any of them actually moved.  Since we don't know how many pointers
+        // will be going up at once it makes sense to just wait for the following ACTION_MOVE
+        // before adding the movement.
+        return;
+    }
+
+    size_t pointerCount = event->getPointerCount();
+    if (pointerCount > MAX_POINTERS) {
+        pointerCount = MAX_POINTERS;
+    }
+
+    BitSet32 idBits;
+    for (size_t i = 0; i < pointerCount; i++) {
+        idBits.markBit(event->getPointerId(i));
+    }
+
+    nsecs_t eventTime;
+    Position positions[pointerCount];
+
+    size_t historySize = event->getHistorySize();
+    for (size_t h = 0; h < historySize; h++) {
+        eventTime = event->getHistoricalEventTime(h);
+        for (size_t i = 0; i < pointerCount; i++) {
+            positions[i].x = event->getHistoricalX(i, h);
+            positions[i].y = event->getHistoricalY(i, h);
+        }
+        addMovement(eventTime, idBits, positions);
+    }
+
+    eventTime = event->getEventTime();
+    for (size_t i = 0; i < pointerCount; i++) {
+        positions[i].x = event->getX(i);
+        positions[i].y = event->getY(i);
+    }
+    addMovement(eventTime, idBits, positions);
+}
+
+/**
+ * Solves a linear least squares problem to obtain a N degree polynomial that fits
+ * the specified input data as nearly as possible.
+ *
+ * Returns true if a solution is found, false otherwise.
+ *
+ * The input consists of two vectors of data points X and Y with indices 0..m-1.
+ * The output is a vector B with indices 0..n-1 that describes a polynomial
+ * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n))
+ * for all i between 0 and m-1 is minimized.
+ *
+ * That is to say, the function that generated the input data can be approximated
+ * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
+ *
+ * The coefficient of determination (R^2) is also returned to describe the goodness
+ * of fit of the model for the given data.  It is a value between 0 and 1, where 1
+ * indicates perfect correspondence.
+ *
+ * This function first expands the X vector to a m by n matrix A such that
+ * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n.
+ *
+ * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
+ * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
+ * part is all zeroes), we can simplify the decomposition into an m by n matrix
+ * Q1 and a n by n matrix R1 such that A = Q1 R1.
+ *
+ * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y)
+ * to find B.
+ *
+ * For efficiency, we lay out A and Q column-wise in memory because we frequently
+ * operate on the column vectors.  Conversely, we lay out R row-wise.
+ *
+ * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
+ * http://en.wikipedia.org/wiki/Gram-Schmidt
+ */
+static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n,
+        float* outB, float* outDet) {
+#if DEBUG_LEAST_SQUARES
+    ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n),
+            vectorToString(x, m).string(), vectorToString(y, m).string());
+#endif
+
+    // Expand the X vector to a matrix A.
+    float a[n][m]; // column-major order
+    for (uint32_t h = 0; h < m; h++) {
+        a[0][h] = 1;
+        for (uint32_t i = 1; i < n; i++) {
+            a[i][h] = a[i - 1][h] * x[h];
+        }
+    }
+#if DEBUG_LEAST_SQUARES
+    ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
+#endif
+
+    // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
+    float q[n][m]; // orthonormal basis, column-major order
+    float r[n][n]; // upper triangular matrix, row-major order
+    for (uint32_t j = 0; j < n; j++) {
+        for (uint32_t h = 0; h < m; h++) {
+            q[j][h] = a[j][h];
+        }
+        for (uint32_t i = 0; i < j; i++) {
+            float dot = vectorDot(&q[j][0], &q[i][0], m);
+            for (uint32_t h = 0; h < m; h++) {
+                q[j][h] -= dot * q[i][h];
+            }
+        }
+
+        float norm = vectorNorm(&q[j][0], m);
+        if (norm < 0.000001f) {
+            // vectors are linearly dependent or zero so no solution
+#if DEBUG_LEAST_SQUARES
+            ALOGD("  - no solution, norm=%f", norm);
+#endif
+            return false;
+        }
+
+        float invNorm = 1.0f / norm;
+        for (uint32_t h = 0; h < m; h++) {
+            q[j][h] *= invNorm;
+        }
+        for (uint32_t i = 0; i < n; i++) {
+            r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
+        }
+    }
+#if DEBUG_LEAST_SQUARES
+    ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
+    ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
+
+    // calculate QR, if we factored A correctly then QR should equal A
+    float qr[n][m];
+    for (uint32_t h = 0; h < m; h++) {
+        for (uint32_t i = 0; i < n; i++) {
+            qr[i][h] = 0;
+            for (uint32_t j = 0; j < n; j++) {
+                qr[i][h] += q[j][h] * r[j][i];
+            }
+        }
+    }
+    ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
+#endif
+
+    // Solve R B = Qt Y to find B.  This is easy because R is upper triangular.
+    // We just work from bottom-right to top-left calculating B's coefficients.
+    for (uint32_t i = n; i-- != 0; ) {
+        outB[i] = vectorDot(&q[i][0], y, m);
+        for (uint32_t j = n - 1; j > i; j--) {
+            outB[i] -= r[i][j] * outB[j];
+        }
+        outB[i] /= r[i][i];
+    }
+#if DEBUG_LEAST_SQUARES
+    ALOGD("  - b=%s", vectorToString(outB, n).string());
+#endif
+
+    // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
+    // SSerr is the residual sum of squares (squared variance of the error),
+    // and SStot is the total sum of squares (squared variance of the data).
+    float ymean = 0;
+    for (uint32_t h = 0; h < m; h++) {
+        ymean += y[h];
+    }
+    ymean /= m;
+
+    float sserr = 0;
+    float sstot = 0;
+    for (uint32_t h = 0; h < m; h++) {
+        float err = y[h] - outB[0];
+        float term = 1;
+        for (uint32_t i = 1; i < n; i++) {
+            term *= x[h];
+            err -= term * outB[i];
+        }
+        sserr += err * err;
+        float var = y[h] - ymean;
+        sstot += var * var;
+    }
+    *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
+#if DEBUG_LEAST_SQUARES
+    ALOGD("  - sserr=%f", sserr);
+    ALOGD("  - sstot=%f", sstot);
+    ALOGD("  - det=%f", *outDet);
+#endif
+    return true;
+}
+
+bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
+    Estimator estimator;
+    if (getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator)) {
+        if (estimator.degree >= 1) {
+            *outVx = estimator.xCoeff[1];
+            *outVy = estimator.yCoeff[1];
+            return true;
+        }
+    }
+    *outVx = 0;
+    *outVy = 0;
+    return false;
+}
+
+bool VelocityTracker::getEstimator(uint32_t id, uint32_t degree, nsecs_t horizon,
+        Estimator* outEstimator) const {
+    outEstimator->clear();
+
+    // Iterate over movement samples in reverse time order and collect samples.
+    float x[HISTORY_SIZE];
+    float y[HISTORY_SIZE];
+    float time[HISTORY_SIZE];
+    uint32_t m = 0;
+    uint32_t index = mIndex;
+    const Movement& newestMovement = mMovements[mIndex];
+    do {
+        const Movement& movement = mMovements[index];
+        if (!movement.idBits.hasBit(id)) {
+            break;
+        }
+
+        nsecs_t age = newestMovement.eventTime - movement.eventTime;
+        if (age > horizon) {
+            break;
+        }
+
+        const Position& position = movement.getPosition(id);
+        x[m] = position.x;
+        y[m] = position.y;
+        time[m] = -age * 0.000000001f;
+        index = (index == 0 ? HISTORY_SIZE : index) - 1;
+    } while (++m < HISTORY_SIZE);
+
+    if (m == 0) {
+        return false; // no data
+    }
+
+    // Calculate a least squares polynomial fit.
+    if (degree > Estimator::MAX_DEGREE) {
+        degree = Estimator::MAX_DEGREE;
+    }
+    if (degree > m - 1) {
+        degree = m - 1;
+    }
+    if (degree >= 1) {
+        float xdet, ydet;
+        uint32_t n = degree + 1;
+        if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet)
+                && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) {
+            outEstimator->degree = degree;
+            outEstimator->confidence = xdet * ydet;
+#if DEBUG_LEAST_SQUARES
+            ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
+                    int(outEstimator->degree),
+                    vectorToString(outEstimator->xCoeff, n).string(),
+                    vectorToString(outEstimator->yCoeff, n).string(),
+                    outEstimator->confidence);
+#endif
+            return true;
+        }
+    }
+
+    // No velocity data available for this pointer, but we do have its current position.
+    outEstimator->xCoeff[0] = x[0];
+    outEstimator->yCoeff[0] = y[0];
+    outEstimator->degree = 0;
+    outEstimator->confidence = 1;
+    return true;
+}
+
+} // namespace android