ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2014 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "OpenGLRenderer" |
| 18 | |
| 19 | #define SHADOW_SHRINK_SCALE 0.1f |
| 20 | |
| 21 | #include <math.h> |
| 22 | #include <utils/Log.h> |
| 23 | |
| 24 | #include "SpotShadow.h" |
| 25 | #include "Vertex.h" |
| 26 | |
| 27 | namespace android { |
| 28 | namespace uirenderer { |
| 29 | |
| 30 | /** |
| 31 | * Calculate the intersection of a ray with a polygon. |
| 32 | * It assumes the ray originates inside the polygon. |
| 33 | * |
| 34 | * @param poly The polygon, which is represented in a Vector2 array. |
| 35 | * @param polyLength The length of caster's polygon in terms of number of |
| 36 | * vertices. |
| 37 | * @param point the start of the ray |
| 38 | * @param dx the x vector of the ray |
| 39 | * @param dy the y vector of the ray |
| 40 | * @return the distance along the ray if it intersects with the polygon FP_NAN if otherwise |
| 41 | */ |
| 42 | float SpotShadow::rayIntersectPoly(const Vector2* poly, int polyLength, |
| 43 | const Vector2& point, float dx, float dy) { |
| 44 | double px = point.x; |
| 45 | double py = point.y; |
| 46 | int p1 = polyLength - 1; |
| 47 | for (int p2 = 0; p2 < polyLength; p2++) { |
| 48 | double p1x = poly[p1].x; |
| 49 | double p1y = poly[p1].y; |
| 50 | double p2x = poly[p2].x; |
| 51 | double p2y = poly[p2].y; |
| 52 | // The math below is derived from solving this formula, basically the |
| 53 | // intersection point should stay on both the ray and the edge of (p1, p2). |
| 54 | // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); |
| 55 | double div = (dx * (p1y - p2y) + dy * p2x - dy * p1x); |
| 56 | if (div != 0) { |
| 57 | double t = (dx * (p1y - py) + dy * px - dy * p1x) / (div); |
| 58 | if (t >= 0 && t <= 1) { |
| 59 | double t2 = (p1x * (py - p2y) + p2x * (p1y - py) + |
| 60 | px * (p2y - p1y)) / div; |
| 61 | if (t2 > 0) { |
| 62 | return (float)t2; |
| 63 | } |
| 64 | } |
| 65 | } |
| 66 | p1 = p2; |
| 67 | } |
| 68 | return FP_NAN; |
| 69 | } |
| 70 | |
| 71 | /** |
| 72 | * Calculate the centroid of a 2d polygon. |
| 73 | * |
| 74 | * @param poly The polygon, which is represented in a Vector2 array. |
| 75 | * @param polyLength The length of the polygon in terms of number of vertices. |
| 76 | * @return the centroid of the polygon. |
| 77 | */ |
| 78 | Vector2 SpotShadow::centroid2d(const Vector2* poly, int polyLength) { |
| 79 | double sumx = 0; |
| 80 | double sumy = 0; |
| 81 | int p1 = polyLength - 1; |
| 82 | double area = 0; |
| 83 | for (int p2 = 0; p2 < polyLength; p2++) { |
| 84 | double x1 = poly[p1].x; |
| 85 | double y1 = poly[p1].y; |
| 86 | double x2 = poly[p2].x; |
| 87 | double y2 = poly[p2].y; |
| 88 | double a = (x1 * y2 - x2 * y1); |
| 89 | sumx += (x1 + x2) * a; |
| 90 | sumy += (y1 + y2) * a; |
| 91 | area += a; |
| 92 | p1 = p2; |
| 93 | } |
| 94 | |
| 95 | double centroidx = sumx / (3 * area); |
| 96 | double centroidy = sumy / (3 * area); |
| 97 | return Vector2((float)centroidx, (float)centroidy); |
| 98 | } |
| 99 | |
| 100 | /** |
| 101 | * Sort points by their X coordinates |
| 102 | * |
| 103 | * @param points the points as a Vector2 array. |
| 104 | * @param pointsLength the number of vertices of the polygon. |
| 105 | */ |
| 106 | void SpotShadow::xsort(Vector2* points, int pointsLength) { |
| 107 | quicksortX(points, 0, pointsLength - 1); |
| 108 | } |
| 109 | |
| 110 | /** |
| 111 | * compute the convex hull of a collection of Points |
| 112 | * |
| 113 | * @param points the points as a Vector2 array. |
| 114 | * @param pointsLength the number of vertices of the polygon. |
| 115 | * @param retPoly pre allocated array of floats to put the vertices |
| 116 | * @return the number of points in the polygon 0 if no intersection |
| 117 | */ |
| 118 | int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) { |
| 119 | xsort(points, pointsLength); |
| 120 | int n = pointsLength; |
| 121 | Vector2 lUpper[n]; |
| 122 | lUpper[0] = points[0]; |
| 123 | lUpper[1] = points[1]; |
| 124 | |
| 125 | int lUpperSize = 2; |
| 126 | |
| 127 | for (int i = 2; i < n; i++) { |
| 128 | lUpper[lUpperSize] = points[i]; |
| 129 | lUpperSize++; |
| 130 | |
| 131 | while (lUpperSize > 2 && !rightTurn( |
| 132 | (double)lUpper[lUpperSize - 3].x, (double)lUpper[lUpperSize - 3].y, |
| 133 | (double)lUpper[lUpperSize - 2].x, (double)lUpper[lUpperSize - 2].y, |
| 134 | (double)lUpper[lUpperSize - 1].x, (double)lUpper[lUpperSize - 1].y)) { |
| 135 | // Remove the middle point of the three last |
| 136 | lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x; |
| 137 | lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y; |
| 138 | lUpperSize--; |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | Vector2 lLower[n]; |
| 143 | lLower[0] = points[n - 1]; |
| 144 | lLower[1] = points[n - 2]; |
| 145 | |
| 146 | int lLowerSize = 2; |
| 147 | |
| 148 | for (int i = n - 3; i >= 0; i--) { |
| 149 | lLower[lLowerSize] = points[i]; |
| 150 | lLowerSize++; |
| 151 | |
| 152 | while (lLowerSize > 2 && !rightTurn( |
| 153 | (double)lLower[lLowerSize - 3].x, (double)lLower[lLowerSize - 3].y, |
| 154 | (double)lLower[lLowerSize - 2].x, (double)lLower[lLowerSize - 2].y, |
| 155 | (double)lLower[lLowerSize - 1].x, (double)lLower[lLowerSize - 1].y)) { |
| 156 | // Remove the middle point of the three last |
| 157 | lLower[lLowerSize - 2] = lLower[lLowerSize - 1]; |
| 158 | lLowerSize--; |
| 159 | } |
| 160 | } |
| 161 | int count = 0; |
| 162 | |
| 163 | for (int i = 0; i < lUpperSize; i++) { |
| 164 | retPoly[count] = lUpper[i]; |
| 165 | count++; |
| 166 | } |
| 167 | |
| 168 | for (int i = 1; i < lLowerSize - 1; i++) { |
| 169 | retPoly[count] = lLower[i]; |
| 170 | count++; |
| 171 | } |
| 172 | // TODO: Add test harness which verify that all the points are inside the hull. |
| 173 | return count; |
| 174 | } |
| 175 | |
| 176 | /** |
| 177 | * Test whether the 3 points form a right hand turn |
| 178 | * |
| 179 | * @param ax the x coordinate of point a |
| 180 | * @param ay the y coordinate of point a |
| 181 | * @param bx the x coordinate of point b |
| 182 | * @param by the y coordinate of point b |
| 183 | * @param cx the x coordinate of point c |
| 184 | * @param cy the y coordinate of point c |
| 185 | * @return true if a right hand turn |
| 186 | */ |
| 187 | bool SpotShadow::rightTurn(double ax, double ay, double bx, double by, |
| 188 | double cx, double cy) { |
| 189 | return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON; |
| 190 | } |
| 191 | |
| 192 | /** |
| 193 | * Calculates the intersection of poly1 with poly2 and put in poly2. |
| 194 | * |
| 195 | * |
| 196 | * @param poly1 The 1st polygon, as a Vector2 array. |
| 197 | * @param poly1Length The number of vertices of 1st polygon. |
| 198 | * @param poly2 The 2nd and output polygon, as a Vector2 array. |
| 199 | * @param poly2Length The number of vertices of 2nd polygon. |
| 200 | * @return number of vertices in output polygon as poly2. |
| 201 | */ |
| 202 | int SpotShadow::intersection(Vector2* poly1, int poly1Length, |
| 203 | Vector2* poly2, int poly2Length) { |
| 204 | makeClockwise(poly1, poly1Length); |
| 205 | makeClockwise(poly2, poly2Length); |
| 206 | Vector2 poly[poly1Length * poly2Length + 2]; |
| 207 | int count = 0; |
| 208 | int pcount = 0; |
| 209 | |
| 210 | // If one vertex from one polygon sits inside another polygon, add it and |
| 211 | // count them. |
| 212 | for (int i = 0; i < poly1Length; i++) { |
| 213 | if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) { |
| 214 | poly[count] = poly1[i]; |
| 215 | count++; |
| 216 | pcount++; |
| 217 | |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | int insidePoly2 = pcount; |
| 222 | for (int i = 0; i < poly2Length; i++) { |
| 223 | if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) { |
| 224 | poly[count] = poly2[i]; |
| 225 | count++; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | int insidePoly1 = count - insidePoly2; |
| 230 | // If all vertices from poly1 are inside poly2, then just return poly1. |
| 231 | if (insidePoly2 == poly1Length) { |
| 232 | memcpy(poly2, poly1, poly1Length * sizeof(Vector2)); |
| 233 | return poly1Length; |
| 234 | } |
| 235 | |
| 236 | // If all vertices from poly2 are inside poly1, then just return poly2. |
| 237 | if (insidePoly1 == poly2Length) { |
| 238 | return poly2Length; |
| 239 | } |
| 240 | |
| 241 | // Since neither polygon fully contain the other one, we need to add all the |
| 242 | // intersection points. |
| 243 | Vector2 intersection; |
| 244 | for (int i = 0; i < poly2Length; i++) { |
| 245 | for (int j = 0; j < poly1Length; j++) { |
| 246 | int poly2LineStart = i; |
| 247 | int poly2LineEnd = ((i + 1) % poly2Length); |
| 248 | int poly1LineStart = j; |
| 249 | int poly1LineEnd = ((j + 1) % poly1Length); |
| 250 | bool found = lineIntersection( |
| 251 | poly2[poly2LineStart].x, poly2[poly2LineStart].y, |
| 252 | poly2[poly2LineEnd].x, poly2[poly2LineEnd].y, |
| 253 | poly1[poly1LineStart].x, poly1[poly1LineStart].y, |
| 254 | poly1[poly1LineEnd].x, poly1[poly1LineEnd].y, |
| 255 | intersection); |
| 256 | if (found) { |
| 257 | poly[count].x = intersection.x; |
| 258 | poly[count].y = intersection.y; |
| 259 | count++; |
| 260 | } else { |
| 261 | Vector2 delta = poly2[i] - poly1[j]; |
| 262 | if (delta.lengthSquared() < 0.01) { |
| 263 | poly[count] = poly2[i]; |
| 264 | count++; |
| 265 | } |
| 266 | } |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | if (count == 0) { |
| 271 | return 0; |
| 272 | } |
| 273 | |
| 274 | // Sort the result polygon around the center. |
| 275 | Vector2 center(0.0f, 0.0f); |
| 276 | for (int i = 0; i < count; i++) { |
| 277 | center += poly[i]; |
| 278 | } |
| 279 | center /= count; |
| 280 | sort(poly, count, center); |
| 281 | |
| 282 | // TODO: Verify the intersection works correctly, like any random point |
| 283 | // inside both poly1 and poly2 should be inside the intersection, and the |
| 284 | // result intersection polygon is convex. |
| 285 | |
| 286 | // Merge the vertices if they are too close. |
| 287 | poly2[0] = poly[0]; |
| 288 | int resultLength = 1; |
| 289 | for (int i = 1; i < count; i++) { |
| 290 | Vector2 delta = poly[i] - poly[i - 1]; |
| 291 | if (delta.lengthSquared() >= 0.01) { |
| 292 | poly2[resultLength] = poly[i]; |
| 293 | resultLength++; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | return resultLength; |
| 298 | } |
| 299 | |
| 300 | /** |
| 301 | * Sort points about a center point |
| 302 | * |
| 303 | * @param poly The in and out polyogon as a Vector2 array. |
| 304 | * @param polyLength The number of vertices of the polygon. |
| 305 | * @param center the center ctr[0] = x , ctr[1] = y to sort around. |
| 306 | */ |
| 307 | void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) { |
| 308 | quicksortCirc(poly, 0, polyLength - 1, center); |
| 309 | } |
| 310 | |
| 311 | /** |
| 312 | * Calculate the angle between and x and a y coordinate |
| 313 | */ |
| 314 | float SpotShadow::angle(const Vector2& point, const Vector2& center) { |
| 315 | return -(float)atan2(point.x - center.x, point.y - center.y); |
| 316 | } |
| 317 | |
| 318 | /** |
| 319 | * Swap points pointed to by i and j |
| 320 | */ |
| 321 | void SpotShadow::swap(Vector2* points, int i, int j) { |
| 322 | Vector2 temp = points[i]; |
| 323 | points[i] = points[j]; |
| 324 | points[j] = temp; |
| 325 | } |
| 326 | |
| 327 | /** |
| 328 | * quick sort implementation about the center. |
| 329 | */ |
| 330 | void SpotShadow::quicksortCirc(Vector2* points, int low, int high, |
| 331 | const Vector2& center) { |
| 332 | int i = low, j = high; |
| 333 | int p = low + (high - low) / 2; |
| 334 | float pivot = angle(points[p], center); |
| 335 | while (i <= j) { |
| 336 | while (angle(points[i], center) < pivot) { |
| 337 | i++; |
| 338 | } |
| 339 | while (angle(points[j], center) > pivot) { |
| 340 | j--; |
| 341 | } |
| 342 | |
| 343 | if (i <= j) { |
| 344 | swap(points, i, j); |
| 345 | i++; |
| 346 | j--; |
| 347 | } |
| 348 | } |
| 349 | if (low < j) quicksortCirc(points, low, j, center); |
| 350 | if (i < high) quicksortCirc(points, i, high, center); |
| 351 | } |
| 352 | |
| 353 | /** |
| 354 | * Sort points by x axis |
| 355 | * |
| 356 | * @param points points to sort |
| 357 | * @param low start index |
| 358 | * @param high end index |
| 359 | */ |
| 360 | void SpotShadow::quicksortX(Vector2* points, int low, int high) { |
| 361 | int i = low, j = high; |
| 362 | int p = low + (high - low) / 2; |
| 363 | float pivot = points[p].x; |
| 364 | while (i <= j) { |
| 365 | while (points[i].x < pivot) { |
| 366 | i++; |
| 367 | } |
| 368 | while (points[j].x > pivot) { |
| 369 | j--; |
| 370 | } |
| 371 | |
| 372 | if (i <= j) { |
| 373 | swap(points, i, j); |
| 374 | i++; |
| 375 | j--; |
| 376 | } |
| 377 | } |
| 378 | if (low < j) quicksortX(points, low, j); |
| 379 | if (i < high) quicksortX(points, i, high); |
| 380 | } |
| 381 | |
| 382 | /** |
| 383 | * Test whether a point is inside the polygon. |
| 384 | * |
| 385 | * @param testPoint the point to test |
| 386 | * @param poly the polygon |
| 387 | * @return true if the testPoint is inside the poly. |
| 388 | */ |
| 389 | bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, |
| 390 | const Vector2* poly, int len) { |
| 391 | bool c = false; |
| 392 | double testx = testPoint.x; |
| 393 | double testy = testPoint.y; |
| 394 | for (int i = 0, j = len - 1; i < len; j = i++) { |
| 395 | double startX = poly[j].x; |
| 396 | double startY = poly[j].y; |
| 397 | double endX = poly[i].x; |
| 398 | double endY = poly[i].y; |
| 399 | |
| 400 | if (((endY > testy) != (startY > testy)) && |
| 401 | (testx < (startX - endX) * (testy - endY) |
| 402 | / (startY - endY) + endX)) { |
| 403 | c = !c; |
| 404 | } |
| 405 | } |
| 406 | return c; |
| 407 | } |
| 408 | |
| 409 | /** |
| 410 | * Make the polygon turn clockwise. |
| 411 | * |
| 412 | * @param polygon the polygon as a Vector2 array. |
| 413 | * @param len the number of points of the polygon |
| 414 | */ |
| 415 | void SpotShadow::makeClockwise(Vector2* polygon, int len) { |
| 416 | if (polygon == 0 || len == 0) { |
| 417 | return; |
| 418 | } |
| 419 | if (!isClockwise(polygon, len)) { |
| 420 | reverse(polygon, len); |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | /** |
| 425 | * Test whether the polygon is order in clockwise. |
| 426 | * |
| 427 | * @param polygon the polygon as a Vector2 array |
| 428 | * @param len the number of points of the polygon |
| 429 | */ |
| 430 | bool SpotShadow::isClockwise(Vector2* polygon, int len) { |
| 431 | double sum = 0; |
| 432 | double p1x = polygon[len - 1].x; |
| 433 | double p1y = polygon[len - 1].y; |
| 434 | for (int i = 0; i < len; i++) { |
| 435 | |
| 436 | double p2x = polygon[i].x; |
| 437 | double p2y = polygon[i].y; |
| 438 | sum += p1x * p2y - p2x * p1y; |
| 439 | p1x = p2x; |
| 440 | p1y = p2y; |
| 441 | } |
| 442 | return sum < 0; |
| 443 | } |
| 444 | |
| 445 | /** |
| 446 | * Reverse the polygon |
| 447 | * |
| 448 | * @param polygon the polygon as a Vector2 array |
| 449 | * @param len the number of points of the polygon |
| 450 | */ |
| 451 | void SpotShadow::reverse(Vector2* polygon, int len) { |
| 452 | int n = len / 2; |
| 453 | for (int i = 0; i < n; i++) { |
| 454 | Vector2 tmp = polygon[i]; |
| 455 | int k = len - 1 - i; |
| 456 | polygon[i] = polygon[k]; |
| 457 | polygon[k] = tmp; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | /** |
| 462 | * Intersects two lines in parametric form. This function is called in a tight |
| 463 | * loop, and we need double precision to get things right. |
| 464 | * |
| 465 | * @param x1 the x coordinate point 1 of line 1 |
| 466 | * @param y1 the y coordinate point 1 of line 1 |
| 467 | * @param x2 the x coordinate point 2 of line 1 |
| 468 | * @param y2 the y coordinate point 2 of line 1 |
| 469 | * @param x3 the x coordinate point 1 of line 2 |
| 470 | * @param y3 the y coordinate point 1 of line 2 |
| 471 | * @param x4 the x coordinate point 2 of line 2 |
| 472 | * @param y4 the y coordinate point 2 of line 2 |
| 473 | * @param ret the x,y location of the intersection |
| 474 | * @return true if it found an intersection |
| 475 | */ |
| 476 | inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2, |
| 477 | double x3, double y3, double x4, double y4, Vector2& ret) { |
| 478 | double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); |
| 479 | if (d == 0.0) return false; |
| 480 | |
| 481 | double dx = (x1 * y2 - y1 * x2); |
| 482 | double dy = (x3 * y4 - y3 * x4); |
| 483 | double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d; |
| 484 | double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d; |
| 485 | |
| 486 | // The intersection should be in the middle of the point 1 and point 2, |
| 487 | // likewise point 3 and point 4. |
| 488 | if (((x - x1) * (x - x2) > EPSILON) |
| 489 | || ((x - x3) * (x - x4) > EPSILON) |
| 490 | || ((y - y1) * (y - y2) > EPSILON) |
| 491 | || ((y - y3) * (y - y4) > EPSILON)) { |
| 492 | // Not interesected |
| 493 | return false; |
| 494 | } |
| 495 | ret.x = x; |
| 496 | ret.y = y; |
| 497 | return true; |
| 498 | |
| 499 | } |
| 500 | |
| 501 | /** |
| 502 | * Compute a horizontal circular polygon about point (x , y , height) of radius |
| 503 | * (size) |
| 504 | * |
| 505 | * @param points number of the points of the output polygon. |
| 506 | * @param lightCenter the center of the light. |
| 507 | * @param size the light size. |
| 508 | * @param ret result polygon. |
| 509 | */ |
| 510 | void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, |
| 511 | float size, Vector3* ret) { |
| 512 | // TODO: Caching all the sin / cos values and store them in a look up table. |
| 513 | for (int i = 0; i < points; i++) { |
| 514 | double angle = 2 * i * M_PI / points; |
| 515 | ret[i].x = sinf(angle) * size + lightCenter.x; |
| 516 | ret[i].y = cosf(angle) * size + lightCenter.y; |
| 517 | ret[i].z = lightCenter.z; |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | /** |
| 522 | * Generate the shadow from a spot light. |
| 523 | * |
| 524 | * @param poly x,y,z vertexes of a convex polygon that occludes the light source |
| 525 | * @param polyLength number of vertexes of the occluding polygon |
| 526 | * @param lightCenter the center of the light |
| 527 | * @param lightSize the radius of the light source |
| 528 | * @param lightVertexCount the vertex counter for the light polygon |
| 529 | * @param rays the number of vertexes to create along the edges of the shadow |
| 530 | * @param layers the number of layers of triangles strips to create |
| 531 | * @param strength the "darkness" of the shadow |
| 532 | * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return |
| 533 | * empty strip if error. |
| 534 | * |
| 535 | */ |
| 536 | void SpotShadow::createSpotShadow(const Vector3* poly, int polyLength, |
| 537 | const Vector3& lightCenter, float lightSize, int lightVertexCount, |
| 538 | int rays, int layers, float strength, VertexBuffer& retStrips) { |
| 539 | Vector3 light[lightVertexCount * 3]; |
| 540 | computeLightPolygon(lightVertexCount, lightCenter, lightSize, light); |
| 541 | computeSpotShadow(light, lightVertexCount, lightCenter, |
| 542 | poly, polyLength, rays, layers, strength, retStrips); |
| 543 | } |
| 544 | |
| 545 | /** |
| 546 | * Generate the shadow spot light of shape lightPoly and a object poly |
| 547 | * |
| 548 | * @param lightPoly x,y,z vertex of a convex polygon that is the light source |
| 549 | * @param lightPolyLength number of vertexes of the light source polygon |
| 550 | * @param poly x,y,z vertexes of a convex polygon that occludes the light source |
| 551 | * @param polyLength number of vertexes of the occluding polygon |
| 552 | * @param rays the number of vertexes to create along the edges of the shadow |
| 553 | * @param layers the number of layers of triangles strips to create |
| 554 | * @param strength the "darkness" of the shadow |
| 555 | * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return |
| 556 | * empty strip if error. |
| 557 | */ |
| 558 | void SpotShadow::computeSpotShadow(const Vector3* lightPoly, int lightPolyLength, |
| 559 | const Vector3& lightCenter, const Vector3* poly, int polyLength, |
| 560 | int rays, int layers, float strength, VertexBuffer& shadowTriangleStrip) { |
| 561 | // Point clouds for all the shadowed vertices |
| 562 | Vector2 shadowRegion[lightPolyLength * polyLength]; |
| 563 | // Shadow polygon from one point light. |
| 564 | Vector2 outline[polyLength]; |
| 565 | Vector2 umbraMem[polyLength * lightPolyLength]; |
| 566 | Vector2* umbra = umbraMem; |
| 567 | |
| 568 | int umbraLength = 0; |
| 569 | |
| 570 | // Validate input, receiver is always at z = 0 plane. |
| 571 | bool inputPolyPositionValid = true; |
| 572 | for (int i = 0; i < polyLength; i++) { |
| 573 | if (poly[i].z <= 0.00001) { |
| 574 | inputPolyPositionValid = false; |
| 575 | ALOGE("polygon below the surface"); |
| 576 | break; |
| 577 | } |
| 578 | if (poly[i].z >= lightPoly[0].z) { |
| 579 | inputPolyPositionValid = false; |
| 580 | ALOGE("polygon above the light"); |
| 581 | break; |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | // If the caster's position is invalid, don't draw anything. |
| 586 | if (!inputPolyPositionValid) { |
| 587 | return; |
| 588 | } |
| 589 | |
| 590 | // Calculate the umbra polygon based on intersections of all outlines |
| 591 | int k = 0; |
| 592 | for (int j = 0; j < lightPolyLength; j++) { |
| 593 | int m = 0; |
| 594 | for (int i = 0; i < polyLength; i++) { |
| 595 | float t = lightPoly[j].z - poly[i].z; |
| 596 | if (t == 0) { |
| 597 | return; |
| 598 | } |
| 599 | t = lightPoly[j].z / t; |
| 600 | float x = lightPoly[j].x - t * (lightPoly[j].x - poly[i].x); |
| 601 | float y = lightPoly[j].y - t * (lightPoly[j].y - poly[i].y); |
| 602 | |
| 603 | Vector2 newPoint = Vector2(x, y); |
| 604 | shadowRegion[k] = newPoint; |
| 605 | outline[m] = newPoint; |
| 606 | |
| 607 | k++; |
| 608 | m++; |
| 609 | } |
| 610 | |
| 611 | // For the first light polygon's vertex, use the outline as the umbra. |
| 612 | // Later on, use the intersection of the outline and existing umbra. |
| 613 | if (umbraLength == 0) { |
| 614 | for (int i = 0; i < polyLength; i++) { |
| 615 | umbra[i] = outline[i]; |
| 616 | } |
| 617 | umbraLength = polyLength; |
| 618 | } else { |
| 619 | int col = ((j * 255) / lightPolyLength); |
| 620 | umbraLength = intersection(outline, polyLength, umbra, umbraLength); |
| 621 | if (umbraLength == 0) { |
| 622 | break; |
| 623 | } |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | // Generate the penumbra area using the hull of all shadow regions. |
| 628 | int shadowRegionLength = k; |
| 629 | Vector2 penumbra[k]; |
| 630 | int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra); |
| 631 | |
| 632 | // no real umbra make a fake one |
| 633 | if (umbraLength < 3) { |
| 634 | // The shadow from the centroid of the light polygon. |
| 635 | Vector2 centShadow[polyLength]; |
| 636 | |
| 637 | for (int i = 0; i < polyLength; i++) { |
| 638 | float t = lightCenter.z - poly[i].z; |
| 639 | if (t == 0) { |
| 640 | return; |
| 641 | } |
| 642 | t = lightCenter.z / t; |
| 643 | float x = lightCenter.x - t * (lightCenter.x - poly[i].x); |
| 644 | float y = lightCenter.y - t * (lightCenter.y - poly[i].y); |
| 645 | |
| 646 | centShadow[i].x = x; |
| 647 | centShadow[i].y = y; |
| 648 | } |
| 649 | |
| 650 | // Shrink the centroid's shadow by 10%. |
| 651 | // TODO: Study the magic number of 10%. |
| 652 | Vector2 shadowCentroid = centroid2d(centShadow, polyLength); |
| 653 | for (int i = 0; i < polyLength; i++) { |
| 654 | centShadow[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) + |
| 655 | centShadow[i] * SHADOW_SHRINK_SCALE; |
| 656 | } |
| 657 | #if DEBUG_SHADOW |
| 658 | ALOGD("No real umbra make a fake one, centroid2d = %f , %f", |
| 659 | shadowCentroid.x, shadowCentroid.y); |
| 660 | #endif |
| 661 | // Set the fake umbra, whose size is the same as the original polygon. |
| 662 | umbra = centShadow; |
| 663 | umbraLength = polyLength; |
| 664 | } |
| 665 | |
| 666 | generateTriangleStrip(penumbra, penumbraLength, umbra, umbraLength, |
| 667 | rays, layers, strength, shadowTriangleStrip); |
| 668 | } |
| 669 | |
| 670 | /** |
| 671 | * Generate a triangle strip given two convex polygons |
| 672 | * |
| 673 | * @param penumbra The outer polygon x,y vertexes |
| 674 | * @param penumbraLength The number of vertexes in the outer polygon |
| 675 | * @param umbra The inner outer polygon x,y vertexes |
| 676 | * @param umbraLength The number of vertexes in the inner polygon |
| 677 | * @param rays The number of points along the polygons to create |
| 678 | * @param layers The number of layers of triangle strips between the umbra and penumbra |
| 679 | * @param strength The max alpha of the umbra |
| 680 | * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return |
| 681 | * empty strip if error. |
| 682 | **/ |
| 683 | void SpotShadow::generateTriangleStrip(const Vector2* penumbra, int penumbraLength, |
| 684 | const Vector2* umbra, int umbraLength, int rays, int layers, |
| 685 | float strength, VertexBuffer& shadowTriangleStrip) { |
| 686 | |
| 687 | int rings = layers + 1; |
| 688 | int size = rays * rings; |
| 689 | |
| 690 | float step = M_PI * 2 / rays; |
| 691 | // Centroid of the umbra. |
| 692 | Vector2 centroid = centroid2d(umbra, umbraLength); |
| 693 | #if DEBUG_SHADOW |
| 694 | ALOGD("centroid2d = %f , %f", centroid.x, centroid.y); |
| 695 | #endif |
| 696 | // Intersection to the penumbra. |
| 697 | float penumbraDistPerRay[rays]; |
| 698 | // Intersection to the umbra. |
| 699 | float umbraDistPerRay[rays]; |
| 700 | |
| 701 | for (int i = 0; i < rays; i++) { |
| 702 | // TODO: Setup a lookup table for all the sin/cos. |
| 703 | float dx = sinf(step * i); |
| 704 | float dy = cosf(step * i); |
| 705 | umbraDistPerRay[i] = rayIntersectPoly(umbra, umbraLength, centroid, |
| 706 | dx, dy); |
| 707 | if (isnan(umbraDistPerRay[i])) { |
| 708 | ALOGE("rayIntersectPoly returns NAN"); |
| 709 | return; |
| 710 | } |
| 711 | penumbraDistPerRay[i] = rayIntersectPoly(penumbra, penumbraLength, |
| 712 | centroid, dx, dy); |
| 713 | if (isnan(umbraDistPerRay[i])) { |
| 714 | ALOGE("rayIntersectPoly returns NAN"); |
| 715 | return; |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | int stripSize = getStripSize(rays, layers); |
| 720 | AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(stripSize); |
| 721 | int currentIndex = 0; |
| 722 | // Calculate the vertex values in the penumbra area. |
| 723 | for (int r = 0; r < layers; r++) { |
| 724 | int firstInEachLayer = currentIndex; |
| 725 | for (int i = 0; i < rays; i++) { |
| 726 | float dx = sinf(step * i); |
| 727 | float dy = cosf(step * i); |
| 728 | |
| 729 | for (int j = r; j < (r + 2); j++) { |
| 730 | float layerRatio = j / (float)(rings - 1); |
| 731 | float deltaDist = layerRatio * (umbraDistPerRay[i] - penumbraDistPerRay[i]); |
| 732 | float currentDist = penumbraDistPerRay[i] + deltaDist; |
| 733 | float op = calculateOpacity(layerRatio, deltaDist); |
| 734 | AlphaVertex::set(&shadowVertices[currentIndex], |
| 735 | dx * currentDist + centroid.x, |
| 736 | dy * currentDist + centroid.y, |
| 737 | layerRatio * op * strength); |
| 738 | currentIndex++; |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | // Duplicate the vertices from one layer to another one to make triangle |
| 743 | // strip. |
| 744 | shadowVertices[currentIndex++] = shadowVertices[firstInEachLayer]; |
| 745 | firstInEachLayer++; |
| 746 | shadowVertices[currentIndex++] = shadowVertices[firstInEachLayer]; |
| 747 | } |
| 748 | |
| 749 | int lastInPenumbra = currentIndex - 1; |
| 750 | shadowVertices[currentIndex++] = shadowVertices[lastInPenumbra]; |
| 751 | |
| 752 | // Preallocate the vertices (index as [firstInUmbra - 1]) for jumping from |
| 753 | // the penumbra to umbra. |
| 754 | currentIndex++; |
| 755 | int firstInUmbra = currentIndex; |
| 756 | |
| 757 | // traverse the umbra area in a zig zag pattern for strips. |
| 758 | for (int k = 0; k < rays; k++) { |
| 759 | int i = k / 2; |
| 760 | if ((k & 1) == 1) { |
| 761 | i = rays - i - 1; |
| 762 | } |
| 763 | float dx = sinf(step * i); |
| 764 | float dy = cosf(step * i); |
| 765 | |
| 766 | float ratio = 1.0; |
| 767 | float deltaDist = ratio * (umbraDistPerRay[i] - penumbraDistPerRay[i]); |
| 768 | float currentDist = penumbraDistPerRay[i] + deltaDist; |
| 769 | float op = calculateOpacity(ratio, deltaDist); |
| 770 | AlphaVertex::set(&shadowVertices[currentIndex], |
| 771 | dx * currentDist + centroid.x, dy * currentDist + centroid.y, |
| 772 | ratio * op * strength); |
| 773 | currentIndex++; |
| 774 | |
| 775 | } |
| 776 | |
| 777 | // Back fill the one vertex for jumping from penumbra to umbra. |
| 778 | shadowVertices[firstInUmbra - 1] = shadowVertices[firstInUmbra]; |
| 779 | |
| 780 | #if DEBUG_SHADOW |
| 781 | for (int i = 0; i < currentIndex; i++) { |
| 782 | ALOGD("shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x, |
| 783 | shadowVertices[i].y, shadowVertices[i].alpha); |
| 784 | } |
| 785 | #endif |
| 786 | } |
| 787 | |
| 788 | /** |
| 789 | * This is only for experimental purpose. |
| 790 | * After intersections are calculated, we could smooth the polygon if needed. |
| 791 | * So far, we don't think it is more appealing yet. |
| 792 | * |
| 793 | * @param level The level of smoothness. |
| 794 | * @param rays The total number of rays. |
| 795 | * @param rayDist (In and Out) The distance for each ray. |
| 796 | * |
| 797 | */ |
| 798 | void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { |
| 799 | for (int k = 0; k < level; k++) { |
| 800 | for (int i = 0; i < rays; i++) { |
| 801 | float p1 = rayDist[(rays - 1 + i) % rays]; |
| 802 | float p2 = rayDist[i]; |
| 803 | float p3 = rayDist[(i + 1) % rays]; |
| 804 | rayDist[i] = (p1 + p2 * 2 + p3) / 4; |
| 805 | } |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | /** |
| 810 | * Calculate the opacity according to the distance and falloff ratio. |
| 811 | * |
| 812 | * @param distRatio The distance ratio of current sample between umbra and |
| 813 | * penumbra area. |
| 814 | * @param deltaDist The distance between current sample to the penumbra area. |
| 815 | * @return The opacity according to the distance between umbra and penumbra. |
| 816 | */ |
| 817 | float SpotShadow::calculateOpacity(float distRatio, float deltaDist) { |
| 818 | // TODO: Experiment on the opacity calculation. |
| 819 | float falloffRatio = 1 + deltaDist * deltaDist; |
| 820 | return (distRatio + 1 - 1 / falloffRatio) / 2; |
| 821 | } |
| 822 | |
| 823 | /** |
| 824 | * Calculate the number of vertex we will create given a number of rays and layers |
| 825 | * |
| 826 | * @param rays number of points around the polygons you want |
| 827 | * @param layers number of layers of triangle strips you need |
| 828 | * @return number of vertex (multiply by 3 for number of floats) |
| 829 | */ |
| 830 | int SpotShadow::getStripSize(int rays, int layers) { |
| 831 | return (2 + rays + ((layers) * 2 * (rays + 1))); |
| 832 | } |
| 833 | |
| 834 | }; // namespace uirenderer |
| 835 | }; // namespace android |
| 836 | |
| 837 | |
| 838 | |
| 839 | |