Adam Lesinski | 21efb68 | 2016-09-14 17:35:43 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2016 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "compile/Png.h" |
| 18 | |
| 19 | #include <algorithm> |
| 20 | #include <android-base/errors.h> |
| 21 | #include <android-base/macros.h> |
| 22 | #include <png.h> |
| 23 | #include <unordered_map> |
| 24 | #include <unordered_set> |
| 25 | #include <zlib.h> |
| 26 | |
| 27 | namespace aapt { |
| 28 | |
| 29 | // Size in bytes of the PNG signature. |
| 30 | constexpr size_t kPngSignatureSize = 8u; |
| 31 | |
| 32 | /** |
| 33 | * Custom deleter that destroys libpng read and info structs. |
| 34 | */ |
| 35 | class PngReadStructDeleter { |
| 36 | public: |
| 37 | explicit PngReadStructDeleter(png_structp readPtr, png_infop infoPtr) : |
| 38 | mReadPtr(readPtr), mInfoPtr(infoPtr) { |
| 39 | } |
| 40 | |
| 41 | ~PngReadStructDeleter() { |
| 42 | png_destroy_read_struct(&mReadPtr, &mInfoPtr, nullptr); |
| 43 | } |
| 44 | |
| 45 | private: |
| 46 | png_structp mReadPtr; |
| 47 | png_infop mInfoPtr; |
| 48 | |
| 49 | DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter); |
| 50 | }; |
| 51 | |
| 52 | /** |
| 53 | * Custom deleter that destroys libpng write and info structs. |
| 54 | */ |
| 55 | class PngWriteStructDeleter { |
| 56 | public: |
| 57 | explicit PngWriteStructDeleter(png_structp writePtr, png_infop infoPtr) : |
| 58 | mWritePtr(writePtr), mInfoPtr(infoPtr) { |
| 59 | } |
| 60 | |
| 61 | ~PngWriteStructDeleter() { |
| 62 | png_destroy_write_struct(&mWritePtr, &mInfoPtr); |
| 63 | } |
| 64 | |
| 65 | private: |
| 66 | png_structp mWritePtr; |
| 67 | png_infop mInfoPtr; |
| 68 | |
| 69 | DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter); |
| 70 | }; |
| 71 | |
| 72 | // Custom warning logging method that uses IDiagnostics. |
| 73 | static void logWarning(png_structp pngPtr, png_const_charp warningMsg) { |
| 74 | IDiagnostics* diag = (IDiagnostics*) png_get_error_ptr(pngPtr); |
| 75 | diag->warn(DiagMessage() << warningMsg); |
| 76 | } |
| 77 | |
| 78 | // Custom error logging method that uses IDiagnostics. |
| 79 | static void logError(png_structp pngPtr, png_const_charp errorMsg) { |
| 80 | IDiagnostics* diag = (IDiagnostics*) png_get_error_ptr(pngPtr); |
| 81 | diag->error(DiagMessage() << errorMsg); |
| 82 | } |
| 83 | |
| 84 | static void readDataFromStream(png_structp pngPtr, png_bytep buffer, png_size_t len) { |
| 85 | io::InputStream* in = (io::InputStream*) png_get_io_ptr(pngPtr); |
| 86 | |
| 87 | const void* inBuffer; |
| 88 | int inLen; |
| 89 | if (!in->Next(&inBuffer, &inLen)) { |
| 90 | if (in->HadError()) { |
| 91 | std::string err = in->GetError(); |
| 92 | png_error(pngPtr, err.c_str()); |
| 93 | } |
| 94 | return; |
| 95 | } |
| 96 | |
| 97 | const size_t bytesRead = std::min(static_cast<size_t>(inLen), len); |
| 98 | memcpy(buffer, inBuffer, bytesRead); |
| 99 | if (bytesRead != static_cast<size_t>(inLen)) { |
| 100 | in->BackUp(inLen - static_cast<int>(bytesRead)); |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | static void writeDataToStream(png_structp pngPtr, png_bytep buffer, png_size_t len) { |
| 105 | io::OutputStream* out = (io::OutputStream*) png_get_io_ptr(pngPtr); |
| 106 | |
| 107 | void* outBuffer; |
| 108 | int outLen; |
| 109 | while (len > 0) { |
| 110 | if (!out->Next(&outBuffer, &outLen)) { |
| 111 | if (out->HadError()) { |
| 112 | std::string err = out->GetError(); |
| 113 | png_error(pngPtr, err.c_str()); |
| 114 | } |
| 115 | return; |
| 116 | } |
| 117 | |
| 118 | const size_t bytesWritten = std::min(static_cast<size_t>(outLen), len); |
| 119 | memcpy(outBuffer, buffer, bytesWritten); |
| 120 | |
| 121 | // Advance the input buffer. |
| 122 | buffer += bytesWritten; |
| 123 | len -= bytesWritten; |
| 124 | |
| 125 | // Advance the output buffer. |
| 126 | outLen -= static_cast<int>(bytesWritten); |
| 127 | } |
| 128 | |
| 129 | // If the entire output buffer wasn't used, backup. |
| 130 | if (outLen > 0) { |
| 131 | out->BackUp(outLen); |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | std::unique_ptr<Image> readPng(IAaptContext* context, io::InputStream* in) { |
| 136 | // Read the first 8 bytes of the file looking for the PNG signature. |
| 137 | // Bail early if it does not match. |
| 138 | const png_byte* signature; |
| 139 | int bufferSize; |
| 140 | if (!in->Next((const void**) &signature, &bufferSize)) { |
| 141 | context->getDiagnostics()->error(DiagMessage() |
| 142 | << android::base::SystemErrorCodeToString(errno)); |
| 143 | return {}; |
| 144 | } |
| 145 | |
| 146 | if (static_cast<size_t>(bufferSize) < kPngSignatureSize |
| 147 | || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) { |
| 148 | context->getDiagnostics()->error(DiagMessage() |
| 149 | << "file signature does not match PNG signature"); |
| 150 | return {}; |
| 151 | } |
| 152 | |
| 153 | // Start at the beginning of the first chunk. |
| 154 | in->BackUp(bufferSize - static_cast<int>(kPngSignatureSize)); |
| 155 | |
| 156 | // Create and initialize the png_struct with the default error and warning handlers. |
| 157 | // The header version is also passed in to ensure that this was built against the same |
| 158 | // version of libpng. |
| 159 | png_structp readPtr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); |
| 160 | if (readPtr == nullptr) { |
| 161 | context->getDiagnostics()->error(DiagMessage() |
| 162 | << "failed to create libpng read png_struct"); |
| 163 | return {}; |
| 164 | } |
| 165 | |
| 166 | // Create and initialize the memory for image header and data. |
| 167 | png_infop infoPtr = png_create_info_struct(readPtr); |
| 168 | if (infoPtr == nullptr) { |
| 169 | context->getDiagnostics()->error(DiagMessage() << "failed to create libpng read png_info"); |
| 170 | png_destroy_read_struct(&readPtr, nullptr, nullptr); |
| 171 | return {}; |
| 172 | } |
| 173 | |
| 174 | // Automatically release PNG resources at end of scope. |
| 175 | PngReadStructDeleter pngReadDeleter(readPtr, infoPtr); |
| 176 | |
| 177 | // libpng uses longjmp to jump to an error handling routine. |
| 178 | // setjmp will only return true if it was jumped to, aka there was |
| 179 | // an error. |
| 180 | if (setjmp(png_jmpbuf(readPtr))) { |
| 181 | return {}; |
| 182 | } |
| 183 | |
| 184 | // Handle warnings ourselves via IDiagnostics. |
| 185 | png_set_error_fn(readPtr, (png_voidp) context->getDiagnostics(), logError, logWarning); |
| 186 | |
| 187 | // Set up the read functions which read from our custom data sources. |
| 188 | png_set_read_fn(readPtr, (png_voidp) in, readDataFromStream); |
| 189 | |
| 190 | // Skip the signature that we already read. |
| 191 | png_set_sig_bytes(readPtr, kPngSignatureSize); |
| 192 | |
| 193 | // Read the chunk headers. |
| 194 | png_read_info(readPtr, infoPtr); |
| 195 | |
| 196 | // Extract image meta-data from the various chunk headers. |
| 197 | uint32_t width, height; |
| 198 | int bitDepth, colorType, interlaceMethod, compressionMethod, filterMethod; |
| 199 | png_get_IHDR(readPtr, infoPtr, &width, &height, &bitDepth, &colorType, &interlaceMethod, |
| 200 | &compressionMethod, &filterMethod); |
| 201 | |
| 202 | // When the image is read, expand it so that it is in RGBA 8888 format |
| 203 | // so that image handling is uniform. |
| 204 | |
| 205 | if (colorType == PNG_COLOR_TYPE_PALETTE) { |
| 206 | png_set_palette_to_rgb(readPtr); |
| 207 | } |
| 208 | |
| 209 | if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) { |
| 210 | png_set_expand_gray_1_2_4_to_8(readPtr); |
| 211 | } |
| 212 | |
| 213 | if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) { |
| 214 | png_set_tRNS_to_alpha(readPtr); |
| 215 | } |
| 216 | |
| 217 | if (bitDepth == 16) { |
| 218 | png_set_strip_16(readPtr); |
| 219 | } |
| 220 | |
| 221 | if (!(colorType & PNG_COLOR_MASK_ALPHA)) { |
| 222 | png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER); |
| 223 | } |
| 224 | |
| 225 | if (colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| 226 | png_set_gray_to_rgb(readPtr); |
| 227 | } |
| 228 | |
| 229 | if (interlaceMethod != PNG_INTERLACE_NONE) { |
| 230 | png_set_interlace_handling(readPtr); |
| 231 | } |
| 232 | |
| 233 | // Once all the options for reading have been set, we need to flush |
| 234 | // them to libpng. |
| 235 | png_read_update_info(readPtr, infoPtr); |
| 236 | |
| 237 | // 9-patch uses int32_t to index images, so we cap the image dimensions to something |
| 238 | // that can always be represented by 9-patch. |
| 239 | if (width > std::numeric_limits<int32_t>::max() || |
| 240 | height > std::numeric_limits<int32_t>::max()) { |
| 241 | context->getDiagnostics()->error(DiagMessage() << "PNG image dimensions are too large: " |
| 242 | << width << "x" << height); |
| 243 | return {}; |
| 244 | } |
| 245 | |
| 246 | std::unique_ptr<Image> outputImage = util::make_unique<Image>(); |
| 247 | outputImage->width = static_cast<int32_t>(width); |
| 248 | outputImage->height = static_cast<int32_t>(height); |
| 249 | |
| 250 | const size_t rowBytes = png_get_rowbytes(readPtr, infoPtr); |
| 251 | assert(rowBytes == 4 * width); // RGBA |
| 252 | |
| 253 | // Allocate one large block to hold the image. |
| 254 | outputImage->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * rowBytes]); |
| 255 | |
| 256 | // Create an array of rows that index into the data block. |
| 257 | outputImage->rows = std::unique_ptr<uint8_t*[]>(new uint8_t*[height]); |
| 258 | for (uint32_t h = 0; h < height; h++) { |
| 259 | outputImage->rows[h] = outputImage->data.get() + (h * rowBytes); |
| 260 | } |
| 261 | |
| 262 | // Actually read the image pixels. |
| 263 | png_read_image(readPtr, outputImage->rows.get()); |
| 264 | |
| 265 | // Finish reading. This will read any other chunks after the image data. |
| 266 | png_read_end(readPtr, infoPtr); |
| 267 | |
| 268 | return outputImage; |
| 269 | } |
| 270 | |
| 271 | /** |
| 272 | * Experimentally chosen constant to be added to the overhead of using color type |
| 273 | * PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk. |
| 274 | * Without this, many small PNGs encoded with palettes are larger after compression than |
| 275 | * the same PNGs encoded as RGBA. |
| 276 | */ |
| 277 | constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u; |
| 278 | |
| 279 | // Pick a color type by which to encode the image, based on which color type will take |
| 280 | // the least amount of disk space. |
| 281 | // |
| 282 | // 9-patch images traditionally have not been encoded with palettes. |
| 283 | // The original rationale was to avoid dithering until after scaling, |
| 284 | // but I don't think this would be an issue with palettes. Either way, |
| 285 | // our naive size estimation tends to be wrong for small images like 9-patches |
| 286 | // and using palettes balloons the size of the resulting 9-patch. |
| 287 | // In order to not regress in size, restrict 9-patch to not use palettes. |
| 288 | |
| 289 | // The options are: |
| 290 | // |
| 291 | // - RGB |
| 292 | // - RGBA |
| 293 | // - RGB + cheap alpha |
| 294 | // - Color palette |
| 295 | // - Color palette + cheap alpha |
| 296 | // - Color palette + alpha palette |
| 297 | // - Grayscale |
| 298 | // - Grayscale + cheap alpha |
| 299 | // - Grayscale + alpha |
| 300 | // |
| 301 | static int pickColorType(int32_t width, int32_t height, |
| 302 | bool grayScale, bool convertibleToGrayScale, bool hasNinePatch, |
| 303 | size_t colorPaletteSize, size_t alphaPaletteSize) { |
| 304 | const size_t paletteChunkSize = 16 + colorPaletteSize * 3; |
| 305 | const size_t alphaChunkSize = 16 + alphaPaletteSize; |
| 306 | const size_t colorAlphaDataChunkSize = 16 + 4 * width * height; |
| 307 | const size_t colorDataChunkSize = 16 + 3 * width * height; |
| 308 | const size_t grayScaleAlphaDataChunkSize = 16 + 2 * width * height; |
| 309 | const size_t paletteDataChunkSize = 16 + width * height; |
| 310 | |
| 311 | if (grayScale) { |
| 312 | if (alphaPaletteSize == 0) { |
| 313 | // This is the smallest the data can be. |
| 314 | return PNG_COLOR_TYPE_GRAY; |
| 315 | } else if (colorPaletteSize <= 256 && !hasNinePatch) { |
| 316 | // This grayscale has alpha and can fit within a palette. |
| 317 | // See if it is worth fitting into a palette. |
| 318 | const size_t paletteThreshold = paletteChunkSize + alphaChunkSize + |
| 319 | paletteDataChunkSize + kPaletteOverheadConstant; |
| 320 | if (grayScaleAlphaDataChunkSize > paletteThreshold) { |
| 321 | return PNG_COLOR_TYPE_PALETTE; |
| 322 | } |
| 323 | } |
| 324 | return PNG_COLOR_TYPE_GRAY_ALPHA; |
| 325 | } |
| 326 | |
| 327 | |
| 328 | if (colorPaletteSize <= 256 && !hasNinePatch) { |
| 329 | // This image can fit inside a palette. Let's see if it is worth it. |
| 330 | size_t totalSizeWithPalette = paletteDataChunkSize + paletteChunkSize; |
| 331 | size_t totalSizeWithoutPalette = colorDataChunkSize; |
| 332 | if (alphaPaletteSize > 0) { |
| 333 | totalSizeWithPalette += alphaPaletteSize; |
| 334 | totalSizeWithoutPalette = colorAlphaDataChunkSize; |
| 335 | } |
| 336 | |
| 337 | if (totalSizeWithoutPalette > totalSizeWithPalette + kPaletteOverheadConstant) { |
| 338 | return PNG_COLOR_TYPE_PALETTE; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | if (convertibleToGrayScale) { |
| 343 | if (alphaPaletteSize == 0) { |
| 344 | return PNG_COLOR_TYPE_GRAY; |
| 345 | } else { |
| 346 | return PNG_COLOR_TYPE_GRAY_ALPHA; |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | if (alphaPaletteSize == 0) { |
| 351 | return PNG_COLOR_TYPE_RGB; |
| 352 | } |
| 353 | return PNG_COLOR_TYPE_RGBA; |
| 354 | } |
| 355 | |
| 356 | // Assigns indices to the color and alpha palettes, encodes them, and then invokes |
| 357 | // png_set_PLTE/png_set_tRNS. |
| 358 | // This must be done before writing image data. |
| 359 | // Image data must be transformed to use the indices assigned within the palette. |
| 360 | static void writePalette(png_structp writePtr, png_infop writeInfoPtr, |
| 361 | std::unordered_map<uint32_t, int>* colorPalette, |
| 362 | std::unordered_set<uint32_t>* alphaPalette) { |
| 363 | assert(colorPalette->size() <= 256); |
| 364 | assert(alphaPalette->size() <= 256); |
| 365 | |
| 366 | // Populate the PNG palette struct and assign indices to the color |
| 367 | // palette. |
| 368 | |
| 369 | // Colors in the alpha palette should have smaller indices. |
| 370 | // This will ensure that we can truncate the alpha palette if it is |
| 371 | // smaller than the color palette. |
| 372 | int index = 0; |
| 373 | for (uint32_t color : *alphaPalette) { |
| 374 | (*colorPalette)[color] = index++; |
| 375 | } |
| 376 | |
| 377 | // Assign the rest of the entries. |
| 378 | for (auto& entry : *colorPalette) { |
| 379 | if (entry.second == -1) { |
| 380 | entry.second = index++; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | // Create the PNG color palette struct. |
| 385 | auto colorPaletteBytes = std::unique_ptr<png_color[]>(new png_color[colorPalette->size()]); |
| 386 | |
| 387 | std::unique_ptr<png_byte[]> alphaPaletteBytes; |
| 388 | if (!alphaPalette->empty()) { |
| 389 | alphaPaletteBytes = std::unique_ptr<png_byte[]>(new png_byte[alphaPalette->size()]); |
| 390 | } |
| 391 | |
| 392 | for (const auto& entry : *colorPalette) { |
| 393 | const uint32_t color = entry.first; |
| 394 | const int index = entry.second; |
| 395 | assert(index >= 0); |
| 396 | assert(static_cast<size_t>(index) < colorPalette->size()); |
| 397 | |
| 398 | png_colorp slot = colorPaletteBytes.get() + index; |
| 399 | slot->red = color >> 24; |
| 400 | slot->green = color >> 16; |
| 401 | slot->blue = color >> 8; |
| 402 | |
| 403 | const png_byte alpha = color & 0x000000ff; |
| 404 | if (alpha != 0xff && alphaPaletteBytes) { |
| 405 | assert(static_cast<size_t>(index) < alphaPalette->size()); |
| 406 | alphaPaletteBytes[index] = alpha; |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | // The bytes get copied here, so it is safe to release colorPaletteBytes at the end of function |
| 411 | // scope. |
| 412 | png_set_PLTE(writePtr, writeInfoPtr, colorPaletteBytes.get(), colorPalette->size()); |
| 413 | |
| 414 | if (alphaPaletteBytes) { |
| 415 | png_set_tRNS(writePtr, writeInfoPtr, alphaPaletteBytes.get(), alphaPalette->size(), |
| 416 | nullptr); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | // Write the 9-patch custom PNG chunks to writeInfoPtr. This must be done before |
| 421 | // writing image data. |
| 422 | static void writeNinePatch(png_structp writePtr, png_infop writeInfoPtr, |
| 423 | const NinePatch* ninePatch) { |
| 424 | // The order of the chunks is important. |
| 425 | // 9-patch code in older platforms expects the 9-patch chunk to |
| 426 | // be last. |
| 427 | |
| 428 | png_unknown_chunk unknownChunks[3]; |
| 429 | memset(unknownChunks, 0, sizeof(unknownChunks)); |
| 430 | |
| 431 | size_t index = 0; |
| 432 | size_t chunkLen = 0; |
| 433 | |
| 434 | std::unique_ptr<uint8_t[]> serializedOutline = |
| 435 | ninePatch->serializeRoundedRectOutline(&chunkLen); |
| 436 | strcpy((char*) unknownChunks[index].name, "npOl"); |
| 437 | unknownChunks[index].size = chunkLen; |
| 438 | unknownChunks[index].data = (png_bytep) serializedOutline.get(); |
| 439 | unknownChunks[index].location = PNG_HAVE_PLTE; |
| 440 | index++; |
| 441 | |
| 442 | std::unique_ptr<uint8_t[]> serializedLayoutBounds; |
| 443 | if (ninePatch->layoutBounds.nonZero()) { |
| 444 | serializedLayoutBounds = ninePatch->serializeLayoutBounds(&chunkLen); |
| 445 | strcpy((char*) unknownChunks[index].name, "npLb"); |
| 446 | unknownChunks[index].size = chunkLen; |
| 447 | unknownChunks[index].data = (png_bytep) serializedLayoutBounds.get(); |
| 448 | unknownChunks[index].location = PNG_HAVE_PLTE; |
| 449 | index++; |
| 450 | } |
| 451 | |
| 452 | std::unique_ptr<uint8_t[]> serializedNinePatch = ninePatch->serializeBase(&chunkLen); |
| 453 | strcpy((char*) unknownChunks[index].name, "npTc"); |
| 454 | unknownChunks[index].size = chunkLen; |
| 455 | unknownChunks[index].data = (png_bytep) serializedNinePatch.get(); |
| 456 | unknownChunks[index].location = PNG_HAVE_PLTE; |
| 457 | index++; |
| 458 | |
| 459 | // Handle all unknown chunks. We are manually setting the chunks here, |
| 460 | // so we will only ever handle our custom chunks. |
| 461 | png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0); |
| 462 | |
| 463 | // Set the actual chunks here. The data gets copied, so our buffers can |
| 464 | // safely go out of scope. |
| 465 | png_set_unknown_chunks(writePtr, writeInfoPtr, unknownChunks, index); |
| 466 | } |
| 467 | |
| 468 | bool writePng(IAaptContext* context, const Image* image, const NinePatch* ninePatch, |
| 469 | io::OutputStream* out, const PngOptions& options) { |
| 470 | // Create and initialize the write png_struct with the default error and warning handlers. |
| 471 | // The header version is also passed in to ensure that this was built against the same |
| 472 | // version of libpng. |
| 473 | png_structp writePtr = png_create_write_struct(PNG_LIBPNG_VER_STRING, |
| 474 | nullptr, nullptr, nullptr); |
| 475 | if (writePtr == nullptr) { |
| 476 | context->getDiagnostics()->error(DiagMessage() |
| 477 | << "failed to create libpng write png_struct"); |
| 478 | return false; |
| 479 | } |
| 480 | |
| 481 | // Allocate memory to store image header data. |
| 482 | png_infop writeInfoPtr = png_create_info_struct(writePtr); |
| 483 | if (writeInfoPtr == nullptr) { |
| 484 | context->getDiagnostics()->error(DiagMessage() << "failed to create libpng write png_info"); |
| 485 | png_destroy_write_struct(&writePtr, nullptr); |
| 486 | return false; |
| 487 | } |
| 488 | |
| 489 | // Automatically release PNG resources at end of scope. |
| 490 | PngWriteStructDeleter pngWriteDeleter(writePtr, writeInfoPtr); |
| 491 | |
| 492 | // libpng uses longjmp to jump to error handling routines. |
| 493 | // setjmp will return true only if it was jumped to, aka, there was an error. |
| 494 | if (setjmp(png_jmpbuf(writePtr))) { |
| 495 | return false; |
| 496 | } |
| 497 | |
| 498 | // Handle warnings with our IDiagnostics. |
| 499 | png_set_error_fn(writePtr, (png_voidp) context->getDiagnostics(), logError, logWarning); |
| 500 | |
| 501 | // Set up the write functions which write to our custom data sources. |
| 502 | png_set_write_fn(writePtr, (png_voidp) out, writeDataToStream, nullptr); |
| 503 | |
| 504 | // We want small files and can take the performance hit to achieve this goal. |
| 505 | png_set_compression_level(writePtr, Z_BEST_COMPRESSION); |
| 506 | |
| 507 | // Begin analysis of the image data. |
| 508 | // Scan the entire image and determine if: |
| 509 | // 1. Every pixel has R == G == B (grayscale) |
| 510 | // 2. Every pixel has A == 255 (opaque) |
| 511 | // 3. There are no more than 256 distinct RGBA colors (palette). |
| 512 | std::unordered_map<uint32_t, int> colorPalette; |
| 513 | std::unordered_set<uint32_t> alphaPalette; |
| 514 | bool needsToZeroRGBChannelsOfTransparentPixels = false; |
| 515 | bool grayScale = true; |
| 516 | int maxGrayDeviation = 0; |
| 517 | |
| 518 | for (int32_t y = 0; y < image->height; y++) { |
| 519 | const uint8_t* row = image->rows[y]; |
| 520 | for (int32_t x = 0; x < image->width; x++) { |
| 521 | int red = *row++; |
| 522 | int green = *row++; |
| 523 | int blue = *row++; |
| 524 | int alpha = *row++; |
| 525 | |
| 526 | if (alpha == 0) { |
| 527 | // The color is completely transparent. |
| 528 | // For purposes of palettes and grayscale optimization, |
| 529 | // treat all channels as 0x00. |
| 530 | needsToZeroRGBChannelsOfTransparentPixels = |
| 531 | needsToZeroRGBChannelsOfTransparentPixels || |
| 532 | (red != 0 || green != 0 || blue != 0); |
| 533 | red = green = blue = 0; |
| 534 | } |
| 535 | |
| 536 | // Insert the color into the color palette. |
| 537 | const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha; |
| 538 | colorPalette[color] = -1; |
| 539 | |
| 540 | // If the pixel has non-opaque alpha, insert it into the |
| 541 | // alpha palette. |
| 542 | if (alpha != 0xff) { |
| 543 | alphaPalette.insert(color); |
| 544 | } |
| 545 | |
| 546 | // Check if the image is indeed grayscale. |
| 547 | if (grayScale) { |
| 548 | if (red != green || red != blue) { |
| 549 | grayScale = false; |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | // Calculate the gray scale deviation so that it can be compared |
| 554 | // with the threshold. |
| 555 | maxGrayDeviation = std::max(std::abs(red - green), maxGrayDeviation); |
| 556 | maxGrayDeviation = std::max(std::abs(green - blue), maxGrayDeviation); |
| 557 | maxGrayDeviation = std::max(std::abs(blue - red), maxGrayDeviation); |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | if (context->verbose()) { |
| 562 | DiagMessage msg; |
| 563 | msg << " paletteSize=" << colorPalette.size() |
| 564 | << " alphaPaletteSize=" << alphaPalette.size() |
| 565 | << " maxGrayDeviation=" << maxGrayDeviation |
| 566 | << " grayScale=" << (grayScale ? "true" : "false"); |
| 567 | context->getDiagnostics()->note(msg); |
| 568 | } |
| 569 | |
| 570 | const bool convertibleToGrayScale = maxGrayDeviation <= options.grayScaleTolerance; |
| 571 | |
| 572 | const int newColorType = pickColorType(image->width, image->height, grayScale, |
| 573 | convertibleToGrayScale, ninePatch != nullptr, |
| 574 | colorPalette.size(), alphaPalette.size()); |
| 575 | |
| 576 | if (context->verbose()) { |
| 577 | DiagMessage msg; |
| 578 | msg << "encoding PNG "; |
| 579 | if (ninePatch) { |
| 580 | msg << "(with 9-patch) as "; |
| 581 | } |
| 582 | switch (newColorType) { |
| 583 | case PNG_COLOR_TYPE_GRAY: |
| 584 | msg << "GRAY"; |
| 585 | break; |
| 586 | case PNG_COLOR_TYPE_GRAY_ALPHA: |
| 587 | msg << "GRAY + ALPHA"; |
| 588 | break; |
| 589 | case PNG_COLOR_TYPE_RGB: |
| 590 | msg << "RGB"; |
| 591 | break; |
| 592 | case PNG_COLOR_TYPE_RGB_ALPHA: |
| 593 | msg << "RGBA"; |
| 594 | break; |
| 595 | case PNG_COLOR_TYPE_PALETTE: |
| 596 | msg << "PALETTE"; |
| 597 | break; |
| 598 | default: |
| 599 | msg << "unknown type " << newColorType; |
| 600 | break; |
| 601 | } |
| 602 | context->getDiagnostics()->note(msg); |
| 603 | } |
| 604 | |
| 605 | png_set_IHDR(writePtr, writeInfoPtr, image->width, image->height, 8, newColorType, |
| 606 | PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); |
| 607 | |
| 608 | if (newColorType & PNG_COLOR_MASK_PALETTE) { |
| 609 | // Assigns indices to the palette, and writes the encoded palette to the libpng writePtr. |
| 610 | writePalette(writePtr, writeInfoPtr, &colorPalette, &alphaPalette); |
| 611 | png_set_filter(writePtr, 0, PNG_NO_FILTERS); |
| 612 | } else { |
| 613 | png_set_filter(writePtr, 0, PNG_ALL_FILTERS); |
| 614 | } |
| 615 | |
| 616 | if (ninePatch) { |
| 617 | writeNinePatch(writePtr, writeInfoPtr, ninePatch); |
| 618 | } |
| 619 | |
| 620 | // Flush our updates to the header. |
| 621 | png_write_info(writePtr, writeInfoPtr); |
| 622 | |
| 623 | // Write out each row of image data according to its encoding. |
| 624 | if (newColorType == PNG_COLOR_TYPE_PALETTE) { |
| 625 | // 1 byte/pixel. |
| 626 | auto outRow = std::unique_ptr<png_byte[]>(new png_byte[image->width]); |
| 627 | |
| 628 | for (int32_t y = 0; y < image->height; y++) { |
| 629 | png_const_bytep inRow = image->rows[y]; |
| 630 | for (int32_t x = 0; x < image->width; x++) { |
| 631 | int rr = *inRow++; |
| 632 | int gg = *inRow++; |
| 633 | int bb = *inRow++; |
| 634 | int aa = *inRow++; |
| 635 | if (aa == 0) { |
| 636 | // Zero out color channels when transparent. |
| 637 | rr = gg = bb = 0; |
| 638 | } |
| 639 | |
| 640 | const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa; |
| 641 | const int idx = colorPalette[color]; |
| 642 | assert(idx != -1); |
| 643 | outRow[x] = static_cast<png_byte>(idx); |
| 644 | } |
| 645 | png_write_row(writePtr, outRow.get()); |
| 646 | } |
| 647 | } else if (newColorType == PNG_COLOR_TYPE_GRAY || newColorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| 648 | const size_t bpp = newColorType == PNG_COLOR_TYPE_GRAY ? 1 : 2; |
| 649 | auto outRow = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]); |
| 650 | |
| 651 | for (int32_t y = 0; y < image->height; y++) { |
| 652 | png_const_bytep inRow = image->rows[y]; |
| 653 | for (int32_t x = 0; x < image->width; x++) { |
| 654 | int rr = inRow[x * 4]; |
| 655 | int gg = inRow[x * 4 + 1]; |
| 656 | int bb = inRow[x * 4 + 2]; |
| 657 | int aa = inRow[x * 4 + 3]; |
| 658 | if (aa == 0) { |
| 659 | // Zero out the gray channel when transparent. |
| 660 | rr = gg = bb = 0; |
| 661 | } |
| 662 | |
| 663 | if (grayScale) { |
| 664 | // The image was already grayscale, red == green == blue. |
| 665 | outRow[x * bpp] = inRow[x * 4]; |
| 666 | } else { |
| 667 | // The image is convertible to grayscale, use linear-luminance of |
| 668 | // sRGB colorspace: https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale |
| 669 | outRow[x * bpp] = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); |
| 670 | } |
| 671 | |
| 672 | if (bpp == 2) { |
| 673 | // Write out alpha if we have it. |
| 674 | outRow[x * bpp + 1] = aa; |
| 675 | } |
| 676 | } |
| 677 | png_write_row(writePtr, outRow.get()); |
| 678 | } |
| 679 | } else if (newColorType == PNG_COLOR_TYPE_RGB || newColorType == PNG_COLOR_TYPE_RGBA) { |
| 680 | const size_t bpp = newColorType == PNG_COLOR_TYPE_RGB ? 3 : 4; |
| 681 | if (needsToZeroRGBChannelsOfTransparentPixels) { |
| 682 | // The source RGBA data can't be used as-is, because we need to zero out the RGB |
| 683 | // values of transparent pixels. |
| 684 | auto outRow = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]); |
| 685 | |
| 686 | for (int32_t y = 0; y < image->height; y++) { |
| 687 | png_const_bytep inRow = image->rows[y]; |
| 688 | for (int32_t x = 0; x < image->width; x++) { |
| 689 | int rr = *inRow++; |
| 690 | int gg = *inRow++; |
| 691 | int bb = *inRow++; |
| 692 | int aa = *inRow++; |
| 693 | if (aa == 0) { |
| 694 | // Zero out the RGB channels when transparent. |
| 695 | rr = gg = bb = 0; |
| 696 | } |
| 697 | outRow[x * bpp] = rr; |
| 698 | outRow[x * bpp + 1] = gg; |
| 699 | outRow[x * bpp + 2] = bb; |
| 700 | if (bpp == 4) { |
| 701 | outRow[x * bpp + 3] = aa; |
| 702 | } |
| 703 | } |
| 704 | png_write_row(writePtr, outRow.get()); |
| 705 | } |
| 706 | } else { |
| 707 | // The source image can be used as-is, just tell libpng whether or not to ignore |
| 708 | // the alpha channel. |
| 709 | if (newColorType == PNG_COLOR_TYPE_RGB) { |
| 710 | // Delete the extraneous alpha values that we appended to our buffer |
| 711 | // when reading the original values. |
| 712 | png_set_filler(writePtr, 0, PNG_FILLER_AFTER); |
| 713 | } |
| 714 | png_write_image(writePtr, image->rows.get()); |
| 715 | } |
| 716 | } else { |
| 717 | assert(false && "unreachable"); |
| 718 | } |
| 719 | |
| 720 | png_write_end(writePtr, writeInfoPtr); |
| 721 | return true; |
| 722 | } |
| 723 | |
| 724 | } // namespace aapt |