Derek Sollenberger | 0e3cba3 | 2016-11-09 11:58:36 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2016 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "VulkanManager.h" |
| 18 | |
| 19 | #include "DeviceInfo.h" |
| 20 | #include "RenderThread.h" |
| 21 | |
| 22 | #include <GrContext.h> |
| 23 | #include <GrTypes.h> |
| 24 | #include <vk/GrVkTypes.h> |
| 25 | |
| 26 | namespace android { |
| 27 | namespace uirenderer { |
| 28 | namespace renderthread { |
| 29 | |
| 30 | #define GET_PROC(F) m ## F = (PFN_vk ## F) vkGetInstanceProcAddr(instance, "vk" #F) |
| 31 | #define GET_DEV_PROC(F) m ## F = (PFN_vk ## F) vkGetDeviceProcAddr(device, "vk" #F) |
| 32 | |
| 33 | VulkanManager::VulkanManager(RenderThread& thread) : mRenderThread(thread) { |
| 34 | } |
| 35 | |
| 36 | void VulkanManager::destroy() { |
| 37 | if (!hasVkContext()) return; |
| 38 | |
| 39 | if (VK_NULL_HANDLE != mCommandPool) { |
| 40 | mDestroyCommandPool(mBackendContext->fDevice, mCommandPool, nullptr); |
| 41 | mCommandPool = VK_NULL_HANDLE; |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | void VulkanManager::initialize() { |
| 46 | if (hasVkContext()) { return; } |
| 47 | |
| 48 | auto canPresent = [](VkInstance, VkPhysicalDevice, uint32_t) { return true; }; |
| 49 | |
| 50 | mBackendContext.reset(GrVkBackendContext::Create(&mPresentQueueIndex, canPresent)); |
| 51 | |
| 52 | // Get all the addresses of needed vulkan functions |
| 53 | VkInstance instance = mBackendContext->fInstance; |
| 54 | VkDevice device = mBackendContext->fDevice; |
| 55 | GET_PROC(CreateAndroidSurfaceKHR); |
| 56 | GET_PROC(DestroySurfaceKHR); |
| 57 | GET_PROC(GetPhysicalDeviceSurfaceSupportKHR); |
| 58 | GET_PROC(GetPhysicalDeviceSurfaceCapabilitiesKHR); |
| 59 | GET_PROC(GetPhysicalDeviceSurfaceFormatsKHR); |
| 60 | GET_PROC(GetPhysicalDeviceSurfacePresentModesKHR); |
| 61 | GET_DEV_PROC(CreateSwapchainKHR); |
| 62 | GET_DEV_PROC(DestroySwapchainKHR); |
| 63 | GET_DEV_PROC(GetSwapchainImagesKHR); |
| 64 | GET_DEV_PROC(AcquireNextImageKHR); |
| 65 | GET_DEV_PROC(QueuePresentKHR); |
| 66 | GET_DEV_PROC(CreateCommandPool); |
| 67 | GET_DEV_PROC(DestroyCommandPool); |
| 68 | GET_DEV_PROC(AllocateCommandBuffers); |
| 69 | GET_DEV_PROC(FreeCommandBuffers); |
| 70 | GET_DEV_PROC(ResetCommandBuffer); |
| 71 | GET_DEV_PROC(BeginCommandBuffer); |
| 72 | GET_DEV_PROC(EndCommandBuffer); |
| 73 | GET_DEV_PROC(CmdPipelineBarrier); |
| 74 | GET_DEV_PROC(GetDeviceQueue); |
| 75 | GET_DEV_PROC(QueueSubmit); |
| 76 | GET_DEV_PROC(QueueWaitIdle); |
| 77 | GET_DEV_PROC(DeviceWaitIdle); |
| 78 | GET_DEV_PROC(CreateSemaphore); |
| 79 | GET_DEV_PROC(DestroySemaphore); |
| 80 | GET_DEV_PROC(CreateFence); |
| 81 | GET_DEV_PROC(DestroyFence); |
| 82 | GET_DEV_PROC(WaitForFences); |
| 83 | GET_DEV_PROC(ResetFences); |
| 84 | |
| 85 | // create the command pool for the command buffers |
| 86 | if (VK_NULL_HANDLE == mCommandPool) { |
| 87 | VkCommandPoolCreateInfo commandPoolInfo; |
| 88 | memset(&commandPoolInfo, 0, sizeof(VkCommandPoolCreateInfo)); |
| 89 | commandPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; |
| 90 | // this needs to be on the render queue |
| 91 | commandPoolInfo.queueFamilyIndex = mBackendContext->fGraphicsQueueIndex; |
| 92 | commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; |
| 93 | SkDEBUGCODE(VkResult res =) mCreateCommandPool(mBackendContext->fDevice, |
| 94 | &commandPoolInfo, nullptr, &mCommandPool); |
| 95 | SkASSERT(VK_SUCCESS == res); |
| 96 | } |
| 97 | |
| 98 | mGetDeviceQueue(mBackendContext->fDevice, mPresentQueueIndex, 0, &mPresentQueue); |
| 99 | |
| 100 | mRenderThread.setGrContext(GrContext::Create(kVulkan_GrBackend, |
| 101 | (GrBackendContext) mBackendContext.get())); |
| 102 | DeviceInfo::initialize(mRenderThread.getGrContext()->caps()->maxRenderTargetSize()); |
| 103 | } |
| 104 | |
| 105 | // Returns the next BackbufferInfo to use for the next draw. The function will make sure all |
| 106 | // previous uses have finished before returning. |
| 107 | VulkanSurface::BackbufferInfo* VulkanManager::getAvailableBackbuffer(VulkanSurface* surface) { |
| 108 | SkASSERT(surface->mBackbuffers); |
| 109 | |
| 110 | ++surface->mCurrentBackbufferIndex; |
| 111 | if (surface->mCurrentBackbufferIndex > surface->mImageCount) { |
| 112 | surface->mCurrentBackbufferIndex = 0; |
| 113 | } |
| 114 | |
| 115 | VulkanSurface::BackbufferInfo* backbuffer = surface->mBackbuffers + |
| 116 | surface->mCurrentBackbufferIndex; |
| 117 | |
| 118 | // Before we reuse a backbuffer, make sure its fences have all signaled so that we can safely |
| 119 | // reuse its commands buffers. |
| 120 | VkResult res = mWaitForFences(mBackendContext->fDevice, 2, backbuffer->mUsageFences, |
| 121 | true, UINT64_MAX); |
| 122 | if (res != VK_SUCCESS) { |
| 123 | return nullptr; |
| 124 | } |
| 125 | |
| 126 | return backbuffer; |
| 127 | } |
| 128 | |
| 129 | |
| 130 | SkSurface* VulkanManager::getBackbufferSurface(VulkanSurface* surface) { |
| 131 | VulkanSurface::BackbufferInfo* backbuffer = getAvailableBackbuffer(surface); |
| 132 | SkASSERT(backbuffer); |
| 133 | |
| 134 | VkResult res; |
| 135 | |
| 136 | res = mResetFences(mBackendContext->fDevice, 2, backbuffer->mUsageFences); |
| 137 | SkASSERT(VK_SUCCESS == res); |
| 138 | |
| 139 | // The acquire will signal the attached mAcquireSemaphore. We use this to know the image has |
| 140 | // finished presenting and that it is safe to begin sending new commands to the returned image. |
| 141 | res = mAcquireNextImageKHR(mBackendContext->fDevice, surface->mSwapchain, UINT64_MAX, |
| 142 | backbuffer->mAcquireSemaphore, VK_NULL_HANDLE, &backbuffer->mImageIndex); |
| 143 | |
| 144 | if (VK_ERROR_SURFACE_LOST_KHR == res) { |
| 145 | // need to figure out how to create a new vkSurface without the platformData* |
| 146 | // maybe use attach somehow? but need a Window |
| 147 | return nullptr; |
| 148 | } |
| 149 | if (VK_ERROR_OUT_OF_DATE_KHR == res) { |
| 150 | // tear swapchain down and try again |
| 151 | if (!createSwapchain(surface)) { |
| 152 | return nullptr; |
| 153 | } |
| 154 | |
| 155 | // acquire the image |
| 156 | res = mAcquireNextImageKHR(mBackendContext->fDevice, surface->mSwapchain, UINT64_MAX, |
| 157 | backbuffer->mAcquireSemaphore, VK_NULL_HANDLE, &backbuffer->mImageIndex); |
| 158 | |
| 159 | if (VK_SUCCESS != res) { |
| 160 | return nullptr; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | // set up layout transfer from initial to color attachment |
| 165 | VkImageLayout layout = surface->mImageLayouts[backbuffer->mImageIndex]; |
| 166 | SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout || VK_IMAGE_LAYOUT_PRESENT_SRC_KHR == layout); |
| 167 | VkPipelineStageFlags srcStageMask = (VK_IMAGE_LAYOUT_UNDEFINED == layout) ? |
| 168 | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT : |
| 169 | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| 170 | VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| 171 | VkAccessFlags srcAccessMask = (VK_IMAGE_LAYOUT_UNDEFINED == layout) ? |
| 172 | 0 : VK_ACCESS_MEMORY_READ_BIT; |
| 173 | VkAccessFlags dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| 174 | |
| 175 | VkImageMemoryBarrier imageMemoryBarrier = { |
| 176 | VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType |
| 177 | NULL, // pNext |
| 178 | srcAccessMask, // outputMask |
| 179 | dstAccessMask, // inputMask |
| 180 | layout, // oldLayout |
| 181 | VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // newLayout |
| 182 | mPresentQueueIndex, // srcQueueFamilyIndex |
| 183 | mBackendContext->fGraphicsQueueIndex, // dstQueueFamilyIndex |
| 184 | surface->mImages[backbuffer->mImageIndex], // image |
| 185 | { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 } // subresourceRange |
| 186 | }; |
| 187 | mResetCommandBuffer(backbuffer->mTransitionCmdBuffers[0], 0); |
| 188 | |
| 189 | VkCommandBufferBeginInfo info; |
| 190 | memset(&info, 0, sizeof(VkCommandBufferBeginInfo)); |
| 191 | info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| 192 | info.flags = 0; |
| 193 | mBeginCommandBuffer(backbuffer->mTransitionCmdBuffers[0], &info); |
| 194 | |
| 195 | mCmdPipelineBarrier(backbuffer->mTransitionCmdBuffers[0], srcStageMask, dstStageMask, 0, |
| 196 | 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); |
| 197 | |
| 198 | mEndCommandBuffer(backbuffer->mTransitionCmdBuffers[0]); |
| 199 | |
| 200 | VkPipelineStageFlags waitDstStageFlags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| 201 | // insert the layout transfer into the queue and wait on the acquire |
| 202 | VkSubmitInfo submitInfo; |
| 203 | memset(&submitInfo, 0, sizeof(VkSubmitInfo)); |
| 204 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 205 | submitInfo.waitSemaphoreCount = 1; |
| 206 | // Wait to make sure aquire semaphore set above has signaled. |
| 207 | submitInfo.pWaitSemaphores = &backbuffer->mAcquireSemaphore; |
| 208 | submitInfo.pWaitDstStageMask = &waitDstStageFlags; |
| 209 | submitInfo.commandBufferCount = 1; |
| 210 | submitInfo.pCommandBuffers = &backbuffer->mTransitionCmdBuffers[0]; |
| 211 | submitInfo.signalSemaphoreCount = 0; |
| 212 | |
| 213 | // Attach first fence to submission here so we can track when the command buffer finishes. |
| 214 | mQueueSubmit(mBackendContext->fQueue, 1, &submitInfo, backbuffer->mUsageFences[0]); |
| 215 | |
| 216 | // We need to notify Skia that we changed the layout of the wrapped VkImage |
| 217 | GrVkImageInfo* imageInfo; |
| 218 | sk_sp<SkSurface> skSurface = surface->mSurfaces[backbuffer->mImageIndex]; |
| 219 | skSurface->getRenderTargetHandle((GrBackendObject*)&imageInfo, |
| 220 | SkSurface::kFlushRead_BackendHandleAccess); |
| 221 | imageInfo->updateImageLayout(VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); |
| 222 | |
| 223 | surface->mBackbuffer = std::move(skSurface); |
| 224 | return surface->mBackbuffer.get(); |
| 225 | } |
| 226 | |
| 227 | void VulkanManager::destroyBuffers(VulkanSurface* surface) { |
| 228 | if (surface->mBackbuffers) { |
| 229 | for (uint32_t i = 0; i < surface->mImageCount + 1; ++i) { |
| 230 | mWaitForFences(mBackendContext->fDevice, 2, surface->mBackbuffers[i].mUsageFences, true, |
| 231 | UINT64_MAX); |
| 232 | surface->mBackbuffers[i].mImageIndex = -1; |
| 233 | mDestroySemaphore(mBackendContext->fDevice, surface->mBackbuffers[i].mAcquireSemaphore, |
| 234 | nullptr); |
| 235 | mDestroySemaphore(mBackendContext->fDevice, surface->mBackbuffers[i].mRenderSemaphore, |
| 236 | nullptr); |
| 237 | mFreeCommandBuffers(mBackendContext->fDevice, mCommandPool, 2, |
| 238 | surface->mBackbuffers[i].mTransitionCmdBuffers); |
| 239 | mDestroyFence(mBackendContext->fDevice, surface->mBackbuffers[i].mUsageFences[0], 0); |
| 240 | mDestroyFence(mBackendContext->fDevice, surface->mBackbuffers[i].mUsageFences[1], 0); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | delete[] surface->mBackbuffers; |
| 245 | surface->mBackbuffers = nullptr; |
| 246 | delete[] surface->mSurfaces; |
| 247 | surface->mSurfaces = nullptr; |
| 248 | delete[] surface->mImageLayouts; |
| 249 | surface->mImageLayouts = nullptr; |
| 250 | delete[] surface->mImages; |
| 251 | surface->mImages = nullptr; |
| 252 | } |
| 253 | |
| 254 | void VulkanManager::destroySurface(VulkanSurface* surface) { |
| 255 | // Make sure all submit commands have finished before starting to destroy objects. |
| 256 | if (VK_NULL_HANDLE != mPresentQueue) { |
| 257 | mQueueWaitIdle(mPresentQueue); |
| 258 | } |
| 259 | mDeviceWaitIdle(mBackendContext->fDevice); |
| 260 | |
| 261 | destroyBuffers(surface); |
| 262 | |
| 263 | if (VK_NULL_HANDLE != surface->mSwapchain) { |
| 264 | mDestroySwapchainKHR(mBackendContext->fDevice, surface->mSwapchain, nullptr); |
| 265 | surface->mSwapchain = VK_NULL_HANDLE; |
| 266 | } |
| 267 | |
| 268 | if (VK_NULL_HANDLE != surface->mVkSurface) { |
| 269 | mDestroySurfaceKHR(mBackendContext->fInstance, surface->mVkSurface, nullptr); |
| 270 | surface->mVkSurface = VK_NULL_HANDLE; |
| 271 | } |
| 272 | delete surface; |
| 273 | } |
| 274 | |
| 275 | void VulkanManager::createBuffers(VulkanSurface* surface, VkFormat format, VkExtent2D extent) { |
| 276 | mGetSwapchainImagesKHR(mBackendContext->fDevice, surface->mSwapchain, &surface->mImageCount, |
| 277 | nullptr); |
| 278 | SkASSERT(surface->mImageCount); |
| 279 | surface->mImages = new VkImage[surface->mImageCount]; |
| 280 | mGetSwapchainImagesKHR(mBackendContext->fDevice, surface->mSwapchain, |
| 281 | &surface->mImageCount, surface->mImages); |
| 282 | |
| 283 | SkSurfaceProps props(0, kUnknown_SkPixelGeometry); |
| 284 | |
| 285 | bool wantSRGB = VK_FORMAT_R8G8B8A8_SRGB == format; |
| 286 | GrPixelConfig config = wantSRGB ? kSRGBA_8888_GrPixelConfig : kRGBA_8888_GrPixelConfig; |
| 287 | |
| 288 | // set up initial image layouts and create surfaces |
| 289 | surface->mImageLayouts = new VkImageLayout[surface->mImageCount]; |
| 290 | surface->mSurfaces = new sk_sp<SkSurface>[surface->mImageCount]; |
| 291 | for (uint32_t i = 0; i < surface->mImageCount; ++i) { |
| 292 | GrBackendRenderTargetDesc desc; |
| 293 | GrVkImageInfo info; |
| 294 | info.fImage = surface->mImages[i]; |
| 295 | info.fAlloc = { VK_NULL_HANDLE, 0, 0, 0 }; |
| 296 | info.fImageLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| 297 | info.fImageTiling = VK_IMAGE_TILING_OPTIMAL; |
| 298 | info.fFormat = format; |
| 299 | info.fLevelCount = 1; |
| 300 | |
| 301 | desc.fWidth = extent.width; |
| 302 | desc.fHeight = extent.height; |
| 303 | desc.fConfig = config; |
| 304 | desc.fOrigin = kTopLeft_GrSurfaceOrigin; |
| 305 | desc.fSampleCnt = 0; |
| 306 | desc.fStencilBits = 0; |
| 307 | desc.fRenderTargetHandle = (GrBackendObject) &info; |
| 308 | |
| 309 | surface->mSurfaces[i] = SkSurface::MakeFromBackendRenderTarget(mRenderThread.getGrContext(), |
| 310 | desc, &props); |
| 311 | surface->mImageLayouts[i] = VK_IMAGE_LAYOUT_UNDEFINED; |
| 312 | } |
| 313 | |
| 314 | SkASSERT(mCommandPool != VK_NULL_HANDLE); |
| 315 | |
| 316 | // set up the backbuffers |
| 317 | VkSemaphoreCreateInfo semaphoreInfo; |
| 318 | memset(&semaphoreInfo, 0, sizeof(VkSemaphoreCreateInfo)); |
| 319 | semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; |
| 320 | semaphoreInfo.pNext = nullptr; |
| 321 | semaphoreInfo.flags = 0; |
| 322 | VkCommandBufferAllocateInfo commandBuffersInfo; |
| 323 | memset(&commandBuffersInfo, 0, sizeof(VkCommandBufferAllocateInfo)); |
| 324 | commandBuffersInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
| 325 | commandBuffersInfo.pNext = nullptr; |
| 326 | commandBuffersInfo.commandPool = mCommandPool; |
| 327 | commandBuffersInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
| 328 | commandBuffersInfo.commandBufferCount = 2; |
| 329 | VkFenceCreateInfo fenceInfo; |
| 330 | memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo)); |
| 331 | fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
| 332 | fenceInfo.pNext = nullptr; |
| 333 | fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; |
| 334 | |
| 335 | // we create one additional backbuffer structure here, because we want to |
| 336 | // give the command buffers they contain a chance to finish before we cycle back |
| 337 | surface->mBackbuffers = new VulkanSurface::BackbufferInfo[surface->mImageCount + 1]; |
| 338 | for (uint32_t i = 0; i < surface->mImageCount + 1; ++i) { |
| 339 | SkDEBUGCODE(VkResult res); |
| 340 | surface->mBackbuffers[i].mImageIndex = -1; |
| 341 | SkDEBUGCODE(res = ) mCreateSemaphore(mBackendContext->fDevice, &semaphoreInfo, nullptr, |
| 342 | &surface->mBackbuffers[i].mAcquireSemaphore); |
| 343 | SkDEBUGCODE(res = ) mCreateSemaphore(mBackendContext->fDevice, &semaphoreInfo, nullptr, |
| 344 | &surface->mBackbuffers[i].mRenderSemaphore); |
| 345 | SkDEBUGCODE(res = ) mAllocateCommandBuffers(mBackendContext->fDevice, &commandBuffersInfo, |
| 346 | surface->mBackbuffers[i].mTransitionCmdBuffers); |
| 347 | SkDEBUGCODE(res = ) mCreateFence(mBackendContext->fDevice, &fenceInfo, nullptr, |
| 348 | &surface->mBackbuffers[i].mUsageFences[0]); |
| 349 | SkDEBUGCODE(res = ) mCreateFence(mBackendContext->fDevice, &fenceInfo, nullptr, |
| 350 | &surface->mBackbuffers[i].mUsageFences[1]); |
| 351 | SkASSERT(VK_SUCCESS == res); |
| 352 | } |
| 353 | surface->mCurrentBackbufferIndex = surface->mImageCount; |
| 354 | } |
| 355 | |
| 356 | bool VulkanManager::createSwapchain(VulkanSurface* surface) { |
| 357 | // check for capabilities |
| 358 | VkSurfaceCapabilitiesKHR caps; |
| 359 | VkResult res = mGetPhysicalDeviceSurfaceCapabilitiesKHR(mBackendContext->fPhysicalDevice, |
| 360 | surface->mVkSurface, &caps); |
| 361 | if (VK_SUCCESS != res) { |
| 362 | return false; |
| 363 | } |
| 364 | |
| 365 | uint32_t surfaceFormatCount; |
| 366 | res = mGetPhysicalDeviceSurfaceFormatsKHR(mBackendContext->fPhysicalDevice, surface->mVkSurface, |
| 367 | &surfaceFormatCount, nullptr); |
| 368 | if (VK_SUCCESS != res) { |
| 369 | return false; |
| 370 | } |
| 371 | |
| 372 | SkAutoMalloc surfaceFormatAlloc(surfaceFormatCount * sizeof(VkSurfaceFormatKHR)); |
| 373 | VkSurfaceFormatKHR* surfaceFormats = (VkSurfaceFormatKHR*)surfaceFormatAlloc.get(); |
| 374 | res = mGetPhysicalDeviceSurfaceFormatsKHR(mBackendContext->fPhysicalDevice, surface->mVkSurface, |
| 375 | &surfaceFormatCount, surfaceFormats); |
| 376 | if (VK_SUCCESS != res) { |
| 377 | return false; |
| 378 | } |
| 379 | |
| 380 | uint32_t presentModeCount; |
| 381 | res = mGetPhysicalDeviceSurfacePresentModesKHR(mBackendContext->fPhysicalDevice, |
| 382 | surface->mVkSurface, &presentModeCount, nullptr); |
| 383 | if (VK_SUCCESS != res) { |
| 384 | return false; |
| 385 | } |
| 386 | |
| 387 | SkAutoMalloc presentModeAlloc(presentModeCount * sizeof(VkPresentModeKHR)); |
| 388 | VkPresentModeKHR* presentModes = (VkPresentModeKHR*)presentModeAlloc.get(); |
| 389 | res = mGetPhysicalDeviceSurfacePresentModesKHR(mBackendContext->fPhysicalDevice, |
| 390 | surface->mVkSurface, &presentModeCount, presentModes); |
| 391 | if (VK_SUCCESS != res) { |
| 392 | return false; |
| 393 | } |
| 394 | |
| 395 | VkExtent2D extent = caps.currentExtent; |
| 396 | // clamp width; to handle currentExtent of -1 and protect us from broken hints |
| 397 | if (extent.width < caps.minImageExtent.width) { |
| 398 | extent.width = caps.minImageExtent.width; |
| 399 | } |
| 400 | SkASSERT(extent.width <= caps.maxImageExtent.width); |
| 401 | // clamp height |
| 402 | if (extent.height < caps.minImageExtent.height) { |
| 403 | extent.height = caps.minImageExtent.height; |
| 404 | } |
| 405 | SkASSERT(extent.height <= caps.maxImageExtent.height); |
| 406 | |
| 407 | uint32_t imageCount = caps.minImageCount + 2; |
| 408 | if (caps.maxImageCount > 0 && imageCount > caps.maxImageCount) { |
| 409 | // Application must settle for fewer images than desired: |
| 410 | imageCount = caps.maxImageCount; |
| 411 | } |
| 412 | |
| 413 | // Currently Skia requires the images to be color attchments and support all transfer |
| 414 | // operations. |
| 415 | VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | |
| 416 | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| 417 | VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| 418 | SkASSERT((caps.supportedUsageFlags & usageFlags) == usageFlags); |
| 419 | SkASSERT(caps.supportedTransforms & caps.currentTransform); |
| 420 | SkASSERT(caps.supportedCompositeAlpha & (VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR | |
| 421 | VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR)); |
| 422 | VkCompositeAlphaFlagBitsKHR composite_alpha = |
| 423 | (caps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR) ? |
| 424 | VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR : |
| 425 | VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; |
| 426 | |
| 427 | // Pick our surface format. For now, just make sure it matches our sRGB request: |
| 428 | VkFormat surfaceFormat = VK_FORMAT_UNDEFINED; |
| 429 | VkColorSpaceKHR colorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR; |
| 430 | |
| 431 | bool wantSRGB = false; |
| 432 | #ifdef ANDROID_ENABLE_LINEAR_BLENDING |
| 433 | wantSRGB = true; |
| 434 | #endif |
| 435 | for (uint32_t i = 0; i < surfaceFormatCount; ++i) { |
| 436 | // We are assuming we can get either R8G8B8A8_UNORM or R8G8B8A8_SRGB |
| 437 | VkFormat desiredFormat = wantSRGB ? VK_FORMAT_R8G8B8A8_SRGB : VK_FORMAT_R8G8B8A8_UNORM; |
| 438 | if (desiredFormat == surfaceFormats[i].format) { |
| 439 | surfaceFormat = surfaceFormats[i].format; |
| 440 | colorSpace = surfaceFormats[i].colorSpace; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | if (VK_FORMAT_UNDEFINED == surfaceFormat) { |
| 445 | return false; |
| 446 | } |
| 447 | |
| 448 | // If mailbox mode is available, use it, as it is the lowest-latency non- |
| 449 | // tearing mode. If not, fall back to FIFO which is always available. |
| 450 | VkPresentModeKHR mode = VK_PRESENT_MODE_FIFO_KHR; |
| 451 | for (uint32_t i = 0; i < presentModeCount; ++i) { |
| 452 | // use mailbox |
| 453 | if (VK_PRESENT_MODE_MAILBOX_KHR == presentModes[i]) { |
| 454 | mode = presentModes[i]; |
| 455 | break; |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | VkSwapchainCreateInfoKHR swapchainCreateInfo; |
| 460 | memset(&swapchainCreateInfo, 0, sizeof(VkSwapchainCreateInfoKHR)); |
| 461 | swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; |
| 462 | swapchainCreateInfo.surface = surface->mVkSurface; |
| 463 | swapchainCreateInfo.minImageCount = imageCount; |
| 464 | swapchainCreateInfo.imageFormat = surfaceFormat; |
| 465 | swapchainCreateInfo.imageColorSpace = colorSpace; |
| 466 | swapchainCreateInfo.imageExtent = extent; |
| 467 | swapchainCreateInfo.imageArrayLayers = 1; |
| 468 | swapchainCreateInfo.imageUsage = usageFlags; |
| 469 | |
| 470 | uint32_t queueFamilies[] = { mBackendContext->fGraphicsQueueIndex, mPresentQueueIndex }; |
| 471 | if (mBackendContext->fGraphicsQueueIndex != mPresentQueueIndex) { |
| 472 | swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; |
| 473 | swapchainCreateInfo.queueFamilyIndexCount = 2; |
| 474 | swapchainCreateInfo.pQueueFamilyIndices = queueFamilies; |
| 475 | } else { |
| 476 | swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| 477 | swapchainCreateInfo.queueFamilyIndexCount = 0; |
| 478 | swapchainCreateInfo.pQueueFamilyIndices = nullptr; |
| 479 | } |
| 480 | |
| 481 | swapchainCreateInfo.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; |
| 482 | swapchainCreateInfo.compositeAlpha = composite_alpha; |
| 483 | swapchainCreateInfo.presentMode = mode; |
| 484 | swapchainCreateInfo.clipped = true; |
| 485 | swapchainCreateInfo.oldSwapchain = surface->mSwapchain; |
| 486 | |
| 487 | res = mCreateSwapchainKHR(mBackendContext->fDevice, &swapchainCreateInfo, nullptr, |
| 488 | &surface->mSwapchain); |
| 489 | if (VK_SUCCESS != res) { |
| 490 | return false; |
| 491 | } |
| 492 | |
| 493 | // destroy the old swapchain |
| 494 | if (swapchainCreateInfo.oldSwapchain != VK_NULL_HANDLE) { |
| 495 | mDeviceWaitIdle(mBackendContext->fDevice); |
| 496 | |
| 497 | destroyBuffers(surface); |
| 498 | |
| 499 | mDestroySwapchainKHR(mBackendContext->fDevice, swapchainCreateInfo.oldSwapchain, nullptr); |
| 500 | } |
| 501 | |
| 502 | createBuffers(surface, surfaceFormat, extent); |
| 503 | |
| 504 | return true; |
| 505 | } |
| 506 | |
| 507 | |
| 508 | VulkanSurface* VulkanManager::createSurface(ANativeWindow* window) { |
| 509 | initialize(); |
| 510 | |
| 511 | if (!window) { |
| 512 | return nullptr; |
| 513 | } |
| 514 | |
| 515 | VulkanSurface* surface = new VulkanSurface(); |
| 516 | |
| 517 | VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo; |
| 518 | memset(&surfaceCreateInfo, 0, sizeof(VkAndroidSurfaceCreateInfoKHR)); |
| 519 | surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR; |
| 520 | surfaceCreateInfo.pNext = nullptr; |
| 521 | surfaceCreateInfo.flags = 0; |
| 522 | surfaceCreateInfo.window = window; |
| 523 | |
| 524 | VkResult res = mCreateAndroidSurfaceKHR(mBackendContext->fInstance, &surfaceCreateInfo, |
| 525 | nullptr, &surface->mVkSurface); |
| 526 | if (VK_SUCCESS != res) { |
| 527 | delete surface; |
| 528 | return nullptr; |
| 529 | } |
| 530 | |
| 531 | SkDEBUGCODE( |
| 532 | VkBool32 supported; |
| 533 | res = mGetPhysicalDeviceSurfaceSupportKHR(mBackendContext->fPhysicalDevice, |
| 534 | mPresentQueueIndex, surface->mVkSurface, &supported); |
| 535 | // All physical devices and queue families on Android must be capable of presentation with any |
| 536 | // native window. |
| 537 | SkASSERT(VK_SUCCESS == res && supported); |
| 538 | ); |
| 539 | |
| 540 | if (!createSwapchain(surface)) { |
| 541 | destroySurface(surface); |
| 542 | return nullptr; |
| 543 | } |
| 544 | |
| 545 | return surface; |
| 546 | } |
| 547 | |
| 548 | // Helper to know which src stage flags we need to set when transitioning to the present layout |
| 549 | static VkPipelineStageFlags layoutToPipelineStageFlags(const VkImageLayout layout) { |
| 550 | if (VK_IMAGE_LAYOUT_GENERAL == layout) { |
| 551 | return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; |
| 552 | } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout || |
| 553 | VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { |
| 554 | return VK_PIPELINE_STAGE_TRANSFER_BIT; |
| 555 | } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout || |
| 556 | VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout || |
| 557 | VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == layout || |
| 558 | VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { |
| 559 | return VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT; |
| 560 | } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) { |
| 561 | return VK_PIPELINE_STAGE_HOST_BIT; |
| 562 | } |
| 563 | |
| 564 | SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout); |
| 565 | return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; |
| 566 | } |
| 567 | |
| 568 | // Helper to know which src access mask we need to set when transitioning to the present layout |
| 569 | static VkAccessFlags layoutToSrcAccessMask(const VkImageLayout layout) { |
| 570 | VkAccessFlags flags = 0; |
| 571 | if (VK_IMAGE_LAYOUT_GENERAL == layout) { |
| 572 | flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | |
| 573 | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | |
| 574 | VK_ACCESS_TRANSFER_WRITE_BIT | |
| 575 | VK_ACCESS_TRANSFER_READ_BIT | |
| 576 | VK_ACCESS_SHADER_READ_BIT | |
| 577 | VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_HOST_READ_BIT; |
| 578 | } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) { |
| 579 | flags = VK_ACCESS_HOST_WRITE_BIT; |
| 580 | } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) { |
| 581 | flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| 582 | } else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout) { |
| 583 | flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
| 584 | } else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { |
| 585 | flags = VK_ACCESS_TRANSFER_WRITE_BIT; |
| 586 | } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout) { |
| 587 | flags = VK_ACCESS_TRANSFER_READ_BIT; |
| 588 | } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { |
| 589 | flags = VK_ACCESS_SHADER_READ_BIT; |
| 590 | } |
| 591 | return flags; |
| 592 | } |
| 593 | |
| 594 | void VulkanManager::swapBuffers(VulkanSurface* surface) { |
| 595 | VulkanSurface::BackbufferInfo* backbuffer = surface->mBackbuffers + |
| 596 | surface->mCurrentBackbufferIndex; |
| 597 | GrVkImageInfo* imageInfo; |
| 598 | SkSurface* skSurface = surface->mSurfaces[backbuffer->mImageIndex].get(); |
| 599 | skSurface->getRenderTargetHandle((GrBackendObject*)&imageInfo, |
| 600 | SkSurface::kFlushRead_BackendHandleAccess); |
| 601 | // Check to make sure we never change the actually wrapped image |
| 602 | SkASSERT(imageInfo->fImage == surface->mImages[backbuffer->mImageIndex]); |
| 603 | |
| 604 | // We need to transition the image to VK_IMAGE_LAYOUT_PRESENT_SRC_KHR and make sure that all |
| 605 | // previous work is complete for before presenting. So we first add the necessary barrier here. |
| 606 | VkImageLayout layout = imageInfo->fImageLayout; |
| 607 | VkPipelineStageFlags srcStageMask = layoutToPipelineStageFlags(layout); |
| 608 | VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; |
| 609 | VkAccessFlags srcAccessMask = layoutToSrcAccessMask(layout); |
| 610 | VkAccessFlags dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; |
| 611 | |
| 612 | VkImageMemoryBarrier imageMemoryBarrier = { |
| 613 | VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType |
| 614 | NULL, // pNext |
| 615 | srcAccessMask, // outputMask |
| 616 | dstAccessMask, // inputMask |
| 617 | layout, // oldLayout |
| 618 | VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, // newLayout |
| 619 | mBackendContext->fGraphicsQueueIndex, // srcQueueFamilyIndex |
| 620 | mPresentQueueIndex, // dstQueueFamilyIndex |
| 621 | surface->mImages[backbuffer->mImageIndex], // image |
| 622 | { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 } // subresourceRange |
| 623 | }; |
| 624 | |
| 625 | mResetCommandBuffer(backbuffer->mTransitionCmdBuffers[1], 0); |
| 626 | VkCommandBufferBeginInfo info; |
| 627 | memset(&info, 0, sizeof(VkCommandBufferBeginInfo)); |
| 628 | info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| 629 | info.flags = 0; |
| 630 | mBeginCommandBuffer(backbuffer->mTransitionCmdBuffers[1], &info); |
| 631 | mCmdPipelineBarrier(backbuffer->mTransitionCmdBuffers[1], srcStageMask, dstStageMask, 0, |
| 632 | 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); |
| 633 | mEndCommandBuffer(backbuffer->mTransitionCmdBuffers[1]); |
| 634 | |
| 635 | surface->mImageLayouts[backbuffer->mImageIndex] = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
| 636 | |
| 637 | // insert the layout transfer into the queue and wait on the acquire |
| 638 | VkSubmitInfo submitInfo; |
| 639 | memset(&submitInfo, 0, sizeof(VkSubmitInfo)); |
| 640 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 641 | submitInfo.waitSemaphoreCount = 0; |
| 642 | submitInfo.pWaitDstStageMask = 0; |
| 643 | submitInfo.commandBufferCount = 1; |
| 644 | submitInfo.pCommandBuffers = &backbuffer->mTransitionCmdBuffers[1]; |
| 645 | submitInfo.signalSemaphoreCount = 1; |
| 646 | // When this command buffer finishes we will signal this semaphore so that we know it is now |
| 647 | // safe to present the image to the screen. |
| 648 | submitInfo.pSignalSemaphores = &backbuffer->mRenderSemaphore; |
| 649 | |
| 650 | // Attach second fence to submission here so we can track when the command buffer finishes. |
| 651 | mQueueSubmit(mBackendContext->fQueue, 1, &submitInfo, backbuffer->mUsageFences[1]); |
| 652 | |
| 653 | // Submit present operation to present queue. We use a semaphore here to make sure all rendering |
| 654 | // to the image is complete and that the layout has been change to present on the graphics |
| 655 | // queue. |
| 656 | const VkPresentInfoKHR presentInfo = |
| 657 | { |
| 658 | VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, // sType |
| 659 | NULL, // pNext |
| 660 | 1, // waitSemaphoreCount |
| 661 | &backbuffer->mRenderSemaphore, // pWaitSemaphores |
| 662 | 1, // swapchainCount |
| 663 | &surface->mSwapchain, // pSwapchains |
| 664 | &backbuffer->mImageIndex, // pImageIndices |
| 665 | NULL // pResults |
| 666 | }; |
| 667 | |
| 668 | mQueuePresentKHR(mPresentQueue, &presentInfo); |
| 669 | |
| 670 | surface->mBackbuffer.reset(); |
| 671 | } |
| 672 | |
| 673 | } /* namespace renderthread */ |
| 674 | } /* namespace uirenderer */ |
| 675 | } /* namespace android */ |