commit | 453ced8d2a563e8d0190ae3d9604904c16ff169d | [log] [tgz] |
---|---|---|
author | Himanshu Rawat <rwt@google.com> | Wed Jul 24 00:01:54 2024 +0000 |
committer | Himanshu Rawat <rwt@google.com> | Wed Jul 24 23:02:48 2024 +0000 |
tree | d0df2314cd2e5a1b5ce368ab12cbb1a420b731ca | |
parent | 5578966cabe1acf1b4d7abb8559a922370c91767 [diff] |
Fix HID virtual unplug handling Virtual unplug event must be generated on device removal. Virtual unplug can be called for device not in connected state. Virtual unplug can happen for HOGP devices as well. The HID virtual unplug event informs HidHostService and apps that the HID device has been removed. 1. App requests HID VUP 1.1 HID host sends VUP command to the HID device if connected and supported 1.2 HID host disconnects if connected 1.3 HID host removes the bond and HID info 1.4 HID host generates HID VUP event 2. App removes bond 2.1 Stack requests HID host to perform HID VUP 2.2 HID host sends VUP command to the HID device if connected and supported 2.3 HID host disconnects if connected 2.4 HID host removes the bond and HID info 2.5 HID host generates HID VUP event 3. HID device sends HID VUP 3.1 HID host disconnects if connected 3.2 HID host removes the bond if required 3.3 HID host generates HID VUP event 4. Stack removes the bond autonomously (Stack has to ensure that related ACLs are disconnected before this) 4.1 Stack requests HID host to remove HID information 4.2 HID host removes HID info 4.3 HID host generates HID VUP event Test: mmm packages/modules/Bluetooth Test: Manual | Pair with HID/HOGP device, remove the HID/HOGP device, pair with the HID/HOGP device again Test: Manual | Pair with HID/HOGP device, trigger bond loss on the HID/HOGP device, reconnect with the HID/HOGP device Flag: com.android.bluetooth.flags.remove_input_device_on_vup Bug: 347241319 Bug: 354758065 Change-Id: I3f5d82b0609d4204fa382786979001f22c5f24d1
Just build AOSP - Fluoride is there by default.
Instructions for a Debian based distribution:
You'll want to download some pre-requisite packages as well. If you're currently configured for AOSP development, you should have most required packages. Otherwise, you can use the following apt-get list or use the --run-bootstrap
option on build.py
(see below) to get a list of packages missing on your system:
sudo apt-get install repo git-core gnupg flex bison gperf build-essential \ zip curl zlib1g-dev gcc-multilib g++-multilib \ x11proto-core-dev libx11-dev libncurses5 \ libgl1-mesa-dev libxml2-utils xsltproc unzip liblz4-tool libssl-dev \ libc++-dev libevent-dev \ flatbuffers-compiler libflatbuffers1 openssl \ libflatbuffers-dev libfmt-dev libtinyxml2-dev \ libglib2.0-dev libevent-dev libnss3-dev libdbus-1-dev \ libprotobuf-dev ninja-build generate-ninja protobuf-compiler \ libre2-9 debmake \ llvm libc++abi-dev \ libre2-dev libdouble-conversion-dev \ libgtest-dev libgmock-dev libabsl-dev
You will also need a recent-ish version of Rust and Cargo. Please follow the instructions on Rustup to install a recent version.
mkdir ~/fluoride cd ~/fluoride git clone https://android.googlesource.com/platform/packages/modules/Bluetooth
build.py
is the helper script used to build Fluoride for Linux (i.e. Floss). It accepts a --run-bootstrap
option that will set up your build staging directory and also make sure you have all required system packages to build (should work on Debian and Ubuntu). You will still need to build some unpackaged dependencies (like libchrome, modp_b64, googletest, etc).
To use it:
./build.py --run-bootstrap
This will install your bootstrapped build environment to ~/.floss
. If you want to change this, just pass in --bootstrap-dir
to the script.
The following third-party dependencies are necessary but currently unavailable via a package manager. You may have to build these from source and install them to your local environment.
We provide a script to produce debian packages for those components. Please see the instructions in build/dpkg/README.txt for more details.
cd system/build/dpkg mkdir -p outdir/{modp_b64,libchrome} # Build and install modp_b64 pushd modp_b64 ./gen-src-pkg.sh $(readlink -f ../outdir/modp_b64) popd sudo dpkg -i outdir/modp_b64/*.deb # Build and install libchrome pushd libchrome ./gen-src-pkg.sh $(readlink -f ../outdir/libchrome) popd sudo dpkg -i outdir/libchrome/*.deb
Note: Handled by --run-bootstrap
option.
Run the following to install Rust dependencies:
cargo install cxxbridge-cmd
Note: Handled by --run-bootstrap
option.
For host build, we depend on a few other repositories:
Clone these all somewhere and create your staging environment.
export STAGING_DIR=path/to/your/staging/dir mkdir ${STAGING_DIR} mkdir -p ${STAGING_DIR}/external ln -s $(readlink -f ${PLATFORM2_DIR}/common-mk) ${STAGING_DIR}/common-mk ln -s $(readlink -f ${PLATFORM2_DIR}/.gn) ${STAGING_DIR}/.gn ln -s $(readlink -f ${RUST_CRATE_DIR}) ${STAGING_DIR}/external/rust ln -s $(readlink -f ${PROTO_LOG_DIR}) ${STAGING_DIR}/external/proto_logging
We provide a build script to automate building assuming you've staged your build environment already as above. At this point, make sure you have all the pre-requisites installed (i.e. bootstrap option and other dependencies above) or you will see failures. In addition, you may need to set a --libdir=
if your libraries are not stored in /usr/lib
by default.
./build.py
This will build all targets to the output directory at --bootstrap-dir
(which defaults to ~/.floss
). You can also build each stage separately (if you want to iterate on something specific):
You can choose to run only a specific stage by passing an arg via --target
.
Currently, Rust builds are a separate stage that uses Cargo to build. See gd/rust/README.md for more information. If you are iterating on Rust code and want to add new crates, you may also want to use the --no-vendored-rust
option (which will let you use crates.io instead of using a pre-populated vendored crates repo).
By default on Linux, we statically link libbluetooth so you can just run the binary directly. By default, it will try to run on hci0 but you can pass it --hci=N, where N corresponds to /sys/class/bluetooth/hciN.
$OUTPUT_DIR/debug/btadapterd --hci=$HCI INIT_gd_hci=true