blob: 923571efd541ef492dab7bdb81b5d683379aa4b8 [file] [log] [blame]
ztenghui55bfb4e2013-12-03 10:38:55 -08001/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#include <math.h>
20#include <utils/Log.h>
21
22#include "AmbientShadow.h"
23#include "Vertex.h"
24
25namespace android {
26namespace uirenderer {
27
28/**
29 * Calculate the shadows as a triangle strips while alpha value as the
30 * shadow values.
31 *
32 * @param vertices The shadow caster's polygon, which is represented in a Vector3
33 * array.
34 * @param vertexCount The length of caster's polygon in terms of number of
35 * vertices.
36 * @param rays The number of rays shooting out from the centroid.
37 * @param layers The number of rings outside the polygon.
38 * @param strength The darkness of the shadow, the higher, the darker.
39 * @param heightFactor The factor showing the higher the object, the lighter the
40 * shadow.
41 * @param geomFactor The factor scaling the geometry expansion along the normal.
42 *
43 * @param shadowVertexBuffer Return an floating point array of (x, y, a)
44 * triangle strips mode.
45 */
46void AmbientShadow::createAmbientShadow(const Vector3* vertices, int vertexCount,
47 int rays, int layers, float strength, float heightFactor, float geomFactor,
48 VertexBuffer& shadowVertexBuffer) {
49
50 // Validate the inputs.
51 if (strength <= 0 || heightFactor <= 0 || layers <= 0 || rays <= 0
52 || geomFactor <= 0) {
53#if DEBUG_SHADOW
54 ALOGE("Invalid input for createAmbientShadow(), early return!");
55#endif
56 return;
57 }
58 int rings = layers + 1;
59 int size = rays * rings;
60 Vector2 centroid;
61 calculatePolygonCentroid(vertices, vertexCount, centroid);
62
63 Vector2 dir[rays];
64 float rayDist[rays];
65 float rayHeight[rays];
66 calculateRayDirections(rays, dir);
67
68 // Calculate the length and height of the points along the edge.
69 //
70 // The math here is:
71 // Intersect each ray (starting from the centroid) with the polygon.
72 for (int i = 0; i < rays; i++) {
73 int edgeIndex;
74 float edgeFraction;
75 float rayDistance;
76 calculateIntersection(vertices, vertexCount, centroid, dir[i], edgeIndex,
77 edgeFraction, rayDistance);
78 rayDist[i] = rayDistance;
79 if (edgeIndex < 0 || edgeIndex >= vertexCount) {
80#if DEBUG_SHADOW
81 ALOGE("Invalid edgeIndex!");
82#endif
83 edgeIndex = 0;
84 }
85 float h1 = vertices[edgeIndex].z;
86 float h2 = vertices[((edgeIndex + 1) % vertexCount)].z;
87 rayHeight[i] = h1 + edgeFraction * (h2 - h1);
88 }
89
90 // The output buffer length basically is roughly rays * layers, but since we
91 // need triangle strips, so we need to duplicate vertices to accomplish that.
92 const int shadowVertexCount = (2 + rays + ((layers) * 2 * (rays + 1)));
93 AlphaVertex* shadowVertices = shadowVertexBuffer.alloc<AlphaVertex>(shadowVertexCount);
94
95 // Calculate the vertex of the shadows.
96 //
97 // The math here is:
98 // Along the edges of the polygon, for each intersection point P (generated above),
99 // calculate the normal N, which should be perpendicular to the edge of the
100 // polygon (represented by the neighbor intersection points) .
101 // Shadow's vertices will be generated as : P + N * scale.
102 int currentIndex = 0;
103 for (int r = 0; r < layers; r++) {
104 int firstInLayer = currentIndex;
105 for (int i = 0; i < rays; i++) {
106
107 Vector2 normal(1.0f, 0.0f);
108 calculateNormal(rays, i, dir, rayDist, normal);
109
110 float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);
111
112 // The vertex should be start from rayDist[i] then scale the
113 // normalizeNormal!
114 Vector2 intersection = dir[i] * rayDist[i] + centroid;
115
116 // Use 2 rings' vertices to complete one layer's strip
117 for (int j = r; j < (r + 2); j++) {
118 float jf = j / (float)(rings - 1);
119
120 float expansionDist = rayHeight[i] / heightFactor * geomFactor * jf;
121 AlphaVertex::set(&shadowVertices[currentIndex],
122 intersection.x + normal.x * expansionDist,
123 intersection.y + normal.y * expansionDist,
124 (1 - jf) * opacity);
125 currentIndex++;
126 }
127 }
128
129 // From one layer to the next, we need to duplicate the vertex to
130 // continue as a single strip.
131 shadowVertices[currentIndex] = shadowVertices[firstInLayer];
132 currentIndex++;
133 shadowVertices[currentIndex] = shadowVertices[firstInLayer + 1];
134 currentIndex++;
135 }
136
137 // After all rings are done, we need to jump into the polygon.
138 // In order to keep everything in a strip, we need to duplicate the last one
139 // of the rings and the first one inside the polygon.
140 int lastInRings = currentIndex - 1;
141 shadowVertices[currentIndex] = shadowVertices[lastInRings];
142 currentIndex++;
143
144 // We skip one and fill it back after we finish the internal triangles.
145 currentIndex++;
146 int firstInternal = currentIndex;
147
148 // Combine the internal area of the polygon into a triangle strip, too.
149 // The basic idea is zig zag between the intersection points.
150 // 0 -> (n - 1) -> 1 -> (n - 2) ...
151 for (int k = 0; k < rays; k++) {
152 int i = k / 2;
153 if ((k & 1) == 1) { // traverse the inside in a zig zag pattern for strips
154 i = rays - i - 1;
155 }
156 float cast = rayDist[i] * (1 + rayHeight[i] / heightFactor);
157 float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);
158 float t = rayDist[i];
159
160 AlphaVertex::set(&shadowVertices[currentIndex], dir[i].x * t + centroid.x,
161 dir[i].y * t + centroid.y, opacity);
162 currentIndex++;
163 }
164
165 currentIndex = firstInternal - 1;
166 shadowVertices[currentIndex] = shadowVertices[firstInternal];
167}
168
169/**
170 * Calculate the centroid of a given polygon.
171 *
172 * @param vertices The shadow caster's polygon, which is represented in a
173 * straight Vector3 array.
174 * @param vertexCount The length of caster's polygon in terms of number of vertices.
175 *
176 * @param centroid Return the centroid of the polygon.
177 */
178void AmbientShadow::calculatePolygonCentroid(const Vector3* vertices, int vertexCount,
179 Vector2& centroid) {
180 float sumx = 0;
181 float sumy = 0;
182 int p1 = vertexCount - 1;
183 float area = 0;
184 for (int p2 = 0; p2 < vertexCount; p2++) {
185 float x1 = vertices[p1].x;
186 float y1 = vertices[p1].y;
187 float x2 = vertices[p2].x;
188 float y2 = vertices[p2].y;
189 float a = (x1 * y2 - x2 * y1);
190 sumx += (x1 + x2) * a;
191 sumy += (y1 + y2) * a;
192 area += a;
193 p1 = p2;
194 }
195
196 if (area == 0) {
197#if DEBUG_SHADOW
198 ALOGE("Area is 0!");
199#endif
200 centroid.x = vertices[0].x;
201 centroid.y = vertices[0].y;
202 } else {
203 centroid.x = sumx / (3 * area);
204 centroid.y = sumy / (3 * area);
205 }
206}
207
208/**
209 * Generate an array of rays' direction vectors.
210 *
211 * @param rays The number of rays shooting out from the centroid.
212 * @param dir Return the array of ray vectors.
213 */
214void AmbientShadow::calculateRayDirections(int rays, Vector2* dir) {
215 float deltaAngle = 2 * M_PI / rays;
216
217 for (int i = 0; i < rays; i++) {
218 dir[i].x = sinf(deltaAngle * i);
219 dir[i].y = cosf(deltaAngle * i);
220 }
221}
222
223/**
224 * Calculate the intersection of a ray hitting the polygon.
225 *
226 * @param vertices The shadow caster's polygon, which is represented in a
227 * Vector3 array.
228 * @param vertexCount The length of caster's polygon in terms of number of vertices.
229 * @param start The starting point of the ray.
230 * @param dir The direction vector of the ray.
231 *
232 * @param outEdgeIndex Return the index of the segment (or index of the starting
233 * vertex) that ray intersect with.
234 * @param outEdgeFraction Return the fraction offset from the segment starting
235 * index.
236 * @param outRayDist Return the ray distance from centroid to the intersection.
237 */
238void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
239 const Vector2& start, const Vector2& dir, int& outEdgeIndex,
240 float& outEdgeFraction, float& outRayDist) {
241 float startX = start.x;
242 float startY = start.y;
243 float dirX = dir.x;
244 float dirY = dir.y;
245 // Start the search from the last edge from poly[len-1] to poly[0].
246 int p1 = vertexCount - 1;
247
248 for (int p2 = 0; p2 < vertexCount; p2++) {
249 float p1x = vertices[p1].x;
250 float p1y = vertices[p1].y;
251 float p2x = vertices[p2].x;
252 float p2y = vertices[p2].y;
253
254 // The math here is derived from:
255 // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0;
256 // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0;
257 float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x);
258 if (div != 0) {
259 float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div);
260 if (t > 0 && t <= 1) {
261 float t2 = (p1x * (startY - p2y)
262 + p2x * (p1y - startY)
263 + startX * (p2y - p1y)) / div;
264 if (t2 > 0) {
265 outEdgeIndex = p1;
266 outRayDist = t2;
267 outEdgeFraction = t;
268 return;
269 }
270 }
271 }
272 p1 = p2;
273 }
274 return;
275};
276
277/**
278 * Calculate the normal at the intersection point between a ray and the polygon.
279 *
280 * @param rays The total number of rays.
281 * @param currentRayIndex The index of the ray which the normal is based on.
282 * @param dir The array of the all the rays directions.
283 * @param rayDist The pre-computed ray distances array.
284 *
285 * @param normal Return the normal.
286 */
287void AmbientShadow::calculateNormal(int rays, int currentRayIndex,
288 const Vector2* dir, const float* rayDist, Vector2& normal) {
289 int preIndex = (currentRayIndex - 1 + rays) % rays;
290 int postIndex = (currentRayIndex + 1) % rays;
291 Vector2 p1 = dir[preIndex] * rayDist[preIndex];
292 Vector2 p2 = dir[postIndex] * rayDist[postIndex];
293
294 // Now the V (deltaX, deltaY) is the vector going CW around the poly.
295 Vector2 delta = p2 - p1;
296 if (delta.length() != 0) {
297 delta.normalize();
298 // Calculate the normal , which is CCW 90 rotate to the V.
299 // 90 degrees CCW about z-axis: (x, y, z) -> (-y, x, z)
300 normal.x = -delta.y;
301 normal.y = delta.x;
302 }
303}
304
305}; // namespace uirenderer
306}; // namespace android