Compiler: rearranging the deck chairs.

First of several steps to adopt the new source directory layout.  No
logic changes - just moved files around.

Change-Id: I087631f8aa23973e18da4dc7706249c490bee061
diff --git a/src/compiler/dex/quick/gen_common.cc b/src/compiler/dex/quick/gen_common.cc
new file mode 100644
index 0000000..bc022fc
--- /dev/null
+++ b/src/compiler/dex/quick/gen_common.cc
@@ -0,0 +1,1734 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "codegen_util.h"
+#include "compiler/dex/compiler_ir.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+#include "ralloc_util.h"
+
+namespace art {
+
+/*
+ * This source files contains "gen" codegen routines that should
+ * be applicable to most targets.  Only mid-level support utilities
+ * and "op" calls may be used here.
+ */
+
+/*
+ * Generate an kPseudoBarrier marker to indicate the boundary of special
+ * blocks.
+ */
+void Codegen::GenBarrier(CompilationUnit* cu)
+{
+  LIR* barrier = NewLIR0(cu, kPseudoBarrier);
+  /* Mark all resources as being clobbered */
+  barrier->def_mask = -1;
+}
+
+// FIXME: need to do some work to split out targets with
+// condition codes and those without
+LIR* Codegen::GenCheck(CompilationUnit* cu, ConditionCode c_code, ThrowKind kind)
+{
+  DCHECK_NE(cu->instruction_set, kMips);
+  LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
+                    cu->current_dalvik_offset);
+  LIR* branch = OpCondBranch(cu, c_code, tgt);
+  // Remember branch target - will process later
+  InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
+  return branch;
+}
+
+LIR* Codegen::GenImmedCheck(CompilationUnit* cu, ConditionCode c_code, int reg, int imm_val,
+                            ThrowKind kind)
+{
+  LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
+                    cu->current_dalvik_offset, reg, imm_val);
+  LIR* branch;
+  if (c_code == kCondAl) {
+    branch = OpUnconditionalBranch(cu, tgt);
+  } else {
+    branch = OpCmpImmBranch(cu, c_code, reg, imm_val, tgt);
+  }
+  // Remember branch target - will process later
+  InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
+  return branch;
+}
+
+/* Perform null-check on a register.  */
+LIR* Codegen::GenNullCheck(CompilationUnit* cu, int s_reg, int m_reg, int opt_flags)
+{
+  if (!(cu->disable_opt & (1 << kNullCheckElimination)) &&
+    opt_flags & MIR_IGNORE_NULL_CHECK) {
+    return NULL;
+  }
+  return GenImmedCheck(cu, kCondEq, m_reg, 0, kThrowNullPointer);
+}
+
+/* Perform check on two registers */
+LIR* Codegen::GenRegRegCheck(CompilationUnit* cu, ConditionCode c_code, int reg1, int reg2,
+                             ThrowKind kind)
+{
+  LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
+                    cu->current_dalvik_offset, reg1, reg2);
+  LIR* branch = OpCmpBranch(cu, c_code, reg1, reg2, tgt);
+  // Remember branch target - will process later
+  InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
+  return branch;
+}
+
+void Codegen::GenCompareAndBranch(CompilationUnit* cu, Instruction::Code opcode,
+                                  RegLocation rl_src1, RegLocation rl_src2, LIR* taken,
+                                  LIR* fall_through)
+{
+  ConditionCode cond;
+  switch (opcode) {
+    case Instruction::IF_EQ:
+      cond = kCondEq;
+      break;
+    case Instruction::IF_NE:
+      cond = kCondNe;
+      break;
+    case Instruction::IF_LT:
+      cond = kCondLt;
+      break;
+    case Instruction::IF_GE:
+      cond = kCondGe;
+      break;
+    case Instruction::IF_GT:
+      cond = kCondGt;
+      break;
+    case Instruction::IF_LE:
+      cond = kCondLe;
+      break;
+    default:
+      cond = static_cast<ConditionCode>(0);
+      LOG(FATAL) << "Unexpected opcode " << opcode;
+  }
+
+  // Normalize such that if either operand is constant, src2 will be constant
+  if (rl_src1.is_const) {
+    RegLocation rl_temp = rl_src1;
+    rl_src1 = rl_src2;
+    rl_src2 = rl_temp;
+    cond = FlipComparisonOrder(cond);
+  }
+
+  rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+  // Is this really an immediate comparison?
+  if (rl_src2.is_const) {
+    // If it's already live in a register or not easily materialized, just keep going
+    RegLocation rl_temp = UpdateLoc(cu, rl_src2);
+    if ((rl_temp.location == kLocDalvikFrame) &&
+        InexpensiveConstantInt(ConstantValue(cu, rl_src2))) {
+      // OK - convert this to a compare immediate and branch
+      OpCmpImmBranch(cu, cond, rl_src1.low_reg, ConstantValue(cu, rl_src2), taken);
+      OpUnconditionalBranch(cu, fall_through);
+      return;
+    }
+  }
+  rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+  OpCmpBranch(cu, cond, rl_src1.low_reg, rl_src2.low_reg, taken);
+  OpUnconditionalBranch(cu, fall_through);
+}
+
+void Codegen::GenCompareZeroAndBranch(CompilationUnit* cu, Instruction::Code opcode,
+                                      RegLocation rl_src, LIR* taken, LIR* fall_through)
+{
+  ConditionCode cond;
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  switch (opcode) {
+    case Instruction::IF_EQZ:
+      cond = kCondEq;
+      break;
+    case Instruction::IF_NEZ:
+      cond = kCondNe;
+      break;
+    case Instruction::IF_LTZ:
+      cond = kCondLt;
+      break;
+    case Instruction::IF_GEZ:
+      cond = kCondGe;
+      break;
+    case Instruction::IF_GTZ:
+      cond = kCondGt;
+      break;
+    case Instruction::IF_LEZ:
+      cond = kCondLe;
+      break;
+    default:
+      cond = static_cast<ConditionCode>(0);
+      LOG(FATAL) << "Unexpected opcode " << opcode;
+  }
+  OpCmpImmBranch(cu, cond, rl_src.low_reg, 0, taken);
+  OpUnconditionalBranch(cu, fall_through);
+}
+
+void Codegen::GenIntToLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
+{
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (rl_src.location == kLocPhysReg) {
+    OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg);
+  } else {
+    LoadValueDirect(cu, rl_src, rl_result.low_reg);
+  }
+  OpRegRegImm(cu, kOpAsr, rl_result.high_reg, rl_result.low_reg, 31);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+void Codegen::GenIntNarrowing(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                              RegLocation rl_src)
+{
+   rl_src = LoadValue(cu, rl_src, kCoreReg);
+   RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+   OpKind op = kOpInvalid;
+   switch (opcode) {
+     case Instruction::INT_TO_BYTE:
+       op = kOp2Byte;
+       break;
+     case Instruction::INT_TO_SHORT:
+        op = kOp2Short;
+        break;
+     case Instruction::INT_TO_CHAR:
+        op = kOp2Char;
+        break;
+     default:
+       LOG(ERROR) << "Bad int conversion type";
+   }
+   OpRegReg(cu, op, rl_result.low_reg, rl_src.low_reg);
+   StoreValue(cu, rl_dest, rl_result);
+}
+
+/*
+ * Let helper function take care of everything.  Will call
+ * Array::AllocFromCode(type_idx, method, count);
+ * Note: AllocFromCode will handle checks for errNegativeArraySize.
+ */
+void Codegen::GenNewArray(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest,
+                          RegLocation rl_src)
+{
+  FlushAllRegs(cu);  /* Everything to home location */
+  int func_offset;
+  if (cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                  *cu->dex_file,
+                                                  type_idx)) {
+    func_offset = ENTRYPOINT_OFFSET(pAllocArrayFromCode);
+  } else {
+    func_offset= ENTRYPOINT_OFFSET(pAllocArrayFromCodeWithAccessCheck);
+  }
+  CallRuntimeHelperImmMethodRegLocation(cu, func_offset, type_idx, rl_src, true);
+  RegLocation rl_result = GetReturn(cu, false);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+/*
+ * Similar to GenNewArray, but with post-allocation initialization.
+ * Verifier guarantees we're dealing with an array class.  Current
+ * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
+ * Current code also throws internal unimp if not 'L', '[' or 'I'.
+ */
+void Codegen::GenFilledNewArray(CompilationUnit* cu, CallInfo* info)
+{
+  int elems = info->num_arg_words;
+  int type_idx = info->index;
+  FlushAllRegs(cu);  /* Everything to home location */
+  int func_offset;
+  if (cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                  *cu->dex_file,
+                                                  type_idx)) {
+    func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCode);
+  } else {
+    func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCodeWithAccessCheck);
+  }
+  CallRuntimeHelperImmMethodImm(cu, func_offset, type_idx, elems, true);
+  FreeTemp(cu, TargetReg(kArg2));
+  FreeTemp(cu, TargetReg(kArg1));
+  /*
+   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
+   * return region.  Because AllocFromCode placed the new array
+   * in kRet0, we'll just lock it into place.  When debugger support is
+   * added, it may be necessary to additionally copy all return
+   * values to a home location in thread-local storage
+   */
+  LockTemp(cu, TargetReg(kRet0));
+
+  // TODO: use the correct component size, currently all supported types
+  // share array alignment with ints (see comment at head of function)
+  size_t component_size = sizeof(int32_t);
+
+  // Having a range of 0 is legal
+  if (info->is_range && (elems > 0)) {
+    /*
+     * Bit of ugliness here.  We're going generate a mem copy loop
+     * on the register range, but it is possible that some regs
+     * in the range have been promoted.  This is unlikely, but
+     * before generating the copy, we'll just force a flush
+     * of any regs in the source range that have been promoted to
+     * home location.
+     */
+    for (int i = 0; i < elems; i++) {
+      RegLocation loc = UpdateLoc(cu, info->args[i]);
+      if (loc.location == kLocPhysReg) {
+        StoreBaseDisp(cu, TargetReg(kSp), SRegOffset(cu, loc.s_reg_low),
+                      loc.low_reg, kWord);
+      }
+    }
+    /*
+     * TUNING note: generated code here could be much improved, but
+     * this is an uncommon operation and isn't especially performance
+     * critical.
+     */
+    int r_src = AllocTemp(cu);
+    int r_dst = AllocTemp(cu);
+    int r_idx = AllocTemp(cu);
+    int r_val = INVALID_REG;
+    switch(cu->instruction_set) {
+      case kThumb2:
+        r_val = TargetReg(kLr);
+        break;
+      case kX86:
+        FreeTemp(cu, TargetReg(kRet0));
+        r_val = AllocTemp(cu);
+        break;
+      case kMips:
+        r_val = AllocTemp(cu);
+        break;
+      default: LOG(FATAL) << "Unexpected instruction set: " << cu->instruction_set;
+    }
+    // Set up source pointer
+    RegLocation rl_first = info->args[0];
+    OpRegRegImm(cu, kOpAdd, r_src, TargetReg(kSp),
+                SRegOffset(cu, rl_first.s_reg_low));
+    // Set up the target pointer
+    OpRegRegImm(cu, kOpAdd, r_dst, TargetReg(kRet0),
+                mirror::Array::DataOffset(component_size).Int32Value());
+    // Set up the loop counter (known to be > 0)
+    LoadConstant(cu, r_idx, elems - 1);
+    // Generate the copy loop.  Going backwards for convenience
+    LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+    // Copy next element
+    LoadBaseIndexed(cu, r_src, r_idx, r_val, 2, kWord);
+    StoreBaseIndexed(cu, r_dst, r_idx, r_val, 2, kWord);
+    FreeTemp(cu, r_val);
+    OpDecAndBranch(cu, kCondGe, r_idx, target);
+    if (cu->instruction_set == kX86) {
+      // Restore the target pointer
+      OpRegRegImm(cu, kOpAdd, TargetReg(kRet0), r_dst,
+                  -mirror::Array::DataOffset(component_size).Int32Value());
+    }
+  } else if (!info->is_range) {
+    // TUNING: interleave
+    for (int i = 0; i < elems; i++) {
+      RegLocation rl_arg = LoadValue(cu, info->args[i], kCoreReg);
+      StoreBaseDisp(cu, TargetReg(kRet0),
+                    mirror::Array::DataOffset(component_size).Int32Value() +
+                    i * 4, rl_arg.low_reg, kWord);
+      // If the LoadValue caused a temp to be allocated, free it
+      if (IsTemp(cu, rl_arg.low_reg)) {
+        FreeTemp(cu, rl_arg.low_reg);
+      }
+    }
+  }
+  if (info->result.location != kLocInvalid) {
+    StoreValue(cu, info->result, GetReturn(cu, false /* not fp */));
+  }
+}
+
+void Codegen::GenSput(CompilationUnit* cu, uint32_t field_idx, RegLocation rl_src,
+                      bool is_long_or_double, bool is_object)
+{
+  int field_offset;
+  int ssb_index;
+  bool is_volatile;
+  bool is_referrers_class;
+
+  OatCompilationUnit m_unit(cu->class_loader, cu->class_linker, *cu->dex_file, cu->code_item,
+                            cu->class_def_idx, cu->method_idx, cu->access_flags);
+
+  bool fast_path =
+      cu->compiler->ComputeStaticFieldInfo(field_idx, &m_unit,
+                                              field_offset, ssb_index,
+                                              is_referrers_class, is_volatile,
+                                              true);
+  if (fast_path && !SLOW_FIELD_PATH) {
+    DCHECK_GE(field_offset, 0);
+    int rBase;
+    if (is_referrers_class) {
+      // Fast path, static storage base is this method's class
+      RegLocation rl_method  = LoadCurrMethod(cu);
+      rBase = AllocTemp(cu);
+      LoadWordDisp(cu, rl_method.low_reg,
+                   mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase);
+      if (IsTemp(cu, rl_method.low_reg)) {
+        FreeTemp(cu, rl_method.low_reg);
+      }
+    } else {
+      // Medium path, static storage base in a different class which
+      // requires checks that the other class is initialized.
+      DCHECK_GE(ssb_index, 0);
+      // May do runtime call so everything to home locations.
+      FlushAllRegs(cu);
+      // Using fixed register to sync with possible call to runtime
+      // support.
+      int r_method = TargetReg(kArg1);
+      LockTemp(cu, r_method);
+      LoadCurrMethodDirect(cu, r_method);
+      rBase = TargetReg(kArg0);
+      LockTemp(cu, rBase);
+      LoadWordDisp(cu, r_method,
+                   mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(),
+                   rBase);
+      LoadWordDisp(cu, rBase,
+                   mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
+                   sizeof(int32_t*) * ssb_index, rBase);
+      // rBase now points at appropriate static storage base (Class*)
+      // or NULL if not initialized. Check for NULL and call helper if NULL.
+      // TUNING: fast path should fall through
+      LIR* branch_over = OpCmpImmBranch(cu, kCondNe, rBase, 0, NULL);
+      LoadConstant(cu, TargetReg(kArg0), ssb_index);
+      CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true);
+      if (cu->instruction_set == kMips) {
+        // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy
+        OpRegCopy(cu, rBase, TargetReg(kRet0));
+      }
+      LIR* skip_target = NewLIR0(cu, kPseudoTargetLabel);
+      branch_over->target = skip_target;
+      FreeTemp(cu, r_method);
+    }
+    // rBase now holds static storage base
+    if (is_long_or_double) {
+      rl_src = LoadValueWide(cu, rl_src, kAnyReg);
+    } else {
+      rl_src = LoadValue(cu, rl_src, kAnyReg);
+    }
+    if (is_volatile) {
+      GenMemBarrier(cu, kStoreStore);
+    }
+    if (is_long_or_double) {
+      StoreBaseDispWide(cu, rBase, field_offset, rl_src.low_reg,
+                        rl_src.high_reg);
+    } else {
+      StoreWordDisp(cu, rBase, field_offset, rl_src.low_reg);
+    }
+    if (is_volatile) {
+      GenMemBarrier(cu, kStoreLoad);
+    }
+    if (is_object && !IsConstantNullRef(cu, rl_src)) {
+      MarkGCCard(cu, rl_src.low_reg, rBase);
+    }
+    FreeTemp(cu, rBase);
+  } else {
+    FlushAllRegs(cu);  // Everything to home locations
+    int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Static) :
+        (is_object ? ENTRYPOINT_OFFSET(pSetObjStatic)
+        : ENTRYPOINT_OFFSET(pSet32Static));
+    CallRuntimeHelperImmRegLocation(cu, setter_offset, field_idx, rl_src, true);
+  }
+}
+
+void Codegen::GenSget(CompilationUnit* cu, uint32_t field_idx, RegLocation rl_dest,
+                      bool is_long_or_double, bool is_object)
+{
+  int field_offset;
+  int ssb_index;
+  bool is_volatile;
+  bool is_referrers_class;
+
+  OatCompilationUnit m_unit(cu->class_loader, cu->class_linker,
+                            *cu->dex_file, cu->code_item,
+                            cu->class_def_idx, cu->method_idx,
+                            cu->access_flags);
+
+  bool fast_path =
+    cu->compiler->ComputeStaticFieldInfo(field_idx, &m_unit,
+                                            field_offset, ssb_index,
+                                            is_referrers_class, is_volatile,
+                                            false);
+  if (fast_path && !SLOW_FIELD_PATH) {
+    DCHECK_GE(field_offset, 0);
+    int rBase;
+    if (is_referrers_class) {
+      // Fast path, static storage base is this method's class
+      RegLocation rl_method  = LoadCurrMethod(cu);
+      rBase = AllocTemp(cu);
+      LoadWordDisp(cu, rl_method.low_reg,
+                   mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase);
+    } else {
+      // Medium path, static storage base in a different class which
+      // requires checks that the other class is initialized
+      DCHECK_GE(ssb_index, 0);
+      // May do runtime call so everything to home locations.
+      FlushAllRegs(cu);
+      // Using fixed register to sync with possible call to runtime
+      // support
+      int r_method = TargetReg(kArg1);
+      LockTemp(cu, r_method);
+      LoadCurrMethodDirect(cu, r_method);
+      rBase = TargetReg(kArg0);
+      LockTemp(cu, rBase);
+      LoadWordDisp(cu, r_method,
+                   mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(),
+                   rBase);
+      LoadWordDisp(cu, rBase,
+                   mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
+                   sizeof(int32_t*) * ssb_index, rBase);
+      // rBase now points at appropriate static storage base (Class*)
+      // or NULL if not initialized. Check for NULL and call helper if NULL.
+      // TUNING: fast path should fall through
+      LIR* branch_over = OpCmpImmBranch(cu, kCondNe, rBase, 0, NULL);
+      CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true);
+      if (cu->instruction_set == kMips) {
+        // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy
+        OpRegCopy(cu, rBase, TargetReg(kRet0));
+      }
+      LIR* skip_target = NewLIR0(cu, kPseudoTargetLabel);
+      branch_over->target = skip_target;
+      FreeTemp(cu, r_method);
+    }
+    // rBase now holds static storage base
+    RegLocation rl_result = EvalLoc(cu, rl_dest, kAnyReg, true);
+    if (is_volatile) {
+      GenMemBarrier(cu, kLoadLoad);
+    }
+    if (is_long_or_double) {
+      LoadBaseDispWide(cu, rBase, field_offset, rl_result.low_reg,
+                       rl_result.high_reg, INVALID_SREG);
+    } else {
+      LoadWordDisp(cu, rBase, field_offset, rl_result.low_reg);
+    }
+    FreeTemp(cu, rBase);
+    if (is_long_or_double) {
+      StoreValueWide(cu, rl_dest, rl_result);
+    } else {
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  } else {
+    FlushAllRegs(cu);  // Everything to home locations
+    int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Static) :
+        (is_object ? ENTRYPOINT_OFFSET(pGetObjStatic)
+        : ENTRYPOINT_OFFSET(pGet32Static));
+    CallRuntimeHelperImm(cu, getterOffset, field_idx, true);
+    if (is_long_or_double) {
+      RegLocation rl_result = GetReturnWide(cu, rl_dest.fp);
+      StoreValueWide(cu, rl_dest, rl_result);
+    } else {
+      RegLocation rl_result = GetReturn(cu, rl_dest.fp);
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  }
+}
+
+
+// Debugging routine - if null target, branch to DebugMe
+void Codegen::GenShowTarget(CompilationUnit* cu)
+{
+  DCHECK_NE(cu->instruction_set, kX86) << "unimplemented GenShowTarget";
+  LIR* branch_over = OpCmpImmBranch(cu, kCondNe, TargetReg(kInvokeTgt), 0, NULL);
+  LoadWordDisp(cu, TargetReg(kSelf), ENTRYPOINT_OFFSET(pDebugMe), TargetReg(kInvokeTgt));
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch_over->target = target;
+}
+
+void Codegen::HandleSuspendLaunchPads(CompilationUnit *cu)
+{
+  LIR** suspend_label = reinterpret_cast<LIR**>(cu->suspend_launchpads.elem_list);
+  int num_elems = cu->suspend_launchpads.num_used;
+  int helper_offset = ENTRYPOINT_OFFSET(pTestSuspendFromCode);
+  for (int i = 0; i < num_elems; i++) {
+    ResetRegPool(cu);
+    ResetDefTracking(cu);
+    LIR* lab = suspend_label[i];
+    LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[0]);
+    cu->current_dalvik_offset = lab->operands[1];
+    AppendLIR(cu, lab);
+    int r_tgt = CallHelperSetup(cu, helper_offset);
+    CallHelper(cu, r_tgt, helper_offset, true /* MarkSafepointPC */);
+    OpUnconditionalBranch(cu, resume_lab);
+  }
+}
+
+void Codegen::HandleIntrinsicLaunchPads(CompilationUnit *cu)
+{
+  LIR** intrinsic_label = reinterpret_cast<LIR**>(cu->intrinsic_launchpads.elem_list);
+  int num_elems = cu->intrinsic_launchpads.num_used;
+  for (int i = 0; i < num_elems; i++) {
+    ResetRegPool(cu);
+    ResetDefTracking(cu);
+    LIR* lab = intrinsic_label[i];
+    CallInfo* info = reinterpret_cast<CallInfo*>(lab->operands[0]);
+    cu->current_dalvik_offset = info->offset;
+    AppendLIR(cu, lab);
+    // NOTE: GenInvoke handles MarkSafepointPC
+    GenInvoke(cu, info);
+    LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[2]);
+    if (resume_lab != NULL) {
+      OpUnconditionalBranch(cu, resume_lab);
+    }
+  }
+}
+
+void Codegen::HandleThrowLaunchPads(CompilationUnit *cu)
+{
+  LIR** throw_label = reinterpret_cast<LIR**>(cu->throw_launchpads.elem_list);
+  int num_elems = cu->throw_launchpads.num_used;
+  for (int i = 0; i < num_elems; i++) {
+    ResetRegPool(cu);
+    ResetDefTracking(cu);
+    LIR* lab = throw_label[i];
+    cu->current_dalvik_offset = lab->operands[1];
+    AppendLIR(cu, lab);
+    int func_offset = 0;
+    int v1 = lab->operands[2];
+    int v2 = lab->operands[3];
+    bool target_x86 = (cu->instruction_set == kX86);
+    switch (lab->operands[0]) {
+      case kThrowNullPointer:
+        func_offset = ENTRYPOINT_OFFSET(pThrowNullPointerFromCode);
+        break;
+      case kThrowConstantArrayBounds: // v1 is length reg (for Arm/Mips), v2 constant index
+        // v1 holds the constant array index.  Mips/Arm uses v2 for length, x86 reloads.
+        if (target_x86) {
+          OpRegMem(cu, kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value());
+        } else {
+          OpRegCopy(cu, TargetReg(kArg1), v1);
+        }
+        // Make sure the following LoadConstant doesn't mess with kArg1.
+        LockTemp(cu, TargetReg(kArg1));
+        LoadConstant(cu, TargetReg(kArg0), v2);
+        func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode);
+        break;
+      case kThrowArrayBounds:
+        // Move v1 (array index) to kArg0 and v2 (array length) to kArg1
+        if (v2 != TargetReg(kArg0)) {
+          OpRegCopy(cu, TargetReg(kArg0), v1);
+          if (target_x86) {
+            // x86 leaves the array pointer in v2, so load the array length that the handler expects
+            OpRegMem(cu, kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
+          } else {
+            OpRegCopy(cu, TargetReg(kArg1), v2);
+          }
+        } else {
+          if (v1 == TargetReg(kArg1)) {
+            // Swap v1 and v2, using kArg2 as a temp
+            OpRegCopy(cu, TargetReg(kArg2), v1);
+            if (target_x86) {
+              // x86 leaves the array pointer in v2; load the array length that the handler expects
+              OpRegMem(cu, kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
+            } else {
+              OpRegCopy(cu, TargetReg(kArg1), v2);
+            }
+            OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));
+          } else {
+            if (target_x86) {
+              // x86 leaves the array pointer in v2; load the array length that the handler expects
+              OpRegMem(cu, kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
+            } else {
+              OpRegCopy(cu, TargetReg(kArg1), v2);
+            }
+            OpRegCopy(cu, TargetReg(kArg0), v1);
+          }
+        }
+        func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode);
+        break;
+      case kThrowDivZero:
+        func_offset = ENTRYPOINT_OFFSET(pThrowDivZeroFromCode);
+        break;
+      case kThrowNoSuchMethod:
+        OpRegCopy(cu, TargetReg(kArg0), v1);
+        func_offset =
+          ENTRYPOINT_OFFSET(pThrowNoSuchMethodFromCode);
+        break;
+      case kThrowStackOverflow:
+        func_offset = ENTRYPOINT_OFFSET(pThrowStackOverflowFromCode);
+        // Restore stack alignment
+        if (target_x86) {
+          OpRegImm(cu, kOpAdd, TargetReg(kSp), cu->frame_size);
+        } else {
+          OpRegImm(cu, kOpAdd, TargetReg(kSp), (cu->num_core_spills + cu->num_fp_spills) * 4);
+        }
+        break;
+      default:
+        LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0];
+    }
+    ClobberCalleeSave(cu);
+    int r_tgt = CallHelperSetup(cu, func_offset);
+    CallHelper(cu, r_tgt, func_offset, true /* MarkSafepointPC */);
+  }
+}
+
+void Codegen::GenIGet(CompilationUnit* cu, uint32_t field_idx, int opt_flags, OpSize size,
+                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
+                      bool is_object)
+{
+  int field_offset;
+  bool is_volatile;
+
+  bool fast_path = FastInstance(cu, field_idx, field_offset, is_volatile, false);
+
+  if (fast_path && !SLOW_FIELD_PATH) {
+    RegLocation rl_result;
+    RegisterClass reg_class = oat_reg_class_by_size(size);
+    DCHECK_GE(field_offset, 0);
+    rl_obj = LoadValue(cu, rl_obj, kCoreReg);
+    if (is_long_or_double) {
+      DCHECK(rl_dest.wide);
+      GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+      if (cu->instruction_set == kX86) {
+        rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+        GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+        LoadBaseDispWide(cu, rl_obj.low_reg, field_offset, rl_result.low_reg,
+                         rl_result.high_reg, rl_obj.s_reg_low);
+        if (is_volatile) {
+          GenMemBarrier(cu, kLoadLoad);
+        }
+      } else {
+        int reg_ptr = AllocTemp(cu);
+        OpRegRegImm(cu, kOpAdd, reg_ptr, rl_obj.low_reg, field_offset);
+        rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+        LoadBaseDispWide(cu, reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
+        if (is_volatile) {
+          GenMemBarrier(cu, kLoadLoad);
+        }
+        FreeTemp(cu, reg_ptr);
+      }
+      StoreValueWide(cu, rl_dest, rl_result);
+    } else {
+      rl_result = EvalLoc(cu, rl_dest, reg_class, true);
+      GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+      LoadBaseDisp(cu, rl_obj.low_reg, field_offset, rl_result.low_reg,
+                   kWord, rl_obj.s_reg_low);
+      if (is_volatile) {
+        GenMemBarrier(cu, kLoadLoad);
+      }
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  } else {
+    int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Instance) :
+        (is_object ? ENTRYPOINT_OFFSET(pGetObjInstance)
+        : ENTRYPOINT_OFFSET(pGet32Instance));
+    CallRuntimeHelperImmRegLocation(cu, getterOffset, field_idx, rl_obj, true);
+    if (is_long_or_double) {
+      RegLocation rl_result = GetReturnWide(cu, rl_dest.fp);
+      StoreValueWide(cu, rl_dest, rl_result);
+    } else {
+      RegLocation rl_result = GetReturn(cu, rl_dest.fp);
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  }
+}
+
+void Codegen::GenIPut(CompilationUnit* cu, uint32_t field_idx, int opt_flags, OpSize size,
+                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
+                      bool is_object)
+{
+  int field_offset;
+  bool is_volatile;
+
+  bool fast_path = FastInstance(cu, field_idx, field_offset, is_volatile,
+                 true);
+  if (fast_path && !SLOW_FIELD_PATH) {
+    RegisterClass reg_class = oat_reg_class_by_size(size);
+    DCHECK_GE(field_offset, 0);
+    rl_obj = LoadValue(cu, rl_obj, kCoreReg);
+    if (is_long_or_double) {
+      int reg_ptr;
+      rl_src = LoadValueWide(cu, rl_src, kAnyReg);
+      GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+      reg_ptr = AllocTemp(cu);
+      OpRegRegImm(cu, kOpAdd, reg_ptr, rl_obj.low_reg, field_offset);
+      if (is_volatile) {
+        GenMemBarrier(cu, kStoreStore);
+      }
+      StoreBaseDispWide(cu, reg_ptr, 0, rl_src.low_reg, rl_src.high_reg);
+      if (is_volatile) {
+        GenMemBarrier(cu, kLoadLoad);
+      }
+      FreeTemp(cu, reg_ptr);
+    } else {
+      rl_src = LoadValue(cu, rl_src, reg_class);
+      GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+      if (is_volatile) {
+        GenMemBarrier(cu, kStoreStore);
+      }
+      StoreBaseDisp(cu, rl_obj.low_reg, field_offset, rl_src.low_reg, kWord);
+      if (is_volatile) {
+        GenMemBarrier(cu, kLoadLoad);
+      }
+      if (is_object && !IsConstantNullRef(cu, rl_src)) {
+        MarkGCCard(cu, rl_src.low_reg, rl_obj.low_reg);
+      }
+    }
+  } else {
+    int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Instance) :
+        (is_object ? ENTRYPOINT_OFFSET(pSetObjInstance)
+        : ENTRYPOINT_OFFSET(pSet32Instance));
+    CallRuntimeHelperImmRegLocationRegLocation(cu, setter_offset, field_idx, rl_obj, rl_src, true);
+  }
+}
+
+void Codegen::GenConstClass(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest)
+{
+  RegLocation rl_method = LoadCurrMethod(cu);
+  int res_reg = AllocTemp(cu);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (!cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                   *cu->dex_file,
+                                                   type_idx)) {
+    // Call out to helper which resolves type and verifies access.
+    // Resolved type returned in kRet0.
+    CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
+                            type_idx, rl_method.low_reg, true);
+    RegLocation rl_result = GetReturn(cu, false);
+    StoreValue(cu, rl_dest, rl_result);
+  } else {
+    // We're don't need access checks, load type from dex cache
+    int32_t dex_cache_offset =
+        mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value();
+    LoadWordDisp(cu, rl_method.low_reg, dex_cache_offset, res_reg);
+    int32_t offset_of_type =
+        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
+                          * type_idx);
+    LoadWordDisp(cu, res_reg, offset_of_type, rl_result.low_reg);
+    if (!cu->compiler->CanAssumeTypeIsPresentInDexCache(*cu->dex_file,
+        type_idx) || SLOW_TYPE_PATH) {
+      // Slow path, at runtime test if type is null and if so initialize
+      FlushAllRegs(cu);
+      LIR* branch1 = OpCmpImmBranch(cu, kCondEq, rl_result.low_reg, 0, NULL);
+      // Resolved, store and hop over following code
+      StoreValue(cu, rl_dest, rl_result);
+      /*
+       * Because we have stores of the target value on two paths,
+       * clobber temp tracking for the destination using the ssa name
+       */
+      ClobberSReg(cu, rl_dest.s_reg_low);
+      LIR* branch2 = OpUnconditionalBranch(cu,0);
+      // TUNING: move slow path to end & remove unconditional branch
+      LIR* target1 = NewLIR0(cu, kPseudoTargetLabel);
+      // Call out to helper, which will return resolved type in kArg0
+      CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx,
+                              rl_method.low_reg, true);
+      RegLocation rl_result = GetReturn(cu, false);
+      StoreValue(cu, rl_dest, rl_result);
+      /*
+       * Because we have stores of the target value on two paths,
+       * clobber temp tracking for the destination using the ssa name
+       */
+      ClobberSReg(cu, rl_dest.s_reg_low);
+      // Rejoin code paths
+      LIR* target2 = NewLIR0(cu, kPseudoTargetLabel);
+      branch1->target = target1;
+      branch2->target = target2;
+    } else {
+      // Fast path, we're done - just store result
+      StoreValue(cu, rl_dest, rl_result);
+    }
+  }
+}
+
+void Codegen::GenConstString(CompilationUnit* cu, uint32_t string_idx, RegLocation rl_dest)
+{
+  /* NOTE: Most strings should be available at compile time */
+  int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() +
+                 (sizeof(mirror::String*) * string_idx);
+  if (!cu->compiler->CanAssumeStringIsPresentInDexCache(
+      *cu->dex_file, string_idx) || SLOW_STRING_PATH) {
+    // slow path, resolve string if not in dex cache
+    FlushAllRegs(cu);
+    LockCallTemps(cu); // Using explicit registers
+    LoadCurrMethodDirect(cu, TargetReg(kArg2));
+    LoadWordDisp(cu, TargetReg(kArg2),
+                 mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0));
+    // Might call out to helper, which will return resolved string in kRet0
+    int r_tgt = CallHelperSetup(cu, ENTRYPOINT_OFFSET(pResolveStringFromCode));
+    LoadWordDisp(cu, TargetReg(kArg0), offset_of_string, TargetReg(kRet0));
+    LoadConstant(cu, TargetReg(kArg1), string_idx);
+    if (cu->instruction_set == kThumb2) {
+      OpRegImm(cu, kOpCmp, TargetReg(kRet0), 0);  // Is resolved?
+      GenBarrier(cu);
+      // For testing, always force through helper
+      if (!EXERCISE_SLOWEST_STRING_PATH) {
+        OpIT(cu, kCondEq, "T");
+      }
+      OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));   // .eq
+      LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);    // .eq, helper(Method*, string_idx)
+      MarkSafepointPC(cu, call_inst);
+      FreeTemp(cu, r_tgt);
+    } else if (cu->instruction_set == kMips) {
+      LIR* branch = OpCmpImmBranch(cu, kCondNe, TargetReg(kRet0), 0, NULL);
+      OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));   // .eq
+      LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);
+      MarkSafepointPC(cu, call_inst);
+      FreeTemp(cu, r_tgt);
+      LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+      branch->target = target;
+    } else {
+      DCHECK_EQ(cu->instruction_set, kX86);
+      CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pResolveStringFromCode), TargetReg(kArg2), TargetReg(kArg1), true);
+    }
+    GenBarrier(cu);
+    StoreValue(cu, rl_dest, GetReturn(cu, false));
+  } else {
+    RegLocation rl_method = LoadCurrMethod(cu);
+    int res_reg = AllocTemp(cu);
+    RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+    LoadWordDisp(cu, rl_method.low_reg,
+                 mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), res_reg);
+    LoadWordDisp(cu, res_reg, offset_of_string, rl_result.low_reg);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+/*
+ * Let helper function take care of everything.  Will
+ * call Class::NewInstanceFromCode(type_idx, method);
+ */
+void Codegen::GenNewInstance(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest)
+{
+  FlushAllRegs(cu);  /* Everything to home location */
+  // alloc will always check for resolution, do we also need to verify
+  // access because the verifier was unable to?
+  int func_offset;
+  if (cu->compiler->CanAccessInstantiableTypeWithoutChecks(
+      cu->method_idx, *cu->dex_file, type_idx)) {
+    func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCode);
+  } else {
+    func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCodeWithAccessCheck);
+  }
+  CallRuntimeHelperImmMethod(cu, func_offset, type_idx, true);
+  RegLocation rl_result = GetReturn(cu, false);
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void Codegen::GenThrow(CompilationUnit* cu, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  CallRuntimeHelperRegLocation(cu, ENTRYPOINT_OFFSET(pDeliverException), rl_src, true);
+}
+
+void Codegen::GenInstanceof(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest,
+                            RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  // May generate a call - use explicit registers
+  LockCallTemps(cu);
+  LoadCurrMethodDirect(cu, TargetReg(kArg1));  // kArg1 <= current Method*
+  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
+  if (!cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                   *cu->dex_file,
+                                                   type_idx)) {
+    // Check we have access to type_idx and if not throw IllegalAccessError,
+    // returns Class* in kArg0
+    CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
+                         type_idx, true);
+    OpRegCopy(cu, class_reg, TargetReg(kRet0));  // Align usage with fast path
+    LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));  // kArg0 <= ref
+  } else {
+    // Load dex cache entry into class_reg (kArg2)
+    LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));  // kArg0 <= ref
+    LoadWordDisp(cu, TargetReg(kArg1),
+                 mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
+    int32_t offset_of_type =
+        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
+        * type_idx);
+    LoadWordDisp(cu, class_reg, offset_of_type, class_reg);
+    if (!cu->compiler->CanAssumeTypeIsPresentInDexCache(
+        *cu->dex_file, type_idx)) {
+      // Need to test presence of type in dex cache at runtime
+      LIR* hop_branch = OpCmpImmBranch(cu, kCondNe, class_reg, 0, NULL);
+      // Not resolved
+      // Call out to helper, which will return resolved type in kRet0
+      CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, true);
+      OpRegCopy(cu, TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path
+      LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));  /* reload Ref */
+      // Rejoin code paths
+      LIR* hop_target = NewLIR0(cu, kPseudoTargetLabel);
+      hop_branch->target = hop_target;
+    }
+  }
+  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
+  RegLocation rl_result = GetReturn(cu, false);
+  if (cu->instruction_set == kMips) {
+    LoadConstant(cu, rl_result.low_reg, 0);  // store false result for if branch is taken
+  }
+  LIR* branch1 = OpCmpImmBranch(cu, kCondEq, TargetReg(kArg0), 0, NULL);
+  /* load object->klass_ */
+  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
+  LoadWordDisp(cu, TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
+  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
+  LIR* call_inst;
+  LIR* branchover = NULL;
+  if (cu->instruction_set == kThumb2) {
+    /* Uses conditional nullification */
+    int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
+    OpRegReg(cu, kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same?
+    OpIT(cu, kCondEq, "EE");   // if-convert the test
+    LoadConstant(cu, TargetReg(kArg0), 1);     // .eq case - load true
+    OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
+    call_inst = OpReg(cu, kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
+    FreeTemp(cu, r_tgt);
+  } else {
+    /* Uses branchovers */
+    LoadConstant(cu, rl_result.low_reg, 1);     // assume true
+    branchover = OpCmpBranch(cu, kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
+    if (cu->instruction_set != kX86) {
+      int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
+      OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
+      call_inst = OpReg(cu, kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
+      FreeTemp(cu, r_tgt);
+    } else {
+      OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));
+      call_inst = OpThreadMem(cu, kOpBlx, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
+    }
+  }
+  MarkSafepointPC(cu, call_inst);
+  ClobberCalleeSave(cu);
+  /* branch targets here */
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  StoreValue(cu, rl_dest, rl_result);
+  branch1->target = target;
+  if (cu->instruction_set != kThumb2) {
+    branchover->target = target;
+  }
+}
+
+void Codegen::GenCheckCast(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_src)
+{
+  FlushAllRegs(cu);
+  // May generate a call - use explicit registers
+  LockCallTemps(cu);
+  LoadCurrMethodDirect(cu, TargetReg(kArg1));  // kArg1 <= current Method*
+  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
+  if (!cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
+                                                   *cu->dex_file,
+                                                   type_idx)) {
+    // Check we have access to type_idx and if not throw IllegalAccessError,
+    // returns Class* in kRet0
+    // InitializeTypeAndVerifyAccess(idx, method)
+    CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
+                            type_idx, TargetReg(kArg1), true);
+    OpRegCopy(cu, class_reg, TargetReg(kRet0));  // Align usage with fast path
+  } else {
+    // Load dex cache entry into class_reg (kArg2)
+    LoadWordDisp(cu, TargetReg(kArg1),
+                 mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
+    int32_t offset_of_type =
+        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
+        (sizeof(mirror::Class*) * type_idx);
+    LoadWordDisp(cu, class_reg, offset_of_type, class_reg);
+    if (!cu->compiler->CanAssumeTypeIsPresentInDexCache(
+        *cu->dex_file, type_idx)) {
+      // Need to test presence of type in dex cache at runtime
+      LIR* hop_branch = OpCmpImmBranch(cu, kCondNe, class_reg, 0, NULL);
+      // Not resolved
+      // Call out to helper, which will return resolved type in kArg0
+      // InitializeTypeFromCode(idx, method)
+      CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, TargetReg(kArg1),
+                              true);
+      OpRegCopy(cu, class_reg, TargetReg(kRet0)); // Align usage with fast path
+      // Rejoin code paths
+      LIR* hop_target = NewLIR0(cu, kPseudoTargetLabel);
+      hop_branch->target = hop_target;
+    }
+  }
+  // At this point, class_reg (kArg2) has class
+  LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));  // kArg0 <= ref
+  /* Null is OK - continue */
+  LIR* branch1 = OpCmpImmBranch(cu, kCondEq, TargetReg(kArg0), 0, NULL);
+  /* load object->klass_ */
+  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
+  LoadWordDisp(cu, TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
+  /* kArg1 now contains object->klass_ */
+  LIR* branch2;
+  if (cu->instruction_set == kThumb2) {
+    int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pCheckCastFromCode));
+    OpRegReg(cu, kOpCmp, TargetReg(kArg1), class_reg);
+    branch2 = OpCondBranch(cu, kCondEq, NULL); /* If eq, trivial yes */
+    OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg1));
+    OpRegCopy(cu, TargetReg(kArg1), TargetReg(kArg2));
+    ClobberCalleeSave(cu);
+    LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);
+    MarkSafepointPC(cu, call_inst);
+    FreeTemp(cu, r_tgt);
+  } else {
+    branch2 = OpCmpBranch(cu, kCondEq, TargetReg(kArg1), class_reg, NULL);
+    CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pCheckCastFromCode), TargetReg(kArg1), TargetReg(kArg2), true);
+  }
+  /* branch target here */
+  LIR* target = NewLIR0(cu, kPseudoTargetLabel);
+  branch1->target = target;
+  branch2->target = target;
+}
+
+void Codegen::GenLong3Addr(CompilationUnit* cu, OpKind first_op, OpKind second_op,
+                           RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
+{
+  RegLocation rl_result;
+  if (cu->instruction_set == kThumb2) {
+    /*
+     * NOTE:  This is the one place in the code in which we might have
+     * as many as six live temporary registers.  There are 5 in the normal
+     * set for Arm.  Until we have spill capabilities, temporarily add
+     * lr to the temp set.  It is safe to do this locally, but note that
+     * lr is used explicitly elsewhere in the code generator and cannot
+     * normally be used as a general temp register.
+     */
+    MarkTemp(cu, TargetReg(kLr));   // Add lr to the temp pool
+    FreeTemp(cu, TargetReg(kLr));   // and make it available
+  }
+  rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
+  rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+  rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  // The longs may overlap - use intermediate temp if so
+  if ((rl_result.low_reg == rl_src1.high_reg) || (rl_result.low_reg == rl_src2.high_reg)){
+    int t_reg = AllocTemp(cu);
+    OpRegRegReg(cu, first_op, t_reg, rl_src1.low_reg, rl_src2.low_reg);
+    OpRegRegReg(cu, second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg);
+    OpRegCopy(cu, rl_result.low_reg, t_reg);
+    FreeTemp(cu, t_reg);
+  } else {
+    OpRegRegReg(cu, first_op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
+    OpRegRegReg(cu, second_op, rl_result.high_reg, rl_src1.high_reg,
+                rl_src2.high_reg);
+  }
+  /*
+   * NOTE: If rl_dest refers to a frame variable in a large frame, the
+   * following StoreValueWide might need to allocate a temp register.
+   * To further work around the lack of a spill capability, explicitly
+   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
+   * Remove when spill is functional.
+   */
+  FreeRegLocTemps(cu, rl_result, rl_src1);
+  FreeRegLocTemps(cu, rl_result, rl_src2);
+  StoreValueWide(cu, rl_dest, rl_result);
+  if (cu->instruction_set == kThumb2) {
+    Clobber(cu, TargetReg(kLr));
+    UnmarkTemp(cu, TargetReg(kLr));  // Remove lr from the temp pool
+  }
+}
+
+
+void Codegen::GenShiftOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                             RegLocation rl_src1, RegLocation rl_shift)
+{
+  int func_offset = -1; // Make gcc happy
+
+  switch (opcode) {
+    case Instruction::SHL_LONG:
+    case Instruction::SHL_LONG_2ADDR:
+      func_offset = ENTRYPOINT_OFFSET(pShlLong);
+      break;
+    case Instruction::SHR_LONG:
+    case Instruction::SHR_LONG_2ADDR:
+      func_offset = ENTRYPOINT_OFFSET(pShrLong);
+      break;
+    case Instruction::USHR_LONG:
+    case Instruction::USHR_LONG_2ADDR:
+      func_offset = ENTRYPOINT_OFFSET(pUshrLong);
+      break;
+    default:
+      LOG(FATAL) << "Unexpected case";
+  }
+  FlushAllRegs(cu);   /* Send everything to home location */
+  CallRuntimeHelperRegLocationRegLocation(cu, func_offset, rl_src1, rl_shift, false);
+  RegLocation rl_result = GetReturnWide(cu, false);
+  StoreValueWide(cu, rl_dest, rl_result);
+}
+
+
+void Codegen::GenArithOpInt(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                            RegLocation rl_src1, RegLocation rl_src2)
+{
+  OpKind op = kOpBkpt;
+  bool is_div_rem = false;
+  bool check_zero = false;
+  bool unary = false;
+  RegLocation rl_result;
+  bool shift_op = false;
+  switch (opcode) {
+    case Instruction::NEG_INT:
+      op = kOpNeg;
+      unary = true;
+      break;
+    case Instruction::NOT_INT:
+      op = kOpMvn;
+      unary = true;
+      break;
+    case Instruction::ADD_INT:
+    case Instruction::ADD_INT_2ADDR:
+      op = kOpAdd;
+      break;
+    case Instruction::SUB_INT:
+    case Instruction::SUB_INT_2ADDR:
+      op = kOpSub;
+      break;
+    case Instruction::MUL_INT:
+    case Instruction::MUL_INT_2ADDR:
+      op = kOpMul;
+      break;
+    case Instruction::DIV_INT:
+    case Instruction::DIV_INT_2ADDR:
+      check_zero = true;
+      op = kOpDiv;
+      is_div_rem = true;
+      break;
+    /* NOTE: returns in kArg1 */
+    case Instruction::REM_INT:
+    case Instruction::REM_INT_2ADDR:
+      check_zero = true;
+      op = kOpRem;
+      is_div_rem = true;
+      break;
+    case Instruction::AND_INT:
+    case Instruction::AND_INT_2ADDR:
+      op = kOpAnd;
+      break;
+    case Instruction::OR_INT:
+    case Instruction::OR_INT_2ADDR:
+      op = kOpOr;
+      break;
+    case Instruction::XOR_INT:
+    case Instruction::XOR_INT_2ADDR:
+      op = kOpXor;
+      break;
+    case Instruction::SHL_INT:
+    case Instruction::SHL_INT_2ADDR:
+      shift_op = true;
+      op = kOpLsl;
+      break;
+    case Instruction::SHR_INT:
+    case Instruction::SHR_INT_2ADDR:
+      shift_op = true;
+      op = kOpAsr;
+      break;
+    case Instruction::USHR_INT:
+    case Instruction::USHR_INT_2ADDR:
+      shift_op = true;
+      op = kOpLsr;
+      break;
+    default:
+      LOG(FATAL) << "Invalid word arith op: " << opcode;
+  }
+  if (!is_div_rem) {
+    if (unary) {
+      rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+      rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+      OpRegReg(cu, op, rl_result.low_reg, rl_src1.low_reg);
+    } else {
+      if (shift_op) {
+        int t_reg = INVALID_REG;
+        if (cu->instruction_set == kX86) {
+          // X86 doesn't require masking and must use ECX
+          t_reg = TargetReg(kCount);  // rCX
+          LoadValueDirectFixed(cu, rl_src2, t_reg);
+        } else {
+          rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+          t_reg = AllocTemp(cu);
+          OpRegRegImm(cu, kOpAnd, t_reg, rl_src2.low_reg, 31);
+        }
+        rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+        rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+        OpRegRegReg(cu, op, rl_result.low_reg, rl_src1.low_reg, t_reg);
+        FreeTemp(cu, t_reg);
+      } else {
+        rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+        rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+        rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+        OpRegRegReg(cu, op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
+      }
+    }
+    StoreValue(cu, rl_dest, rl_result);
+  } else {
+    if (cu->instruction_set == kMips) {
+      rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
+      rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
+      if (check_zero) {
+          GenImmedCheck(cu, kCondEq, rl_src2.low_reg, 0, kThrowDivZero);
+      }
+      rl_result = GenDivRem(cu, rl_dest, rl_src1.low_reg, rl_src2.low_reg, op == kOpDiv);
+    } else {
+      int func_offset = ENTRYPOINT_OFFSET(pIdivmod);
+      FlushAllRegs(cu);   /* Send everything to home location */
+      LoadValueDirectFixed(cu, rl_src2, TargetReg(kArg1));
+      int r_tgt = CallHelperSetup(cu, func_offset);
+      LoadValueDirectFixed(cu, rl_src1, TargetReg(kArg0));
+      if (check_zero) {
+        GenImmedCheck(cu, kCondEq, TargetReg(kArg1), 0, kThrowDivZero);
+      }
+      // NOTE: callout here is not a safepoint
+      CallHelper(cu, r_tgt, func_offset, false /* not a safepoint */ );
+      if (op == kOpDiv)
+        rl_result = GetReturn(cu, false);
+      else
+        rl_result = GetReturnAlt(cu);
+    }
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+/*
+ * The following are the first-level codegen routines that analyze the format
+ * of each bytecode then either dispatch special purpose codegen routines
+ * or produce corresponding Thumb instructions directly.
+ */
+
+static bool IsPowerOfTwo(int x)
+{
+  return (x & (x - 1)) == 0;
+}
+
+// Returns true if no more than two bits are set in 'x'.
+static bool IsPopCountLE2(unsigned int x)
+{
+  x &= x - 1;
+  return (x & (x - 1)) == 0;
+}
+
+// Returns the index of the lowest set bit in 'x'.
+static int LowestSetBit(unsigned int x) {
+  int bit_posn = 0;
+  while ((x & 0xf) == 0) {
+    bit_posn += 4;
+    x >>= 4;
+  }
+  while ((x & 1) == 0) {
+    bit_posn++;
+    x >>= 1;
+  }
+  return bit_posn;
+}
+
+// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
+// and store the result in 'rl_dest'.
+static bool HandleEasyDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
+                             RegLocation rl_src, RegLocation rl_dest, int lit)
+{
+  if ((lit < 2) || ((cu->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
+    return false;
+  }
+  Codegen* cg = cu->cg.get();
+  // No divide instruction for Arm, so check for more special cases
+  if ((cu->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
+    return cg->SmallLiteralDivide(cu, dalvik_opcode, rl_src, rl_dest, lit);
+  }
+  int k = LowestSetBit(lit);
+  if (k >= 30) {
+    // Avoid special cases.
+    return false;
+  }
+  bool div = (dalvik_opcode == Instruction::DIV_INT_LIT8 ||
+      dalvik_opcode == Instruction::DIV_INT_LIT16);
+  rl_src = cg->LoadValue(cu, rl_src, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (div) {
+    int t_reg = AllocTemp(cu);
+    if (lit == 2) {
+      // Division by 2 is by far the most common division by constant.
+      cg->OpRegRegImm(cu, kOpLsr, t_reg, rl_src.low_reg, 32 - k);
+      cg->OpRegRegReg(cu, kOpAdd, t_reg, t_reg, rl_src.low_reg);
+      cg->OpRegRegImm(cu, kOpAsr, rl_result.low_reg, t_reg, k);
+    } else {
+      cg->OpRegRegImm(cu, kOpAsr, t_reg, rl_src.low_reg, 31);
+      cg->OpRegRegImm(cu, kOpLsr, t_reg, t_reg, 32 - k);
+      cg->OpRegRegReg(cu, kOpAdd, t_reg, t_reg, rl_src.low_reg);
+      cg->OpRegRegImm(cu, kOpAsr, rl_result.low_reg, t_reg, k);
+    }
+  } else {
+    int t_reg1 = AllocTemp(cu);
+    int t_reg2 = AllocTemp(cu);
+    if (lit == 2) {
+      cg->OpRegRegImm(cu, kOpLsr, t_reg1, rl_src.low_reg, 32 - k);
+      cg->OpRegRegReg(cu, kOpAdd, t_reg2, t_reg1, rl_src.low_reg);
+      cg->OpRegRegImm(cu, kOpAnd, t_reg2, t_reg2, lit -1);
+      cg->OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg2, t_reg1);
+    } else {
+      cg->OpRegRegImm(cu, kOpAsr, t_reg1, rl_src.low_reg, 31);
+      cg->OpRegRegImm(cu, kOpLsr, t_reg1, t_reg1, 32 - k);
+      cg->OpRegRegReg(cu, kOpAdd, t_reg2, t_reg1, rl_src.low_reg);
+      cg->OpRegRegImm(cu, kOpAnd, t_reg2, t_reg2, lit - 1);
+      cg->OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg2, t_reg1);
+    }
+  }
+  cg->StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
+// and store the result in 'rl_dest'.
+static bool HandleEasyMultiply(CompilationUnit* cu, RegLocation rl_src,
+                               RegLocation rl_dest, int lit)
+{
+  // Can we simplify this multiplication?
+  bool power_of_two = false;
+  bool pop_count_le2 = false;
+  bool power_of_two_minus_one = false;
+  if (lit < 2) {
+    // Avoid special cases.
+    return false;
+  } else if (IsPowerOfTwo(lit)) {
+    power_of_two = true;
+  } else if (IsPopCountLE2(lit)) {
+    pop_count_le2 = true;
+  } else if (IsPowerOfTwo(lit + 1)) {
+    power_of_two_minus_one = true;
+  } else {
+    return false;
+  }
+  Codegen* cg = cu->cg.get();
+  rl_src = cg->LoadValue(cu, rl_src, kCoreReg);
+  RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  if (power_of_two) {
+    // Shift.
+    cg->OpRegRegImm(cu, kOpLsl, rl_result.low_reg, rl_src.low_reg, LowestSetBit(lit));
+  } else if (pop_count_le2) {
+    // Shift and add and shift.
+    int first_bit = LowestSetBit(lit);
+    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
+    cg->GenMultiplyByTwoBitMultiplier(cu, rl_src, rl_result, lit, first_bit, second_bit);
+  } else {
+    // Reverse subtract: (src << (shift + 1)) - src.
+    DCHECK(power_of_two_minus_one);
+    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
+    int t_reg = AllocTemp(cu);
+    cg->OpRegRegImm(cu, kOpLsl, t_reg, rl_src.low_reg, LowestSetBit(lit + 1));
+    cg->OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg);
+  }
+  cg->StoreValue(cu, rl_dest, rl_result);
+  return true;
+}
+
+void Codegen::GenArithOpIntLit(CompilationUnit* cu, Instruction::Code opcode,
+                               RegLocation rl_dest, RegLocation rl_src, int lit)
+{
+  RegLocation rl_result;
+  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
+  int shift_op = false;
+  bool is_div = false;
+
+  switch (opcode) {
+    case Instruction::RSUB_INT_LIT8:
+    case Instruction::RSUB_INT: {
+      rl_src = LoadValue(cu, rl_src, kCoreReg);
+      rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+      if (cu->instruction_set == kThumb2) {
+        OpRegRegImm(cu, kOpRsub, rl_result.low_reg, rl_src.low_reg, lit);
+      } else {
+        OpRegReg(cu, kOpNeg, rl_result.low_reg, rl_src.low_reg);
+        OpRegImm(cu, kOpAdd, rl_result.low_reg, lit);
+      }
+      StoreValue(cu, rl_dest, rl_result);
+      return;
+    }
+
+    case Instruction::SUB_INT:
+    case Instruction::SUB_INT_2ADDR:
+      lit = -lit;
+      // Intended fallthrough
+    case Instruction::ADD_INT:
+    case Instruction::ADD_INT_2ADDR:
+    case Instruction::ADD_INT_LIT8:
+    case Instruction::ADD_INT_LIT16:
+      op = kOpAdd;
+      break;
+    case Instruction::MUL_INT:
+    case Instruction::MUL_INT_2ADDR:
+    case Instruction::MUL_INT_LIT8:
+    case Instruction::MUL_INT_LIT16: {
+      if (HandleEasyMultiply(cu, rl_src, rl_dest, lit)) {
+        return;
+      }
+      op = kOpMul;
+      break;
+    }
+    case Instruction::AND_INT:
+    case Instruction::AND_INT_2ADDR:
+    case Instruction::AND_INT_LIT8:
+    case Instruction::AND_INT_LIT16:
+      op = kOpAnd;
+      break;
+    case Instruction::OR_INT:
+    case Instruction::OR_INT_2ADDR:
+    case Instruction::OR_INT_LIT8:
+    case Instruction::OR_INT_LIT16:
+      op = kOpOr;
+      break;
+    case Instruction::XOR_INT:
+    case Instruction::XOR_INT_2ADDR:
+    case Instruction::XOR_INT_LIT8:
+    case Instruction::XOR_INT_LIT16:
+      op = kOpXor;
+      break;
+    case Instruction::SHL_INT_LIT8:
+    case Instruction::SHL_INT:
+    case Instruction::SHL_INT_2ADDR:
+      lit &= 31;
+      shift_op = true;
+      op = kOpLsl;
+      break;
+    case Instruction::SHR_INT_LIT8:
+    case Instruction::SHR_INT:
+    case Instruction::SHR_INT_2ADDR:
+      lit &= 31;
+      shift_op = true;
+      op = kOpAsr;
+      break;
+    case Instruction::USHR_INT_LIT8:
+    case Instruction::USHR_INT:
+    case Instruction::USHR_INT_2ADDR:
+      lit &= 31;
+      shift_op = true;
+      op = kOpLsr;
+      break;
+
+    case Instruction::DIV_INT:
+    case Instruction::DIV_INT_2ADDR:
+    case Instruction::DIV_INT_LIT8:
+    case Instruction::DIV_INT_LIT16:
+    case Instruction::REM_INT:
+    case Instruction::REM_INT_2ADDR:
+    case Instruction::REM_INT_LIT8:
+    case Instruction::REM_INT_LIT16: {
+      if (lit == 0) {
+        GenImmedCheck(cu, kCondAl, 0, 0, kThrowDivZero);
+        return;
+      }
+      if (HandleEasyDivide(cu, opcode, rl_src, rl_dest, lit)) {
+        return;
+      }
+      if ((opcode == Instruction::DIV_INT_LIT8) ||
+          (opcode == Instruction::DIV_INT) ||
+          (opcode == Instruction::DIV_INT_2ADDR) ||
+          (opcode == Instruction::DIV_INT_LIT16)) {
+        is_div = true;
+      } else {
+        is_div = false;
+      }
+      if (cu->instruction_set == kMips) {
+        rl_src = LoadValue(cu, rl_src, kCoreReg);
+        rl_result = GenDivRemLit(cu, rl_dest, rl_src.low_reg, lit, is_div);
+      } else {
+        FlushAllRegs(cu);   /* Everything to home location */
+        LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));
+        Clobber(cu, TargetReg(kArg0));
+        int func_offset = ENTRYPOINT_OFFSET(pIdivmod);
+        CallRuntimeHelperRegImm(cu, func_offset, TargetReg(kArg0), lit, false);
+        if (is_div)
+          rl_result = GetReturn(cu, false);
+        else
+          rl_result = GetReturnAlt(cu);
+      }
+      StoreValue(cu, rl_dest, rl_result);
+      return;
+    }
+    default:
+      LOG(FATAL) << "Unexpected opcode " << opcode;
+  }
+  rl_src = LoadValue(cu, rl_src, kCoreReg);
+  rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
+  if (shift_op && (lit == 0)) {
+    OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg);
+  } else {
+    OpRegRegImm(cu, op, rl_result.low_reg, rl_src.low_reg, lit);
+  }
+  StoreValue(cu, rl_dest, rl_result);
+}
+
+void Codegen::GenArithOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
+                             RegLocation rl_src1, RegLocation rl_src2)
+{
+  RegLocation rl_result;
+  OpKind first_op = kOpBkpt;
+  OpKind second_op = kOpBkpt;
+  bool call_out = false;
+  bool check_zero = false;
+  int func_offset;
+  int ret_reg = TargetReg(kRet0);
+
+  switch (opcode) {
+    case Instruction::NOT_LONG:
+      rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
+      rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
+      // Check for destructive overlap
+      if (rl_result.low_reg == rl_src2.high_reg) {
+        int t_reg = AllocTemp(cu);
+        OpRegCopy(cu, t_reg, rl_src2.high_reg);
+        OpRegReg(cu, kOpMvn, rl_result.low_reg, rl_src2.low_reg);
+        OpRegReg(cu, kOpMvn, rl_result.high_reg, t_reg);
+        FreeTemp(cu, t_reg);
+      } else {
+        OpRegReg(cu, kOpMvn, rl_result.low_reg, rl_src2.low_reg);
+        OpRegReg(cu, kOpMvn, rl_result.high_reg, rl_src2.high_reg);
+      }
+      StoreValueWide(cu, rl_dest, rl_result);
+      return;
+    case Instruction::ADD_LONG:
+    case Instruction::ADD_LONG_2ADDR:
+      if (cu->instruction_set != kThumb2) {
+        GenAddLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      }
+      first_op = kOpAdd;
+      second_op = kOpAdc;
+      break;
+    case Instruction::SUB_LONG:
+    case Instruction::SUB_LONG_2ADDR:
+      if (cu->instruction_set != kThumb2) {
+        GenSubLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      }
+      first_op = kOpSub;
+      second_op = kOpSbc;
+      break;
+    case Instruction::MUL_LONG:
+    case Instruction::MUL_LONG_2ADDR:
+      if (cu->instruction_set == kThumb2) {
+        GenMulLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      } else {
+        call_out = true;
+        ret_reg = TargetReg(kRet0);
+        func_offset = ENTRYPOINT_OFFSET(pLmul);
+      }
+      break;
+    case Instruction::DIV_LONG:
+    case Instruction::DIV_LONG_2ADDR:
+      call_out = true;
+      check_zero = true;
+      ret_reg = TargetReg(kRet0);
+      func_offset = ENTRYPOINT_OFFSET(pLdiv);
+      break;
+    case Instruction::REM_LONG:
+    case Instruction::REM_LONG_2ADDR:
+      call_out = true;
+      check_zero = true;
+      func_offset = ENTRYPOINT_OFFSET(pLdivmod);
+      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
+      ret_reg = (cu->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0);
+      break;
+    case Instruction::AND_LONG_2ADDR:
+    case Instruction::AND_LONG:
+      if (cu->instruction_set == kX86) {
+        return GenAndLong(cu, rl_dest, rl_src1, rl_src2);
+      }
+      first_op = kOpAnd;
+      second_op = kOpAnd;
+      break;
+    case Instruction::OR_LONG:
+    case Instruction::OR_LONG_2ADDR:
+      if (cu->instruction_set == kX86) {
+        GenOrLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      }
+      first_op = kOpOr;
+      second_op = kOpOr;
+      break;
+    case Instruction::XOR_LONG:
+    case Instruction::XOR_LONG_2ADDR:
+      if (cu->instruction_set == kX86) {
+        GenXorLong(cu, rl_dest, rl_src1, rl_src2);
+        return;
+      }
+      first_op = kOpXor;
+      second_op = kOpXor;
+      break;
+    case Instruction::NEG_LONG: {
+      GenNegLong(cu, rl_dest, rl_src2);
+      return;
+    }
+    default:
+      LOG(FATAL) << "Invalid long arith op";
+  }
+  if (!call_out) {
+    GenLong3Addr(cu, first_op, second_op, rl_dest, rl_src1, rl_src2);
+  } else {
+    FlushAllRegs(cu);   /* Send everything to home location */
+    if (check_zero) {
+      LoadValueDirectWideFixed(cu, rl_src2, TargetReg(kArg2), TargetReg(kArg3));
+      int r_tgt = CallHelperSetup(cu, func_offset);
+      GenDivZeroCheck(cu, TargetReg(kArg2), TargetReg(kArg3));
+      LoadValueDirectWideFixed(cu, rl_src1, TargetReg(kArg0), TargetReg(kArg1));
+      // NOTE: callout here is not a safepoint
+      CallHelper(cu, r_tgt, func_offset, false /* not safepoint */);
+    } else {
+      CallRuntimeHelperRegLocationRegLocation(cu, func_offset,
+                          rl_src1, rl_src2, false);
+    }
+    // Adjust return regs in to handle case of rem returning kArg2/kArg3
+    if (ret_reg == TargetReg(kRet0))
+      rl_result = GetReturnWide(cu, false);
+    else
+      rl_result = GetReturnWideAlt(cu);
+    StoreValueWide(cu, rl_dest, rl_result);
+  }
+}
+
+void Codegen::GenConversionCall(CompilationUnit* cu, int func_offset,
+                                RegLocation rl_dest, RegLocation rl_src)
+{
+  /*
+   * Don't optimize the register usage since it calls out to support
+   * functions
+   */
+  FlushAllRegs(cu);   /* Send everything to home location */
+  if (rl_src.wide) {
+    LoadValueDirectWideFixed(cu, rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0),
+                             rl_src.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
+  } else {
+    LoadValueDirectFixed(cu, rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
+  }
+  CallRuntimeHelperRegLocation(cu, func_offset, rl_src, false);
+  if (rl_dest.wide) {
+    RegLocation rl_result;
+    rl_result = GetReturnWide(cu, rl_dest.fp);
+    StoreValueWide(cu, rl_dest, rl_result);
+  } else {
+    RegLocation rl_result;
+    rl_result = GetReturn(cu, rl_dest.fp);
+    StoreValue(cu, rl_dest, rl_result);
+  }
+}
+
+/* Check if we need to check for pending suspend request */
+void Codegen::GenSuspendTest(CompilationUnit* cu, int opt_flags)
+{
+  if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
+    return;
+  }
+  FlushAllRegs(cu);
+  LIR* branch = OpTestSuspend(cu, NULL);
+  LIR* ret_lab = NewLIR0(cu, kPseudoTargetLabel);
+  LIR* target = RawLIR(cu, cu->current_dalvik_offset, kPseudoSuspendTarget,
+                       reinterpret_cast<uintptr_t>(ret_lab), cu->current_dalvik_offset);
+  branch->target = target;
+  InsertGrowableList(cu, &cu->suspend_launchpads, reinterpret_cast<uintptr_t>(target));
+}
+
+/* Check if we need to check for pending suspend request */
+void Codegen::GenSuspendTestAndBranch(CompilationUnit* cu, int opt_flags, LIR* target)
+{
+  if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
+    OpUnconditionalBranch(cu, target);
+    return;
+  }
+  OpTestSuspend(cu, target);
+  LIR* launch_pad =
+      RawLIR(cu, cu->current_dalvik_offset, kPseudoSuspendTarget,
+             reinterpret_cast<uintptr_t>(target), cu->current_dalvik_offset);
+  FlushAllRegs(cu);
+  OpUnconditionalBranch(cu, launch_pad);
+  InsertGrowableList(cu, &cu->suspend_launchpads, reinterpret_cast<uintptr_t>(launch_pad));
+}
+
+}  // namespace art