blob: 22d735bff047b3f434899fbedfc1a7ce6825403b [file] [log] [blame]
ztenghui7b4516e2014-01-07 10:42:55 -08001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#define SHADOW_SHRINK_SCALE 0.1f
20
21#include <math.h>
ztenghuif5ca8b42014-01-27 15:53:28 -080022#include <stdlib.h>
ztenghui7b4516e2014-01-07 10:42:55 -080023#include <utils/Log.h>
24
ztenghui63d41ab2014-02-14 13:13:41 -080025#include "ShadowTessellator.h"
ztenghui7b4516e2014-01-07 10:42:55 -080026#include "SpotShadow.h"
27#include "Vertex.h"
28
29namespace android {
30namespace uirenderer {
31
32/**
33 * Calculate the intersection of a ray with a polygon.
34 * It assumes the ray originates inside the polygon.
35 *
36 * @param poly The polygon, which is represented in a Vector2 array.
37 * @param polyLength The length of caster's polygon in terms of number of
38 * vertices.
39 * @param point the start of the ray
40 * @param dx the x vector of the ray
41 * @param dy the y vector of the ray
42 * @return the distance along the ray if it intersects with the polygon FP_NAN if otherwise
43 */
44float SpotShadow::rayIntersectPoly(const Vector2* poly, int polyLength,
45 const Vector2& point, float dx, float dy) {
46 double px = point.x;
47 double py = point.y;
48 int p1 = polyLength - 1;
49 for (int p2 = 0; p2 < polyLength; p2++) {
50 double p1x = poly[p1].x;
51 double p1y = poly[p1].y;
52 double p2x = poly[p2].x;
53 double p2y = poly[p2].y;
54 // The math below is derived from solving this formula, basically the
55 // intersection point should stay on both the ray and the edge of (p1, p2).
56 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
57 double div = (dx * (p1y - p2y) + dy * p2x - dy * p1x);
58 if (div != 0) {
59 double t = (dx * (p1y - py) + dy * px - dy * p1x) / (div);
60 if (t >= 0 && t <= 1) {
61 double t2 = (p1x * (py - p2y) + p2x * (p1y - py) +
62 px * (p2y - p1y)) / div;
63 if (t2 > 0) {
64 return (float)t2;
65 }
66 }
67 }
68 p1 = p2;
69 }
70 return FP_NAN;
71}
72
73/**
ztenghui7b4516e2014-01-07 10:42:55 -080074 * Sort points by their X coordinates
75 *
76 * @param points the points as a Vector2 array.
77 * @param pointsLength the number of vertices of the polygon.
78 */
79void SpotShadow::xsort(Vector2* points, int pointsLength) {
80 quicksortX(points, 0, pointsLength - 1);
81}
82
83/**
84 * compute the convex hull of a collection of Points
85 *
86 * @param points the points as a Vector2 array.
87 * @param pointsLength the number of vertices of the polygon.
88 * @param retPoly pre allocated array of floats to put the vertices
89 * @return the number of points in the polygon 0 if no intersection
90 */
91int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
92 xsort(points, pointsLength);
93 int n = pointsLength;
94 Vector2 lUpper[n];
95 lUpper[0] = points[0];
96 lUpper[1] = points[1];
97
98 int lUpperSize = 2;
99
100 for (int i = 2; i < n; i++) {
101 lUpper[lUpperSize] = points[i];
102 lUpperSize++;
103
ztenghuif5ca8b42014-01-27 15:53:28 -0800104 while (lUpperSize > 2 && !ccw(
105 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
106 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
107 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800108 // Remove the middle point of the three last
109 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
110 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
111 lUpperSize--;
112 }
113 }
114
115 Vector2 lLower[n];
116 lLower[0] = points[n - 1];
117 lLower[1] = points[n - 2];
118
119 int lLowerSize = 2;
120
121 for (int i = n - 3; i >= 0; i--) {
122 lLower[lLowerSize] = points[i];
123 lLowerSize++;
124
ztenghuif5ca8b42014-01-27 15:53:28 -0800125 while (lLowerSize > 2 && !ccw(
126 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
127 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
128 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800129 // Remove the middle point of the three last
130 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
131 lLowerSize--;
132 }
133 }
134 int count = 0;
135
136 for (int i = 0; i < lUpperSize; i++) {
137 retPoly[count] = lUpper[i];
138 count++;
139 }
140
141 for (int i = 1; i < lLowerSize - 1; i++) {
142 retPoly[count] = lLower[i];
143 count++;
144 }
145 // TODO: Add test harness which verify that all the points are inside the hull.
146 return count;
147}
148
149/**
ztenghuif5ca8b42014-01-27 15:53:28 -0800150 * Test whether the 3 points form a counter clockwise turn.
ztenghui7b4516e2014-01-07 10:42:55 -0800151 *
152 * @param ax the x coordinate of point a
153 * @param ay the y coordinate of point a
154 * @param bx the x coordinate of point b
155 * @param by the y coordinate of point b
156 * @param cx the x coordinate of point c
157 * @param cy the y coordinate of point c
158 * @return true if a right hand turn
159 */
ztenghuif5ca8b42014-01-27 15:53:28 -0800160bool SpotShadow::ccw(double ax, double ay, double bx, double by,
ztenghui7b4516e2014-01-07 10:42:55 -0800161 double cx, double cy) {
162 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
163}
164
165/**
166 * Calculates the intersection of poly1 with poly2 and put in poly2.
167 *
168 *
169 * @param poly1 The 1st polygon, as a Vector2 array.
170 * @param poly1Length The number of vertices of 1st polygon.
171 * @param poly2 The 2nd and output polygon, as a Vector2 array.
172 * @param poly2Length The number of vertices of 2nd polygon.
173 * @return number of vertices in output polygon as poly2.
174 */
175int SpotShadow::intersection(Vector2* poly1, int poly1Length,
176 Vector2* poly2, int poly2Length) {
177 makeClockwise(poly1, poly1Length);
178 makeClockwise(poly2, poly2Length);
ztenghuif5ca8b42014-01-27 15:53:28 -0800179
ztenghui7b4516e2014-01-07 10:42:55 -0800180 Vector2 poly[poly1Length * poly2Length + 2];
181 int count = 0;
182 int pcount = 0;
183
184 // If one vertex from one polygon sits inside another polygon, add it and
185 // count them.
186 for (int i = 0; i < poly1Length; i++) {
187 if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
188 poly[count] = poly1[i];
189 count++;
190 pcount++;
191
192 }
193 }
194
195 int insidePoly2 = pcount;
196 for (int i = 0; i < poly2Length; i++) {
197 if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
198 poly[count] = poly2[i];
199 count++;
200 }
201 }
202
203 int insidePoly1 = count - insidePoly2;
204 // If all vertices from poly1 are inside poly2, then just return poly1.
205 if (insidePoly2 == poly1Length) {
206 memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
207 return poly1Length;
208 }
209
210 // If all vertices from poly2 are inside poly1, then just return poly2.
211 if (insidePoly1 == poly2Length) {
212 return poly2Length;
213 }
214
215 // Since neither polygon fully contain the other one, we need to add all the
216 // intersection points.
217 Vector2 intersection;
218 for (int i = 0; i < poly2Length; i++) {
219 for (int j = 0; j < poly1Length; j++) {
220 int poly2LineStart = i;
221 int poly2LineEnd = ((i + 1) % poly2Length);
222 int poly1LineStart = j;
223 int poly1LineEnd = ((j + 1) % poly1Length);
224 bool found = lineIntersection(
225 poly2[poly2LineStart].x, poly2[poly2LineStart].y,
226 poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
227 poly1[poly1LineStart].x, poly1[poly1LineStart].y,
228 poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
229 intersection);
230 if (found) {
231 poly[count].x = intersection.x;
232 poly[count].y = intersection.y;
233 count++;
234 } else {
235 Vector2 delta = poly2[i] - poly1[j];
ztenghuif5ca8b42014-01-27 15:53:28 -0800236 if (delta.lengthSquared() < EPSILON) {
ztenghui7b4516e2014-01-07 10:42:55 -0800237 poly[count] = poly2[i];
238 count++;
239 }
240 }
241 }
242 }
243
244 if (count == 0) {
245 return 0;
246 }
247
248 // Sort the result polygon around the center.
249 Vector2 center(0.0f, 0.0f);
250 for (int i = 0; i < count; i++) {
251 center += poly[i];
252 }
253 center /= count;
254 sort(poly, count, center);
255
ztenghuif5ca8b42014-01-27 15:53:28 -0800256#if DEBUG_SHADOW
257 // Since poly2 is overwritten as the result, we need to save a copy to do
258 // our verification.
259 Vector2 oldPoly2[poly2Length];
260 int oldPoly2Length = poly2Length;
261 memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
262#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800263
ztenghuif5ca8b42014-01-27 15:53:28 -0800264 // Filter the result out from poly and put it into poly2.
ztenghui7b4516e2014-01-07 10:42:55 -0800265 poly2[0] = poly[0];
ztenghuif5ca8b42014-01-27 15:53:28 -0800266 int lastOutputIndex = 0;
ztenghui7b4516e2014-01-07 10:42:55 -0800267 for (int i = 1; i < count; i++) {
ztenghuif5ca8b42014-01-27 15:53:28 -0800268 Vector2 delta = poly[i] - poly2[lastOutputIndex];
269 if (delta.lengthSquared() >= EPSILON) {
270 poly2[++lastOutputIndex] = poly[i];
271 } else {
272 // If the vertices are too close, pick the inner one, because the
273 // inner one is more likely to be an intersection point.
274 Vector2 delta1 = poly[i] - center;
275 Vector2 delta2 = poly2[lastOutputIndex] - center;
276 if (delta1.lengthSquared() < delta2.lengthSquared()) {
277 poly2[lastOutputIndex] = poly[i];
278 }
ztenghui7b4516e2014-01-07 10:42:55 -0800279 }
280 }
ztenghuif5ca8b42014-01-27 15:53:28 -0800281 int resultLength = lastOutputIndex + 1;
282
283#if DEBUG_SHADOW
284 testConvex(poly2, resultLength, "intersection");
285 testConvex(poly1, poly1Length, "input poly1");
286 testConvex(oldPoly2, oldPoly2Length, "input poly2");
287
288 testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
289#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800290
291 return resultLength;
292}
293
294/**
295 * Sort points about a center point
296 *
297 * @param poly The in and out polyogon as a Vector2 array.
298 * @param polyLength The number of vertices of the polygon.
299 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
300 */
301void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
302 quicksortCirc(poly, 0, polyLength - 1, center);
303}
304
305/**
ztenghuif5ca8b42014-01-27 15:53:28 -0800306 * Calculate the angle between and x and a y coordinate.
307 * The atan2 range from -PI to PI, if we want to sort the vertices as clockwise,
308 * we just negate the return angle.
ztenghui7b4516e2014-01-07 10:42:55 -0800309 */
310float SpotShadow::angle(const Vector2& point, const Vector2& center) {
ztenghuif5ca8b42014-01-27 15:53:28 -0800311 return -(float)atan2(point.y - center.y, point.x - center.x);
ztenghui7b4516e2014-01-07 10:42:55 -0800312}
313
314/**
315 * Swap points pointed to by i and j
316 */
317void SpotShadow::swap(Vector2* points, int i, int j) {
318 Vector2 temp = points[i];
319 points[i] = points[j];
320 points[j] = temp;
321}
322
323/**
324 * quick sort implementation about the center.
325 */
326void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
327 const Vector2& center) {
328 int i = low, j = high;
329 int p = low + (high - low) / 2;
330 float pivot = angle(points[p], center);
331 while (i <= j) {
332 while (angle(points[i], center) < pivot) {
333 i++;
334 }
335 while (angle(points[j], center) > pivot) {
336 j--;
337 }
338
339 if (i <= j) {
340 swap(points, i, j);
341 i++;
342 j--;
343 }
344 }
345 if (low < j) quicksortCirc(points, low, j, center);
346 if (i < high) quicksortCirc(points, i, high, center);
347}
348
349/**
350 * Sort points by x axis
351 *
352 * @param points points to sort
353 * @param low start index
354 * @param high end index
355 */
356void SpotShadow::quicksortX(Vector2* points, int low, int high) {
357 int i = low, j = high;
358 int p = low + (high - low) / 2;
359 float pivot = points[p].x;
360 while (i <= j) {
361 while (points[i].x < pivot) {
362 i++;
363 }
364 while (points[j].x > pivot) {
365 j--;
366 }
367
368 if (i <= j) {
369 swap(points, i, j);
370 i++;
371 j--;
372 }
373 }
374 if (low < j) quicksortX(points, low, j);
375 if (i < high) quicksortX(points, i, high);
376}
377
378/**
379 * Test whether a point is inside the polygon.
380 *
381 * @param testPoint the point to test
382 * @param poly the polygon
383 * @return true if the testPoint is inside the poly.
384 */
385bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
386 const Vector2* poly, int len) {
387 bool c = false;
388 double testx = testPoint.x;
389 double testy = testPoint.y;
390 for (int i = 0, j = len - 1; i < len; j = i++) {
391 double startX = poly[j].x;
392 double startY = poly[j].y;
393 double endX = poly[i].x;
394 double endY = poly[i].y;
395
396 if (((endY > testy) != (startY > testy)) &&
397 (testx < (startX - endX) * (testy - endY)
398 / (startY - endY) + endX)) {
399 c = !c;
400 }
401 }
402 return c;
403}
404
405/**
406 * Make the polygon turn clockwise.
407 *
408 * @param polygon the polygon as a Vector2 array.
409 * @param len the number of points of the polygon
410 */
411void SpotShadow::makeClockwise(Vector2* polygon, int len) {
412 if (polygon == 0 || len == 0) {
413 return;
414 }
415 if (!isClockwise(polygon, len)) {
416 reverse(polygon, len);
417 }
418}
419
420/**
421 * Test whether the polygon is order in clockwise.
422 *
423 * @param polygon the polygon as a Vector2 array
424 * @param len the number of points of the polygon
425 */
426bool SpotShadow::isClockwise(Vector2* polygon, int len) {
427 double sum = 0;
428 double p1x = polygon[len - 1].x;
429 double p1y = polygon[len - 1].y;
430 for (int i = 0; i < len; i++) {
431
432 double p2x = polygon[i].x;
433 double p2y = polygon[i].y;
434 sum += p1x * p2y - p2x * p1y;
435 p1x = p2x;
436 p1y = p2y;
437 }
438 return sum < 0;
439}
440
441/**
442 * Reverse the polygon
443 *
444 * @param polygon the polygon as a Vector2 array
445 * @param len the number of points of the polygon
446 */
447void SpotShadow::reverse(Vector2* polygon, int len) {
448 int n = len / 2;
449 for (int i = 0; i < n; i++) {
450 Vector2 tmp = polygon[i];
451 int k = len - 1 - i;
452 polygon[i] = polygon[k];
453 polygon[k] = tmp;
454 }
455}
456
457/**
458 * Intersects two lines in parametric form. This function is called in a tight
459 * loop, and we need double precision to get things right.
460 *
461 * @param x1 the x coordinate point 1 of line 1
462 * @param y1 the y coordinate point 1 of line 1
463 * @param x2 the x coordinate point 2 of line 1
464 * @param y2 the y coordinate point 2 of line 1
465 * @param x3 the x coordinate point 1 of line 2
466 * @param y3 the y coordinate point 1 of line 2
467 * @param x4 the x coordinate point 2 of line 2
468 * @param y4 the y coordinate point 2 of line 2
469 * @param ret the x,y location of the intersection
470 * @return true if it found an intersection
471 */
472inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
473 double x3, double y3, double x4, double y4, Vector2& ret) {
474 double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
475 if (d == 0.0) return false;
476
477 double dx = (x1 * y2 - y1 * x2);
478 double dy = (x3 * y4 - y3 * x4);
479 double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
480 double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
481
482 // The intersection should be in the middle of the point 1 and point 2,
483 // likewise point 3 and point 4.
484 if (((x - x1) * (x - x2) > EPSILON)
485 || ((x - x3) * (x - x4) > EPSILON)
486 || ((y - y1) * (y - y2) > EPSILON)
487 || ((y - y3) * (y - y4) > EPSILON)) {
488 // Not interesected
489 return false;
490 }
491 ret.x = x;
492 ret.y = y;
493 return true;
494
495}
496
497/**
498 * Compute a horizontal circular polygon about point (x , y , height) of radius
499 * (size)
500 *
501 * @param points number of the points of the output polygon.
502 * @param lightCenter the center of the light.
503 * @param size the light size.
504 * @param ret result polygon.
505 */
506void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
507 float size, Vector3* ret) {
508 // TODO: Caching all the sin / cos values and store them in a look up table.
509 for (int i = 0; i < points; i++) {
510 double angle = 2 * i * M_PI / points;
511 ret[i].x = sinf(angle) * size + lightCenter.x;
512 ret[i].y = cosf(angle) * size + lightCenter.y;
513 ret[i].z = lightCenter.z;
514 }
515}
516
517/**
518* Generate the shadow from a spot light.
519*
520* @param poly x,y,z vertexes of a convex polygon that occludes the light source
521* @param polyLength number of vertexes of the occluding polygon
522* @param lightCenter the center of the light
523* @param lightSize the radius of the light source
524* @param lightVertexCount the vertex counter for the light polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800525* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
526* empty strip if error.
527*
528*/
529void SpotShadow::createSpotShadow(const Vector3* poly, int polyLength,
530 const Vector3& lightCenter, float lightSize, int lightVertexCount,
ztenghui63d41ab2014-02-14 13:13:41 -0800531 VertexBuffer& retStrips) {
ztenghui7b4516e2014-01-07 10:42:55 -0800532 Vector3 light[lightVertexCount * 3];
533 computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
ztenghui63d41ab2014-02-14 13:13:41 -0800534 computeSpotShadow(light, lightVertexCount, lightCenter, poly, polyLength,
535 retStrips);
ztenghui7b4516e2014-01-07 10:42:55 -0800536}
537
538/**
539 * Generate the shadow spot light of shape lightPoly and a object poly
540 *
541 * @param lightPoly x,y,z vertex of a convex polygon that is the light source
542 * @param lightPolyLength number of vertexes of the light source polygon
543 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
544 * @param polyLength number of vertexes of the occluding polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800545 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
546 * empty strip if error.
547 */
548void SpotShadow::computeSpotShadow(const Vector3* lightPoly, int lightPolyLength,
549 const Vector3& lightCenter, const Vector3* poly, int polyLength,
ztenghui63d41ab2014-02-14 13:13:41 -0800550 VertexBuffer& shadowTriangleStrip) {
ztenghui7b4516e2014-01-07 10:42:55 -0800551 // Point clouds for all the shadowed vertices
552 Vector2 shadowRegion[lightPolyLength * polyLength];
553 // Shadow polygon from one point light.
554 Vector2 outline[polyLength];
555 Vector2 umbraMem[polyLength * lightPolyLength];
556 Vector2* umbra = umbraMem;
557
558 int umbraLength = 0;
559
560 // Validate input, receiver is always at z = 0 plane.
561 bool inputPolyPositionValid = true;
562 for (int i = 0; i < polyLength; i++) {
563 if (poly[i].z <= 0.00001) {
564 inputPolyPositionValid = false;
565 ALOGE("polygon below the surface");
566 break;
567 }
568 if (poly[i].z >= lightPoly[0].z) {
569 inputPolyPositionValid = false;
570 ALOGE("polygon above the light");
571 break;
572 }
573 }
574
575 // If the caster's position is invalid, don't draw anything.
576 if (!inputPolyPositionValid) {
577 return;
578 }
579
580 // Calculate the umbra polygon based on intersections of all outlines
581 int k = 0;
582 for (int j = 0; j < lightPolyLength; j++) {
583 int m = 0;
584 for (int i = 0; i < polyLength; i++) {
585 float t = lightPoly[j].z - poly[i].z;
586 if (t == 0) {
587 return;
588 }
589 t = lightPoly[j].z / t;
590 float x = lightPoly[j].x - t * (lightPoly[j].x - poly[i].x);
591 float y = lightPoly[j].y - t * (lightPoly[j].y - poly[i].y);
592
593 Vector2 newPoint = Vector2(x, y);
594 shadowRegion[k] = newPoint;
595 outline[m] = newPoint;
596
597 k++;
598 m++;
599 }
600
601 // For the first light polygon's vertex, use the outline as the umbra.
602 // Later on, use the intersection of the outline and existing umbra.
603 if (umbraLength == 0) {
604 for (int i = 0; i < polyLength; i++) {
605 umbra[i] = outline[i];
606 }
607 umbraLength = polyLength;
608 } else {
609 int col = ((j * 255) / lightPolyLength);
610 umbraLength = intersection(outline, polyLength, umbra, umbraLength);
611 if (umbraLength == 0) {
612 break;
613 }
614 }
615 }
616
617 // Generate the penumbra area using the hull of all shadow regions.
618 int shadowRegionLength = k;
619 Vector2 penumbra[k];
620 int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
621
ztenghui5176c972014-01-31 17:17:55 -0800622 Vector2 fakeUmbra[polyLength];
ztenghui7b4516e2014-01-07 10:42:55 -0800623 if (umbraLength < 3) {
ztenghui5176c972014-01-31 17:17:55 -0800624 // If there is no real umbra, make a fake one.
ztenghui7b4516e2014-01-07 10:42:55 -0800625 for (int i = 0; i < polyLength; i++) {
626 float t = lightCenter.z - poly[i].z;
627 if (t == 0) {
628 return;
629 }
630 t = lightCenter.z / t;
631 float x = lightCenter.x - t * (lightCenter.x - poly[i].x);
632 float y = lightCenter.y - t * (lightCenter.y - poly[i].y);
633
ztenghui5176c972014-01-31 17:17:55 -0800634 fakeUmbra[i].x = x;
635 fakeUmbra[i].y = y;
ztenghui7b4516e2014-01-07 10:42:55 -0800636 }
637
638 // Shrink the centroid's shadow by 10%.
639 // TODO: Study the magic number of 10%.
ztenghui63d41ab2014-02-14 13:13:41 -0800640 Vector2 shadowCentroid =
641 ShadowTessellator::centroid2d(fakeUmbra, polyLength);
ztenghui7b4516e2014-01-07 10:42:55 -0800642 for (int i = 0; i < polyLength; i++) {
ztenghui5176c972014-01-31 17:17:55 -0800643 fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
644 fakeUmbra[i] * SHADOW_SHRINK_SCALE;
ztenghui7b4516e2014-01-07 10:42:55 -0800645 }
646#if DEBUG_SHADOW
647 ALOGD("No real umbra make a fake one, centroid2d = %f , %f",
648 shadowCentroid.x, shadowCentroid.y);
649#endif
650 // Set the fake umbra, whose size is the same as the original polygon.
ztenghui5176c972014-01-31 17:17:55 -0800651 umbra = fakeUmbra;
ztenghui7b4516e2014-01-07 10:42:55 -0800652 umbraLength = polyLength;
653 }
654
655 generateTriangleStrip(penumbra, penumbraLength, umbra, umbraLength,
ztenghui63d41ab2014-02-14 13:13:41 -0800656 shadowTriangleStrip);
ztenghui7b4516e2014-01-07 10:42:55 -0800657}
658
659/**
660 * Generate a triangle strip given two convex polygons
661 *
662 * @param penumbra The outer polygon x,y vertexes
663 * @param penumbraLength The number of vertexes in the outer polygon
664 * @param umbra The inner outer polygon x,y vertexes
665 * @param umbraLength The number of vertexes in the inner polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800666 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
667 * empty strip if error.
668**/
669void SpotShadow::generateTriangleStrip(const Vector2* penumbra, int penumbraLength,
ztenghui63d41ab2014-02-14 13:13:41 -0800670 const Vector2* umbra, int umbraLength, VertexBuffer& shadowTriangleStrip) {
671 const int rays = SHADOW_RAY_COUNT;
672 const int layers = SHADOW_LAYER_COUNT;
ztenghui7b4516e2014-01-07 10:42:55 -0800673
ztenghui63d41ab2014-02-14 13:13:41 -0800674 int size = rays * (layers + 1);
ztenghui7b4516e2014-01-07 10:42:55 -0800675 float step = M_PI * 2 / rays;
676 // Centroid of the umbra.
ztenghui63d41ab2014-02-14 13:13:41 -0800677 Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
ztenghui7b4516e2014-01-07 10:42:55 -0800678#if DEBUG_SHADOW
679 ALOGD("centroid2d = %f , %f", centroid.x, centroid.y);
680#endif
681 // Intersection to the penumbra.
682 float penumbraDistPerRay[rays];
683 // Intersection to the umbra.
684 float umbraDistPerRay[rays];
685
686 for (int i = 0; i < rays; i++) {
687 // TODO: Setup a lookup table for all the sin/cos.
688 float dx = sinf(step * i);
689 float dy = cosf(step * i);
690 umbraDistPerRay[i] = rayIntersectPoly(umbra, umbraLength, centroid,
691 dx, dy);
692 if (isnan(umbraDistPerRay[i])) {
693 ALOGE("rayIntersectPoly returns NAN");
694 return;
695 }
696 penumbraDistPerRay[i] = rayIntersectPoly(penumbra, penumbraLength,
697 centroid, dx, dy);
698 if (isnan(umbraDistPerRay[i])) {
699 ALOGE("rayIntersectPoly returns NAN");
700 return;
701 }
702 }
703
704 int stripSize = getStripSize(rays, layers);
705 AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(stripSize);
706 int currentIndex = 0;
ztenghui7b4516e2014-01-07 10:42:55 -0800707
ztenghui63d41ab2014-02-14 13:13:41 -0800708 // Calculate the vertices (x, y, alpha) in the shadow area.
709 for (int layerIndex = 0; layerIndex <= layers; layerIndex++) {
710 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
711 float dx = sinf(step * rayIndex);
712 float dy = cosf(step * rayIndex);
713 float layerRatio = layerIndex / (float) layers;
714 float deltaDist = layerRatio *
715 (umbraDistPerRay[rayIndex] - penumbraDistPerRay[rayIndex]);
716 float currentDist = penumbraDistPerRay[rayIndex] + deltaDist;
717 float op = calculateOpacity(layerRatio);
Chris Craik12d9526d2014-01-30 15:43:56 -0800718 AlphaVertex::set(&shadowVertices[currentIndex++],
ztenghui63d41ab2014-02-14 13:13:41 -0800719 dx * currentDist + centroid.x, dy * currentDist + centroid.y, op);
ztenghui7b4516e2014-01-07 10:42:55 -0800720 }
ztenghui7b4516e2014-01-07 10:42:55 -0800721 }
ztenghui63d41ab2014-02-14 13:13:41 -0800722 // The centroid is in the umbra area, so the opacity is considered as 1.0.
723 AlphaVertex::set(&shadowVertices[currentIndex++], centroid.x, centroid.y, 1.0);
ztenghui7b4516e2014-01-07 10:42:55 -0800724#if DEBUG_SHADOW
ztenghui63d41ab2014-02-14 13:13:41 -0800725 if (currentIndex != SHADOW_VERTEX_COUNT) {
726 ALOGE("number of vertex generated for spot shadow is wrong!");
727 }
ztenghui7b4516e2014-01-07 10:42:55 -0800728 for (int i = 0; i < currentIndex; i++) {
ztenghui63d41ab2014-02-14 13:13:41 -0800729 ALOGD("spot shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
ztenghui7b4516e2014-01-07 10:42:55 -0800730 shadowVertices[i].y, shadowVertices[i].alpha);
731 }
732#endif
733}
734
735/**
736 * This is only for experimental purpose.
737 * After intersections are calculated, we could smooth the polygon if needed.
738 * So far, we don't think it is more appealing yet.
739 *
740 * @param level The level of smoothness.
741 * @param rays The total number of rays.
742 * @param rayDist (In and Out) The distance for each ray.
743 *
744 */
745void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
746 for (int k = 0; k < level; k++) {
747 for (int i = 0; i < rays; i++) {
748 float p1 = rayDist[(rays - 1 + i) % rays];
749 float p2 = rayDist[i];
750 float p3 = rayDist[(i + 1) % rays];
751 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
752 }
753 }
754}
755
756/**
ztenghui63d41ab2014-02-14 13:13:41 -0800757 * Calculate the opacity according to the distance. Ideally, the opacity is 1.0
758 * in the umbra area, and fall off to 0.0 till the edge of penumbra area.
ztenghui7b4516e2014-01-07 10:42:55 -0800759 *
ztenghui63d41ab2014-02-14 13:13:41 -0800760 * @param layerRatio The distance ratio of current sample between umbra and penumbra area.
761 * Penumbra edge is 0 and umbra edge is 1.
ztenghui7b4516e2014-01-07 10:42:55 -0800762 * @return The opacity according to the distance between umbra and penumbra.
763 */
ztenghui63d41ab2014-02-14 13:13:41 -0800764float SpotShadow::calculateOpacity(float layerRatio) {
765 return (layerRatio * layerRatio + layerRatio) / 2.0;
ztenghui7b4516e2014-01-07 10:42:55 -0800766}
767
768/**
769 * Calculate the number of vertex we will create given a number of rays and layers
770 *
771 * @param rays number of points around the polygons you want
772 * @param layers number of layers of triangle strips you need
773 * @return number of vertex (multiply by 3 for number of floats)
774 */
775int SpotShadow::getStripSize(int rays, int layers) {
776 return (2 + rays + ((layers) * 2 * (rays + 1)));
777}
778
ztenghuif5ca8b42014-01-27 15:53:28 -0800779#if DEBUG_SHADOW
780
781#define TEST_POINT_NUMBER 128
782
783/**
784 * Calculate the bounds for generating random test points.
785 */
786void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
787 Vector2& upperBound ) {
788 if (inVector.x < lowerBound.x) {
789 lowerBound.x = inVector.x;
790 }
791
792 if (inVector.y < lowerBound.y) {
793 lowerBound.y = inVector.y;
794 }
795
796 if (inVector.x > upperBound.x) {
797 upperBound.x = inVector.x;
798 }
799
800 if (inVector.y > upperBound.y) {
801 upperBound.y = inVector.y;
802 }
803}
804
805/**
806 * For debug purpose, when things go wrong, dump the whole polygon data.
807 */
808static void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
809 for (int i = 0; i < polyLength; i++) {
810 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
811 }
812}
813
814/**
815 * Test whether the polygon is convex.
816 */
817bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
818 const char* name) {
819 bool isConvex = true;
820 for (int i = 0; i < polygonLength; i++) {
821 Vector2 start = polygon[i];
822 Vector2 middle = polygon[(i + 1) % polygonLength];
823 Vector2 end = polygon[(i + 2) % polygonLength];
824
825 double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
826 (double(middle.y) - start.y) * (double(end.x) - start.x);
827 bool isCCWOrCoLinear = (delta >= EPSILON);
828
829 if (isCCWOrCoLinear) {
830 ALOGE("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
831 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
832 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
833 isConvex = false;
834 break;
835 }
836 }
837 return isConvex;
838}
839
840/**
841 * Test whether or not the polygon (intersection) is within the 2 input polygons.
842 * Using Marte Carlo method, we generate a random point, and if it is inside the
843 * intersection, then it must be inside both source polygons.
844 */
845void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
846 const Vector2* poly2, int poly2Length,
847 const Vector2* intersection, int intersectionLength) {
848 // Find the min and max of x and y.
849 Vector2 lowerBound(FLT_MAX, FLT_MAX);
850 Vector2 upperBound(-FLT_MAX, -FLT_MAX);
851 for (int i = 0; i < poly1Length; i++) {
852 updateBound(poly1[i], lowerBound, upperBound);
853 }
854 for (int i = 0; i < poly2Length; i++) {
855 updateBound(poly2[i], lowerBound, upperBound);
856 }
857
858 bool dumpPoly = false;
859 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
860 // Generate a random point between minX, minY and maxX, maxY.
861 double randomX = rand() / double(RAND_MAX);
862 double randomY = rand() / double(RAND_MAX);
863
864 Vector2 testPoint;
865 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
866 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
867
868 // If the random point is in both poly 1 and 2, then it must be intersection.
869 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
870 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
871 dumpPoly = true;
872 ALOGE("(Error Type 1): one point (%f, %f) in the intersection is"
873 " not in the poly1",
874 testPoint.x, testPoint.y);
875 }
876
877 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
878 dumpPoly = true;
879 ALOGE("(Error Type 1): one point (%f, %f) in the intersection is"
880 " not in the poly2",
881 testPoint.x, testPoint.y);
882 }
883 }
884 }
885
886 if (dumpPoly) {
887 dumpPolygon(intersection, intersectionLength, "intersection");
888 for (int i = 1; i < intersectionLength; i++) {
889 Vector2 delta = intersection[i] - intersection[i - 1];
890 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
891 }
892
893 dumpPolygon(poly1, poly1Length, "poly 1");
894 dumpPolygon(poly2, poly2Length, "poly 2");
895 }
896}
897#endif
898
ztenghui7b4516e2014-01-07 10:42:55 -0800899}; // namespace uirenderer
900}; // namespace android
901
902
903
904