|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "code_generator_arm.h" | 
|  |  | 
|  | #include "arch/arm/instruction_set_features_arm.h" | 
|  | #include "art_method.h" | 
|  | #include "code_generator_utils.h" | 
|  | #include "compiled_method.h" | 
|  | #include "entrypoints/quick/quick_entrypoints.h" | 
|  | #include "gc/accounting/card_table.h" | 
|  | #include "intrinsics.h" | 
|  | #include "intrinsics_arm.h" | 
|  | #include "mirror/array-inl.h" | 
|  | #include "mirror/class-inl.h" | 
|  | #include "thread.h" | 
|  | #include "utils/arm/assembler_arm.h" | 
|  | #include "utils/arm/managed_register_arm.h" | 
|  | #include "utils/assembler.h" | 
|  | #include "utils/stack_checks.h" | 
|  |  | 
|  | namespace art { | 
|  |  | 
|  | template<class MirrorType> | 
|  | class GcRoot; | 
|  |  | 
|  | namespace arm { | 
|  |  | 
|  | static bool ExpectedPairLayout(Location location) { | 
|  | // We expected this for both core and fpu register pairs. | 
|  | return ((location.low() & 1) == 0) && (location.low() + 1 == location.high()); | 
|  | } | 
|  |  | 
|  | static constexpr int kCurrentMethodStackOffset = 0; | 
|  | static constexpr Register kMethodRegisterArgument = R0; | 
|  |  | 
|  | static constexpr Register kCoreAlwaysSpillRegister = R5; | 
|  | static constexpr Register kCoreCalleeSaves[] = | 
|  | { R5, R6, R7, R8, R10, R11, LR }; | 
|  | static constexpr SRegister kFpuCalleeSaves[] = | 
|  | { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 }; | 
|  |  | 
|  | // D31 cannot be split into two S registers, and the register allocator only works on | 
|  | // S registers. Therefore there is no need to block it. | 
|  | static constexpr DRegister DTMP = D31; | 
|  |  | 
|  | static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; | 
|  |  | 
|  | // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. | 
|  | #define __ down_cast<ArmAssembler*>(codegen->GetAssembler())->  // NOLINT | 
|  | #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value() | 
|  |  | 
|  | static constexpr int kRegListThreshold = 4; | 
|  |  | 
|  | // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers, | 
|  | // for each live D registers they treat two corresponding S registers as live ones. | 
|  | // | 
|  | // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build | 
|  | // from a list of contiguous S registers a list of contiguous D registers (processing first/last | 
|  | // S registers corner cases) and save/restore this new list treating them as D registers. | 
|  | // - decreasing code size | 
|  | // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is | 
|  | //   restored and then used in regular non SlowPath code as D register. | 
|  | // | 
|  | // For the following example (v means the S register is live): | 
|  | //   D names: |    D0   |    D1   |    D2   |    D4   | ... | 
|  | //   S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ... | 
|  | //   Live?    |    |  v |  v |  v |  v |  v |  v |    | ... | 
|  | // | 
|  | // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed | 
|  | // as D registers. | 
|  | static size_t SaveContiguousSRegisterList(size_t first, | 
|  | size_t last, | 
|  | CodeGenerator* codegen, | 
|  | size_t stack_offset) { | 
|  | DCHECK_LE(first, last); | 
|  | if ((first == last) && (first == 0)) { | 
|  | stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first); | 
|  | return stack_offset; | 
|  | } | 
|  | if (first % 2 == 1) { | 
|  | stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first++); | 
|  | } | 
|  |  | 
|  | bool save_last = false; | 
|  | if (last % 2 == 0) { | 
|  | save_last = true; | 
|  | --last; | 
|  | } | 
|  |  | 
|  | if (first < last) { | 
|  | DRegister d_reg = static_cast<DRegister>(first / 2); | 
|  | DCHECK_EQ((last - first + 1) % 2, 0u); | 
|  | size_t number_of_d_regs = (last - first + 1) / 2; | 
|  |  | 
|  | if (number_of_d_regs == 1) { | 
|  | __ StoreDToOffset(d_reg, SP, stack_offset); | 
|  | } else if (number_of_d_regs > 1) { | 
|  | __ add(IP, SP, ShifterOperand(stack_offset)); | 
|  | __ vstmiad(IP, d_reg, number_of_d_regs); | 
|  | } | 
|  | stack_offset += number_of_d_regs * kArmWordSize * 2; | 
|  | } | 
|  |  | 
|  | if (save_last) { | 
|  | stack_offset += codegen->SaveFloatingPointRegister(stack_offset, last + 1); | 
|  | } | 
|  |  | 
|  | return stack_offset; | 
|  | } | 
|  |  | 
|  | static size_t RestoreContiguousSRegisterList(size_t first, | 
|  | size_t last, | 
|  | CodeGenerator* codegen, | 
|  | size_t stack_offset) { | 
|  | DCHECK_LE(first, last); | 
|  | if ((first == last) && (first == 0)) { | 
|  | stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first); | 
|  | return stack_offset; | 
|  | } | 
|  | if (first % 2 == 1) { | 
|  | stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first++); | 
|  | } | 
|  |  | 
|  | bool restore_last = false; | 
|  | if (last % 2 == 0) { | 
|  | restore_last = true; | 
|  | --last; | 
|  | } | 
|  |  | 
|  | if (first < last) { | 
|  | DRegister d_reg = static_cast<DRegister>(first / 2); | 
|  | DCHECK_EQ((last - first + 1) % 2, 0u); | 
|  | size_t number_of_d_regs = (last - first + 1) / 2; | 
|  | if (number_of_d_regs == 1) { | 
|  | __ LoadDFromOffset(d_reg, SP, stack_offset); | 
|  | } else if (number_of_d_regs > 1) { | 
|  | __ add(IP, SP, ShifterOperand(stack_offset)); | 
|  | __ vldmiad(IP, d_reg, number_of_d_regs); | 
|  | } | 
|  | stack_offset += number_of_d_regs * kArmWordSize * 2; | 
|  | } | 
|  |  | 
|  | if (restore_last) { | 
|  | stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, last + 1); | 
|  | } | 
|  |  | 
|  | return stack_offset; | 
|  | } | 
|  |  | 
|  | void SlowPathCodeARM::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { | 
|  | size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); | 
|  | size_t orig_offset = stack_offset; | 
|  |  | 
|  | const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); | 
|  | for (uint32_t i : LowToHighBits(core_spills)) { | 
|  | // If the register holds an object, update the stack mask. | 
|  | if (locations->RegisterContainsObject(i)) { | 
|  | locations->SetStackBit(stack_offset / kVRegSize); | 
|  | } | 
|  | DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); | 
|  | DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); | 
|  | saved_core_stack_offsets_[i] = stack_offset; | 
|  | stack_offset += kArmWordSize; | 
|  | } | 
|  |  | 
|  | int reg_num = POPCOUNT(core_spills); | 
|  | if (reg_num != 0) { | 
|  | if (reg_num > kRegListThreshold) { | 
|  | __ StoreList(RegList(core_spills), orig_offset); | 
|  | } else { | 
|  | stack_offset = orig_offset; | 
|  | for (uint32_t i : LowToHighBits(core_spills)) { | 
|  | stack_offset += codegen->SaveCoreRegister(stack_offset, i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); | 
|  | orig_offset = stack_offset; | 
|  | for (uint32_t i : LowToHighBits(fp_spills)) { | 
|  | DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); | 
|  | saved_fpu_stack_offsets_[i] = stack_offset; | 
|  | stack_offset += kArmWordSize; | 
|  | } | 
|  |  | 
|  | stack_offset = orig_offset; | 
|  | while (fp_spills != 0u) { | 
|  | uint32_t begin = CTZ(fp_spills); | 
|  | uint32_t tmp = fp_spills + (1u << begin); | 
|  | fp_spills &= tmp;  // Clear the contiguous range of 1s. | 
|  | uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined. | 
|  | stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset); | 
|  | } | 
|  | DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); | 
|  | } | 
|  |  | 
|  | void SlowPathCodeARM::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { | 
|  | size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); | 
|  | size_t orig_offset = stack_offset; | 
|  |  | 
|  | const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); | 
|  | for (uint32_t i : LowToHighBits(core_spills)) { | 
|  | DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); | 
|  | DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); | 
|  | stack_offset += kArmWordSize; | 
|  | } | 
|  |  | 
|  | int reg_num = POPCOUNT(core_spills); | 
|  | if (reg_num != 0) { | 
|  | if (reg_num > kRegListThreshold) { | 
|  | __ LoadList(RegList(core_spills), orig_offset); | 
|  | } else { | 
|  | stack_offset = orig_offset; | 
|  | for (uint32_t i : LowToHighBits(core_spills)) { | 
|  | stack_offset += codegen->RestoreCoreRegister(stack_offset, i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); | 
|  | while (fp_spills != 0u) { | 
|  | uint32_t begin = CTZ(fp_spills); | 
|  | uint32_t tmp = fp_spills + (1u << begin); | 
|  | fp_spills &= tmp;  // Clear the contiguous range of 1s. | 
|  | uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined. | 
|  | stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset); | 
|  | } | 
|  | DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); | 
|  | } | 
|  |  | 
|  | class NullCheckSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCodeARM(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | if (instruction_->CanThrowIntoCatchBlock()) { | 
|  | // Live registers will be restored in the catch block if caught. | 
|  | SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
|  | } | 
|  | arm_codegen->InvokeRuntime(kQuickThrowNullPointer, | 
|  | instruction_, | 
|  | instruction_->GetDexPc(), | 
|  | this); | 
|  | CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); | 
|  | } | 
|  |  | 
|  | bool IsFatal() const OVERRIDE { return true; } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM); | 
|  | }; | 
|  |  | 
|  | class DivZeroCheckSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCodeARM(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); | 
|  | } | 
|  |  | 
|  | bool IsFatal() const OVERRIDE { return true; } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM); | 
|  | }; | 
|  |  | 
|  | class SuspendCheckSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor) | 
|  | : SlowPathCodeARM(instruction), successor_(successor) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickTestSuspend, void, void>(); | 
|  | if (successor_ == nullptr) { | 
|  | __ b(GetReturnLabel()); | 
|  | } else { | 
|  | __ b(arm_codegen->GetLabelOf(successor_)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Label* GetReturnLabel() { | 
|  | DCHECK(successor_ == nullptr); | 
|  | return &return_label_; | 
|  | } | 
|  |  | 
|  | HBasicBlock* GetSuccessor() const { | 
|  | return successor_; | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | // If not null, the block to branch to after the suspend check. | 
|  | HBasicBlock* const successor_; | 
|  |  | 
|  | // If `successor_` is null, the label to branch to after the suspend check. | 
|  | Label return_label_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM); | 
|  | }; | 
|  |  | 
|  | class BoundsCheckSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction) | 
|  | : SlowPathCodeARM(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  | if (instruction_->CanThrowIntoCatchBlock()) { | 
|  | // Live registers will be restored in the catch block if caught. | 
|  | SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
|  | } | 
|  | // We're moving two locations to locations that could overlap, so we need a parallel | 
|  | // move resolver. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | codegen->EmitParallelMoves( | 
|  | locations->InAt(0), | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
|  | Primitive::kPrimInt, | 
|  | locations->InAt(1), | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
|  | Primitive::kPrimInt); | 
|  | QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() | 
|  | ? kQuickThrowStringBounds | 
|  | : kQuickThrowArrayBounds; | 
|  | arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); | 
|  | CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); | 
|  | } | 
|  |  | 
|  | bool IsFatal() const OVERRIDE { return true; } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM); | 
|  | }; | 
|  |  | 
|  | class LoadClassSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | LoadClassSlowPathARM(HLoadClass* cls, | 
|  | HInstruction* at, | 
|  | uint32_t dex_pc, | 
|  | bool do_clinit) | 
|  | : SlowPathCodeARM(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { | 
|  | DCHECK(at->IsLoadClass() || at->IsClinitCheck()); | 
|  | } | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | LocationSummary* locations = at_->GetLocations(); | 
|  |  | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | __ LoadImmediate(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex().index_); | 
|  | QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage | 
|  | : kQuickInitializeType; | 
|  | arm_codegen->InvokeRuntime(entrypoint, at_, dex_pc_, this); | 
|  | if (do_clinit_) { | 
|  | CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); | 
|  | } else { | 
|  | CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); | 
|  | } | 
|  |  | 
|  | // Move the class to the desired location. | 
|  | Location out = locations->Out(); | 
|  | if (out.IsValid()) { | 
|  | DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); | 
|  | arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); | 
|  | } | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ b(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | // The class this slow path will load. | 
|  | HLoadClass* const cls_; | 
|  |  | 
|  | // The instruction where this slow path is happening. | 
|  | // (Might be the load class or an initialization check). | 
|  | HInstruction* const at_; | 
|  |  | 
|  | // The dex PC of `at_`. | 
|  | const uint32_t dex_pc_; | 
|  |  | 
|  | // Whether to initialize the class. | 
|  | const bool do_clinit_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM); | 
|  | }; | 
|  |  | 
|  | class LoadStringSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCodeARM(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
|  | HLoadString* load = instruction_->AsLoadString(); | 
|  | const uint32_t string_index = load->GetStringIndex().index_; | 
|  | Register out = locations->Out().AsRegister<Register>(); | 
|  | Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
|  | constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier); | 
|  |  | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | // In the unlucky case that the `temp` is R0, we preserve the address in `out` across | 
|  | // the kSaveEverything call (or use `out` for the address after non-kSaveEverything call). | 
|  | bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0)); | 
|  | Register entry_address = temp_is_r0 ? out : temp; | 
|  | DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0)); | 
|  | if (call_saves_everything_except_r0 && temp_is_r0) { | 
|  | __ mov(entry_address, ShifterOperand(temp)); | 
|  | } | 
|  |  | 
|  | __ LoadImmediate(calling_convention.GetRegisterAt(0), string_index); | 
|  | arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); | 
|  |  | 
|  | // Store the resolved String to the .bss entry. | 
|  | if (call_saves_everything_except_r0) { | 
|  | // The string entry address was preserved in `entry_address` thanks to kSaveEverything. | 
|  | __ str(R0, Address(entry_address)); | 
|  | } else { | 
|  | // For non-Baker read barrier, we need to re-calculate the address of the string entry. | 
|  | CodeGeneratorARM::PcRelativePatchInfo* labels = | 
|  | arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index); | 
|  | __ BindTrackedLabel(&labels->movw_label); | 
|  | __ movw(entry_address, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->movt_label); | 
|  | __ movt(entry_address, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->add_pc_label); | 
|  | __ add(entry_address, entry_address, ShifterOperand(PC)); | 
|  | __ str(R0, Address(entry_address)); | 
|  | } | 
|  |  | 
|  | arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  |  | 
|  | __ b(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM); | 
|  | }; | 
|  |  | 
|  | class TypeCheckSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal) | 
|  | : SlowPathCodeARM(instruction), is_fatal_(is_fatal) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | DCHECK(instruction_->IsCheckCast() | 
|  | || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
|  |  | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  |  | 
|  | if (!is_fatal_) { | 
|  | SaveLiveRegisters(codegen, locations); | 
|  | } | 
|  |  | 
|  | // We're moving two locations to locations that could overlap, so we need a parallel | 
|  | // move resolver. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | codegen->EmitParallelMoves(locations->InAt(0), | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
|  | Primitive::kPrimNot, | 
|  | locations->InAt(1), | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
|  | Primitive::kPrimNot); | 
|  | if (instruction_->IsInstanceOf()) { | 
|  | arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, | 
|  | instruction_, | 
|  | instruction_->GetDexPc(), | 
|  | this); | 
|  | CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); | 
|  | arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); | 
|  | } else { | 
|  | DCHECK(instruction_->IsCheckCast()); | 
|  | arm_codegen->InvokeRuntime(kQuickCheckInstanceOf, | 
|  | instruction_, | 
|  | instruction_->GetDexPc(), | 
|  | this); | 
|  | CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); | 
|  | } | 
|  |  | 
|  | if (!is_fatal_) { | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ b(GetExitLabel()); | 
|  | } | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; } | 
|  |  | 
|  | bool IsFatal() const OVERRIDE { return is_fatal_; } | 
|  |  | 
|  | private: | 
|  | const bool is_fatal_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM); | 
|  | }; | 
|  |  | 
|  | class DeoptimizationSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | explicit DeoptimizationSlowPathARM(HDeoptimize* instruction) | 
|  | : SlowPathCodeARM(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickDeoptimize, void, void>(); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM); | 
|  | }; | 
|  |  | 
|  | class ArraySetSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCodeARM(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | HParallelMove parallel_move(codegen->GetGraph()->GetArena()); | 
|  | parallel_move.AddMove( | 
|  | locations->InAt(0), | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
|  | Primitive::kPrimNot, | 
|  | nullptr); | 
|  | parallel_move.AddMove( | 
|  | locations->InAt(1), | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
|  | Primitive::kPrimInt, | 
|  | nullptr); | 
|  | parallel_move.AddMove( | 
|  | locations->InAt(2), | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(2)), | 
|  | Primitive::kPrimNot, | 
|  | nullptr); | 
|  | codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
|  |  | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ b(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM); | 
|  | }; | 
|  |  | 
|  | // Slow path marking an object reference `ref` during a read | 
|  | // barrier. The field `obj.field` in the object `obj` holding this | 
|  | // reference does not get updated by this slow path after marking (see | 
|  | // ReadBarrierMarkAndUpdateFieldSlowPathARM below for that). | 
|  | // | 
|  | // This means that after the execution of this slow path, `ref` will | 
|  | // always be up-to-date, but `obj.field` may not; i.e., after the | 
|  | // flip, `ref` will be a to-space reference, but `obj.field` will | 
|  | // probably still be a from-space reference (unless it gets updated by | 
|  | // another thread, or if another thread installed another object | 
|  | // reference (different from `ref`) in `obj.field`). | 
|  | class ReadBarrierMarkSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | ReadBarrierMarkSlowPathARM(HInstruction* instruction, | 
|  | Location ref, | 
|  | Location entrypoint = Location::NoLocation()) | 
|  | : SlowPathCodeARM(instruction), ref_(ref), entrypoint_(entrypoint) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; } | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | Register ref_reg = ref_.AsRegister<Register>(); | 
|  | DCHECK(locations->CanCall()); | 
|  | DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; | 
|  | DCHECK(instruction_->IsInstanceFieldGet() || | 
|  | instruction_->IsStaticFieldGet() || | 
|  | instruction_->IsArrayGet() || | 
|  | instruction_->IsArraySet() || | 
|  | instruction_->IsLoadClass() || | 
|  | instruction_->IsLoadString() || | 
|  | instruction_->IsInstanceOf() || | 
|  | instruction_->IsCheckCast() || | 
|  | (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || | 
|  | (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) | 
|  | << "Unexpected instruction in read barrier marking slow path: " | 
|  | << instruction_->DebugName(); | 
|  | // The read barrier instrumentation of object ArrayGet | 
|  | // instructions does not support the HIntermediateAddress | 
|  | // instruction. | 
|  | DCHECK(!(instruction_->IsArrayGet() && | 
|  | instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  | // No need to save live registers; it's taken care of by the | 
|  | // entrypoint. Also, there is no need to update the stack mask, | 
|  | // as this runtime call will not trigger a garbage collection. | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | DCHECK_NE(ref_reg, SP); | 
|  | DCHECK_NE(ref_reg, LR); | 
|  | DCHECK_NE(ref_reg, PC); | 
|  | // IP is used internally by the ReadBarrierMarkRegX entry point | 
|  | // as a temporary, it cannot be the entry point's input/output. | 
|  | DCHECK_NE(ref_reg, IP); | 
|  | DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg; | 
|  | // "Compact" slow path, saving two moves. | 
|  | // | 
|  | // Instead of using the standard runtime calling convention (input | 
|  | // and output in R0): | 
|  | // | 
|  | //   R0 <- ref | 
|  | //   R0 <- ReadBarrierMark(R0) | 
|  | //   ref <- R0 | 
|  | // | 
|  | // we just use rX (the register containing `ref`) as input and output | 
|  | // of a dedicated entrypoint: | 
|  | // | 
|  | //   rX <- ReadBarrierMarkRegX(rX) | 
|  | // | 
|  | if (entrypoint_.IsValid()) { | 
|  | arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); | 
|  | __ blx(entrypoint_.AsRegister<Register>()); | 
|  | } else { | 
|  | int32_t entry_point_offset = | 
|  | CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg); | 
|  | // This runtime call does not require a stack map. | 
|  | arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); | 
|  | } | 
|  | __ b(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // The location (register) of the marked object reference. | 
|  | const Location ref_; | 
|  |  | 
|  | // The location of the entrypoint if already loaded. | 
|  | const Location entrypoint_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM); | 
|  | }; | 
|  |  | 
|  | // Slow path marking an object reference `ref` during a read barrier, | 
|  | // and if needed, atomically updating the field `obj.field` in the | 
|  | // object `obj` holding this reference after marking (contrary to | 
|  | // ReadBarrierMarkSlowPathARM above, which never tries to update | 
|  | // `obj.field`). | 
|  | // | 
|  | // This means that after the execution of this slow path, both `ref` | 
|  | // and `obj.field` will be up-to-date; i.e., after the flip, both will | 
|  | // hold the same to-space reference (unless another thread installed | 
|  | // another object reference (different from `ref`) in `obj.field`). | 
|  | class ReadBarrierMarkAndUpdateFieldSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | ReadBarrierMarkAndUpdateFieldSlowPathARM(HInstruction* instruction, | 
|  | Location ref, | 
|  | Register obj, | 
|  | Location field_offset, | 
|  | Register temp1, | 
|  | Register temp2) | 
|  | : SlowPathCodeARM(instruction), | 
|  | ref_(ref), | 
|  | obj_(obj), | 
|  | field_offset_(field_offset), | 
|  | temp1_(temp1), | 
|  | temp2_(temp2) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkAndUpdateFieldSlowPathARM"; } | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | Register ref_reg = ref_.AsRegister<Register>(); | 
|  | DCHECK(locations->CanCall()); | 
|  | DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; | 
|  | // This slow path is only used by the UnsafeCASObject intrinsic. | 
|  | DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) | 
|  | << "Unexpected instruction in read barrier marking and field updating slow path: " | 
|  | << instruction_->DebugName(); | 
|  | DCHECK(instruction_->GetLocations()->Intrinsified()); | 
|  | DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); | 
|  | DCHECK(field_offset_.IsRegisterPair()) << field_offset_; | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  |  | 
|  | // Save the old reference. | 
|  | // Note that we cannot use IP to save the old reference, as IP is | 
|  | // used internally by the ReadBarrierMarkRegX entry point, and we | 
|  | // need the old reference after the call to that entry point. | 
|  | DCHECK_NE(temp1_, IP); | 
|  | __ Mov(temp1_, ref_reg); | 
|  |  | 
|  | // No need to save live registers; it's taken care of by the | 
|  | // entrypoint. Also, there is no need to update the stack mask, | 
|  | // as this runtime call will not trigger a garbage collection. | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | DCHECK_NE(ref_reg, SP); | 
|  | DCHECK_NE(ref_reg, LR); | 
|  | DCHECK_NE(ref_reg, PC); | 
|  | // IP is used internally by the ReadBarrierMarkRegX entry point | 
|  | // as a temporary, it cannot be the entry point's input/output. | 
|  | DCHECK_NE(ref_reg, IP); | 
|  | DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg; | 
|  | // "Compact" slow path, saving two moves. | 
|  | // | 
|  | // Instead of using the standard runtime calling convention (input | 
|  | // and output in R0): | 
|  | // | 
|  | //   R0 <- ref | 
|  | //   R0 <- ReadBarrierMark(R0) | 
|  | //   ref <- R0 | 
|  | // | 
|  | // we just use rX (the register containing `ref`) as input and output | 
|  | // of a dedicated entrypoint: | 
|  | // | 
|  | //   rX <- ReadBarrierMarkRegX(rX) | 
|  | // | 
|  | int32_t entry_point_offset = | 
|  | CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg); | 
|  | // This runtime call does not require a stack map. | 
|  | arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); | 
|  |  | 
|  | // If the new reference is different from the old reference, | 
|  | // update the field in the holder (`*(obj_ + field_offset_)`). | 
|  | // | 
|  | // Note that this field could also hold a different object, if | 
|  | // another thread had concurrently changed it. In that case, the | 
|  | // LDREX/SUBS/ITNE sequence of instructions in the compare-and-set | 
|  | // (CAS) operation below would abort the CAS, leaving the field | 
|  | // as-is. | 
|  | Label done; | 
|  | __ cmp(temp1_, ShifterOperand(ref_reg)); | 
|  | __ b(&done, EQ); | 
|  |  | 
|  | // Update the the holder's field atomically.  This may fail if | 
|  | // mutator updates before us, but it's OK.  This is achieved | 
|  | // using a strong compare-and-set (CAS) operation with relaxed | 
|  | // memory synchronization ordering, where the expected value is | 
|  | // the old reference and the desired value is the new reference. | 
|  |  | 
|  | // Convenience aliases. | 
|  | Register base = obj_; | 
|  | // The UnsafeCASObject intrinsic uses a register pair as field | 
|  | // offset ("long offset"), of which only the low part contains | 
|  | // data. | 
|  | Register offset = field_offset_.AsRegisterPairLow<Register>(); | 
|  | Register expected = temp1_; | 
|  | Register value = ref_reg; | 
|  | Register tmp_ptr = IP;       // Pointer to actual memory. | 
|  | Register tmp = temp2_;       // Value in memory. | 
|  |  | 
|  | __ add(tmp_ptr, base, ShifterOperand(offset)); | 
|  |  | 
|  | if (kPoisonHeapReferences) { | 
|  | __ PoisonHeapReference(expected); | 
|  | if (value == expected) { | 
|  | // Do not poison `value`, as it is the same register as | 
|  | // `expected`, which has just been poisoned. | 
|  | } else { | 
|  | __ PoisonHeapReference(value); | 
|  | } | 
|  | } | 
|  |  | 
|  | // do { | 
|  | //   tmp = [r_ptr] - expected; | 
|  | // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); | 
|  |  | 
|  | Label loop_head, exit_loop; | 
|  | __ Bind(&loop_head); | 
|  |  | 
|  | __ ldrex(tmp, tmp_ptr); | 
|  |  | 
|  | __ subs(tmp, tmp, ShifterOperand(expected)); | 
|  |  | 
|  | __ it(NE); | 
|  | __ clrex(NE); | 
|  |  | 
|  | __ b(&exit_loop, NE); | 
|  |  | 
|  | __ strex(tmp, value, tmp_ptr); | 
|  | __ cmp(tmp, ShifterOperand(1)); | 
|  | __ b(&loop_head, EQ); | 
|  |  | 
|  | __ Bind(&exit_loop); | 
|  |  | 
|  | if (kPoisonHeapReferences) { | 
|  | __ UnpoisonHeapReference(expected); | 
|  | if (value == expected) { | 
|  | // Do not unpoison `value`, as it is the same register as | 
|  | // `expected`, which has just been unpoisoned. | 
|  | } else { | 
|  | __ UnpoisonHeapReference(value); | 
|  | } | 
|  | } | 
|  |  | 
|  | __ Bind(&done); | 
|  | __ b(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // The location (register) of the marked object reference. | 
|  | const Location ref_; | 
|  | // The register containing the object holding the marked object reference field. | 
|  | const Register obj_; | 
|  | // The location of the offset of the marked reference field within `obj_`. | 
|  | Location field_offset_; | 
|  |  | 
|  | const Register temp1_; | 
|  | const Register temp2_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathARM); | 
|  | }; | 
|  |  | 
|  | // Slow path generating a read barrier for a heap reference. | 
|  | class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction, | 
|  | Location out, | 
|  | Location ref, | 
|  | Location obj, | 
|  | uint32_t offset, | 
|  | Location index) | 
|  | : SlowPathCodeARM(instruction), | 
|  | out_(out), | 
|  | ref_(ref), | 
|  | obj_(obj), | 
|  | offset_(offset), | 
|  | index_(index) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | // If `obj` is equal to `out` or `ref`, it means the initial object | 
|  | // has been overwritten by (or after) the heap object reference load | 
|  | // to be instrumented, e.g.: | 
|  | // | 
|  | //   __ LoadFromOffset(kLoadWord, out, out, offset); | 
|  | //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); | 
|  | // | 
|  | // In that case, we have lost the information about the original | 
|  | // object, and the emitted read barrier cannot work properly. | 
|  | DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; | 
|  | DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; | 
|  | } | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | Register reg_out = out_.AsRegister<Register>(); | 
|  | DCHECK(locations->CanCall()); | 
|  | DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); | 
|  | DCHECK(instruction_->IsInstanceFieldGet() || | 
|  | instruction_->IsStaticFieldGet() || | 
|  | instruction_->IsArrayGet() || | 
|  | instruction_->IsInstanceOf() || | 
|  | instruction_->IsCheckCast() || | 
|  | (instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified()) | 
|  | << "Unexpected instruction in read barrier for heap reference slow path: " | 
|  | << instruction_->DebugName(); | 
|  | // The read barrier instrumentation of object ArrayGet | 
|  | // instructions does not support the HIntermediateAddress | 
|  | // instruction. | 
|  | DCHECK(!(instruction_->IsArrayGet() && | 
|  | instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | // We may have to change the index's value, but as `index_` is a | 
|  | // constant member (like other "inputs" of this slow path), | 
|  | // introduce a copy of it, `index`. | 
|  | Location index = index_; | 
|  | if (index_.IsValid()) { | 
|  | // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. | 
|  | if (instruction_->IsArrayGet()) { | 
|  | // Compute the actual memory offset and store it in `index`. | 
|  | Register index_reg = index_.AsRegister<Register>(); | 
|  | DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); | 
|  | if (codegen->IsCoreCalleeSaveRegister(index_reg)) { | 
|  | // We are about to change the value of `index_reg` (see the | 
|  | // calls to art::arm::Thumb2Assembler::Lsl and | 
|  | // art::arm::Thumb2Assembler::AddConstant below), but it has | 
|  | // not been saved by the previous call to | 
|  | // art::SlowPathCode::SaveLiveRegisters, as it is a | 
|  | // callee-save register -- | 
|  | // art::SlowPathCode::SaveLiveRegisters does not consider | 
|  | // callee-save registers, as it has been designed with the | 
|  | // assumption that callee-save registers are supposed to be | 
|  | // handled by the called function.  So, as a callee-save | 
|  | // register, `index_reg` _would_ eventually be saved onto | 
|  | // the stack, but it would be too late: we would have | 
|  | // changed its value earlier.  Therefore, we manually save | 
|  | // it here into another freely available register, | 
|  | // `free_reg`, chosen of course among the caller-save | 
|  | // registers (as a callee-save `free_reg` register would | 
|  | // exhibit the same problem). | 
|  | // | 
|  | // Note we could have requested a temporary register from | 
|  | // the register allocator instead; but we prefer not to, as | 
|  | // this is a slow path, and we know we can find a | 
|  | // caller-save register that is available. | 
|  | Register free_reg = FindAvailableCallerSaveRegister(codegen); | 
|  | __ Mov(free_reg, index_reg); | 
|  | index_reg = free_reg; | 
|  | index = Location::RegisterLocation(index_reg); | 
|  | } else { | 
|  | // The initial register stored in `index_` has already been | 
|  | // saved in the call to art::SlowPathCode::SaveLiveRegisters | 
|  | // (as it is not a callee-save register), so we can freely | 
|  | // use it. | 
|  | } | 
|  | // Shifting the index value contained in `index_reg` by the scale | 
|  | // factor (2) cannot overflow in practice, as the runtime is | 
|  | // unable to allocate object arrays with a size larger than | 
|  | // 2^26 - 1 (that is, 2^28 - 4 bytes). | 
|  | __ Lsl(index_reg, index_reg, TIMES_4); | 
|  | static_assert( | 
|  | sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
|  | "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
|  | __ AddConstant(index_reg, index_reg, offset_); | 
|  | } else { | 
|  | // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile | 
|  | // intrinsics, `index_` is not shifted by a scale factor of 2 | 
|  | // (as in the case of ArrayGet), as it is actually an offset | 
|  | // to an object field within an object. | 
|  | DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); | 
|  | DCHECK(instruction_->GetLocations()->Intrinsified()); | 
|  | DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || | 
|  | (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) | 
|  | << instruction_->AsInvoke()->GetIntrinsic(); | 
|  | DCHECK_EQ(offset_, 0U); | 
|  | DCHECK(index_.IsRegisterPair()); | 
|  | // UnsafeGet's offset location is a register pair, the low | 
|  | // part contains the correct offset. | 
|  | index = index_.ToLow(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We're moving two or three locations to locations that could | 
|  | // overlap, so we need a parallel move resolver. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | HParallelMove parallel_move(codegen->GetGraph()->GetArena()); | 
|  | parallel_move.AddMove(ref_, | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
|  | Primitive::kPrimNot, | 
|  | nullptr); | 
|  | parallel_move.AddMove(obj_, | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
|  | Primitive::kPrimNot, | 
|  | nullptr); | 
|  | if (index.IsValid()) { | 
|  | parallel_move.AddMove(index, | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(2)), | 
|  | Primitive::kPrimInt, | 
|  | nullptr); | 
|  | codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
|  | } else { | 
|  | codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
|  | __ LoadImmediate(calling_convention.GetRegisterAt(2), offset_); | 
|  | } | 
|  | arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes< | 
|  | kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); | 
|  | arm_codegen->Move32(out_, Location::RegisterLocation(R0)); | 
|  |  | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ b(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { | 
|  | size_t ref = static_cast<int>(ref_.AsRegister<Register>()); | 
|  | size_t obj = static_cast<int>(obj_.AsRegister<Register>()); | 
|  | for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { | 
|  | if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { | 
|  | return static_cast<Register>(i); | 
|  | } | 
|  | } | 
|  | // We shall never fail to find a free caller-save register, as | 
|  | // there are more than two core caller-save registers on ARM | 
|  | // (meaning it is possible to find one which is different from | 
|  | // `ref` and `obj`). | 
|  | DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); | 
|  | LOG(FATAL) << "Could not find a free caller-save register"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | const Location out_; | 
|  | const Location ref_; | 
|  | const Location obj_; | 
|  | const uint32_t offset_; | 
|  | // An additional location containing an index to an array. | 
|  | // Only used for HArrayGet and the UnsafeGetObject & | 
|  | // UnsafeGetObjectVolatile intrinsics. | 
|  | const Location index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM); | 
|  | }; | 
|  |  | 
|  | // Slow path generating a read barrier for a GC root. | 
|  | class ReadBarrierForRootSlowPathARM : public SlowPathCodeARM { | 
|  | public: | 
|  | ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root) | 
|  | : SlowPathCodeARM(instruction), out_(out), root_(root) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | } | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | Register reg_out = out_.AsRegister<Register>(); | 
|  | DCHECK(locations->CanCall()); | 
|  | DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); | 
|  | DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) | 
|  | << "Unexpected instruction in read barrier for GC root slow path: " | 
|  | << instruction_->DebugName(); | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); | 
|  | arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); | 
|  | arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, | 
|  | instruction_, | 
|  | instruction_->GetDexPc(), | 
|  | this); | 
|  | CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); | 
|  | arm_codegen->Move32(out_, Location::RegisterLocation(R0)); | 
|  |  | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ b(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; } | 
|  |  | 
|  | private: | 
|  | const Location out_; | 
|  | const Location root_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM); | 
|  | }; | 
|  |  | 
|  | #undef __ | 
|  | // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. | 
|  | #define __ down_cast<ArmAssembler*>(GetAssembler())->  // NOLINT | 
|  |  | 
|  | inline Condition ARMCondition(IfCondition cond) { | 
|  | switch (cond) { | 
|  | case kCondEQ: return EQ; | 
|  | case kCondNE: return NE; | 
|  | case kCondLT: return LT; | 
|  | case kCondLE: return LE; | 
|  | case kCondGT: return GT; | 
|  | case kCondGE: return GE; | 
|  | case kCondB:  return LO; | 
|  | case kCondBE: return LS; | 
|  | case kCondA:  return HI; | 
|  | case kCondAE: return HS; | 
|  | } | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | // Maps signed condition to unsigned condition. | 
|  | inline Condition ARMUnsignedCondition(IfCondition cond) { | 
|  | switch (cond) { | 
|  | case kCondEQ: return EQ; | 
|  | case kCondNE: return NE; | 
|  | // Signed to unsigned. | 
|  | case kCondLT: return LO; | 
|  | case kCondLE: return LS; | 
|  | case kCondGT: return HI; | 
|  | case kCondGE: return HS; | 
|  | // Unsigned remain unchanged. | 
|  | case kCondB:  return LO; | 
|  | case kCondBE: return LS; | 
|  | case kCondA:  return HI; | 
|  | case kCondAE: return HS; | 
|  | } | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) { | 
|  | // The ARM condition codes can express all the necessary branches, see the | 
|  | // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual. | 
|  | // There is no dex instruction or HIR that would need the missing conditions | 
|  | // "equal or unordered" or "not equal". | 
|  | switch (cond) { | 
|  | case kCondEQ: return EQ; | 
|  | case kCondNE: return NE /* unordered */; | 
|  | case kCondLT: return gt_bias ? CC : LT /* unordered */; | 
|  | case kCondLE: return gt_bias ? LS : LE /* unordered */; | 
|  | case kCondGT: return gt_bias ? HI /* unordered */ : GT; | 
|  | case kCondGE: return gt_bias ? CS /* unordered */ : GE; | 
|  | default: | 
|  | LOG(FATAL) << "UNREACHABLE"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const { | 
|  | stream << Register(reg); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const { | 
|  | stream << SRegister(reg); | 
|  | } | 
|  |  | 
|  | size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { | 
|  | __ StoreToOffset(kStoreWord, static_cast<Register>(reg_id), SP, stack_index); | 
|  | return kArmWordSize; | 
|  | } | 
|  |  | 
|  | size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { | 
|  | __ LoadFromOffset(kLoadWord, static_cast<Register>(reg_id), SP, stack_index); | 
|  | return kArmWordSize; | 
|  | } | 
|  |  | 
|  | size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { | 
|  | __ StoreSToOffset(static_cast<SRegister>(reg_id), SP, stack_index); | 
|  | return kArmWordSize; | 
|  | } | 
|  |  | 
|  | size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { | 
|  | __ LoadSFromOffset(static_cast<SRegister>(reg_id), SP, stack_index); | 
|  | return kArmWordSize; | 
|  | } | 
|  |  | 
|  | CodeGeneratorARM::CodeGeneratorARM(HGraph* graph, | 
|  | const ArmInstructionSetFeatures& isa_features, | 
|  | const CompilerOptions& compiler_options, | 
|  | OptimizingCompilerStats* stats) | 
|  | : CodeGenerator(graph, | 
|  | kNumberOfCoreRegisters, | 
|  | kNumberOfSRegisters, | 
|  | kNumberOfRegisterPairs, | 
|  | ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), | 
|  | arraysize(kCoreCalleeSaves)), | 
|  | ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves), | 
|  | arraysize(kFpuCalleeSaves)), | 
|  | compiler_options, | 
|  | stats), | 
|  | block_labels_(nullptr), | 
|  | location_builder_(graph, this), | 
|  | instruction_visitor_(graph, this), | 
|  | move_resolver_(graph->GetArena(), this), | 
|  | assembler_(graph->GetArena()), | 
|  | isa_features_(isa_features), | 
|  | uint32_literals_(std::less<uint32_t>(), | 
|  | graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | method_patches_(MethodReferenceComparator(), | 
|  | graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | call_patches_(MethodReferenceComparator(), | 
|  | graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | boot_image_string_patches_(StringReferenceValueComparator(), | 
|  | graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | boot_image_type_patches_(TypeReferenceValueComparator(), | 
|  | graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | boot_image_address_patches_(std::less<uint32_t>(), | 
|  | graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | jit_string_patches_(StringReferenceValueComparator(), | 
|  | graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
|  | jit_class_patches_(TypeReferenceValueComparator(), | 
|  | graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { | 
|  | // Always save the LR register to mimic Quick. | 
|  | AddAllocatedRegister(Location::RegisterLocation(LR)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::Finalize(CodeAllocator* allocator) { | 
|  | // Ensure that we fix up branches and literal loads and emit the literal pool. | 
|  | __ FinalizeCode(); | 
|  |  | 
|  | // Adjust native pc offsets in stack maps. | 
|  | for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) { | 
|  | uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset; | 
|  | uint32_t new_position = __ GetAdjustedPosition(old_position); | 
|  | stack_map_stream_.SetStackMapNativePcOffset(i, new_position); | 
|  | } | 
|  | // Adjust pc offsets for the disassembly information. | 
|  | if (disasm_info_ != nullptr) { | 
|  | GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval(); | 
|  | frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start); | 
|  | frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end); | 
|  | for (auto& it : *disasm_info_->GetInstructionIntervals()) { | 
|  | it.second.start = __ GetAdjustedPosition(it.second.start); | 
|  | it.second.end = __ GetAdjustedPosition(it.second.end); | 
|  | } | 
|  | for (auto& it : *disasm_info_->GetSlowPathIntervals()) { | 
|  | it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start); | 
|  | it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end); | 
|  | } | 
|  | } | 
|  |  | 
|  | CodeGenerator::Finalize(allocator); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::SetupBlockedRegisters() const { | 
|  | // Stack register, LR and PC are always reserved. | 
|  | blocked_core_registers_[SP] = true; | 
|  | blocked_core_registers_[LR] = true; | 
|  | blocked_core_registers_[PC] = true; | 
|  |  | 
|  | // Reserve thread register. | 
|  | blocked_core_registers_[TR] = true; | 
|  |  | 
|  | // Reserve temp register. | 
|  | blocked_core_registers_[IP] = true; | 
|  |  | 
|  | if (GetGraph()->IsDebuggable()) { | 
|  | // Stubs do not save callee-save floating point registers. If the graph | 
|  | // is debuggable, we need to deal with these registers differently. For | 
|  | // now, just block them. | 
|  | for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { | 
|  | blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen) | 
|  | : InstructionCodeGenerator(graph, codegen), | 
|  | assembler_(codegen->GetAssembler()), | 
|  | codegen_(codegen) {} | 
|  |  | 
|  | void CodeGeneratorARM::ComputeSpillMask() { | 
|  | core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; | 
|  | DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; | 
|  | // There is no easy instruction to restore just the PC on thumb2. We spill and | 
|  | // restore another arbitrary register. | 
|  | core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister); | 
|  | fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; | 
|  | // We use vpush and vpop for saving and restoring floating point registers, which take | 
|  | // a SRegister and the number of registers to save/restore after that SRegister. We | 
|  | // therefore update the `fpu_spill_mask_` to also contain those registers not allocated, | 
|  | // but in the range. | 
|  | if (fpu_spill_mask_ != 0) { | 
|  | uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_); | 
|  | uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_); | 
|  | for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) { | 
|  | fpu_spill_mask_ |= (1 << i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static dwarf::Reg DWARFReg(Register reg) { | 
|  | return dwarf::Reg::ArmCore(static_cast<int>(reg)); | 
|  | } | 
|  |  | 
|  | static dwarf::Reg DWARFReg(SRegister reg) { | 
|  | return dwarf::Reg::ArmFp(static_cast<int>(reg)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateFrameEntry() { | 
|  | bool skip_overflow_check = | 
|  | IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm); | 
|  | DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); | 
|  | __ Bind(&frame_entry_label_); | 
|  |  | 
|  | if (HasEmptyFrame()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!skip_overflow_check) { | 
|  | __ AddConstant(IP, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kArm))); | 
|  | __ LoadFromOffset(kLoadWord, IP, IP, 0); | 
|  | RecordPcInfo(nullptr, 0); | 
|  | } | 
|  |  | 
|  | __ PushList(core_spill_mask_); | 
|  | __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_)); | 
|  | __ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize); | 
|  | if (fpu_spill_mask_ != 0) { | 
|  | SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); | 
|  | __ vpushs(start_register, POPCOUNT(fpu_spill_mask_)); | 
|  | __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_)); | 
|  | __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize); | 
|  | } | 
|  |  | 
|  | if (GetGraph()->HasShouldDeoptimizeFlag()) { | 
|  | // Initialize should_deoptimize flag to 0. | 
|  | __ mov(IP, ShifterOperand(0)); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, -kShouldDeoptimizeFlagSize); | 
|  | } | 
|  |  | 
|  | int adjust = GetFrameSize() - FrameEntrySpillSize(); | 
|  | __ AddConstant(SP, -adjust); | 
|  | __ cfi().AdjustCFAOffset(adjust); | 
|  |  | 
|  | // Save the current method if we need it. Note that we do not | 
|  | // do this in HCurrentMethod, as the instruction might have been removed | 
|  | // in the SSA graph. | 
|  | if (RequiresCurrentMethod()) { | 
|  | __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateFrameExit() { | 
|  | if (HasEmptyFrame()) { | 
|  | __ bx(LR); | 
|  | return; | 
|  | } | 
|  | __ cfi().RememberState(); | 
|  | int adjust = GetFrameSize() - FrameEntrySpillSize(); | 
|  | __ AddConstant(SP, adjust); | 
|  | __ cfi().AdjustCFAOffset(-adjust); | 
|  | if (fpu_spill_mask_ != 0) { | 
|  | SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); | 
|  | __ vpops(start_register, POPCOUNT(fpu_spill_mask_)); | 
|  | __ cfi().AdjustCFAOffset(-static_cast<int>(kArmPointerSize) * POPCOUNT(fpu_spill_mask_)); | 
|  | __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_); | 
|  | } | 
|  | // Pop LR into PC to return. | 
|  | DCHECK_NE(core_spill_mask_ & (1 << LR), 0U); | 
|  | uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC; | 
|  | __ PopList(pop_mask); | 
|  | __ cfi().RestoreState(); | 
|  | __ cfi().DefCFAOffset(GetFrameSize()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::Bind(HBasicBlock* block) { | 
|  | Label* label = GetLabelOf(block); | 
|  | __ BindTrackedLabel(label); | 
|  | } | 
|  |  | 
|  | Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) { | 
|  | switch (type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimChar: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimNot: { | 
|  | uint32_t index = gp_index_++; | 
|  | uint32_t stack_index = stack_index_++; | 
|  | if (index < calling_convention.GetNumberOfRegisters()) { | 
|  | return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); | 
|  | } else { | 
|  | return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); | 
|  | } | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | uint32_t index = gp_index_; | 
|  | uint32_t stack_index = stack_index_; | 
|  | gp_index_ += 2; | 
|  | stack_index_ += 2; | 
|  | if (index + 1 < calling_convention.GetNumberOfRegisters()) { | 
|  | if (calling_convention.GetRegisterAt(index) == R1) { | 
|  | // Skip R1, and use R2_R3 instead. | 
|  | gp_index_++; | 
|  | index++; | 
|  | } | 
|  | } | 
|  | if (index + 1 < calling_convention.GetNumberOfRegisters()) { | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1, | 
|  | calling_convention.GetRegisterAt(index + 1)); | 
|  |  | 
|  | return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index), | 
|  | calling_convention.GetRegisterAt(index + 1)); | 
|  | } else { | 
|  | return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); | 
|  | } | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | uint32_t stack_index = stack_index_++; | 
|  | if (float_index_ % 2 == 0) { | 
|  | float_index_ = std::max(double_index_, float_index_); | 
|  | } | 
|  | if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) { | 
|  | return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++)); | 
|  | } else { | 
|  | return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); | 
|  | } | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | double_index_ = std::max(double_index_, RoundUp(float_index_, 2)); | 
|  | uint32_t stack_index = stack_index_; | 
|  | stack_index_ += 2; | 
|  | if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) { | 
|  | uint32_t index = double_index_; | 
|  | double_index_ += 2; | 
|  | Location result = Location::FpuRegisterPairLocation( | 
|  | calling_convention.GetFpuRegisterAt(index), | 
|  | calling_convention.GetFpuRegisterAt(index + 1)); | 
|  | DCHECK(ExpectedPairLayout(result)); | 
|  | return result; | 
|  | } else { | 
|  | return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); | 
|  | } | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimVoid: | 
|  | LOG(FATAL) << "Unexpected parameter type " << type; | 
|  | break; | 
|  | } | 
|  | return Location::NoLocation(); | 
|  | } | 
|  |  | 
|  | Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const { | 
|  | switch (type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimChar: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimNot: { | 
|  | return Location::RegisterLocation(R0); | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | return Location::FpuRegisterLocation(S0); | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | return Location::RegisterPairLocation(R0, R1); | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | return Location::FpuRegisterPairLocation(S0, S1); | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimVoid: | 
|  | return Location::NoLocation(); | 
|  | } | 
|  |  | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const { | 
|  | return Location::RegisterLocation(kMethodRegisterArgument); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::Move32(Location destination, Location source) { | 
|  | if (source.Equals(destination)) { | 
|  | return; | 
|  | } | 
|  | if (destination.IsRegister()) { | 
|  | if (source.IsRegister()) { | 
|  | __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>()); | 
|  | } else if (source.IsFpuRegister()) { | 
|  | __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>()); | 
|  | } else { | 
|  | __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex()); | 
|  | } | 
|  | } else if (destination.IsFpuRegister()) { | 
|  | if (source.IsRegister()) { | 
|  | __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>()); | 
|  | } else if (source.IsFpuRegister()) { | 
|  | __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>()); | 
|  | } else { | 
|  | __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex()); | 
|  | } | 
|  | } else { | 
|  | DCHECK(destination.IsStackSlot()) << destination; | 
|  | if (source.IsRegister()) { | 
|  | __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex()); | 
|  | } else if (source.IsFpuRegister()) { | 
|  | __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex()); | 
|  | } else { | 
|  | DCHECK(source.IsStackSlot()) << source; | 
|  | __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex()); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::Move64(Location destination, Location source) { | 
|  | if (source.Equals(destination)) { | 
|  | return; | 
|  | } | 
|  | if (destination.IsRegisterPair()) { | 
|  | if (source.IsRegisterPair()) { | 
|  | EmitParallelMoves( | 
|  | Location::RegisterLocation(source.AsRegisterPairHigh<Register>()), | 
|  | Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()), | 
|  | Primitive::kPrimInt, | 
|  | Location::RegisterLocation(source.AsRegisterPairLow<Register>()), | 
|  | Location::RegisterLocation(destination.AsRegisterPairLow<Register>()), | 
|  | Primitive::kPrimInt); | 
|  | } else if (source.IsFpuRegister()) { | 
|  | UNIMPLEMENTED(FATAL); | 
|  | } else if (source.IsFpuRegisterPair()) { | 
|  | __ vmovrrd(destination.AsRegisterPairLow<Register>(), | 
|  | destination.AsRegisterPairHigh<Register>(), | 
|  | FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())); | 
|  | } else { | 
|  | DCHECK(source.IsDoubleStackSlot()); | 
|  | DCHECK(ExpectedPairLayout(destination)); | 
|  | __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow<Register>(), | 
|  | SP, source.GetStackIndex()); | 
|  | } | 
|  | } else if (destination.IsFpuRegisterPair()) { | 
|  | if (source.IsDoubleStackSlot()) { | 
|  | __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), | 
|  | SP, | 
|  | source.GetStackIndex()); | 
|  | } else if (source.IsRegisterPair()) { | 
|  | __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), | 
|  | source.AsRegisterPairLow<Register>(), | 
|  | source.AsRegisterPairHigh<Register>()); | 
|  | } else { | 
|  | UNIMPLEMENTED(FATAL); | 
|  | } | 
|  | } else { | 
|  | DCHECK(destination.IsDoubleStackSlot()); | 
|  | if (source.IsRegisterPair()) { | 
|  | // No conflict possible, so just do the moves. | 
|  | if (source.AsRegisterPairLow<Register>() == R1) { | 
|  | DCHECK_EQ(source.AsRegisterPairHigh<Register>(), R2); | 
|  | __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex()); | 
|  | __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize)); | 
|  | } else { | 
|  | __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow<Register>(), | 
|  | SP, destination.GetStackIndex()); | 
|  | } | 
|  | } else if (source.IsFpuRegisterPair()) { | 
|  | __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()), | 
|  | SP, | 
|  | destination.GetStackIndex()); | 
|  | } else { | 
|  | DCHECK(source.IsDoubleStackSlot()); | 
|  | EmitParallelMoves( | 
|  | Location::StackSlot(source.GetStackIndex()), | 
|  | Location::StackSlot(destination.GetStackIndex()), | 
|  | Primitive::kPrimInt, | 
|  | Location::StackSlot(source.GetHighStackIndex(kArmWordSize)), | 
|  | Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)), | 
|  | Primitive::kPrimInt); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::MoveConstant(Location location, int32_t value) { | 
|  | DCHECK(location.IsRegister()); | 
|  | __ LoadImmediate(location.AsRegister<Register>(), value); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) { | 
|  | HParallelMove move(GetGraph()->GetArena()); | 
|  | move.AddMove(src, dst, dst_type, nullptr); | 
|  | GetMoveResolver()->EmitNativeCode(&move); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) { | 
|  | if (location.IsRegister()) { | 
|  | locations->AddTemp(location); | 
|  | } else if (location.IsRegisterPair()) { | 
|  | locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>())); | 
|  | locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>())); | 
|  | } else { | 
|  | UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint, | 
|  | HInstruction* instruction, | 
|  | uint32_t dex_pc, | 
|  | SlowPathCode* slow_path) { | 
|  | ValidateInvokeRuntime(entrypoint, instruction, slow_path); | 
|  | GenerateInvokeRuntime(GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value()); | 
|  | if (EntrypointRequiresStackMap(entrypoint)) { | 
|  | RecordPcInfo(instruction, dex_pc, slow_path); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, | 
|  | HInstruction* instruction, | 
|  | SlowPathCode* slow_path) { | 
|  | ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); | 
|  | GenerateInvokeRuntime(entry_point_offset); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateInvokeRuntime(int32_t entry_point_offset) { | 
|  | __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset); | 
|  | __ blx(LR); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) { | 
|  | DCHECK(!successor->IsExitBlock()); | 
|  |  | 
|  | HBasicBlock* block = got->GetBlock(); | 
|  | HInstruction* previous = got->GetPrevious(); | 
|  |  | 
|  | HLoopInformation* info = block->GetLoopInformation(); | 
|  | if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { | 
|  | codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck()); | 
|  | GenerateSuspendCheck(info->GetSuspendCheck(), successor); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { | 
|  | GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); | 
|  | } | 
|  | if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { | 
|  | __ b(codegen_->GetLabelOf(successor)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitGoto(HGoto* got) { | 
|  | got->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) { | 
|  | HandleGoto(got, got->GetSuccessor()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) { | 
|  | try_boundary->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) { | 
|  | HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); | 
|  | if (!successor->IsExitBlock()) { | 
|  | HandleGoto(try_boundary, successor); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitExit(HExit* exit) { | 
|  | exit->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateVcmp(HInstruction* instruction) { | 
|  | Primitive::Type type = instruction->InputAt(0)->GetType(); | 
|  | Location lhs_loc = instruction->GetLocations()->InAt(0); | 
|  | Location rhs_loc = instruction->GetLocations()->InAt(1); | 
|  | if (rhs_loc.IsConstant()) { | 
|  | // 0.0 is the only immediate that can be encoded directly in | 
|  | // a VCMP instruction. | 
|  | // | 
|  | // Both the JLS (section 15.20.1) and the JVMS (section 6.5) | 
|  | // specify that in a floating-point comparison, positive zero | 
|  | // and negative zero are considered equal, so we can use the | 
|  | // literal 0.0 for both cases here. | 
|  | // | 
|  | // Note however that some methods (Float.equal, Float.compare, | 
|  | // Float.compareTo, Double.equal, Double.compare, | 
|  | // Double.compareTo, Math.max, Math.min, StrictMath.max, | 
|  | // StrictMath.min) consider 0.0 to be (strictly) greater than | 
|  | // -0.0. So if we ever translate calls to these methods into a | 
|  | // HCompare instruction, we must handle the -0.0 case with | 
|  | // care here. | 
|  | DCHECK(rhs_loc.GetConstant()->IsArithmeticZero()); | 
|  | if (type == Primitive::kPrimFloat) { | 
|  | __ vcmpsz(lhs_loc.AsFpuRegister<SRegister>()); | 
|  | } else { | 
|  | DCHECK_EQ(type, Primitive::kPrimDouble); | 
|  | __ vcmpdz(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>())); | 
|  | } | 
|  | } else { | 
|  | if (type == Primitive::kPrimFloat) { | 
|  | __ vcmps(lhs_loc.AsFpuRegister<SRegister>(), rhs_loc.AsFpuRegister<SRegister>()); | 
|  | } else { | 
|  | DCHECK_EQ(type, Primitive::kPrimDouble); | 
|  | __ vcmpd(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(rhs_loc.AsFpuRegisterPairLow<SRegister>())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateFPJumps(HCondition* cond, | 
|  | Label* true_label, | 
|  | Label* false_label ATTRIBUTE_UNUSED) { | 
|  | __ vmstat();  // transfer FP status register to ARM APSR. | 
|  | __ b(true_label, ARMFPCondition(cond->GetCondition(), cond->IsGtBias())); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateLongComparesAndJumps(HCondition* cond, | 
|  | Label* true_label, | 
|  | Label* false_label) { | 
|  | LocationSummary* locations = cond->GetLocations(); | 
|  | Location left = locations->InAt(0); | 
|  | Location right = locations->InAt(1); | 
|  | IfCondition if_cond = cond->GetCondition(); | 
|  |  | 
|  | Register left_high = left.AsRegisterPairHigh<Register>(); | 
|  | Register left_low = left.AsRegisterPairLow<Register>(); | 
|  | IfCondition true_high_cond = if_cond; | 
|  | IfCondition false_high_cond = cond->GetOppositeCondition(); | 
|  | Condition final_condition = ARMUnsignedCondition(if_cond);  // unsigned on lower part | 
|  |  | 
|  | // Set the conditions for the test, remembering that == needs to be | 
|  | // decided using the low words. | 
|  | // TODO: consider avoiding jumps with temporary and CMP low+SBC high | 
|  | switch (if_cond) { | 
|  | case kCondEQ: | 
|  | case kCondNE: | 
|  | // Nothing to do. | 
|  | break; | 
|  | case kCondLT: | 
|  | false_high_cond = kCondGT; | 
|  | break; | 
|  | case kCondLE: | 
|  | true_high_cond = kCondLT; | 
|  | break; | 
|  | case kCondGT: | 
|  | false_high_cond = kCondLT; | 
|  | break; | 
|  | case kCondGE: | 
|  | true_high_cond = kCondGT; | 
|  | break; | 
|  | case kCondB: | 
|  | false_high_cond = kCondA; | 
|  | break; | 
|  | case kCondBE: | 
|  | true_high_cond = kCondB; | 
|  | break; | 
|  | case kCondA: | 
|  | false_high_cond = kCondB; | 
|  | break; | 
|  | case kCondAE: | 
|  | true_high_cond = kCondA; | 
|  | break; | 
|  | } | 
|  | if (right.IsConstant()) { | 
|  | int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); | 
|  | int32_t val_low = Low32Bits(value); | 
|  | int32_t val_high = High32Bits(value); | 
|  |  | 
|  | __ CmpConstant(left_high, val_high); | 
|  | if (if_cond == kCondNE) { | 
|  | __ b(true_label, ARMCondition(true_high_cond)); | 
|  | } else if (if_cond == kCondEQ) { | 
|  | __ b(false_label, ARMCondition(false_high_cond)); | 
|  | } else { | 
|  | __ b(true_label, ARMCondition(true_high_cond)); | 
|  | __ b(false_label, ARMCondition(false_high_cond)); | 
|  | } | 
|  | // Must be equal high, so compare the lows. | 
|  | __ CmpConstant(left_low, val_low); | 
|  | } else { | 
|  | Register right_high = right.AsRegisterPairHigh<Register>(); | 
|  | Register right_low = right.AsRegisterPairLow<Register>(); | 
|  |  | 
|  | __ cmp(left_high, ShifterOperand(right_high)); | 
|  | if (if_cond == kCondNE) { | 
|  | __ b(true_label, ARMCondition(true_high_cond)); | 
|  | } else if (if_cond == kCondEQ) { | 
|  | __ b(false_label, ARMCondition(false_high_cond)); | 
|  | } else { | 
|  | __ b(true_label, ARMCondition(true_high_cond)); | 
|  | __ b(false_label, ARMCondition(false_high_cond)); | 
|  | } | 
|  | // Must be equal high, so compare the lows. | 
|  | __ cmp(left_low, ShifterOperand(right_low)); | 
|  | } | 
|  | // The last comparison might be unsigned. | 
|  | // TODO: optimize cases where this is always true/false | 
|  | __ b(true_label, final_condition); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition, | 
|  | Label* true_target_in, | 
|  | Label* false_target_in) { | 
|  | // Generated branching requires both targets to be explicit. If either of the | 
|  | // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. | 
|  | Label fallthrough_target; | 
|  | Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; | 
|  | Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; | 
|  |  | 
|  | Primitive::Type type = condition->InputAt(0)->GetType(); | 
|  | switch (type) { | 
|  | case Primitive::kPrimLong: | 
|  | GenerateLongComparesAndJumps(condition, true_target, false_target); | 
|  | break; | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: | 
|  | GenerateVcmp(condition); | 
|  | GenerateFPJumps(condition, true_target, false_target); | 
|  | break; | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected compare type " << type; | 
|  | } | 
|  |  | 
|  | if (false_target != &fallthrough_target) { | 
|  | __ b(false_target); | 
|  | } | 
|  |  | 
|  | if (fallthrough_target.IsLinked()) { | 
|  | __ Bind(&fallthrough_target); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction, | 
|  | size_t condition_input_index, | 
|  | Label* true_target, | 
|  | Label* false_target) { | 
|  | HInstruction* cond = instruction->InputAt(condition_input_index); | 
|  |  | 
|  | if (true_target == nullptr && false_target == nullptr) { | 
|  | // Nothing to do. The code always falls through. | 
|  | return; | 
|  | } else if (cond->IsIntConstant()) { | 
|  | // Constant condition, statically compared against "true" (integer value 1). | 
|  | if (cond->AsIntConstant()->IsTrue()) { | 
|  | if (true_target != nullptr) { | 
|  | __ b(true_target); | 
|  | } | 
|  | } else { | 
|  | DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); | 
|  | if (false_target != nullptr) { | 
|  | __ b(false_target); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The following code generates these patterns: | 
|  | //  (1) true_target == nullptr && false_target != nullptr | 
|  | //        - opposite condition true => branch to false_target | 
|  | //  (2) true_target != nullptr && false_target == nullptr | 
|  | //        - condition true => branch to true_target | 
|  | //  (3) true_target != nullptr && false_target != nullptr | 
|  | //        - condition true => branch to true_target | 
|  | //        - branch to false_target | 
|  | if (IsBooleanValueOrMaterializedCondition(cond)) { | 
|  | // Condition has been materialized, compare the output to 0. | 
|  | Location cond_val = instruction->GetLocations()->InAt(condition_input_index); | 
|  | DCHECK(cond_val.IsRegister()); | 
|  | if (true_target == nullptr) { | 
|  | __ CompareAndBranchIfZero(cond_val.AsRegister<Register>(), false_target); | 
|  | } else { | 
|  | __ CompareAndBranchIfNonZero(cond_val.AsRegister<Register>(), true_target); | 
|  | } | 
|  | } else { | 
|  | // Condition has not been materialized. Use its inputs as the comparison and | 
|  | // its condition as the branch condition. | 
|  | HCondition* condition = cond->AsCondition(); | 
|  |  | 
|  | // If this is a long or FP comparison that has been folded into | 
|  | // the HCondition, generate the comparison directly. | 
|  | Primitive::Type type = condition->InputAt(0)->GetType(); | 
|  | if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { | 
|  | GenerateCompareTestAndBranch(condition, true_target, false_target); | 
|  | return; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = cond->GetLocations(); | 
|  | DCHECK(locations->InAt(0).IsRegister()); | 
|  | Register left = locations->InAt(0).AsRegister<Register>(); | 
|  | Location right = locations->InAt(1); | 
|  | if (right.IsRegister()) { | 
|  | __ cmp(left, ShifterOperand(right.AsRegister<Register>())); | 
|  | } else { | 
|  | DCHECK(right.IsConstant()); | 
|  | __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant())); | 
|  | } | 
|  | if (true_target == nullptr) { | 
|  | __ b(false_target, ARMCondition(condition->GetOppositeCondition())); | 
|  | } else { | 
|  | __ b(true_target, ARMCondition(condition->GetCondition())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If neither branch falls through (case 3), the conditional branch to `true_target` | 
|  | // was already emitted (case 2) and we need to emit a jump to `false_target`. | 
|  | if (true_target != nullptr && false_target != nullptr) { | 
|  | __ b(false_target); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitIf(HIf* if_instr) { | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); | 
|  | if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) { | 
|  | HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); | 
|  | HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); | 
|  | Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? | 
|  | nullptr : codegen_->GetLabelOf(true_successor); | 
|  | Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? | 
|  | nullptr : codegen_->GetLabelOf(false_successor); | 
|  | GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) { | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) | 
|  | LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) { | 
|  | SlowPathCodeARM* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM>(deoptimize); | 
|  | GenerateTestAndBranch(deoptimize, | 
|  | /* condition_input_index */ 0, | 
|  | slow_path->GetEntryLabel(), | 
|  | /* false_target */ nullptr); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) | 
|  | LocationSummary(flag, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { | 
|  | __ LoadFromOffset(kLoadWord, | 
|  | flag->GetLocations()->Out().AsRegister<Register>(), | 
|  | SP, | 
|  | codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitSelect(HSelect* select) { | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); | 
|  | if (Primitive::IsFloatingPointType(select->GetType())) { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | } | 
|  | if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { | 
|  | locations->SetInAt(2, Location::RequiresRegister()); | 
|  | } | 
|  | locations->SetOut(Location::SameAsFirstInput()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) { | 
|  | LocationSummary* locations = select->GetLocations(); | 
|  | Label false_target; | 
|  | GenerateTestAndBranch(select, | 
|  | /* condition_input_index */ 2, | 
|  | /* true_target */ nullptr, | 
|  | &false_target); | 
|  | codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); | 
|  | __ Bind(&false_target); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) { | 
|  | new (GetGraph()->GetArena()) LocationSummary(info); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) { | 
|  | // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateNop() { | 
|  | __ nop(); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::HandleCondition(HCondition* cond) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); | 
|  | // Handle the long/FP comparisons made in instruction simplification. | 
|  | switch (cond->InputAt(0)->GetType()) { | 
|  | case Primitive::kPrimLong: | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); | 
|  | if (!cond->IsEmittedAtUseSite()) { | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1))); | 
|  | if (!cond->IsEmittedAtUseSite()) { | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); | 
|  | if (!cond->IsEmittedAtUseSite()) { | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) { | 
|  | if (cond->IsEmittedAtUseSite()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = cond->GetLocations(); | 
|  | Location left = locations->InAt(0); | 
|  | Location right = locations->InAt(1); | 
|  | Register out = locations->Out().AsRegister<Register>(); | 
|  | Label true_label, false_label; | 
|  |  | 
|  | switch (cond->InputAt(0)->GetType()) { | 
|  | default: { | 
|  | // Integer case. | 
|  | if (right.IsRegister()) { | 
|  | __ cmp(left.AsRegister<Register>(), ShifterOperand(right.AsRegister<Register>())); | 
|  | } else { | 
|  | DCHECK(right.IsConstant()); | 
|  | __ CmpConstant(left.AsRegister<Register>(), | 
|  | CodeGenerator::GetInt32ValueOf(right.GetConstant())); | 
|  | } | 
|  | __ it(ARMCondition(cond->GetCondition()), kItElse); | 
|  | __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(1), | 
|  | ARMCondition(cond->GetCondition())); | 
|  | __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(0), | 
|  | ARMCondition(cond->GetOppositeCondition())); | 
|  | return; | 
|  | } | 
|  | case Primitive::kPrimLong: | 
|  | GenerateLongComparesAndJumps(cond, &true_label, &false_label); | 
|  | break; | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: | 
|  | GenerateVcmp(cond); | 
|  | GenerateFPJumps(cond, &true_label, &false_label); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Convert the jumps into the result. | 
|  | Label done_label; | 
|  |  | 
|  | // False case: result = 0. | 
|  | __ Bind(&false_label); | 
|  | __ LoadImmediate(out, 0); | 
|  | __ b(&done_label); | 
|  |  | 
|  | // True case: result = 1. | 
|  | __ Bind(&true_label); | 
|  | __ LoadImmediate(out, 1); | 
|  | __ Bind(&done_label); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitEqual(HEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitLessThan(HLessThan* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitBelow(HBelow* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitAbove(HAbove* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) { | 
|  | HandleCondition(comp); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
|  | memory_barrier->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
|  | codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) { | 
|  | ret->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { | 
|  | codegen_->GenerateFrameExit(); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitReturn(HReturn* ret) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType())); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) { | 
|  | codegen_->GenerateFrameExit(); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
|  | // The trampoline uses the same calling convention as dex calling conventions, | 
|  | // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain | 
|  | // the method_idx. | 
|  | HandleInvoke(invoke); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
|  | codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
|  | // Explicit clinit checks triggered by static invokes must have been pruned by | 
|  | // art::PrepareForRegisterAllocation. | 
|  | DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
|  |  | 
|  | IntrinsicLocationsBuilderARM intrinsic(codegen_); | 
|  | if (intrinsic.TryDispatch(invoke)) { | 
|  | if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) { | 
|  | invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | HandleInvoke(invoke); | 
|  |  | 
|  | // For PC-relative dex cache the invoke has an extra input, the PC-relative address base. | 
|  | if (invoke->HasPcRelativeDexCache()) { | 
|  | invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) { | 
|  | if (invoke->GetLocations()->Intrinsified()) { | 
|  | IntrinsicCodeGeneratorARM intrinsic(codegen); | 
|  | intrinsic.Dispatch(invoke); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
|  | // Explicit clinit checks triggered by static invokes must have been pruned by | 
|  | // art::PrepareForRegisterAllocation. | 
|  | DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
|  |  | 
|  | if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = invoke->GetLocations(); | 
|  | codegen_->GenerateStaticOrDirectCall( | 
|  | invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); | 
|  | codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) { | 
|  | InvokeDexCallingConventionVisitorARM calling_convention_visitor; | 
|  | CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
|  | IntrinsicLocationsBuilderARM intrinsic(codegen_); | 
|  | if (intrinsic.TryDispatch(invoke)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | HandleInvoke(invoke); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
|  | if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); | 
|  | DCHECK(!codegen_->IsLeafMethod()); | 
|  | codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) { | 
|  | HandleInvoke(invoke); | 
|  | // Add the hidden argument. | 
|  | invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) { | 
|  | // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. | 
|  | LocationSummary* locations = invoke->GetLocations(); | 
|  | Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
|  | Register hidden_reg = locations->GetTemp(1).AsRegister<Register>(); | 
|  | Location receiver = locations->InAt(0); | 
|  | uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
|  |  | 
|  | // Set the hidden argument. This is safe to do this here, as R12 | 
|  | // won't be modified thereafter, before the `blx` (call) instruction. | 
|  | DCHECK_EQ(R12, hidden_reg); | 
|  | __ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex()); | 
|  |  | 
|  | if (receiver.IsStackSlot()) { | 
|  | __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex()); | 
|  | // /* HeapReference<Class> */ temp = temp->klass_ | 
|  | __ LoadFromOffset(kLoadWord, temp, temp, class_offset); | 
|  | } else { | 
|  | // /* HeapReference<Class> */ temp = receiver->klass_ | 
|  | __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset); | 
|  | } | 
|  | codegen_->MaybeRecordImplicitNullCheck(invoke); | 
|  | // Instead of simply (possibly) unpoisoning `temp` here, we should | 
|  | // emit a read barrier for the previous class reference load. | 
|  | // However this is not required in practice, as this is an | 
|  | // intermediate/temporary reference and because the current | 
|  | // concurrent copying collector keeps the from-space memory | 
|  | // intact/accessible until the end of the marking phase (the | 
|  | // concurrent copying collector may not in the future). | 
|  | __ MaybeUnpoisonHeapReference(temp); | 
|  | __ LoadFromOffset(kLoadWord, temp, temp, | 
|  | mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); | 
|  | uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( | 
|  | invoke->GetImtIndex(), kArmPointerSize)); | 
|  | // temp = temp->GetImtEntryAt(method_offset); | 
|  | __ LoadFromOffset(kLoadWord, temp, temp, method_offset); | 
|  | uint32_t entry_point = | 
|  | ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value(); | 
|  | // LR = temp->GetEntryPoint(); | 
|  | __ LoadFromOffset(kLoadWord, LR, temp, entry_point); | 
|  | // LR(); | 
|  | __ blx(LR); | 
|  | DCHECK(!codegen_->IsLeafMethod()); | 
|  | codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitNeg(HNeg* neg) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); | 
|  | switch (neg->GetResultType()) { | 
|  | case Primitive::kPrimInt: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) { | 
|  | LocationSummary* locations = neg->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location in = locations->InAt(0); | 
|  | switch (neg->GetResultType()) { | 
|  | case Primitive::kPrimInt: | 
|  | DCHECK(in.IsRegister()); | 
|  | __ rsb(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(0)); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimLong: | 
|  | DCHECK(in.IsRegisterPair()); | 
|  | // out.lo = 0 - in.lo (and update the carry/borrow (C) flag) | 
|  | __ rsbs(out.AsRegisterPairLow<Register>(), | 
|  | in.AsRegisterPairLow<Register>(), | 
|  | ShifterOperand(0)); | 
|  | // We cannot emit an RSC (Reverse Subtract with Carry) | 
|  | // instruction here, as it does not exist in the Thumb-2 | 
|  | // instruction set.  We use the following approach | 
|  | // using SBC and SUB instead. | 
|  | // | 
|  | // out.hi = -C | 
|  | __ sbc(out.AsRegisterPairHigh<Register>(), | 
|  | out.AsRegisterPairHigh<Register>(), | 
|  | ShifterOperand(out.AsRegisterPairHigh<Register>())); | 
|  | // out.hi = out.hi - in.hi | 
|  | __ sub(out.AsRegisterPairHigh<Register>(), | 
|  | out.AsRegisterPairHigh<Register>(), | 
|  | ShifterOperand(in.AsRegisterPairHigh<Register>())); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | DCHECK(in.IsFpuRegister()); | 
|  | __ vnegs(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>()); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimDouble: | 
|  | DCHECK(in.IsFpuRegisterPair()); | 
|  | __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(in.AsFpuRegisterPairLow<SRegister>())); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) { | 
|  | Primitive::Type result_type = conversion->GetResultType(); | 
|  | Primitive::Type input_type = conversion->GetInputType(); | 
|  | DCHECK_NE(result_type, input_type); | 
|  |  | 
|  | // The float-to-long, double-to-long and long-to-float type conversions | 
|  | // rely on a call to the runtime. | 
|  | LocationSummary::CallKind call_kind = | 
|  | (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) | 
|  | && result_type == Primitive::kPrimLong) | 
|  | || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat)) | 
|  | ? LocationSummary::kCallOnMainOnly | 
|  | : LocationSummary::kNoCall; | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); | 
|  |  | 
|  | // The Java language does not allow treating boolean as an integral type but | 
|  | // our bit representation makes it safe. | 
|  |  | 
|  | switch (result_type) { | 
|  | case Primitive::kPrimByte: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimLong: | 
|  | // Type conversion from long to byte is a result of code transformations. | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: | 
|  | // Processing a Dex `int-to-byte' instruction. | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimShort: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimLong: | 
|  | // Type conversion from long to short is a result of code transformations. | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: | 
|  | // Processing a Dex `int-to-short' instruction. | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimInt: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimLong: | 
|  | // Processing a Dex `long-to-int' instruction. | 
|  | locations->SetInAt(0, Location::Any()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | // Processing a Dex `float-to-int' instruction. | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | locations->AddTemp(Location::RequiresFpuRegister()); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimDouble: | 
|  | // Processing a Dex `double-to-int' instruction. | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | locations->AddTemp(Location::RequiresFpuRegister()); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimLong: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: | 
|  | // Processing a Dex `int-to-long' instruction. | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | // Processing a Dex `float-to-long' instruction. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::FpuRegisterLocation( | 
|  | calling_convention.GetFpuRegisterAt(0))); | 
|  | locations->SetOut(Location::RegisterPairLocation(R0, R1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | // Processing a Dex `double-to-long' instruction. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::FpuRegisterPairLocation( | 
|  | calling_convention.GetFpuRegisterAt(0), | 
|  | calling_convention.GetFpuRegisterAt(1))); | 
|  | locations->SetOut(Location::RegisterPairLocation(R0, R1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimChar: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimLong: | 
|  | // Type conversion from long to char is a result of code transformations. | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | // Processing a Dex `int-to-char' instruction. | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: | 
|  | // Processing a Dex `int-to-float' instruction. | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister()); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | // Processing a Dex `long-to-float' instruction. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::RegisterPairLocation( | 
|  | calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); | 
|  | locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: | 
|  | // Processing a Dex `double-to-float' instruction. | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | }; | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimDouble: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: | 
|  | // Processing a Dex `int-to-double' instruction. | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister()); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimLong: | 
|  | // Processing a Dex `long-to-double' instruction. | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister()); | 
|  | locations->AddTemp(Location::RequiresFpuRegister()); | 
|  | locations->AddTemp(Location::RequiresFpuRegister()); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | // Processing a Dex `float-to-double' instruction. | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | }; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) { | 
|  | LocationSummary* locations = conversion->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location in = locations->InAt(0); | 
|  | Primitive::Type result_type = conversion->GetResultType(); | 
|  | Primitive::Type input_type = conversion->GetInputType(); | 
|  | DCHECK_NE(result_type, input_type); | 
|  | switch (result_type) { | 
|  | case Primitive::kPrimByte: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimLong: | 
|  | // Type conversion from long to byte is a result of code transformations. | 
|  | __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 8); | 
|  | break; | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: | 
|  | // Processing a Dex `int-to-byte' instruction. | 
|  | __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 8); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimShort: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimLong: | 
|  | // Type conversion from long to short is a result of code transformations. | 
|  | __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16); | 
|  | break; | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: | 
|  | // Processing a Dex `int-to-short' instruction. | 
|  | __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimInt: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimLong: | 
|  | // Processing a Dex `long-to-int' instruction. | 
|  | DCHECK(out.IsRegister()); | 
|  | if (in.IsRegisterPair()) { | 
|  | __ Mov(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); | 
|  | } else if (in.IsDoubleStackSlot()) { | 
|  | __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), SP, in.GetStackIndex()); | 
|  | } else { | 
|  | DCHECK(in.IsConstant()); | 
|  | DCHECK(in.GetConstant()->IsLongConstant()); | 
|  | int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); | 
|  | __ LoadImmediate(out.AsRegister<Register>(), static_cast<int32_t>(value)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | // Processing a Dex `float-to-int' instruction. | 
|  | SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>(); | 
|  | __ vcvtis(temp, in.AsFpuRegister<SRegister>()); | 
|  | __ vmovrs(out.AsRegister<Register>(), temp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | // Processing a Dex `double-to-int' instruction. | 
|  | SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>(); | 
|  | __ vcvtid(temp_s, FromLowSToD(in.AsFpuRegisterPairLow<SRegister>())); | 
|  | __ vmovrs(out.AsRegister<Register>(), temp_s); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimLong: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: | 
|  | // Processing a Dex `int-to-long' instruction. | 
|  | DCHECK(out.IsRegisterPair()); | 
|  | DCHECK(in.IsRegister()); | 
|  | __ Mov(out.AsRegisterPairLow<Register>(), in.AsRegister<Register>()); | 
|  | // Sign extension. | 
|  | __ Asr(out.AsRegisterPairHigh<Register>(), | 
|  | out.AsRegisterPairLow<Register>(), | 
|  | 31); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | // Processing a Dex `float-to-long' instruction. | 
|  | codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickF2l, int64_t, float>(); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimDouble: | 
|  | // Processing a Dex `double-to-long' instruction. | 
|  | codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickD2l, int64_t, double>(); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimChar: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimLong: | 
|  | // Type conversion from long to char is a result of code transformations. | 
|  | __ ubfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16); | 
|  | break; | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | // Processing a Dex `int-to-char' instruction. | 
|  | __ ubfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: { | 
|  | // Processing a Dex `int-to-float' instruction. | 
|  | __ vmovsr(out.AsFpuRegister<SRegister>(), in.AsRegister<Register>()); | 
|  | __ vcvtsi(out.AsFpuRegister<SRegister>(), out.AsFpuRegister<SRegister>()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: | 
|  | // Processing a Dex `long-to-float' instruction. | 
|  | codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickL2f, float, int64_t>(); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimDouble: | 
|  | // Processing a Dex `double-to-float' instruction. | 
|  | __ vcvtsd(out.AsFpuRegister<SRegister>(), | 
|  | FromLowSToD(in.AsFpuRegisterPairLow<SRegister>())); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | }; | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimDouble: | 
|  | switch (input_type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | // Boolean input is a result of code transformations. | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimChar: { | 
|  | // Processing a Dex `int-to-double' instruction. | 
|  | __ vmovsr(out.AsFpuRegisterPairLow<SRegister>(), in.AsRegister<Register>()); | 
|  | __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), | 
|  | out.AsFpuRegisterPairLow<SRegister>()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | // Processing a Dex `long-to-double' instruction. | 
|  | Register low = in.AsRegisterPairLow<Register>(); | 
|  | Register high = in.AsRegisterPairHigh<Register>(); | 
|  | SRegister out_s = out.AsFpuRegisterPairLow<SRegister>(); | 
|  | DRegister out_d = FromLowSToD(out_s); | 
|  | SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>(); | 
|  | DRegister temp_d = FromLowSToD(temp_s); | 
|  | SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow<SRegister>(); | 
|  | DRegister constant_d = FromLowSToD(constant_s); | 
|  |  | 
|  | // temp_d = int-to-double(high) | 
|  | __ vmovsr(temp_s, high); | 
|  | __ vcvtdi(temp_d, temp_s); | 
|  | // constant_d = k2Pow32EncodingForDouble | 
|  | __ LoadDImmediate(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble)); | 
|  | // out_d = unsigned-to-double(low) | 
|  | __ vmovsr(out_s, low); | 
|  | __ vcvtdu(out_d, out_s); | 
|  | // out_d += temp_d * constant_d | 
|  | __ vmlad(out_d, temp_d, constant_d); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | // Processing a Dex `float-to-double' instruction. | 
|  | __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), | 
|  | in.AsFpuRegister<SRegister>()); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | }; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitAdd(HAdd* add) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); | 
|  | switch (add->GetResultType()) { | 
|  | case Primitive::kPrimInt: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD)); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected add type " << add->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) { | 
|  | LocationSummary* locations = add->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location first = locations->InAt(0); | 
|  | Location second = locations->InAt(1); | 
|  | switch (add->GetResultType()) { | 
|  | case Primitive::kPrimInt: | 
|  | if (second.IsRegister()) { | 
|  | __ add(out.AsRegister<Register>(), | 
|  | first.AsRegister<Register>(), | 
|  | ShifterOperand(second.AsRegister<Register>())); | 
|  | } else { | 
|  | __ AddConstant(out.AsRegister<Register>(), | 
|  | first.AsRegister<Register>(), | 
|  | second.GetConstant()->AsIntConstant()->GetValue()); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | if (second.IsConstant()) { | 
|  | uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant())); | 
|  | GenerateAddLongConst(out, first, value); | 
|  | } else { | 
|  | DCHECK(second.IsRegisterPair()); | 
|  | __ adds(out.AsRegisterPairLow<Register>(), | 
|  | first.AsRegisterPairLow<Register>(), | 
|  | ShifterOperand(second.AsRegisterPairLow<Register>())); | 
|  | __ adc(out.AsRegisterPairHigh<Register>(), | 
|  | first.AsRegisterPairHigh<Register>(), | 
|  | ShifterOperand(second.AsRegisterPairHigh<Register>())); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | __ vadds(out.AsFpuRegister<SRegister>(), | 
|  | first.AsFpuRegister<SRegister>(), | 
|  | second.AsFpuRegister<SRegister>()); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimDouble: | 
|  | __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(second.AsFpuRegisterPairLow<SRegister>())); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected add type " << add->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitSub(HSub* sub) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); | 
|  | switch (sub->GetResultType()) { | 
|  | case Primitive::kPrimInt: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1))); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB)); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitSub(HSub* sub) { | 
|  | LocationSummary* locations = sub->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location first = locations->InAt(0); | 
|  | Location second = locations->InAt(1); | 
|  | switch (sub->GetResultType()) { | 
|  | case Primitive::kPrimInt: { | 
|  | if (second.IsRegister()) { | 
|  | __ sub(out.AsRegister<Register>(), | 
|  | first.AsRegister<Register>(), | 
|  | ShifterOperand(second.AsRegister<Register>())); | 
|  | } else { | 
|  | __ AddConstant(out.AsRegister<Register>(), | 
|  | first.AsRegister<Register>(), | 
|  | -second.GetConstant()->AsIntConstant()->GetValue()); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | if (second.IsConstant()) { | 
|  | uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant())); | 
|  | GenerateAddLongConst(out, first, -value); | 
|  | } else { | 
|  | DCHECK(second.IsRegisterPair()); | 
|  | __ subs(out.AsRegisterPairLow<Register>(), | 
|  | first.AsRegisterPairLow<Register>(), | 
|  | ShifterOperand(second.AsRegisterPairLow<Register>())); | 
|  | __ sbc(out.AsRegisterPairHigh<Register>(), | 
|  | first.AsRegisterPairHigh<Register>(), | 
|  | ShifterOperand(second.AsRegisterPairHigh<Register>())); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | __ vsubs(out.AsFpuRegister<SRegister>(), | 
|  | first.AsFpuRegister<SRegister>(), | 
|  | second.AsFpuRegister<SRegister>()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | __ vsubd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(second.AsFpuRegisterPairLow<SRegister>())); | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitMul(HMul* mul) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); | 
|  | switch (mul->GetResultType()) { | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimLong:  { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitMul(HMul* mul) { | 
|  | LocationSummary* locations = mul->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location first = locations->InAt(0); | 
|  | Location second = locations->InAt(1); | 
|  | switch (mul->GetResultType()) { | 
|  | case Primitive::kPrimInt: { | 
|  | __ mul(out.AsRegister<Register>(), | 
|  | first.AsRegister<Register>(), | 
|  | second.AsRegister<Register>()); | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | Register out_hi = out.AsRegisterPairHigh<Register>(); | 
|  | Register out_lo = out.AsRegisterPairLow<Register>(); | 
|  | Register in1_hi = first.AsRegisterPairHigh<Register>(); | 
|  | Register in1_lo = first.AsRegisterPairLow<Register>(); | 
|  | Register in2_hi = second.AsRegisterPairHigh<Register>(); | 
|  | Register in2_lo = second.AsRegisterPairLow<Register>(); | 
|  |  | 
|  | // Extra checks to protect caused by the existence of R1_R2. | 
|  | // The algorithm is wrong if out.hi is either in1.lo or in2.lo: | 
|  | // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2); | 
|  | DCHECK_NE(out_hi, in1_lo); | 
|  | DCHECK_NE(out_hi, in2_lo); | 
|  |  | 
|  | // input: in1 - 64 bits, in2 - 64 bits | 
|  | // output: out | 
|  | // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo | 
|  | // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] | 
|  | // parts: out.lo = (in1.lo * in2.lo)[31:0] | 
|  |  | 
|  | // IP <- in1.lo * in2.hi | 
|  | __ mul(IP, in1_lo, in2_hi); | 
|  | // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo | 
|  | __ mla(out_hi, in1_hi, in2_lo, IP); | 
|  | // out.lo <- (in1.lo * in2.lo)[31:0]; | 
|  | __ umull(out_lo, IP, in1_lo, in2_lo); | 
|  | // out.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] | 
|  | __ add(out_hi, out_hi, ShifterOperand(IP)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | __ vmuls(out.AsFpuRegister<SRegister>(), | 
|  | first.AsFpuRegister<SRegister>(), | 
|  | second.AsFpuRegister<SRegister>()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | __ vmuld(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(second.AsFpuRegisterPairLow<SRegister>())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::DivRemOneOrMinusOne(HBinaryOperation* instruction) { | 
|  | DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
|  | DCHECK(instruction->GetResultType() == Primitive::kPrimInt); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location second = locations->InAt(1); | 
|  | DCHECK(second.IsConstant()); | 
|  |  | 
|  | Register out = locations->Out().AsRegister<Register>(); | 
|  | Register dividend = locations->InAt(0).AsRegister<Register>(); | 
|  | int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); | 
|  | DCHECK(imm == 1 || imm == -1); | 
|  |  | 
|  | if (instruction->IsRem()) { | 
|  | __ LoadImmediate(out, 0); | 
|  | } else { | 
|  | if (imm == 1) { | 
|  | __ Mov(out, dividend); | 
|  | } else { | 
|  | __ rsb(out, dividend, ShifterOperand(0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::DivRemByPowerOfTwo(HBinaryOperation* instruction) { | 
|  | DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
|  | DCHECK(instruction->GetResultType() == Primitive::kPrimInt); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location second = locations->InAt(1); | 
|  | DCHECK(second.IsConstant()); | 
|  |  | 
|  | Register out = locations->Out().AsRegister<Register>(); | 
|  | Register dividend = locations->InAt(0).AsRegister<Register>(); | 
|  | Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
|  | int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); | 
|  | uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); | 
|  | int ctz_imm = CTZ(abs_imm); | 
|  |  | 
|  | if (ctz_imm == 1) { | 
|  | __ Lsr(temp, dividend, 32 - ctz_imm); | 
|  | } else { | 
|  | __ Asr(temp, dividend, 31); | 
|  | __ Lsr(temp, temp, 32 - ctz_imm); | 
|  | } | 
|  | __ add(out, temp, ShifterOperand(dividend)); | 
|  |  | 
|  | if (instruction->IsDiv()) { | 
|  | __ Asr(out, out, ctz_imm); | 
|  | if (imm < 0) { | 
|  | __ rsb(out, out, ShifterOperand(0)); | 
|  | } | 
|  | } else { | 
|  | __ ubfx(out, out, 0, ctz_imm); | 
|  | __ sub(out, out, ShifterOperand(temp)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { | 
|  | DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
|  | DCHECK(instruction->GetResultType() == Primitive::kPrimInt); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location second = locations->InAt(1); | 
|  | DCHECK(second.IsConstant()); | 
|  |  | 
|  | Register out = locations->Out().AsRegister<Register>(); | 
|  | Register dividend = locations->InAt(0).AsRegister<Register>(); | 
|  | Register temp1 = locations->GetTemp(0).AsRegister<Register>(); | 
|  | Register temp2 = locations->GetTemp(1).AsRegister<Register>(); | 
|  | int64_t imm = second.GetConstant()->AsIntConstant()->GetValue(); | 
|  |  | 
|  | int64_t magic; | 
|  | int shift; | 
|  | CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); | 
|  |  | 
|  | __ LoadImmediate(temp1, magic); | 
|  | __ smull(temp2, temp1, dividend, temp1); | 
|  |  | 
|  | if (imm > 0 && magic < 0) { | 
|  | __ add(temp1, temp1, ShifterOperand(dividend)); | 
|  | } else if (imm < 0 && magic > 0) { | 
|  | __ sub(temp1, temp1, ShifterOperand(dividend)); | 
|  | } | 
|  |  | 
|  | if (shift != 0) { | 
|  | __ Asr(temp1, temp1, shift); | 
|  | } | 
|  |  | 
|  | if (instruction->IsDiv()) { | 
|  | __ sub(out, temp1, ShifterOperand(temp1, ASR, 31)); | 
|  | } else { | 
|  | __ sub(temp1, temp1, ShifterOperand(temp1, ASR, 31)); | 
|  | // TODO: Strength reduction for mls. | 
|  | __ LoadImmediate(temp2, imm); | 
|  | __ mls(out, temp1, temp2, dividend); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateDivRemConstantIntegral(HBinaryOperation* instruction) { | 
|  | DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
|  | DCHECK(instruction->GetResultType() == Primitive::kPrimInt); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location second = locations->InAt(1); | 
|  | DCHECK(second.IsConstant()); | 
|  |  | 
|  | int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); | 
|  | if (imm == 0) { | 
|  | // Do not generate anything. DivZeroCheck would prevent any code to be executed. | 
|  | } else if (imm == 1 || imm == -1) { | 
|  | DivRemOneOrMinusOne(instruction); | 
|  | } else if (IsPowerOfTwo(AbsOrMin(imm))) { | 
|  | DivRemByPowerOfTwo(instruction); | 
|  | } else { | 
|  | DCHECK(imm <= -2 || imm >= 2); | 
|  | GenerateDivRemWithAnyConstant(instruction); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitDiv(HDiv* div) { | 
|  | LocationSummary::CallKind call_kind = LocationSummary::kNoCall; | 
|  | if (div->GetResultType() == Primitive::kPrimLong) { | 
|  | // pLdiv runtime call. | 
|  | call_kind = LocationSummary::kCallOnMainOnly; | 
|  | } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) { | 
|  | // sdiv will be replaced by other instruction sequence. | 
|  | } else if (div->GetResultType() == Primitive::kPrimInt && | 
|  | !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { | 
|  | // pIdivmod runtime call. | 
|  | call_kind = LocationSummary::kCallOnMainOnly; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); | 
|  |  | 
|  | switch (div->GetResultType()) { | 
|  | case Primitive::kPrimInt: { | 
|  | if (div->InputAt(1)->IsConstant()) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant())); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | int32_t value = div->InputAt(1)->AsIntConstant()->GetValue(); | 
|  | if (value == 1 || value == 0 || value == -1) { | 
|  | // No temp register required. | 
|  | } else { | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | if (!IsPowerOfTwo(AbsOrMin(value))) { | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  | } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } else { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
|  | locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); | 
|  | // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but | 
|  | //       we only need the former. | 
|  | locations->SetOut(Location::RegisterLocation(R0)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::RegisterPairLocation( | 
|  | calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); | 
|  | locations->SetInAt(1, Location::RegisterPairLocation( | 
|  | calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); | 
|  | locations->SetOut(Location::RegisterPairLocation(R0, R1)); | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected div type " << div->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) { | 
|  | LocationSummary* locations = div->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location first = locations->InAt(0); | 
|  | Location second = locations->InAt(1); | 
|  |  | 
|  | switch (div->GetResultType()) { | 
|  | case Primitive::kPrimInt: { | 
|  | if (second.IsConstant()) { | 
|  | GenerateDivRemConstantIntegral(div); | 
|  | } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { | 
|  | __ sdiv(out.AsRegister<Register>(), | 
|  | first.AsRegister<Register>(), | 
|  | second.AsRegister<Register>()); | 
|  | } else { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>()); | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>()); | 
|  | DCHECK_EQ(R0, out.AsRegister<Register>()); | 
|  |  | 
|  | codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>()); | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>()); | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>()); | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>()); | 
|  | DCHECK_EQ(R0, out.AsRegisterPairLow<Register>()); | 
|  | DCHECK_EQ(R1, out.AsRegisterPairHigh<Register>()); | 
|  |  | 
|  | codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | __ vdivs(out.AsFpuRegister<SRegister>(), | 
|  | first.AsFpuRegister<SRegister>(), | 
|  | second.AsFpuRegister<SRegister>()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | __ vdivd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(second.AsFpuRegisterPairLow<SRegister>())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected div type " << div->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitRem(HRem* rem) { | 
|  | Primitive::Type type = rem->GetResultType(); | 
|  |  | 
|  | // Most remainders are implemented in the runtime. | 
|  | LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly; | 
|  | if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) { | 
|  | // sdiv will be replaced by other instruction sequence. | 
|  | call_kind = LocationSummary::kNoCall; | 
|  | } else if ((rem->GetResultType() == Primitive::kPrimInt) | 
|  | && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { | 
|  | // Have hardware divide instruction for int, do it with three instructions. | 
|  | call_kind = LocationSummary::kNoCall; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); | 
|  |  | 
|  | switch (type) { | 
|  | case Primitive::kPrimInt: { | 
|  | if (rem->InputAt(1)->IsConstant()) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant())); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | int32_t value = rem->InputAt(1)->AsIntConstant()->GetValue(); | 
|  | if (value == 1 || value == 0 || value == -1) { | 
|  | // No temp register required. | 
|  | } else { | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | if (!IsPowerOfTwo(AbsOrMin(value))) { | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  | } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } else { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
|  | locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); | 
|  | // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but | 
|  | //       we only need the latter. | 
|  | locations->SetOut(Location::RegisterLocation(R1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::RegisterPairLocation( | 
|  | calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); | 
|  | locations->SetInAt(1, Location::RegisterPairLocation( | 
|  | calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); | 
|  | // The runtime helper puts the output in R2,R3. | 
|  | locations->SetOut(Location::RegisterPairLocation(R2, R3)); | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimFloat: { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); | 
|  | locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); | 
|  | locations->SetOut(Location::FpuRegisterLocation(S0)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::FpuRegisterPairLocation( | 
|  | calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); | 
|  | locations->SetInAt(1, Location::FpuRegisterPairLocation( | 
|  | calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3))); | 
|  | locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected rem type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitRem(HRem* rem) { | 
|  | LocationSummary* locations = rem->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location first = locations->InAt(0); | 
|  | Location second = locations->InAt(1); | 
|  |  | 
|  | Primitive::Type type = rem->GetResultType(); | 
|  | switch (type) { | 
|  | case Primitive::kPrimInt: { | 
|  | if (second.IsConstant()) { | 
|  | GenerateDivRemConstantIntegral(rem); | 
|  | } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { | 
|  | Register reg1 = first.AsRegister<Register>(); | 
|  | Register reg2 = second.AsRegister<Register>(); | 
|  | Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
|  |  | 
|  | // temp = reg1 / reg2  (integer division) | 
|  | // dest = reg1 - temp * reg2 | 
|  | __ sdiv(temp, reg1, reg2); | 
|  | __ mls(out.AsRegister<Register>(), temp, reg2, reg1); | 
|  | } else { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>()); | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>()); | 
|  | DCHECK_EQ(R1, out.AsRegister<Register>()); | 
|  |  | 
|  | codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickFmodf, float, float, float>(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickFmod, double, double, double>(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected rem type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
|  | LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); | 
|  | locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
|  | SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location value = locations->InAt(0); | 
|  |  | 
|  | switch (instruction->GetType()) { | 
|  | case Primitive::kPrimBoolean: | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimChar: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimInt: { | 
|  | if (value.IsRegister()) { | 
|  | __ CompareAndBranchIfZero(value.AsRegister<Register>(), slow_path->GetEntryLabel()); | 
|  | } else { | 
|  | DCHECK(value.IsConstant()) << value; | 
|  | if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { | 
|  | __ b(slow_path->GetEntryLabel()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | if (value.IsRegisterPair()) { | 
|  | __ orrs(IP, | 
|  | value.AsRegisterPairLow<Register>(), | 
|  | ShifterOperand(value.AsRegisterPairHigh<Register>())); | 
|  | __ b(slow_path->GetEntryLabel(), EQ); | 
|  | } else { | 
|  | DCHECK(value.IsConstant()) << value; | 
|  | if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { | 
|  | __ b(slow_path->GetEntryLabel()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::HandleIntegerRotate(LocationSummary* locations) { | 
|  | Register in = locations->InAt(0).AsRegister<Register>(); | 
|  | Location rhs = locations->InAt(1); | 
|  | Register out = locations->Out().AsRegister<Register>(); | 
|  |  | 
|  | if (rhs.IsConstant()) { | 
|  | // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31], | 
|  | // so map all rotations to a +ve. equivalent in that range. | 
|  | // (e.g. left *or* right by -2 bits == 30 bits in the same direction.) | 
|  | uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F; | 
|  | if (rot) { | 
|  | // Rotate, mapping left rotations to right equivalents if necessary. | 
|  | // (e.g. left by 2 bits == right by 30.) | 
|  | __ Ror(out, in, rot); | 
|  | } else if (out != in) { | 
|  | __ Mov(out, in); | 
|  | } | 
|  | } else { | 
|  | __ Ror(out, in, rhs.AsRegister<Register>()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer | 
|  | // rotates by swapping input regs (effectively rotating by the first 32-bits of | 
|  | // a larger rotation) or flipping direction (thus treating larger right/left | 
|  | // rotations as sub-word sized rotations in the other direction) as appropriate. | 
|  | void InstructionCodeGeneratorARM::HandleLongRotate(LocationSummary* locations) { | 
|  | Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>(); | 
|  | Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
|  | Location rhs = locations->InAt(1); | 
|  | Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>(); | 
|  | Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>(); | 
|  |  | 
|  | if (rhs.IsConstant()) { | 
|  | uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant()); | 
|  | // Map all rotations to +ve. equivalents on the interval [0,63]. | 
|  | rot &= kMaxLongShiftDistance; | 
|  | // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate | 
|  | // logic below to a simple pair of binary orr. | 
|  | // (e.g. 34 bits == in_reg swap + 2 bits right.) | 
|  | if (rot >= kArmBitsPerWord) { | 
|  | rot -= kArmBitsPerWord; | 
|  | std::swap(in_reg_hi, in_reg_lo); | 
|  | } | 
|  | // Rotate, or mov to out for zero or word size rotations. | 
|  | if (rot != 0u) { | 
|  | __ Lsr(out_reg_hi, in_reg_hi, rot); | 
|  | __ orr(out_reg_hi, out_reg_hi, ShifterOperand(in_reg_lo, arm::LSL, kArmBitsPerWord - rot)); | 
|  | __ Lsr(out_reg_lo, in_reg_lo, rot); | 
|  | __ orr(out_reg_lo, out_reg_lo, ShifterOperand(in_reg_hi, arm::LSL, kArmBitsPerWord - rot)); | 
|  | } else { | 
|  | __ Mov(out_reg_lo, in_reg_lo); | 
|  | __ Mov(out_reg_hi, in_reg_hi); | 
|  | } | 
|  | } else { | 
|  | Register shift_right = locations->GetTemp(0).AsRegister<Register>(); | 
|  | Register shift_left = locations->GetTemp(1).AsRegister<Register>(); | 
|  | Label end; | 
|  | Label shift_by_32_plus_shift_right; | 
|  |  | 
|  | __ and_(shift_right, rhs.AsRegister<Register>(), ShifterOperand(0x1F)); | 
|  | __ Lsrs(shift_left, rhs.AsRegister<Register>(), 6); | 
|  | __ rsb(shift_left, shift_right, ShifterOperand(kArmBitsPerWord), AL, kCcKeep); | 
|  | __ b(&shift_by_32_plus_shift_right, CC); | 
|  |  | 
|  | // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right). | 
|  | // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right). | 
|  | __ Lsl(out_reg_hi, in_reg_hi, shift_left); | 
|  | __ Lsr(out_reg_lo, in_reg_lo, shift_right); | 
|  | __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo)); | 
|  | __ Lsl(out_reg_lo, in_reg_lo, shift_left); | 
|  | __ Lsr(shift_left, in_reg_hi, shift_right); | 
|  | __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_left)); | 
|  | __ b(&end); | 
|  |  | 
|  | __ Bind(&shift_by_32_plus_shift_right);  // Shift by 32+shift_right. | 
|  | // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left). | 
|  | // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left). | 
|  | __ Lsr(out_reg_hi, in_reg_hi, shift_right); | 
|  | __ Lsl(out_reg_lo, in_reg_lo, shift_left); | 
|  | __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo)); | 
|  | __ Lsr(out_reg_lo, in_reg_lo, shift_right); | 
|  | __ Lsl(shift_right, in_reg_hi, shift_left); | 
|  | __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_right)); | 
|  |  | 
|  | __ Bind(&end); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitRor(HRor* ror) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall); | 
|  | switch (ror->GetResultType()) { | 
|  | case Primitive::kPrimInt: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1))); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | if (ror->InputAt(1)->IsConstant()) { | 
|  | locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant())); | 
|  | } else { | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitRor(HRor* ror) { | 
|  | LocationSummary* locations = ror->GetLocations(); | 
|  | Primitive::Type type = ror->GetResultType(); | 
|  | switch (type) { | 
|  | case Primitive::kPrimInt: { | 
|  | HandleIntegerRotate(locations); | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | HandleLongRotate(locations); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected operation type " << type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::HandleShift(HBinaryOperation* op) { | 
|  | DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); | 
|  |  | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); | 
|  |  | 
|  | switch (op->GetResultType()) { | 
|  | case Primitive::kPrimInt: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | if (op->InputAt(1)->IsConstant()) { | 
|  | locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } else { | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | // Make the output overlap, as it will be used to hold the masked | 
|  | // second input. | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | if (op->InputAt(1)->IsConstant()) { | 
|  | locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); | 
|  | // For simplicity, use kOutputOverlap even though we only require that low registers | 
|  | // don't clash with high registers which the register allocator currently guarantees. | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
|  | } else { | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) { | 
|  | DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); | 
|  |  | 
|  | LocationSummary* locations = op->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location first = locations->InAt(0); | 
|  | Location second = locations->InAt(1); | 
|  |  | 
|  | Primitive::Type type = op->GetResultType(); | 
|  | switch (type) { | 
|  | case Primitive::kPrimInt: { | 
|  | Register out_reg = out.AsRegister<Register>(); | 
|  | Register first_reg = first.AsRegister<Register>(); | 
|  | if (second.IsRegister()) { | 
|  | Register second_reg = second.AsRegister<Register>(); | 
|  | // ARM doesn't mask the shift count so we need to do it ourselves. | 
|  | __ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftDistance)); | 
|  | if (op->IsShl()) { | 
|  | __ Lsl(out_reg, first_reg, out_reg); | 
|  | } else if (op->IsShr()) { | 
|  | __ Asr(out_reg, first_reg, out_reg); | 
|  | } else { | 
|  | __ Lsr(out_reg, first_reg, out_reg); | 
|  | } | 
|  | } else { | 
|  | int32_t cst = second.GetConstant()->AsIntConstant()->GetValue(); | 
|  | uint32_t shift_value = cst & kMaxIntShiftDistance; | 
|  | if (shift_value == 0) {  // ARM does not support shifting with 0 immediate. | 
|  | __ Mov(out_reg, first_reg); | 
|  | } else if (op->IsShl()) { | 
|  | __ Lsl(out_reg, first_reg, shift_value); | 
|  | } else if (op->IsShr()) { | 
|  | __ Asr(out_reg, first_reg, shift_value); | 
|  | } else { | 
|  | __ Lsr(out_reg, first_reg, shift_value); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | Register o_h = out.AsRegisterPairHigh<Register>(); | 
|  | Register o_l = out.AsRegisterPairLow<Register>(); | 
|  |  | 
|  | Register high = first.AsRegisterPairHigh<Register>(); | 
|  | Register low = first.AsRegisterPairLow<Register>(); | 
|  |  | 
|  | if (second.IsRegister()) { | 
|  | Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
|  |  | 
|  | Register second_reg = second.AsRegister<Register>(); | 
|  |  | 
|  | if (op->IsShl()) { | 
|  | __ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftDistance)); | 
|  | // Shift the high part | 
|  | __ Lsl(o_h, high, o_l); | 
|  | // Shift the low part and `or` what overflew on the high part | 
|  | __ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord)); | 
|  | __ Lsr(temp, low, temp); | 
|  | __ orr(o_h, o_h, ShifterOperand(temp)); | 
|  | // If the shift is > 32 bits, override the high part | 
|  | __ subs(temp, o_l, ShifterOperand(kArmBitsPerWord)); | 
|  | __ it(PL); | 
|  | __ Lsl(o_h, low, temp, PL); | 
|  | // Shift the low part | 
|  | __ Lsl(o_l, low, o_l); | 
|  | } else if (op->IsShr()) { | 
|  | __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance)); | 
|  | // Shift the low part | 
|  | __ Lsr(o_l, low, o_h); | 
|  | // Shift the high part and `or` what underflew on the low part | 
|  | __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord)); | 
|  | __ Lsl(temp, high, temp); | 
|  | __ orr(o_l, o_l, ShifterOperand(temp)); | 
|  | // If the shift is > 32 bits, override the low part | 
|  | __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord)); | 
|  | __ it(PL); | 
|  | __ Asr(o_l, high, temp, PL); | 
|  | // Shift the high part | 
|  | __ Asr(o_h, high, o_h); | 
|  | } else { | 
|  | __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance)); | 
|  | // same as Shr except we use `Lsr`s and not `Asr`s | 
|  | __ Lsr(o_l, low, o_h); | 
|  | __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord)); | 
|  | __ Lsl(temp, high, temp); | 
|  | __ orr(o_l, o_l, ShifterOperand(temp)); | 
|  | __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord)); | 
|  | __ it(PL); | 
|  | __ Lsr(o_l, high, temp, PL); | 
|  | __ Lsr(o_h, high, o_h); | 
|  | } | 
|  | } else { | 
|  | // Register allocator doesn't create partial overlap. | 
|  | DCHECK_NE(o_l, high); | 
|  | DCHECK_NE(o_h, low); | 
|  | int32_t cst = second.GetConstant()->AsIntConstant()->GetValue(); | 
|  | uint32_t shift_value = cst & kMaxLongShiftDistance; | 
|  | if (shift_value > 32) { | 
|  | if (op->IsShl()) { | 
|  | __ Lsl(o_h, low, shift_value - 32); | 
|  | __ LoadImmediate(o_l, 0); | 
|  | } else if (op->IsShr()) { | 
|  | __ Asr(o_l, high, shift_value - 32); | 
|  | __ Asr(o_h, high, 31); | 
|  | } else { | 
|  | __ Lsr(o_l, high, shift_value - 32); | 
|  | __ LoadImmediate(o_h, 0); | 
|  | } | 
|  | } else if (shift_value == 32) { | 
|  | if (op->IsShl()) { | 
|  | __ mov(o_h, ShifterOperand(low)); | 
|  | __ LoadImmediate(o_l, 0); | 
|  | } else if (op->IsShr()) { | 
|  | __ mov(o_l, ShifterOperand(high)); | 
|  | __ Asr(o_h, high, 31); | 
|  | } else { | 
|  | __ mov(o_l, ShifterOperand(high)); | 
|  | __ LoadImmediate(o_h, 0); | 
|  | } | 
|  | } else if (shift_value == 1) { | 
|  | if (op->IsShl()) { | 
|  | __ Lsls(o_l, low, 1); | 
|  | __ adc(o_h, high, ShifterOperand(high)); | 
|  | } else if (op->IsShr()) { | 
|  | __ Asrs(o_h, high, 1); | 
|  | __ Rrx(o_l, low); | 
|  | } else { | 
|  | __ Lsrs(o_h, high, 1); | 
|  | __ Rrx(o_l, low); | 
|  | } | 
|  | } else { | 
|  | DCHECK(2 <= shift_value && shift_value < 32) << shift_value; | 
|  | if (op->IsShl()) { | 
|  | __ Lsl(o_h, high, shift_value); | 
|  | __ orr(o_h, o_h, ShifterOperand(low, LSR, 32 - shift_value)); | 
|  | __ Lsl(o_l, low, shift_value); | 
|  | } else if (op->IsShr()) { | 
|  | __ Lsr(o_l, low, shift_value); | 
|  | __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value)); | 
|  | __ Asr(o_h, high, shift_value); | 
|  | } else { | 
|  | __ Lsr(o_l, low, shift_value); | 
|  | __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value)); | 
|  | __ Lsr(o_h, high, shift_value); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected operation type " << type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitShl(HShl* shl) { | 
|  | HandleShift(shl); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitShl(HShl* shl) { | 
|  | HandleShift(shl); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitShr(HShr* shr) { | 
|  | HandleShift(shr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitShr(HShr* shr) { | 
|  | HandleShift(shr); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitUShr(HUShr* ushr) { | 
|  | HandleShift(ushr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) { | 
|  | HandleShift(ushr); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); | 
|  | if (instruction->IsStringAlloc()) { | 
|  | locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); | 
|  | } else { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
|  | locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); | 
|  | } | 
|  | locations->SetOut(Location::RegisterLocation(R0)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) { | 
|  | // Note: if heap poisoning is enabled, the entry point takes cares | 
|  | // of poisoning the reference. | 
|  | if (instruction->IsStringAlloc()) { | 
|  | // String is allocated through StringFactory. Call NewEmptyString entry point. | 
|  | Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>(); | 
|  | MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize); | 
|  | __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString)); | 
|  | __ LoadFromOffset(kLoadWord, LR, temp, code_offset.Int32Value()); | 
|  | __ blx(LR); | 
|  | codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); | 
|  | } else { | 
|  | codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
|  | locations->SetOut(Location::RegisterLocation(R0)); | 
|  | locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); | 
|  | locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex().index_); | 
|  | // Note: if heap poisoning is enabled, the entry point takes cares | 
|  | // of poisoning the reference. | 
|  | codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>(); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); | 
|  | if (location.IsStackSlot()) { | 
|  | location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
|  | } else if (location.IsDoubleStackSlot()) { | 
|  | location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
|  | } | 
|  | locations->SetOut(location); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitParameterValue( | 
|  | HParameterValue* instruction ATTRIBUTE_UNUSED) { | 
|  | // Nothing to do, the parameter is already at its location. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitCurrentMethod(HCurrentMethod* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) { | 
|  | // Nothing to do, the method is already at its location. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitNot(HNot* not_) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitNot(HNot* not_) { | 
|  | LocationSummary* locations = not_->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location in = locations->InAt(0); | 
|  | switch (not_->GetResultType()) { | 
|  | case Primitive::kPrimInt: | 
|  | __ mvn(out.AsRegister<Register>(), ShifterOperand(in.AsRegister<Register>())); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimLong: | 
|  | __ mvn(out.AsRegisterPairLow<Register>(), | 
|  | ShifterOperand(in.AsRegisterPairLow<Register>())); | 
|  | __ mvn(out.AsRegisterPairHigh<Register>(), | 
|  | ShifterOperand(in.AsRegisterPairHigh<Register>())); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) { | 
|  | LocationSummary* locations = bool_not->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location in = locations->InAt(0); | 
|  | __ eor(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(1)); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitCompare(HCompare* compare) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); | 
|  | switch (compare->InputAt(0)->GetType()) { | 
|  | case Primitive::kPrimBoolean: | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimChar: | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimLong: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | // Output overlaps because it is written before doing the low comparison. | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1))); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) { | 
|  | LocationSummary* locations = compare->GetLocations(); | 
|  | Register out = locations->Out().AsRegister<Register>(); | 
|  | Location left = locations->InAt(0); | 
|  | Location right = locations->InAt(1); | 
|  |  | 
|  | Label less, greater, done; | 
|  | Primitive::Type type = compare->InputAt(0)->GetType(); | 
|  | Condition less_cond; | 
|  | switch (type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimChar: | 
|  | case Primitive::kPrimInt: { | 
|  | __ LoadImmediate(out, 0); | 
|  | __ cmp(left.AsRegister<Register>(), | 
|  | ShifterOperand(right.AsRegister<Register>()));  // Signed compare. | 
|  | less_cond = LT; | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimLong: { | 
|  | __ cmp(left.AsRegisterPairHigh<Register>(), | 
|  | ShifterOperand(right.AsRegisterPairHigh<Register>()));  // Signed compare. | 
|  | __ b(&less, LT); | 
|  | __ b(&greater, GT); | 
|  | // Do LoadImmediate before the last `cmp`, as LoadImmediate might affect the status flags. | 
|  | __ LoadImmediate(out, 0); | 
|  | __ cmp(left.AsRegisterPairLow<Register>(), | 
|  | ShifterOperand(right.AsRegisterPairLow<Register>()));  // Unsigned compare. | 
|  | less_cond = LO; | 
|  | break; | 
|  | } | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: { | 
|  | __ LoadImmediate(out, 0); | 
|  | GenerateVcmp(compare); | 
|  | __ vmstat();  // transfer FP status register to ARM APSR. | 
|  | less_cond = ARMFPCondition(kCondLT, compare->IsGtBias()); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected compare type " << type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | __ b(&done, EQ); | 
|  | __ b(&less, less_cond); | 
|  |  | 
|  | __ Bind(&greater); | 
|  | __ LoadImmediate(out, 1); | 
|  | __ b(&done); | 
|  |  | 
|  | __ Bind(&less); | 
|  | __ LoadImmediate(out, -1); | 
|  |  | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitPhi(HPhi* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { | 
|  | locations->SetInAt(i, Location::Any()); | 
|  | } | 
|  | locations->SetOut(Location::Any()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) { | 
|  | // TODO (ported from quick): revisit ARM barrier kinds. | 
|  | DmbOptions flavor = DmbOptions::ISH;  // Quiet C++ warnings. | 
|  | switch (kind) { | 
|  | case MemBarrierKind::kAnyStore: | 
|  | case MemBarrierKind::kLoadAny: | 
|  | case MemBarrierKind::kAnyAny: { | 
|  | flavor = DmbOptions::ISH; | 
|  | break; | 
|  | } | 
|  | case MemBarrierKind::kStoreStore: { | 
|  | flavor = DmbOptions::ISHST; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected memory barrier " << kind; | 
|  | } | 
|  | __ dmb(flavor); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr, | 
|  | uint32_t offset, | 
|  | Register out_lo, | 
|  | Register out_hi) { | 
|  | if (offset != 0) { | 
|  | // Ensure `out_lo` is different from `addr`, so that loading | 
|  | // `offset` into `out_lo` does not clutter `addr`. | 
|  | DCHECK_NE(out_lo, addr); | 
|  | __ LoadImmediate(out_lo, offset); | 
|  | __ add(IP, addr, ShifterOperand(out_lo)); | 
|  | addr = IP; | 
|  | } | 
|  | __ ldrexd(out_lo, out_hi, addr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr, | 
|  | uint32_t offset, | 
|  | Register value_lo, | 
|  | Register value_hi, | 
|  | Register temp1, | 
|  | Register temp2, | 
|  | HInstruction* instruction) { | 
|  | Label fail; | 
|  | if (offset != 0) { | 
|  | __ LoadImmediate(temp1, offset); | 
|  | __ add(IP, addr, ShifterOperand(temp1)); | 
|  | addr = IP; | 
|  | } | 
|  | __ Bind(&fail); | 
|  | // We need a load followed by store. (The address used in a STREX instruction must | 
|  | // be the same as the address in the most recently executed LDREX instruction.) | 
|  | __ ldrexd(temp1, temp2, addr); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | __ strexd(temp1, value_lo, value_hi, addr); | 
|  | __ CompareAndBranchIfNonZero(temp1, &fail); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { | 
|  | DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); | 
|  |  | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  |  | 
|  | Primitive::Type field_type = field_info.GetFieldType(); | 
|  | if (Primitive::IsFloatingPointType(field_type)) { | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble; | 
|  | bool generate_volatile = field_info.IsVolatile() | 
|  | && is_wide | 
|  | && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); | 
|  | bool needs_write_barrier = | 
|  | CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); | 
|  | // Temporary registers for the write barrier. | 
|  | // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark. | 
|  | if (needs_write_barrier) { | 
|  | locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too. | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } else if (generate_volatile) { | 
|  | // ARM encoding have some additional constraints for ldrexd/strexd: | 
|  | // - registers need to be consecutive | 
|  | // - the first register should be even but not R14. | 
|  | // We don't test for ARM yet, and the assertion makes sure that we | 
|  | // revisit this if we ever enable ARM encoding. | 
|  | DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); | 
|  |  | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | if (field_type == Primitive::kPrimDouble) { | 
|  | // For doubles we need two more registers to copy the value. | 
|  | locations->AddTemp(Location::RegisterLocation(R2)); | 
|  | locations->AddTemp(Location::RegisterLocation(R3)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction, | 
|  | const FieldInfo& field_info, | 
|  | bool value_can_be_null) { | 
|  | DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Register base = locations->InAt(0).AsRegister<Register>(); | 
|  | Location value = locations->InAt(1); | 
|  |  | 
|  | bool is_volatile = field_info.IsVolatile(); | 
|  | bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); | 
|  | Primitive::Type field_type = field_info.GetFieldType(); | 
|  | uint32_t offset = field_info.GetFieldOffset().Uint32Value(); | 
|  | bool needs_write_barrier = | 
|  | CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); | 
|  |  | 
|  | if (is_volatile) { | 
|  | codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); | 
|  | } | 
|  |  | 
|  | switch (field_type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | case Primitive::kPrimByte: { | 
|  | __ StoreToOffset(kStoreByte, value.AsRegister<Register>(), base, offset); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimChar: { | 
|  | __ StoreToOffset(kStoreHalfword, value.AsRegister<Register>(), base, offset); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimInt: | 
|  | case Primitive::kPrimNot: { | 
|  | if (kPoisonHeapReferences && needs_write_barrier) { | 
|  | // Note that in the case where `value` is a null reference, | 
|  | // we do not enter this block, as a null reference does not | 
|  | // need poisoning. | 
|  | DCHECK_EQ(field_type, Primitive::kPrimNot); | 
|  | Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
|  | __ Mov(temp, value.AsRegister<Register>()); | 
|  | __ PoisonHeapReference(temp); | 
|  | __ StoreToOffset(kStoreWord, temp, base, offset); | 
|  | } else { | 
|  | __ StoreToOffset(kStoreWord, value.AsRegister<Register>(), base, offset); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | if (is_volatile && !atomic_ldrd_strd) { | 
|  | GenerateWideAtomicStore(base, offset, | 
|  | value.AsRegisterPairLow<Register>(), | 
|  | value.AsRegisterPairHigh<Register>(), | 
|  | locations->GetTemp(0).AsRegister<Register>(), | 
|  | locations->GetTemp(1).AsRegister<Register>(), | 
|  | instruction); | 
|  | } else { | 
|  | __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), base, offset); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | __ StoreSToOffset(value.AsFpuRegister<SRegister>(), base, offset); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()); | 
|  | if (is_volatile && !atomic_ldrd_strd) { | 
|  | Register value_reg_lo = locations->GetTemp(0).AsRegister<Register>(); | 
|  | Register value_reg_hi = locations->GetTemp(1).AsRegister<Register>(); | 
|  |  | 
|  | __ vmovrrd(value_reg_lo, value_reg_hi, value_reg); | 
|  |  | 
|  | GenerateWideAtomicStore(base, offset, | 
|  | value_reg_lo, | 
|  | value_reg_hi, | 
|  | locations->GetTemp(2).AsRegister<Register>(), | 
|  | locations->GetTemp(3).AsRegister<Register>(), | 
|  | instruction); | 
|  | } else { | 
|  | __ StoreDToOffset(value_reg, base, offset); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimVoid: | 
|  | LOG(FATAL) << "Unreachable type " << field_type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | // Longs and doubles are handled in the switch. | 
|  | if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) { | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  |  | 
|  | if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { | 
|  | Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
|  | Register card = locations->GetTemp(1).AsRegister<Register>(); | 
|  | codegen_->MarkGCCard( | 
|  | temp, card, base, value.AsRegister<Register>(), value_can_be_null); | 
|  | } | 
|  |  | 
|  | if (is_volatile) { | 
|  | codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { | 
|  | DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); | 
|  |  | 
|  | bool object_field_get_with_read_barrier = | 
|  | kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot); | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, | 
|  | object_field_get_with_read_barrier ? | 
|  | LocationSummary::kCallOnSlowPath : | 
|  | LocationSummary::kNoCall); | 
|  | if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | } | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  |  | 
|  | bool volatile_for_double = field_info.IsVolatile() | 
|  | && (field_info.GetFieldType() == Primitive::kPrimDouble) | 
|  | && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); | 
|  | // The output overlaps in case of volatile long: we don't want the | 
|  | // code generated by GenerateWideAtomicLoad to overwrite the | 
|  | // object's location.  Likewise, in the case of an object field get | 
|  | // with read barriers enabled, we do not want the load to overwrite | 
|  | // the object's location, as we need it to emit the read barrier. | 
|  | bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) || | 
|  | object_field_get_with_read_barrier; | 
|  |  | 
|  | if (Primitive::IsFloatingPointType(instruction->GetType())) { | 
|  | locations->SetOut(Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | locations->SetOut(Location::RequiresRegister(), | 
|  | (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap)); | 
|  | } | 
|  | if (volatile_for_double) { | 
|  | // ARM encoding have some additional constraints for ldrexd/strexd: | 
|  | // - registers need to be consecutive | 
|  | // - the first register should be even but not R14. | 
|  | // We don't test for ARM yet, and the assertion makes sure that we | 
|  | // revisit this if we ever enable ARM encoding. | 
|  | DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { | 
|  | // We need a temporary register for the read barrier marking slow | 
|  | // path in CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier. | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | Location LocationsBuilderARM::ArithmeticZeroOrFpuRegister(HInstruction* input) { | 
|  | DCHECK(input->GetType() == Primitive::kPrimDouble || input->GetType() == Primitive::kPrimFloat) | 
|  | << input->GetType(); | 
|  | if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) || | 
|  | (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) { | 
|  | return Location::ConstantLocation(input->AsConstant()); | 
|  | } else { | 
|  | return Location::RequiresFpuRegister(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Location LocationsBuilderARM::ArmEncodableConstantOrRegister(HInstruction* constant, | 
|  | Opcode opcode) { | 
|  | DCHECK(!Primitive::IsFloatingPointType(constant->GetType())); | 
|  | if (constant->IsConstant() && | 
|  | CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) { | 
|  | return Location::ConstantLocation(constant->AsConstant()); | 
|  | } | 
|  | return Location::RequiresRegister(); | 
|  | } | 
|  |  | 
|  | bool LocationsBuilderARM::CanEncodeConstantAsImmediate(HConstant* input_cst, | 
|  | Opcode opcode) { | 
|  | uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst)); | 
|  | if (Primitive::Is64BitType(input_cst->GetType())) { | 
|  | Opcode high_opcode = opcode; | 
|  | SetCc low_set_cc = kCcDontCare; | 
|  | switch (opcode) { | 
|  | case SUB: | 
|  | // Flip the operation to an ADD. | 
|  | value = -value; | 
|  | opcode = ADD; | 
|  | FALLTHROUGH_INTENDED; | 
|  | case ADD: | 
|  | if (Low32Bits(value) == 0u) { | 
|  | return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare); | 
|  | } | 
|  | high_opcode = ADC; | 
|  | low_set_cc = kCcSet; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) && | 
|  | CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare); | 
|  | } else { | 
|  | return CanEncodeConstantAsImmediate(Low32Bits(value), opcode); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LocationsBuilderARM::CanEncodeConstantAsImmediate(uint32_t value, | 
|  | Opcode opcode, | 
|  | SetCc set_cc) { | 
|  | ShifterOperand so; | 
|  | ArmAssembler* assembler = codegen_->GetAssembler(); | 
|  | if (assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, opcode, value, set_cc, &so)) { | 
|  | return true; | 
|  | } | 
|  | Opcode neg_opcode = kNoOperand; | 
|  | switch (opcode) { | 
|  | case AND: neg_opcode = BIC; value = ~value; break; | 
|  | case ORR: neg_opcode = ORN; value = ~value; break; | 
|  | case ADD: neg_opcode = SUB; value = -value; break; | 
|  | case ADC: neg_opcode = SBC; value = ~value; break; | 
|  | case SUB: neg_opcode = ADD; value = -value; break; | 
|  | case SBC: neg_opcode = ADC; value = ~value; break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | return assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, neg_opcode, value, set_cc, &so); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction, | 
|  | const FieldInfo& field_info) { | 
|  | DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location base_loc = locations->InAt(0); | 
|  | Register base = base_loc.AsRegister<Register>(); | 
|  | Location out = locations->Out(); | 
|  | bool is_volatile = field_info.IsVolatile(); | 
|  | bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); | 
|  | Primitive::Type field_type = field_info.GetFieldType(); | 
|  | uint32_t offset = field_info.GetFieldOffset().Uint32Value(); | 
|  |  | 
|  | switch (field_type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | __ LoadFromOffset(kLoadUnsignedByte, out.AsRegister<Register>(), base, offset); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimByte: | 
|  | __ LoadFromOffset(kLoadSignedByte, out.AsRegister<Register>(), base, offset); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimShort: | 
|  | __ LoadFromOffset(kLoadSignedHalfword, out.AsRegister<Register>(), base, offset); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimChar: | 
|  | __ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister<Register>(), base, offset); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimInt: | 
|  | __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimNot: { | 
|  | // /* HeapReference<Object> */ out = *(base + offset) | 
|  | if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
|  | Location temp_loc = locations->GetTemp(0); | 
|  | // Note that a potential implicit null check is handled in this | 
|  | // CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier call. | 
|  | codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
|  | instruction, out, base, offset, temp_loc, /* needs_null_check */ true); | 
|  | if (is_volatile) { | 
|  | codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
|  | } | 
|  | } else { | 
|  | __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | if (is_volatile) { | 
|  | codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
|  | } | 
|  | // If read barriers are enabled, emit read barriers other than | 
|  | // Baker's using a slow path (and also unpoison the loaded | 
|  | // reference, if heap poisoning is enabled). | 
|  | codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: | 
|  | if (is_volatile && !atomic_ldrd_strd) { | 
|  | GenerateWideAtomicLoad(base, offset, | 
|  | out.AsRegisterPairLow<Register>(), | 
|  | out.AsRegisterPairHigh<Register>()); | 
|  | } else { | 
|  | __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), base, offset); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimFloat: | 
|  | __ LoadSFromOffset(out.AsFpuRegister<SRegister>(), base, offset); | 
|  | break; | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()); | 
|  | if (is_volatile && !atomic_ldrd_strd) { | 
|  | Register lo = locations->GetTemp(0).AsRegister<Register>(); | 
|  | Register hi = locations->GetTemp(1).AsRegister<Register>(); | 
|  | GenerateWideAtomicLoad(base, offset, lo, hi); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | __ vmovdrr(out_reg, lo, hi); | 
|  | } else { | 
|  | __ LoadDFromOffset(out_reg, base, offset); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimVoid: | 
|  | LOG(FATAL) << "Unreachable type " << field_type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) { | 
|  | // Potential implicit null checks, in the case of reference or | 
|  | // double fields, are handled in the previous switch statement. | 
|  | } else { | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  |  | 
|  | if (is_volatile) { | 
|  | if (field_type == Primitive::kPrimNot) { | 
|  | // Memory barriers, in the case of references, are also handled | 
|  | // in the previous switch statement. | 
|  | } else { | 
|  | codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
|  | HandleFieldSet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
|  | HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
|  | HandleFieldSet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
|  | HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitUnresolvedInstanceFieldGet( | 
|  | HUnresolvedInstanceFieldGet* instruction) { | 
|  | FieldAccessCallingConventionARM calling_convention; | 
|  | codegen_->CreateUnresolvedFieldLocationSummary( | 
|  | instruction, instruction->GetFieldType(), calling_convention); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldGet( | 
|  | HUnresolvedInstanceFieldGet* instruction) { | 
|  | FieldAccessCallingConventionARM calling_convention; | 
|  | codegen_->GenerateUnresolvedFieldAccess(instruction, | 
|  | instruction->GetFieldType(), | 
|  | instruction->GetFieldIndex(), | 
|  | instruction->GetDexPc(), | 
|  | calling_convention); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitUnresolvedInstanceFieldSet( | 
|  | HUnresolvedInstanceFieldSet* instruction) { | 
|  | FieldAccessCallingConventionARM calling_convention; | 
|  | codegen_->CreateUnresolvedFieldLocationSummary( | 
|  | instruction, instruction->GetFieldType(), calling_convention); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldSet( | 
|  | HUnresolvedInstanceFieldSet* instruction) { | 
|  | FieldAccessCallingConventionARM calling_convention; | 
|  | codegen_->GenerateUnresolvedFieldAccess(instruction, | 
|  | instruction->GetFieldType(), | 
|  | instruction->GetFieldIndex(), | 
|  | instruction->GetDexPc(), | 
|  | calling_convention); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitUnresolvedStaticFieldGet( | 
|  | HUnresolvedStaticFieldGet* instruction) { | 
|  | FieldAccessCallingConventionARM calling_convention; | 
|  | codegen_->CreateUnresolvedFieldLocationSummary( | 
|  | instruction, instruction->GetFieldType(), calling_convention); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldGet( | 
|  | HUnresolvedStaticFieldGet* instruction) { | 
|  | FieldAccessCallingConventionARM calling_convention; | 
|  | codegen_->GenerateUnresolvedFieldAccess(instruction, | 
|  | instruction->GetFieldType(), | 
|  | instruction->GetFieldIndex(), | 
|  | instruction->GetDexPc(), | 
|  | calling_convention); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitUnresolvedStaticFieldSet( | 
|  | HUnresolvedStaticFieldSet* instruction) { | 
|  | FieldAccessCallingConventionARM calling_convention; | 
|  | codegen_->CreateUnresolvedFieldLocationSummary( | 
|  | instruction, instruction->GetFieldType(), calling_convention); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldSet( | 
|  | HUnresolvedStaticFieldSet* instruction) { | 
|  | FieldAccessCallingConventionARM calling_convention; | 
|  | codegen_->GenerateUnresolvedFieldAccess(instruction, | 
|  | instruction->GetFieldType(), | 
|  | instruction->GetFieldIndex(), | 
|  | instruction->GetDexPc(), | 
|  | calling_convention); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) { | 
|  | LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) { | 
|  | if (CanMoveNullCheckToUser(instruction)) { | 
|  | return; | 
|  | } | 
|  | Location obj = instruction->GetLocations()->InAt(0); | 
|  |  | 
|  | __ LoadFromOffset(kLoadWord, IP, obj.AsRegister<Register>(), 0); | 
|  | RecordPcInfo(instruction, instruction->GetDexPc()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) { | 
|  | SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction); | 
|  | AddSlowPath(slow_path); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location obj = locations->InAt(0); | 
|  |  | 
|  | __ CompareAndBranchIfZero(obj.AsRegister<Register>(), slow_path->GetEntryLabel()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) { | 
|  | codegen_->GenerateNullCheck(instruction); | 
|  | } | 
|  |  | 
|  | static LoadOperandType GetLoadOperandType(Primitive::Type type) { | 
|  | switch (type) { | 
|  | case Primitive::kPrimNot: | 
|  | return kLoadWord; | 
|  | case Primitive::kPrimBoolean: | 
|  | return kLoadUnsignedByte; | 
|  | case Primitive::kPrimByte: | 
|  | return kLoadSignedByte; | 
|  | case Primitive::kPrimChar: | 
|  | return kLoadUnsignedHalfword; | 
|  | case Primitive::kPrimShort: | 
|  | return kLoadSignedHalfword; | 
|  | case Primitive::kPrimInt: | 
|  | return kLoadWord; | 
|  | case Primitive::kPrimLong: | 
|  | return kLoadWordPair; | 
|  | case Primitive::kPrimFloat: | 
|  | return kLoadSWord; | 
|  | case Primitive::kPrimDouble: | 
|  | return kLoadDWord; | 
|  | default: | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static StoreOperandType GetStoreOperandType(Primitive::Type type) { | 
|  | switch (type) { | 
|  | case Primitive::kPrimNot: | 
|  | return kStoreWord; | 
|  | case Primitive::kPrimBoolean: | 
|  | case Primitive::kPrimByte: | 
|  | return kStoreByte; | 
|  | case Primitive::kPrimChar: | 
|  | case Primitive::kPrimShort: | 
|  | return kStoreHalfword; | 
|  | case Primitive::kPrimInt: | 
|  | return kStoreWord; | 
|  | case Primitive::kPrimLong: | 
|  | return kStoreWordPair; | 
|  | case Primitive::kPrimFloat: | 
|  | return kStoreSWord; | 
|  | case Primitive::kPrimDouble: | 
|  | return kStoreDWord; | 
|  | default: | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::LoadFromShiftedRegOffset(Primitive::Type type, | 
|  | Location out_loc, | 
|  | Register base, | 
|  | Register reg_offset, | 
|  | Condition cond) { | 
|  | uint32_t shift_count = Primitive::ComponentSizeShift(type); | 
|  | Address mem_address(base, reg_offset, Shift::LSL, shift_count); | 
|  |  | 
|  | switch (type) { | 
|  | case Primitive::kPrimByte: | 
|  | __ ldrsb(out_loc.AsRegister<Register>(), mem_address, cond); | 
|  | break; | 
|  | case Primitive::kPrimBoolean: | 
|  | __ ldrb(out_loc.AsRegister<Register>(), mem_address, cond); | 
|  | break; | 
|  | case Primitive::kPrimShort: | 
|  | __ ldrsh(out_loc.AsRegister<Register>(), mem_address, cond); | 
|  | break; | 
|  | case Primitive::kPrimChar: | 
|  | __ ldrh(out_loc.AsRegister<Register>(), mem_address, cond); | 
|  | break; | 
|  | case Primitive::kPrimNot: | 
|  | case Primitive::kPrimInt: | 
|  | __ ldr(out_loc.AsRegister<Register>(), mem_address, cond); | 
|  | break; | 
|  | // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types. | 
|  | case Primitive::kPrimLong: | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: | 
|  | default: | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::StoreToShiftedRegOffset(Primitive::Type type, | 
|  | Location loc, | 
|  | Register base, | 
|  | Register reg_offset, | 
|  | Condition cond) { | 
|  | uint32_t shift_count = Primitive::ComponentSizeShift(type); | 
|  | Address mem_address(base, reg_offset, Shift::LSL, shift_count); | 
|  |  | 
|  | switch (type) { | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimBoolean: | 
|  | __ strb(loc.AsRegister<Register>(), mem_address, cond); | 
|  | break; | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimChar: | 
|  | __ strh(loc.AsRegister<Register>(), mem_address, cond); | 
|  | break; | 
|  | case Primitive::kPrimNot: | 
|  | case Primitive::kPrimInt: | 
|  | __ str(loc.AsRegister<Register>(), mem_address, cond); | 
|  | break; | 
|  | // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types. | 
|  | case Primitive::kPrimLong: | 
|  | case Primitive::kPrimFloat: | 
|  | case Primitive::kPrimDouble: | 
|  | default: | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) { | 
|  | bool object_array_get_with_read_barrier = | 
|  | kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, | 
|  | object_array_get_with_read_barrier ? | 
|  | LocationSummary::kCallOnSlowPath : | 
|  | LocationSummary::kNoCall); | 
|  | if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | } | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
|  | if (Primitive::IsFloatingPointType(instruction->GetType())) { | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | } else { | 
|  | // The output overlaps in the case of an object array get with | 
|  | // read barriers enabled: we do not want the move to overwrite the | 
|  | // array's location, as we need it to emit the read barrier. | 
|  | locations->SetOut( | 
|  | Location::RequiresRegister(), | 
|  | object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); | 
|  | } | 
|  | // We need a temporary register for the read barrier marking slow | 
|  | // path in CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier. | 
|  | // Also need for String compression feature. | 
|  | if ((object_array_get_with_read_barrier && kUseBakerReadBarrier) | 
|  | || (mirror::kUseStringCompression && instruction->IsStringCharAt())) { | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location obj_loc = locations->InAt(0); | 
|  | Register obj = obj_loc.AsRegister<Register>(); | 
|  | Location index = locations->InAt(1); | 
|  | Location out_loc = locations->Out(); | 
|  | uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); | 
|  | Primitive::Type type = instruction->GetType(); | 
|  | const bool maybe_compressed_char_at = mirror::kUseStringCompression && | 
|  | instruction->IsStringCharAt(); | 
|  | HInstruction* array_instr = instruction->GetArray(); | 
|  | bool has_intermediate_address = array_instr->IsIntermediateAddress(); | 
|  |  | 
|  | switch (type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimChar: | 
|  | case Primitive::kPrimInt: { | 
|  | Register length; | 
|  | if (maybe_compressed_char_at) { | 
|  | length = locations->GetTemp(0).AsRegister<Register>(); | 
|  | uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); | 
|  | __ LoadFromOffset(kLoadWord, length, obj, count_offset); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | if (index.IsConstant()) { | 
|  | int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); | 
|  | if (maybe_compressed_char_at) { | 
|  | Label uncompressed_load, done; | 
|  | __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not. | 
|  | static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, | 
|  | "Expecting 0=compressed, 1=uncompressed"); | 
|  | __ b(&uncompressed_load, CS); | 
|  | __ LoadFromOffset(kLoadUnsignedByte, | 
|  | out_loc.AsRegister<Register>(), | 
|  | obj, | 
|  | data_offset + const_index); | 
|  | __ b(&done); | 
|  | __ Bind(&uncompressed_load); | 
|  | __ LoadFromOffset(GetLoadOperandType(Primitive::kPrimChar), | 
|  | out_loc.AsRegister<Register>(), | 
|  | obj, | 
|  | data_offset + (const_index << 1)); | 
|  | __ Bind(&done); | 
|  | } else { | 
|  | uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type)); | 
|  |  | 
|  | LoadOperandType load_type = GetLoadOperandType(type); | 
|  | __ LoadFromOffset(load_type, out_loc.AsRegister<Register>(), obj, full_offset); | 
|  | } | 
|  | } else { | 
|  | Register temp = IP; | 
|  |  | 
|  | if (has_intermediate_address) { | 
|  | // We do not need to compute the intermediate address from the array: the | 
|  | // input instruction has done it already. See the comment in | 
|  | // `TryExtractArrayAccessAddress()`. | 
|  | if (kIsDebugBuild) { | 
|  | HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); | 
|  | DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); | 
|  | } | 
|  | temp = obj; | 
|  | } else { | 
|  | __ add(temp, obj, ShifterOperand(data_offset)); | 
|  | } | 
|  | if (maybe_compressed_char_at) { | 
|  | Label uncompressed_load, done; | 
|  | __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not. | 
|  | static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, | 
|  | "Expecting 0=compressed, 1=uncompressed"); | 
|  | __ b(&uncompressed_load, CS); | 
|  | __ ldrb(out_loc.AsRegister<Register>(), | 
|  | Address(temp, index.AsRegister<Register>(), Shift::LSL, 0)); | 
|  | __ b(&done); | 
|  | __ Bind(&uncompressed_load); | 
|  | __ ldrh(out_loc.AsRegister<Register>(), | 
|  | Address(temp, index.AsRegister<Register>(), Shift::LSL, 1)); | 
|  | __ Bind(&done); | 
|  | } else { | 
|  | codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimNot: { | 
|  | // The read barrier instrumentation of object ArrayGet | 
|  | // instructions does not support the HIntermediateAddress | 
|  | // instruction. | 
|  | DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier)); | 
|  |  | 
|  | static_assert( | 
|  | sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
|  | "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
|  | // /* HeapReference<Object> */ out = | 
|  | //     *(obj + data_offset + index * sizeof(HeapReference<Object>)) | 
|  | if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
|  | Location temp = locations->GetTemp(0); | 
|  | // Note that a potential implicit null check is handled in this | 
|  | // CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier call. | 
|  | codegen_->GenerateArrayLoadWithBakerReadBarrier( | 
|  | instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true); | 
|  | } else { | 
|  | Register out = out_loc.AsRegister<Register>(); | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = | 
|  | (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
|  | __ LoadFromOffset(kLoadWord, out, obj, offset); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | // If read barriers are enabled, emit read barriers other than | 
|  | // Baker's using a slow path (and also unpoison the loaded | 
|  | // reference, if heap poisoning is enabled). | 
|  | codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); | 
|  | } else { | 
|  | Register temp = IP; | 
|  |  | 
|  | if (has_intermediate_address) { | 
|  | // We do not need to compute the intermediate address from the array: the | 
|  | // input instruction has done it already. See the comment in | 
|  | // `TryExtractArrayAccessAddress()`. | 
|  | if (kIsDebugBuild) { | 
|  | HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); | 
|  | DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); | 
|  | } | 
|  | temp = obj; | 
|  | } else { | 
|  | __ add(temp, obj, ShifterOperand(data_offset)); | 
|  | } | 
|  | codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>()); | 
|  |  | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | // If read barriers are enabled, emit read barriers other than | 
|  | // Baker's using a slow path (and also unpoison the loaded | 
|  | // reference, if heap poisoning is enabled). | 
|  | codegen_->MaybeGenerateReadBarrierSlow( | 
|  | instruction, out_loc, out_loc, obj_loc, data_offset, index); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = | 
|  | (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; | 
|  | __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), obj, offset); | 
|  | } else { | 
|  | __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8)); | 
|  | __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), IP, data_offset); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | SRegister out = out_loc.AsFpuRegister<SRegister>(); | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
|  | __ LoadSFromOffset(out, obj, offset); | 
|  | } else { | 
|  | __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4)); | 
|  | __ LoadSFromOffset(out, IP, data_offset); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | SRegister out = out_loc.AsFpuRegisterPairLow<SRegister>(); | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; | 
|  | __ LoadDFromOffset(FromLowSToD(out), obj, offset); | 
|  | } else { | 
|  | __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8)); | 
|  | __ LoadDFromOffset(FromLowSToD(out), IP, data_offset); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimVoid: | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | if (type == Primitive::kPrimNot) { | 
|  | // Potential implicit null checks, in the case of reference | 
|  | // arrays, are handled in the previous switch statement. | 
|  | } else if (!maybe_compressed_char_at) { | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) { | 
|  | Primitive::Type value_type = instruction->GetComponentType(); | 
|  |  | 
|  | bool needs_write_barrier = | 
|  | CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); | 
|  | bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); | 
|  |  | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( | 
|  | instruction, | 
|  | may_need_runtime_call_for_type_check ? | 
|  | LocationSummary::kCallOnSlowPath : | 
|  | LocationSummary::kNoCall); | 
|  |  | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
|  | if (Primitive::IsFloatingPointType(value_type)) { | 
|  | locations->SetInAt(2, Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | locations->SetInAt(2, Location::RequiresRegister()); | 
|  | } | 
|  | if (needs_write_barrier) { | 
|  | // Temporary registers for the write barrier. | 
|  | locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too. | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location array_loc = locations->InAt(0); | 
|  | Register array = array_loc.AsRegister<Register>(); | 
|  | Location index = locations->InAt(1); | 
|  | Primitive::Type value_type = instruction->GetComponentType(); | 
|  | bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); | 
|  | bool needs_write_barrier = | 
|  | CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); | 
|  | uint32_t data_offset = | 
|  | mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value(); | 
|  | Location value_loc = locations->InAt(2); | 
|  | HInstruction* array_instr = instruction->GetArray(); | 
|  | bool has_intermediate_address = array_instr->IsIntermediateAddress(); | 
|  |  | 
|  | switch (value_type) { | 
|  | case Primitive::kPrimBoolean: | 
|  | case Primitive::kPrimByte: | 
|  | case Primitive::kPrimShort: | 
|  | case Primitive::kPrimChar: | 
|  | case Primitive::kPrimInt: { | 
|  | if (index.IsConstant()) { | 
|  | int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); | 
|  | uint32_t full_offset = | 
|  | data_offset + (const_index << Primitive::ComponentSizeShift(value_type)); | 
|  | StoreOperandType store_type = GetStoreOperandType(value_type); | 
|  | __ StoreToOffset(store_type, value_loc.AsRegister<Register>(), array, full_offset); | 
|  | } else { | 
|  | Register temp = IP; | 
|  |  | 
|  | if (has_intermediate_address) { | 
|  | // We do not need to compute the intermediate address from the array: the | 
|  | // input instruction has done it already. See the comment in | 
|  | // `TryExtractArrayAccessAddress()`. | 
|  | if (kIsDebugBuild) { | 
|  | HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); | 
|  | DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == data_offset); | 
|  | } | 
|  | temp = array; | 
|  | } else { | 
|  | __ add(temp, array, ShifterOperand(data_offset)); | 
|  | } | 
|  | codegen_->StoreToShiftedRegOffset(value_type, | 
|  | value_loc, | 
|  | temp, | 
|  | index.AsRegister<Register>()); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimNot: { | 
|  | Register value = value_loc.AsRegister<Register>(); | 
|  | // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet. | 
|  | // See the comment in instruction_simplifier_shared.cc. | 
|  | DCHECK(!has_intermediate_address); | 
|  |  | 
|  | if (instruction->InputAt(2)->IsNullConstant()) { | 
|  | // Just setting null. | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = | 
|  | (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
|  | __ StoreToOffset(kStoreWord, value, array, offset); | 
|  | } else { | 
|  | DCHECK(index.IsRegister()) << index; | 
|  | __ add(IP, array, ShifterOperand(data_offset)); | 
|  | codegen_->StoreToShiftedRegOffset(value_type, | 
|  | value_loc, | 
|  | IP, | 
|  | index.AsRegister<Register>()); | 
|  | } | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | DCHECK(!needs_write_barrier); | 
|  | DCHECK(!may_need_runtime_call_for_type_check); | 
|  | break; | 
|  | } | 
|  |  | 
|  | DCHECK(needs_write_barrier); | 
|  | Location temp1_loc = locations->GetTemp(0); | 
|  | Register temp1 = temp1_loc.AsRegister<Register>(); | 
|  | Location temp2_loc = locations->GetTemp(1); | 
|  | Register temp2 = temp2_loc.AsRegister<Register>(); | 
|  | uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
|  | uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
|  | uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
|  | Label done; | 
|  | SlowPathCodeARM* slow_path = nullptr; | 
|  |  | 
|  | if (may_need_runtime_call_for_type_check) { | 
|  | slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM(instruction); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | if (instruction->GetValueCanBeNull()) { | 
|  | Label non_zero; | 
|  | __ CompareAndBranchIfNonZero(value, &non_zero); | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = | 
|  | (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
|  | __ StoreToOffset(kStoreWord, value, array, offset); | 
|  | } else { | 
|  | DCHECK(index.IsRegister()) << index; | 
|  | __ add(IP, array, ShifterOperand(data_offset)); | 
|  | codegen_->StoreToShiftedRegOffset(value_type, | 
|  | value_loc, | 
|  | IP, | 
|  | index.AsRegister<Register>()); | 
|  | } | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | __ b(&done); | 
|  | __ Bind(&non_zero); | 
|  | } | 
|  |  | 
|  | // Note that when read barriers are enabled, the type checks | 
|  | // are performed without read barriers.  This is fine, even in | 
|  | // the case where a class object is in the from-space after | 
|  | // the flip, as a comparison involving such a type would not | 
|  | // produce a false positive; it may of course produce a false | 
|  | // negative, in which case we would take the ArraySet slow | 
|  | // path. | 
|  |  | 
|  | // /* HeapReference<Class> */ temp1 = array->klass_ | 
|  | __ LoadFromOffset(kLoadWord, temp1, array, class_offset); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | __ MaybeUnpoisonHeapReference(temp1); | 
|  |  | 
|  | // /* HeapReference<Class> */ temp1 = temp1->component_type_ | 
|  | __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset); | 
|  | // /* HeapReference<Class> */ temp2 = value->klass_ | 
|  | __ LoadFromOffset(kLoadWord, temp2, value, class_offset); | 
|  | // If heap poisoning is enabled, no need to unpoison `temp1` | 
|  | // nor `temp2`, as we are comparing two poisoned references. | 
|  | __ cmp(temp1, ShifterOperand(temp2)); | 
|  |  | 
|  | if (instruction->StaticTypeOfArrayIsObjectArray()) { | 
|  | Label do_put; | 
|  | __ b(&do_put, EQ); | 
|  | // If heap poisoning is enabled, the `temp1` reference has | 
|  | // not been unpoisoned yet; unpoison it now. | 
|  | __ MaybeUnpoisonHeapReference(temp1); | 
|  |  | 
|  | // /* HeapReference<Class> */ temp1 = temp1->super_class_ | 
|  | __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset); | 
|  | // If heap poisoning is enabled, no need to unpoison | 
|  | // `temp1`, as we are comparing against null below. | 
|  | __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel()); | 
|  | __ Bind(&do_put); | 
|  | } else { | 
|  | __ b(slow_path->GetEntryLabel(), NE); | 
|  | } | 
|  | } | 
|  |  | 
|  | Register source = value; | 
|  | if (kPoisonHeapReferences) { | 
|  | // Note that in the case where `value` is a null reference, | 
|  | // we do not enter this block, as a null reference does not | 
|  | // need poisoning. | 
|  | DCHECK_EQ(value_type, Primitive::kPrimNot); | 
|  | __ Mov(temp1, value); | 
|  | __ PoisonHeapReference(temp1); | 
|  | source = temp1; | 
|  | } | 
|  |  | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = | 
|  | (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
|  | __ StoreToOffset(kStoreWord, source, array, offset); | 
|  | } else { | 
|  | DCHECK(index.IsRegister()) << index; | 
|  |  | 
|  | __ add(IP, array, ShifterOperand(data_offset)); | 
|  | codegen_->StoreToShiftedRegOffset(value_type, | 
|  | Location::RegisterLocation(source), | 
|  | IP, | 
|  | index.AsRegister<Register>()); | 
|  | } | 
|  |  | 
|  | if (!may_need_runtime_call_for_type_check) { | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  |  | 
|  | codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull()); | 
|  |  | 
|  | if (done.IsLinked()) { | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | if (slow_path != nullptr) { | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimLong: { | 
|  | Location value = locations->InAt(2); | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = | 
|  | (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; | 
|  | __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), array, offset); | 
|  | } else { | 
|  | __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8)); | 
|  | __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), IP, data_offset); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimFloat: { | 
|  | Location value = locations->InAt(2); | 
|  | DCHECK(value.IsFpuRegister()); | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
|  | __ StoreSToOffset(value.AsFpuRegister<SRegister>(), array, offset); | 
|  | } else { | 
|  | __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4)); | 
|  | __ StoreSToOffset(value.AsFpuRegister<SRegister>(), IP, data_offset); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimDouble: { | 
|  | Location value = locations->InAt(2); | 
|  | DCHECK(value.IsFpuRegisterPair()); | 
|  | if (index.IsConstant()) { | 
|  | size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; | 
|  | __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), array, offset); | 
|  | } else { | 
|  | __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8)); | 
|  | __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), IP, data_offset); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Primitive::kPrimVoid: | 
|  | LOG(FATAL) << "Unreachable type " << value_type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | // Objects are handled in the switch. | 
|  | if (value_type != Primitive::kPrimNot) { | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); | 
|  | Register obj = locations->InAt(0).AsRegister<Register>(); | 
|  | Register out = locations->Out().AsRegister<Register>(); | 
|  | __ LoadFromOffset(kLoadWord, out, obj, offset); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | // Mask out compression flag from String's array length. | 
|  | if (mirror::kUseStringCompression && instruction->IsStringLength()) { | 
|  | __ Lsr(out, out, 1u); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitIntermediateAddress(HIntermediateAddress* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  |  | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset())); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitIntermediateAddress(HIntermediateAddress* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | Location first = locations->InAt(0); | 
|  | Location second = locations->InAt(1); | 
|  |  | 
|  | if (second.IsRegister()) { | 
|  | __ add(out.AsRegister<Register>(), | 
|  | first.AsRegister<Register>(), | 
|  | ShifterOperand(second.AsRegister<Register>())); | 
|  | } else { | 
|  | __ AddConstant(out.AsRegister<Register>(), | 
|  | first.AsRegister<Register>(), | 
|  | second.GetConstant()->AsIntConstant()->GetValue()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) { | 
|  | RegisterSet caller_saves = RegisterSet::Empty(); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
|  | caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); | 
|  | LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | SlowPathCodeARM* slow_path = | 
|  | new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  |  | 
|  | Register index = locations->InAt(0).AsRegister<Register>(); | 
|  | Register length = locations->InAt(1).AsRegister<Register>(); | 
|  |  | 
|  | __ cmp(index, ShifterOperand(length)); | 
|  | __ b(slow_path->GetEntryLabel(), HS); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::MarkGCCard(Register temp, | 
|  | Register card, | 
|  | Register object, | 
|  | Register value, | 
|  | bool can_be_null) { | 
|  | Label is_null; | 
|  | if (can_be_null) { | 
|  | __ CompareAndBranchIfZero(value, &is_null); | 
|  | } | 
|  | __ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset<kArmPointerSize>().Int32Value()); | 
|  | __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); | 
|  | __ strb(card, Address(card, temp)); | 
|  | if (can_be_null) { | 
|  | __ Bind(&is_null); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) { | 
|  | codegen_->GetMoveResolver()->EmitNativeCode(instruction); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) { | 
|  | HBasicBlock* block = instruction->GetBlock(); | 
|  | if (block->GetLoopInformation() != nullptr) { | 
|  | DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); | 
|  | // The back edge will generate the suspend check. | 
|  | return; | 
|  | } | 
|  | if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { | 
|  | // The goto will generate the suspend check. | 
|  | return; | 
|  | } | 
|  | GenerateSuspendCheck(instruction, nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction, | 
|  | HBasicBlock* successor) { | 
|  | SuspendCheckSlowPathARM* slow_path = | 
|  | down_cast<SuspendCheckSlowPathARM*>(instruction->GetSlowPath()); | 
|  | if (slow_path == nullptr) { | 
|  | slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor); | 
|  | instruction->SetSlowPath(slow_path); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | if (successor != nullptr) { | 
|  | DCHECK(successor->IsLoopHeader()); | 
|  | codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); | 
|  | } | 
|  | } else { | 
|  | DCHECK_EQ(slow_path->GetSuccessor(), successor); | 
|  | } | 
|  |  | 
|  | __ LoadFromOffset( | 
|  | kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value()); | 
|  | if (successor == nullptr) { | 
|  | __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetReturnLabel()); | 
|  | } else { | 
|  | __ CompareAndBranchIfZero(IP, codegen_->GetLabelOf(successor)); | 
|  | __ b(slow_path->GetEntryLabel()); | 
|  | } | 
|  | } | 
|  |  | 
|  | ArmAssembler* ParallelMoveResolverARM::GetAssembler() const { | 
|  | return codegen_->GetAssembler(); | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM::EmitMove(size_t index) { | 
|  | MoveOperands* move = moves_[index]; | 
|  | Location source = move->GetSource(); | 
|  | Location destination = move->GetDestination(); | 
|  |  | 
|  | if (source.IsRegister()) { | 
|  | if (destination.IsRegister()) { | 
|  | __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>()); | 
|  | } else if (destination.IsFpuRegister()) { | 
|  | __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>()); | 
|  | } else { | 
|  | DCHECK(destination.IsStackSlot()); | 
|  | __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), | 
|  | SP, destination.GetStackIndex()); | 
|  | } | 
|  | } else if (source.IsStackSlot()) { | 
|  | if (destination.IsRegister()) { | 
|  | __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), | 
|  | SP, source.GetStackIndex()); | 
|  | } else if (destination.IsFpuRegister()) { | 
|  | __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex()); | 
|  | } else { | 
|  | DCHECK(destination.IsStackSlot()); | 
|  | __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex()); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); | 
|  | } | 
|  | } else if (source.IsFpuRegister()) { | 
|  | if (destination.IsRegister()) { | 
|  | __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>()); | 
|  | } else if (destination.IsFpuRegister()) { | 
|  | __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>()); | 
|  | } else { | 
|  | DCHECK(destination.IsStackSlot()); | 
|  | __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex()); | 
|  | } | 
|  | } else if (source.IsDoubleStackSlot()) { | 
|  | if (destination.IsDoubleStackSlot()) { | 
|  | __ LoadDFromOffset(DTMP, SP, source.GetStackIndex()); | 
|  | __ StoreDToOffset(DTMP, SP, destination.GetStackIndex()); | 
|  | } else if (destination.IsRegisterPair()) { | 
|  | DCHECK(ExpectedPairLayout(destination)); | 
|  | __ LoadFromOffset( | 
|  | kLoadWordPair, destination.AsRegisterPairLow<Register>(), SP, source.GetStackIndex()); | 
|  | } else { | 
|  | DCHECK(destination.IsFpuRegisterPair()) << destination; | 
|  | __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), | 
|  | SP, | 
|  | source.GetStackIndex()); | 
|  | } | 
|  | } else if (source.IsRegisterPair()) { | 
|  | if (destination.IsRegisterPair()) { | 
|  | __ Mov(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>()); | 
|  | __ Mov(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>()); | 
|  | } else if (destination.IsFpuRegisterPair()) { | 
|  | __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), | 
|  | source.AsRegisterPairLow<Register>(), | 
|  | source.AsRegisterPairHigh<Register>()); | 
|  | } else { | 
|  | DCHECK(destination.IsDoubleStackSlot()) << destination; | 
|  | DCHECK(ExpectedPairLayout(source)); | 
|  | __ StoreToOffset( | 
|  | kStoreWordPair, source.AsRegisterPairLow<Register>(), SP, destination.GetStackIndex()); | 
|  | } | 
|  | } else if (source.IsFpuRegisterPair()) { | 
|  | if (destination.IsRegisterPair()) { | 
|  | __ vmovrrd(destination.AsRegisterPairLow<Register>(), | 
|  | destination.AsRegisterPairHigh<Register>(), | 
|  | FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())); | 
|  | } else if (destination.IsFpuRegisterPair()) { | 
|  | __ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), | 
|  | FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())); | 
|  | } else { | 
|  | DCHECK(destination.IsDoubleStackSlot()) << destination; | 
|  | __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()), | 
|  | SP, | 
|  | destination.GetStackIndex()); | 
|  | } | 
|  | } else { | 
|  | DCHECK(source.IsConstant()) << source; | 
|  | HConstant* constant = source.GetConstant(); | 
|  | if (constant->IsIntConstant() || constant->IsNullConstant()) { | 
|  | int32_t value = CodeGenerator::GetInt32ValueOf(constant); | 
|  | if (destination.IsRegister()) { | 
|  | __ LoadImmediate(destination.AsRegister<Register>(), value); | 
|  | } else { | 
|  | DCHECK(destination.IsStackSlot()); | 
|  | __ LoadImmediate(IP, value); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); | 
|  | } | 
|  | } else if (constant->IsLongConstant()) { | 
|  | int64_t value = constant->AsLongConstant()->GetValue(); | 
|  | if (destination.IsRegisterPair()) { | 
|  | __ LoadImmediate(destination.AsRegisterPairLow<Register>(), Low32Bits(value)); | 
|  | __ LoadImmediate(destination.AsRegisterPairHigh<Register>(), High32Bits(value)); | 
|  | } else { | 
|  | DCHECK(destination.IsDoubleStackSlot()) << destination; | 
|  | __ LoadImmediate(IP, Low32Bits(value)); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); | 
|  | __ LoadImmediate(IP, High32Bits(value)); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize)); | 
|  | } | 
|  | } else if (constant->IsDoubleConstant()) { | 
|  | double value = constant->AsDoubleConstant()->GetValue(); | 
|  | if (destination.IsFpuRegisterPair()) { | 
|  | __ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), value); | 
|  | } else { | 
|  | DCHECK(destination.IsDoubleStackSlot()) << destination; | 
|  | uint64_t int_value = bit_cast<uint64_t, double>(value); | 
|  | __ LoadImmediate(IP, Low32Bits(int_value)); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); | 
|  | __ LoadImmediate(IP, High32Bits(int_value)); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize)); | 
|  | } | 
|  | } else { | 
|  | DCHECK(constant->IsFloatConstant()) << constant->DebugName(); | 
|  | float value = constant->AsFloatConstant()->GetValue(); | 
|  | if (destination.IsFpuRegister()) { | 
|  | __ LoadSImmediate(destination.AsFpuRegister<SRegister>(), value); | 
|  | } else { | 
|  | DCHECK(destination.IsStackSlot()); | 
|  | __ LoadImmediate(IP, bit_cast<int32_t, float>(value)); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM::Exchange(Register reg, int mem) { | 
|  | __ Mov(IP, reg); | 
|  | __ LoadFromOffset(kLoadWord, reg, SP, mem); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, mem); | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM::Exchange(int mem1, int mem2) { | 
|  | ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters()); | 
|  | int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0; | 
|  | __ LoadFromOffset(kLoadWord, static_cast<Register>(ensure_scratch.GetRegister()), | 
|  | SP, mem1 + stack_offset); | 
|  | __ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset); | 
|  | __ StoreToOffset(kStoreWord, static_cast<Register>(ensure_scratch.GetRegister()), | 
|  | SP, mem2 + stack_offset); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset); | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM::EmitSwap(size_t index) { | 
|  | MoveOperands* move = moves_[index]; | 
|  | Location source = move->GetSource(); | 
|  | Location destination = move->GetDestination(); | 
|  |  | 
|  | if (source.IsRegister() && destination.IsRegister()) { | 
|  | DCHECK_NE(source.AsRegister<Register>(), IP); | 
|  | DCHECK_NE(destination.AsRegister<Register>(), IP); | 
|  | __ Mov(IP, source.AsRegister<Register>()); | 
|  | __ Mov(source.AsRegister<Register>(), destination.AsRegister<Register>()); | 
|  | __ Mov(destination.AsRegister<Register>(), IP); | 
|  | } else if (source.IsRegister() && destination.IsStackSlot()) { | 
|  | Exchange(source.AsRegister<Register>(), destination.GetStackIndex()); | 
|  | } else if (source.IsStackSlot() && destination.IsRegister()) { | 
|  | Exchange(destination.AsRegister<Register>(), source.GetStackIndex()); | 
|  | } else if (source.IsStackSlot() && destination.IsStackSlot()) { | 
|  | Exchange(source.GetStackIndex(), destination.GetStackIndex()); | 
|  | } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { | 
|  | __ vmovrs(IP, source.AsFpuRegister<SRegister>()); | 
|  | __ vmovs(source.AsFpuRegister<SRegister>(), destination.AsFpuRegister<SRegister>()); | 
|  | __ vmovsr(destination.AsFpuRegister<SRegister>(), IP); | 
|  | } else if (source.IsRegisterPair() && destination.IsRegisterPair()) { | 
|  | __ vmovdrr(DTMP, source.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>()); | 
|  | __ Mov(source.AsRegisterPairLow<Register>(), destination.AsRegisterPairLow<Register>()); | 
|  | __ Mov(source.AsRegisterPairHigh<Register>(), destination.AsRegisterPairHigh<Register>()); | 
|  | __ vmovrrd(destination.AsRegisterPairLow<Register>(), | 
|  | destination.AsRegisterPairHigh<Register>(), | 
|  | DTMP); | 
|  | } else if (source.IsRegisterPair() || destination.IsRegisterPair()) { | 
|  | Register low_reg = source.IsRegisterPair() | 
|  | ? source.AsRegisterPairLow<Register>() | 
|  | : destination.AsRegisterPairLow<Register>(); | 
|  | int mem = source.IsRegisterPair() | 
|  | ? destination.GetStackIndex() | 
|  | : source.GetStackIndex(); | 
|  | DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination)); | 
|  | __ vmovdrr(DTMP, low_reg, static_cast<Register>(low_reg + 1)); | 
|  | __ LoadFromOffset(kLoadWordPair, low_reg, SP, mem); | 
|  | __ StoreDToOffset(DTMP, SP, mem); | 
|  | } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) { | 
|  | DRegister first = FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()); | 
|  | DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()); | 
|  | __ vmovd(DTMP, first); | 
|  | __ vmovd(first, second); | 
|  | __ vmovd(second, DTMP); | 
|  | } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) { | 
|  | DRegister reg = source.IsFpuRegisterPair() | 
|  | ? FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()) | 
|  | : FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()); | 
|  | int mem = source.IsFpuRegisterPair() | 
|  | ? destination.GetStackIndex() | 
|  | : source.GetStackIndex(); | 
|  | __ vmovd(DTMP, reg); | 
|  | __ LoadDFromOffset(reg, SP, mem); | 
|  | __ StoreDToOffset(DTMP, SP, mem); | 
|  | } else if (source.IsFpuRegister() || destination.IsFpuRegister()) { | 
|  | SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister<SRegister>() | 
|  | : destination.AsFpuRegister<SRegister>(); | 
|  | int mem = source.IsFpuRegister() | 
|  | ? destination.GetStackIndex() | 
|  | : source.GetStackIndex(); | 
|  |  | 
|  | __ vmovrs(IP, reg); | 
|  | __ LoadSFromOffset(reg, SP, mem); | 
|  | __ StoreToOffset(kStoreWord, IP, SP, mem); | 
|  | } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) { | 
|  | Exchange(source.GetStackIndex(), destination.GetStackIndex()); | 
|  | Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize)); | 
|  | } else { | 
|  | LOG(FATAL) << "Unimplemented" << source << " <-> " << destination; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM::SpillScratch(int reg) { | 
|  | __ Push(static_cast<Register>(reg)); | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM::RestoreScratch(int reg) { | 
|  | __ Pop(static_cast<Register>(reg)); | 
|  | } | 
|  |  | 
|  | HLoadClass::LoadKind CodeGeneratorARM::GetSupportedLoadClassKind( | 
|  | HLoadClass::LoadKind desired_class_load_kind) { | 
|  | switch (desired_class_load_kind) { | 
|  | case HLoadClass::LoadKind::kReferrersClass: | 
|  | break; | 
|  | case HLoadClass::LoadKind::kBootImageLinkTimeAddress: | 
|  | DCHECK(!GetCompilerOptions().GetCompilePic()); | 
|  | break; | 
|  | case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: | 
|  | DCHECK(GetCompilerOptions().GetCompilePic()); | 
|  | break; | 
|  | case HLoadClass::LoadKind::kBootImageAddress: | 
|  | break; | 
|  | case HLoadClass::LoadKind::kJitTableAddress: | 
|  | break; | 
|  | case HLoadClass::LoadKind::kDexCachePcRelative: | 
|  | DCHECK(!Runtime::Current()->UseJitCompilation()); | 
|  | // We disable pc-relative load when there is an irreducible loop, as the optimization | 
|  | // is incompatible with it. | 
|  | // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods | 
|  | // with irreducible loops. | 
|  | if (GetGraph()->HasIrreducibleLoops()) { | 
|  | return HLoadClass::LoadKind::kDexCacheViaMethod; | 
|  | } | 
|  | break; | 
|  | case HLoadClass::LoadKind::kDexCacheViaMethod: | 
|  | break; | 
|  | } | 
|  | return desired_class_load_kind; | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) { | 
|  | if (cls->NeedsAccessCheck()) { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | CodeGenerator::CreateLoadClassLocationSummary( | 
|  | cls, | 
|  | Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
|  | Location::RegisterLocation(R0), | 
|  | /* code_generator_supports_read_barrier */ true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); | 
|  | LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) | 
|  | ? LocationSummary::kCallOnSlowPath | 
|  | : LocationSummary::kNoCall; | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); | 
|  | if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | } | 
|  |  | 
|  | HLoadClass::LoadKind load_kind = cls->GetLoadKind(); | 
|  | if (load_kind == HLoadClass::LoadKind::kReferrersClass || | 
|  | load_kind == HLoadClass::LoadKind::kDexCacheViaMethod || | 
|  | load_kind == HLoadClass::LoadKind::kDexCachePcRelative) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) { | 
|  | LocationSummary* locations = cls->GetLocations(); | 
|  | if (cls->NeedsAccessCheck()) { | 
|  | codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_); | 
|  | codegen_->InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Location out_loc = locations->Out(); | 
|  | Register out = out_loc.AsRegister<Register>(); | 
|  |  | 
|  | const ReadBarrierOption read_barrier_option = cls->IsInBootImage() | 
|  | ? kWithoutReadBarrier | 
|  | : kCompilerReadBarrierOption; | 
|  | bool generate_null_check = false; | 
|  | switch (cls->GetLoadKind()) { | 
|  | case HLoadClass::LoadKind::kReferrersClass: { | 
|  | DCHECK(!cls->CanCallRuntime()); | 
|  | DCHECK(!cls->MustGenerateClinitCheck()); | 
|  | // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ | 
|  | Register current_method = locations->InAt(0).AsRegister<Register>(); | 
|  | GenerateGcRootFieldLoad(cls, | 
|  | out_loc, | 
|  | current_method, | 
|  | ArtMethod::DeclaringClassOffset().Int32Value(), | 
|  | read_barrier_option); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kBootImageLinkTimeAddress: { | 
|  | DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); | 
|  | __ LoadLiteral(out, codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(), | 
|  | cls->GetTypeIndex())); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { | 
|  | DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); | 
|  | CodeGeneratorARM::PcRelativePatchInfo* labels = | 
|  | codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex()); | 
|  | __ BindTrackedLabel(&labels->movw_label); | 
|  | __ movw(out, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->movt_label); | 
|  | __ movt(out, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->add_pc_label); | 
|  | __ add(out, out, ShifterOperand(PC)); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kBootImageAddress: { | 
|  | DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); | 
|  | DCHECK_NE(cls->GetAddress(), 0u); | 
|  | uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress()); | 
|  | __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address)); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kJitTableAddress: { | 
|  | __ LoadLiteral(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), | 
|  | cls->GetTypeIndex(), | 
|  | cls->GetAddress())); | 
|  | // /* GcRoot<mirror::Class> */ out = *out | 
|  | GenerateGcRootFieldLoad(cls, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kDexCachePcRelative: { | 
|  | Register base_reg = locations->InAt(0).AsRegister<Register>(); | 
|  | HArmDexCacheArraysBase* base = cls->InputAt(0)->AsArmDexCacheArraysBase(); | 
|  | int32_t offset = cls->GetDexCacheElementOffset() - base->GetElementOffset(); | 
|  | // /* GcRoot<mirror::Class> */ out = *(dex_cache_arrays_base + offset) | 
|  | GenerateGcRootFieldLoad(cls, out_loc, base_reg, offset, read_barrier_option); | 
|  | generate_null_check = !cls->IsInDexCache(); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kDexCacheViaMethod: { | 
|  | // /* GcRoot<mirror::Class>[] */ out = | 
|  | //        current_method.ptr_sized_fields_->dex_cache_resolved_types_ | 
|  | Register current_method = locations->InAt(0).AsRegister<Register>(); | 
|  | __ LoadFromOffset(kLoadWord, | 
|  | out, | 
|  | current_method, | 
|  | ArtMethod::DexCacheResolvedTypesOffset(kArmPointerSize).Int32Value()); | 
|  | // /* GcRoot<mirror::Class> */ out = out[type_index] | 
|  | size_t offset = CodeGenerator::GetCacheOffset(cls->GetTypeIndex().index_); | 
|  | GenerateGcRootFieldLoad(cls, out_loc, out, offset, read_barrier_option); | 
|  | generate_null_check = !cls->IsInDexCache(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (generate_null_check || cls->MustGenerateClinitCheck()) { | 
|  | DCHECK(cls->CanCallRuntime()); | 
|  | SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM( | 
|  | cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | if (generate_null_check) { | 
|  | __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); | 
|  | } | 
|  | if (cls->MustGenerateClinitCheck()) { | 
|  | GenerateClassInitializationCheck(slow_path, out); | 
|  | } else { | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | if (check->HasUses()) { | 
|  | locations->SetOut(Location::SameAsFirstInput()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) { | 
|  | // We assume the class is not null. | 
|  | SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM( | 
|  | check->GetLoadClass(), check, check->GetDexPc(), true); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | GenerateClassInitializationCheck(slow_path, | 
|  | check->GetLocations()->InAt(0).AsRegister<Register>()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateClassInitializationCheck( | 
|  | SlowPathCodeARM* slow_path, Register class_reg) { | 
|  | __ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value()); | 
|  | __ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized)); | 
|  | __ b(slow_path->GetEntryLabel(), LT); | 
|  | // Even if the initialized flag is set, we may be in a situation where caches are not synced | 
|  | // properly. Therefore, we do a memory fence. | 
|  | __ dmb(ISH); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | HLoadString::LoadKind CodeGeneratorARM::GetSupportedLoadStringKind( | 
|  | HLoadString::LoadKind desired_string_load_kind) { | 
|  | switch (desired_string_load_kind) { | 
|  | case HLoadString::LoadKind::kBootImageLinkTimeAddress: | 
|  | DCHECK(!GetCompilerOptions().GetCompilePic()); | 
|  | break; | 
|  | case HLoadString::LoadKind::kBootImageLinkTimePcRelative: | 
|  | DCHECK(GetCompilerOptions().GetCompilePic()); | 
|  | break; | 
|  | case HLoadString::LoadKind::kBootImageAddress: | 
|  | break; | 
|  | case HLoadString::LoadKind::kBssEntry: | 
|  | DCHECK(!Runtime::Current()->UseJitCompilation()); | 
|  | break; | 
|  | case HLoadString::LoadKind::kJitTableAddress: | 
|  | DCHECK(Runtime::Current()->UseJitCompilation()); | 
|  | break; | 
|  | case HLoadString::LoadKind::kDexCacheViaMethod: | 
|  | break; | 
|  | } | 
|  | return desired_string_load_kind; | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitLoadString(HLoadString* load) { | 
|  | LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); | 
|  | HLoadString::LoadKind load_kind = load->GetLoadKind(); | 
|  | if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) { | 
|  | locations->SetOut(Location::RegisterLocation(R0)); | 
|  | } else { | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | if (load_kind == HLoadString::LoadKind::kBssEntry) { | 
|  | if (!kUseReadBarrier || kUseBakerReadBarrier) { | 
|  | // Rely on the pResolveString and/or marking to save everything, including temps. | 
|  | // Note that IP may theoretically be clobbered by saving/restoring the live register | 
|  | // (only one thanks to the custom calling convention), so we request a different temp. | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | RegisterSet caller_saves = RegisterSet::Empty(); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
|  | // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK() | 
|  | // that the the kPrimNot result register is the same as the first argument register. | 
|  | locations->SetCustomSlowPathCallerSaves(caller_saves); | 
|  | } else { | 
|  | // For non-Baker read barrier we have a temp-clobbering call. | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) { | 
|  | LocationSummary* locations = load->GetLocations(); | 
|  | Location out_loc = locations->Out(); | 
|  | Register out = out_loc.AsRegister<Register>(); | 
|  | HLoadString::LoadKind load_kind = load->GetLoadKind(); | 
|  |  | 
|  | switch (load_kind) { | 
|  | case HLoadString::LoadKind::kBootImageLinkTimeAddress: { | 
|  | __ LoadLiteral(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(), | 
|  | load->GetStringIndex())); | 
|  | return;  // No dex cache slow path. | 
|  | } | 
|  | case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { | 
|  | DCHECK(codegen_->GetCompilerOptions().IsBootImage()); | 
|  | CodeGeneratorARM::PcRelativePatchInfo* labels = | 
|  | codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex().index_); | 
|  | __ BindTrackedLabel(&labels->movw_label); | 
|  | __ movw(out, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->movt_label); | 
|  | __ movt(out, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->add_pc_label); | 
|  | __ add(out, out, ShifterOperand(PC)); | 
|  | return;  // No dex cache slow path. | 
|  | } | 
|  | case HLoadString::LoadKind::kBootImageAddress: { | 
|  | DCHECK_NE(load->GetAddress(), 0u); | 
|  | uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress()); | 
|  | __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address)); | 
|  | return;  // No dex cache slow path. | 
|  | } | 
|  | case HLoadString::LoadKind::kBssEntry: { | 
|  | DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); | 
|  | Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
|  | CodeGeneratorARM::PcRelativePatchInfo* labels = | 
|  | codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex().index_); | 
|  | __ BindTrackedLabel(&labels->movw_label); | 
|  | __ movw(temp, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->movt_label); | 
|  | __ movt(temp, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->add_pc_label); | 
|  | __ add(temp, temp, ShifterOperand(PC)); | 
|  | GenerateGcRootFieldLoad(load, out_loc, temp, /* offset */ 0, kCompilerReadBarrierOption); | 
|  | SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | return; | 
|  | } | 
|  | case HLoadString::LoadKind::kJitTableAddress: { | 
|  | __ LoadLiteral(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), | 
|  | load->GetStringIndex())); | 
|  | // /* GcRoot<mirror::String> */ out = *out | 
|  | GenerateGcRootFieldLoad(load, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption); | 
|  | return; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TODO: Consider re-adding the compiler code to do string dex cache lookup again. | 
|  | DCHECK(load_kind == HLoadString::LoadKind::kDexCacheViaMethod); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(0), out); | 
|  | __ LoadImmediate(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_); | 
|  | codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); | 
|  | } | 
|  |  | 
|  | static int32_t GetExceptionTlsOffset() { | 
|  | return Thread::ExceptionOffset<kArmPointerSize>().Int32Value(); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitLoadException(HLoadException* load) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) { | 
|  | Register out = load->GetLocations()->Out().AsRegister<Register>(); | 
|  | __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitClearException(HClearException* clear) { | 
|  | new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { | 
|  | __ LoadImmediate(IP, 0); | 
|  | __ StoreToOffset(kStoreWord, IP, TR, GetExceptionTlsOffset()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitThrow(HThrow* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) { | 
|  | codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); | 
|  | } | 
|  |  | 
|  | // Temp is used for read barrier. | 
|  | static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { | 
|  | if (kEmitCompilerReadBarrier && | 
|  | (kUseBakerReadBarrier || | 
|  | type_check_kind == TypeCheckKind::kAbstractClassCheck || | 
|  | type_check_kind == TypeCheckKind::kClassHierarchyCheck || | 
|  | type_check_kind == TypeCheckKind::kArrayObjectCheck)) { | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Interface case has 3 temps, one for holding the number of interfaces, one for the current | 
|  | // interface pointer, one for loading the current interface. | 
|  | // The other checks have one temp for loading the object's class. | 
|  | static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { | 
|  | if (type_check_kind == TypeCheckKind::kInterfaceCheck) { | 
|  | return 3; | 
|  | } | 
|  | return 1 + NumberOfInstanceOfTemps(type_check_kind); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) { | 
|  | LocationSummary::CallKind call_kind = LocationSummary::kNoCall; | 
|  | TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
|  | bool baker_read_barrier_slow_path = false; | 
|  | switch (type_check_kind) { | 
|  | case TypeCheckKind::kExactCheck: | 
|  | case TypeCheckKind::kAbstractClassCheck: | 
|  | case TypeCheckKind::kClassHierarchyCheck: | 
|  | case TypeCheckKind::kArrayObjectCheck: | 
|  | call_kind = | 
|  | kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; | 
|  | baker_read_barrier_slow_path = kUseBakerReadBarrier; | 
|  | break; | 
|  | case TypeCheckKind::kArrayCheck: | 
|  | case TypeCheckKind::kUnresolvedCheck: | 
|  | case TypeCheckKind::kInterfaceCheck: | 
|  | call_kind = LocationSummary::kCallOnSlowPath; | 
|  | break; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); | 
|  | if (baker_read_barrier_slow_path) { | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | } | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | // The "out" register is used as a temporary, so it overlaps with the inputs. | 
|  | // Note that TypeCheckSlowPathARM uses this register too. | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
|  | locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) { | 
|  | TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location obj_loc = locations->InAt(0); | 
|  | Register obj = obj_loc.AsRegister<Register>(); | 
|  | Register cls = locations->InAt(1).AsRegister<Register>(); | 
|  | Location out_loc = locations->Out(); | 
|  | Register out = out_loc.AsRegister<Register>(); | 
|  | const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); | 
|  | DCHECK_LE(num_temps, 1u); | 
|  | Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); | 
|  | uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
|  | uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
|  | uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
|  | uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
|  | Label done, zero; | 
|  | SlowPathCodeARM* slow_path = nullptr; | 
|  |  | 
|  | // Return 0 if `obj` is null. | 
|  | // avoid null check if we know obj is not null. | 
|  | if (instruction->MustDoNullCheck()) { | 
|  | __ CompareAndBranchIfZero(obj, &zero); | 
|  | } | 
|  |  | 
|  | switch (type_check_kind) { | 
|  | case TypeCheckKind::kExactCheck: { | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | kCompilerReadBarrierOption); | 
|  | __ cmp(out, ShifterOperand(cls)); | 
|  | // Classes must be equal for the instanceof to succeed. | 
|  | __ b(&zero, NE); | 
|  | __ LoadImmediate(out, 1); | 
|  | __ b(&done); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kAbstractClassCheck: { | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | kCompilerReadBarrierOption); | 
|  | // If the class is abstract, we eagerly fetch the super class of the | 
|  | // object to avoid doing a comparison we know will fail. | 
|  | Label loop; | 
|  | __ Bind(&loop); | 
|  | // /* HeapReference<Class> */ out = out->super_class_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | out_loc, | 
|  | super_offset, | 
|  | maybe_temp_loc, | 
|  | kCompilerReadBarrierOption); | 
|  | // If `out` is null, we use it for the result, and jump to `done`. | 
|  | __ CompareAndBranchIfZero(out, &done); | 
|  | __ cmp(out, ShifterOperand(cls)); | 
|  | __ b(&loop, NE); | 
|  | __ LoadImmediate(out, 1); | 
|  | if (zero.IsLinked()) { | 
|  | __ b(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kClassHierarchyCheck: { | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | kCompilerReadBarrierOption); | 
|  | // Walk over the class hierarchy to find a match. | 
|  | Label loop, success; | 
|  | __ Bind(&loop); | 
|  | __ cmp(out, ShifterOperand(cls)); | 
|  | __ b(&success, EQ); | 
|  | // /* HeapReference<Class> */ out = out->super_class_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | out_loc, | 
|  | super_offset, | 
|  | maybe_temp_loc, | 
|  | kCompilerReadBarrierOption); | 
|  | __ CompareAndBranchIfNonZero(out, &loop); | 
|  | // If `out` is null, we use it for the result, and jump to `done`. | 
|  | __ b(&done); | 
|  | __ Bind(&success); | 
|  | __ LoadImmediate(out, 1); | 
|  | if (zero.IsLinked()) { | 
|  | __ b(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kArrayObjectCheck: { | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | kCompilerReadBarrierOption); | 
|  | // Do an exact check. | 
|  | Label exact_check; | 
|  | __ cmp(out, ShifterOperand(cls)); | 
|  | __ b(&exact_check, EQ); | 
|  | // Otherwise, we need to check that the object's class is a non-primitive array. | 
|  | // /* HeapReference<Class> */ out = out->component_type_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | out_loc, | 
|  | component_offset, | 
|  | maybe_temp_loc, | 
|  | kCompilerReadBarrierOption); | 
|  | // If `out` is null, we use it for the result, and jump to `done`. | 
|  | __ CompareAndBranchIfZero(out, &done); | 
|  | __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset); | 
|  | static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
|  | __ CompareAndBranchIfNonZero(out, &zero); | 
|  | __ Bind(&exact_check); | 
|  | __ LoadImmediate(out, 1); | 
|  | __ b(&done); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kArrayCheck: { | 
|  | // No read barrier since the slow path will retry upon failure. | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | kWithoutReadBarrier); | 
|  | __ cmp(out, ShifterOperand(cls)); | 
|  | DCHECK(locations->OnlyCallsOnSlowPath()); | 
|  | slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction, | 
|  | /* is_fatal */ false); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | __ b(slow_path->GetEntryLabel(), NE); | 
|  | __ LoadImmediate(out, 1); | 
|  | if (zero.IsLinked()) { | 
|  | __ b(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kUnresolvedCheck: | 
|  | case TypeCheckKind::kInterfaceCheck: { | 
|  | // Note that we indeed only call on slow path, but we always go | 
|  | // into the slow path for the unresolved and interface check | 
|  | // cases. | 
|  | // | 
|  | // We cannot directly call the InstanceofNonTrivial runtime | 
|  | // entry point without resorting to a type checking slow path | 
|  | // here (i.e. by calling InvokeRuntime directly), as it would | 
|  | // require to assign fixed registers for the inputs of this | 
|  | // HInstanceOf instruction (following the runtime calling | 
|  | // convention), which might be cluttered by the potential first | 
|  | // read barrier emission at the beginning of this method. | 
|  | // | 
|  | // TODO: Introduce a new runtime entry point taking the object | 
|  | // to test (instead of its class) as argument, and let it deal | 
|  | // with the read barrier issues. This will let us refactor this | 
|  | // case of the `switch` code as it was previously (with a direct | 
|  | // call to the runtime not using a type checking slow path). | 
|  | // This should also be beneficial for the other cases above. | 
|  | DCHECK(locations->OnlyCallsOnSlowPath()); | 
|  | slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction, | 
|  | /* is_fatal */ false); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | __ b(slow_path->GetEntryLabel()); | 
|  | if (zero.IsLinked()) { | 
|  | __ b(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (zero.IsLinked()) { | 
|  | __ Bind(&zero); | 
|  | __ LoadImmediate(out, 0); | 
|  | } | 
|  |  | 
|  | if (done.IsLinked()) { | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | if (slow_path != nullptr) { | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) { | 
|  | LocationSummary::CallKind call_kind = LocationSummary::kNoCall; | 
|  | bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); | 
|  |  | 
|  | TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
|  | switch (type_check_kind) { | 
|  | case TypeCheckKind::kExactCheck: | 
|  | case TypeCheckKind::kAbstractClassCheck: | 
|  | case TypeCheckKind::kClassHierarchyCheck: | 
|  | case TypeCheckKind::kArrayObjectCheck: | 
|  | call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ? | 
|  | LocationSummary::kCallOnSlowPath : | 
|  | LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path. | 
|  | break; | 
|  | case TypeCheckKind::kArrayCheck: | 
|  | case TypeCheckKind::kUnresolvedCheck: | 
|  | case TypeCheckKind::kInterfaceCheck: | 
|  | call_kind = LocationSummary::kCallOnSlowPath; | 
|  | break; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) { | 
|  | TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location obj_loc = locations->InAt(0); | 
|  | Register obj = obj_loc.AsRegister<Register>(); | 
|  | Register cls = locations->InAt(1).AsRegister<Register>(); | 
|  | Location temp_loc = locations->GetTemp(0); | 
|  | Register temp = temp_loc.AsRegister<Register>(); | 
|  | const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); | 
|  | DCHECK_LE(num_temps, 3u); | 
|  | Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); | 
|  | Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); | 
|  | const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
|  | const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
|  | const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
|  | const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
|  | const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); | 
|  | const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); | 
|  | const uint32_t object_array_data_offset = | 
|  | mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); | 
|  |  | 
|  | // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases | 
|  | // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding | 
|  | // read barriers is done for performance and code size reasons. | 
|  | bool is_type_check_slow_path_fatal = false; | 
|  | if (!kEmitCompilerReadBarrier) { | 
|  | is_type_check_slow_path_fatal = | 
|  | (type_check_kind == TypeCheckKind::kExactCheck || | 
|  | type_check_kind == TypeCheckKind::kAbstractClassCheck || | 
|  | type_check_kind == TypeCheckKind::kClassHierarchyCheck || | 
|  | type_check_kind == TypeCheckKind::kArrayObjectCheck) && | 
|  | !instruction->CanThrowIntoCatchBlock(); | 
|  | } | 
|  | SlowPathCodeARM* type_check_slow_path = | 
|  | new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction, | 
|  | is_type_check_slow_path_fatal); | 
|  | codegen_->AddSlowPath(type_check_slow_path); | 
|  |  | 
|  | Label done; | 
|  | // Avoid null check if we know obj is not null. | 
|  | if (instruction->MustDoNullCheck()) { | 
|  | __ CompareAndBranchIfZero(obj, &done); | 
|  | } | 
|  |  | 
|  | switch (type_check_kind) { | 
|  | case TypeCheckKind::kExactCheck: | 
|  | case TypeCheckKind::kArrayCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | __ cmp(temp, ShifterOperand(cls)); | 
|  | // Jump to slow path for throwing the exception or doing a | 
|  | // more involved array check. | 
|  | __ b(type_check_slow_path->GetEntryLabel(), NE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kAbstractClassCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // If the class is abstract, we eagerly fetch the super class of the | 
|  | // object to avoid doing a comparison we know will fail. | 
|  | Label loop; | 
|  | __ Bind(&loop); | 
|  | // /* HeapReference<Class> */ temp = temp->super_class_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | temp_loc, | 
|  | super_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // If the class reference currently in `temp` is null, jump to the slow path to throw the | 
|  | // exception. | 
|  | __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); | 
|  |  | 
|  | // Otherwise, compare the classes. | 
|  | __ cmp(temp, ShifterOperand(cls)); | 
|  | __ b(&loop, NE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kClassHierarchyCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // Walk over the class hierarchy to find a match. | 
|  | Label loop; | 
|  | __ Bind(&loop); | 
|  | __ cmp(temp, ShifterOperand(cls)); | 
|  | __ b(&done, EQ); | 
|  |  | 
|  | // /* HeapReference<Class> */ temp = temp->super_class_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | temp_loc, | 
|  | super_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // If the class reference currently in `temp` is null, jump to the slow path to throw the | 
|  | // exception. | 
|  | __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); | 
|  | // Otherwise, jump to the beginning of the loop. | 
|  | __ b(&loop); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kArrayObjectCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // Do an exact check. | 
|  | __ cmp(temp, ShifterOperand(cls)); | 
|  | __ b(&done, EQ); | 
|  |  | 
|  | // Otherwise, we need to check that the object's class is a non-primitive array. | 
|  | // /* HeapReference<Class> */ temp = temp->component_type_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | temp_loc, | 
|  | component_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  | // If the component type is null, jump to the slow path to throw the exception. | 
|  | __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); | 
|  | // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type` | 
|  | // to further check that this component type is not a primitive type. | 
|  | __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset); | 
|  | static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot"); | 
|  | __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kUnresolvedCheck: | 
|  | // We always go into the type check slow path for the unresolved check case. | 
|  | // We cannot directly call the CheckCast runtime entry point | 
|  | // without resorting to a type checking slow path here (i.e. by | 
|  | // calling InvokeRuntime directly), as it would require to | 
|  | // assign fixed registers for the inputs of this HInstanceOf | 
|  | // instruction (following the runtime calling convention), which | 
|  | // might be cluttered by the potential first read barrier | 
|  | // emission at the beginning of this method. | 
|  |  | 
|  | __ b(type_check_slow_path->GetEntryLabel()); | 
|  | break; | 
|  |  | 
|  | case TypeCheckKind::kInterfaceCheck: { | 
|  | // Avoid read barriers to improve performance of the fast path. We can not get false | 
|  | // positives by doing this. | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // /* HeapReference<Class> */ temp = temp->iftable_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | temp_loc, | 
|  | iftable_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  | // Iftable is never null. | 
|  | __ ldr(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset)); | 
|  | // Loop through the iftable and check if any class matches. | 
|  | Label start_loop; | 
|  | __ Bind(&start_loop); | 
|  | __ CompareAndBranchIfZero(maybe_temp2_loc.AsRegister<Register>(), | 
|  | type_check_slow_path->GetEntryLabel()); | 
|  | __ ldr(maybe_temp3_loc.AsRegister<Register>(), Address(temp, object_array_data_offset)); | 
|  | __ MaybeUnpoisonHeapReference(maybe_temp3_loc.AsRegister<Register>()); | 
|  | // Go to next interface. | 
|  | __ add(temp, temp, ShifterOperand(2 * kHeapReferenceSize)); | 
|  | __ sub(maybe_temp2_loc.AsRegister<Register>(), | 
|  | maybe_temp2_loc.AsRegister<Register>(), | 
|  | ShifterOperand(2)); | 
|  | // Compare the classes and continue the loop if they do not match. | 
|  | __ cmp(cls, ShifterOperand(maybe_temp3_loc.AsRegister<Register>())); | 
|  | __ b(&start_loop, NE); | 
|  | break; | 
|  | } | 
|  | } | 
|  | __ Bind(&done); | 
|  |  | 
|  | __ Bind(type_check_slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) { | 
|  | codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, | 
|  | instruction, | 
|  | instruction->GetDexPc()); | 
|  | if (instruction->IsEnter()) { | 
|  | CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); | 
|  | } else { | 
|  | CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); } | 
|  | void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); } | 
|  | void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); } | 
|  |  | 
|  | void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | DCHECK(instruction->GetResultType() == Primitive::kPrimInt | 
|  | || instruction->GetResultType() == Primitive::kPrimLong); | 
|  | // Note: GVN reorders commutative operations to have the constant on the right hand side. | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode)); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) { | 
|  | HandleBitwiseOperation(instruction); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) { | 
|  | HandleBitwiseOperation(instruction); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) { | 
|  | HandleBitwiseOperation(instruction); | 
|  | } | 
|  |  | 
|  |  | 
|  | void LocationsBuilderARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | DCHECK(instruction->GetResultType() == Primitive::kPrimInt | 
|  | || instruction->GetResultType() == Primitive::kPrimLong); | 
|  |  | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location first = locations->InAt(0); | 
|  | Location second = locations->InAt(1); | 
|  | Location out = locations->Out(); | 
|  |  | 
|  | if (instruction->GetResultType() == Primitive::kPrimInt) { | 
|  | Register first_reg = first.AsRegister<Register>(); | 
|  | ShifterOperand second_reg(second.AsRegister<Register>()); | 
|  | Register out_reg = out.AsRegister<Register>(); | 
|  |  | 
|  | switch (instruction->GetOpKind()) { | 
|  | case HInstruction::kAnd: | 
|  | __ bic(out_reg, first_reg, second_reg); | 
|  | break; | 
|  | case HInstruction::kOr: | 
|  | __ orn(out_reg, first_reg, second_reg); | 
|  | break; | 
|  | // There is no EON on arm. | 
|  | case HInstruction::kXor: | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return; | 
|  |  | 
|  | } else { | 
|  | DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); | 
|  | Register first_low = first.AsRegisterPairLow<Register>(); | 
|  | Register first_high = first.AsRegisterPairHigh<Register>(); | 
|  | ShifterOperand second_low(second.AsRegisterPairLow<Register>()); | 
|  | ShifterOperand second_high(second.AsRegisterPairHigh<Register>()); | 
|  | Register out_low = out.AsRegisterPairLow<Register>(); | 
|  | Register out_high = out.AsRegisterPairHigh<Register>(); | 
|  |  | 
|  | switch (instruction->GetOpKind()) { | 
|  | case HInstruction::kAnd: | 
|  | __ bic(out_low, first_low, second_low); | 
|  | __ bic(out_high, first_high, second_high); | 
|  | break; | 
|  | case HInstruction::kOr: | 
|  | __ orn(out_low, first_low, second_low); | 
|  | __ orn(out_high, first_high, second_high); | 
|  | break; | 
|  | // There is no EON on arm. | 
|  | case HInstruction::kXor: | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateAndConst(Register out, Register first, uint32_t value) { | 
|  | // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier). | 
|  | if (value == 0xffffffffu) { | 
|  | if (out != first) { | 
|  | __ mov(out, ShifterOperand(first)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (value == 0u) { | 
|  | __ mov(out, ShifterOperand(0)); | 
|  | return; | 
|  | } | 
|  | ShifterOperand so; | 
|  | if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, AND, value, &so)) { | 
|  | __ and_(out, first, so); | 
|  | } else { | 
|  | DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, BIC, ~value, &so)); | 
|  | __ bic(out, first, ShifterOperand(~value)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateOrrConst(Register out, Register first, uint32_t value) { | 
|  | // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier). | 
|  | if (value == 0u) { | 
|  | if (out != first) { | 
|  | __ mov(out, ShifterOperand(first)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (value == 0xffffffffu) { | 
|  | __ mvn(out, ShifterOperand(0)); | 
|  | return; | 
|  | } | 
|  | ShifterOperand so; | 
|  | if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORR, value, &so)) { | 
|  | __ orr(out, first, so); | 
|  | } else { | 
|  | DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORN, ~value, &so)); | 
|  | __ orn(out, first, ShifterOperand(~value)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateEorConst(Register out, Register first, uint32_t value) { | 
|  | // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier). | 
|  | if (value == 0u) { | 
|  | if (out != first) { | 
|  | __ mov(out, ShifterOperand(first)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | __ eor(out, first, ShifterOperand(value)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateAddLongConst(Location out, | 
|  | Location first, | 
|  | uint64_t value) { | 
|  | Register out_low = out.AsRegisterPairLow<Register>(); | 
|  | Register out_high = out.AsRegisterPairHigh<Register>(); | 
|  | Register first_low = first.AsRegisterPairLow<Register>(); | 
|  | Register first_high = first.AsRegisterPairHigh<Register>(); | 
|  | uint32_t value_low = Low32Bits(value); | 
|  | uint32_t value_high = High32Bits(value); | 
|  | if (value_low == 0u) { | 
|  | if (out_low != first_low) { | 
|  | __ mov(out_low, ShifterOperand(first_low)); | 
|  | } | 
|  | __ AddConstant(out_high, first_high, value_high); | 
|  | return; | 
|  | } | 
|  | __ AddConstantSetFlags(out_low, first_low, value_low); | 
|  | ShifterOperand so; | 
|  | if (__ ShifterOperandCanHold(out_high, first_high, ADC, value_high, kCcDontCare, &so)) { | 
|  | __ adc(out_high, first_high, so); | 
|  | } else if (__ ShifterOperandCanHold(out_low, first_low, SBC, ~value_high, kCcDontCare, &so)) { | 
|  | __ sbc(out_high, first_high, so); | 
|  | } else { | 
|  | LOG(FATAL) << "Unexpected constant " << value_high; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location first = locations->InAt(0); | 
|  | Location second = locations->InAt(1); | 
|  | Location out = locations->Out(); | 
|  |  | 
|  | if (second.IsConstant()) { | 
|  | uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant())); | 
|  | uint32_t value_low = Low32Bits(value); | 
|  | if (instruction->GetResultType() == Primitive::kPrimInt) { | 
|  | Register first_reg = first.AsRegister<Register>(); | 
|  | Register out_reg = out.AsRegister<Register>(); | 
|  | if (instruction->IsAnd()) { | 
|  | GenerateAndConst(out_reg, first_reg, value_low); | 
|  | } else if (instruction->IsOr()) { | 
|  | GenerateOrrConst(out_reg, first_reg, value_low); | 
|  | } else { | 
|  | DCHECK(instruction->IsXor()); | 
|  | GenerateEorConst(out_reg, first_reg, value_low); | 
|  | } | 
|  | } else { | 
|  | DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); | 
|  | uint32_t value_high = High32Bits(value); | 
|  | Register first_low = first.AsRegisterPairLow<Register>(); | 
|  | Register first_high = first.AsRegisterPairHigh<Register>(); | 
|  | Register out_low = out.AsRegisterPairLow<Register>(); | 
|  | Register out_high = out.AsRegisterPairHigh<Register>(); | 
|  | if (instruction->IsAnd()) { | 
|  | GenerateAndConst(out_low, first_low, value_low); | 
|  | GenerateAndConst(out_high, first_high, value_high); | 
|  | } else if (instruction->IsOr()) { | 
|  | GenerateOrrConst(out_low, first_low, value_low); | 
|  | GenerateOrrConst(out_high, first_high, value_high); | 
|  | } else { | 
|  | DCHECK(instruction->IsXor()); | 
|  | GenerateEorConst(out_low, first_low, value_low); | 
|  | GenerateEorConst(out_high, first_high, value_high); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (instruction->GetResultType() == Primitive::kPrimInt) { | 
|  | Register first_reg = first.AsRegister<Register>(); | 
|  | ShifterOperand second_reg(second.AsRegister<Register>()); | 
|  | Register out_reg = out.AsRegister<Register>(); | 
|  | if (instruction->IsAnd()) { | 
|  | __ and_(out_reg, first_reg, second_reg); | 
|  | } else if (instruction->IsOr()) { | 
|  | __ orr(out_reg, first_reg, second_reg); | 
|  | } else { | 
|  | DCHECK(instruction->IsXor()); | 
|  | __ eor(out_reg, first_reg, second_reg); | 
|  | } | 
|  | } else { | 
|  | DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); | 
|  | Register first_low = first.AsRegisterPairLow<Register>(); | 
|  | Register first_high = first.AsRegisterPairHigh<Register>(); | 
|  | ShifterOperand second_low(second.AsRegisterPairLow<Register>()); | 
|  | ShifterOperand second_high(second.AsRegisterPairHigh<Register>()); | 
|  | Register out_low = out.AsRegisterPairLow<Register>(); | 
|  | Register out_high = out.AsRegisterPairHigh<Register>(); | 
|  | if (instruction->IsAnd()) { | 
|  | __ and_(out_low, first_low, second_low); | 
|  | __ and_(out_high, first_high, second_high); | 
|  | } else if (instruction->IsOr()) { | 
|  | __ orr(out_low, first_low, second_low); | 
|  | __ orr(out_high, first_high, second_high); | 
|  | } else { | 
|  | DCHECK(instruction->IsXor()); | 
|  | __ eor(out_low, first_low, second_low); | 
|  | __ eor(out_high, first_high, second_high); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateReferenceLoadOneRegister( | 
|  | HInstruction* instruction, | 
|  | Location out, | 
|  | uint32_t offset, | 
|  | Location maybe_temp, | 
|  | ReadBarrierOption read_barrier_option) { | 
|  | Register out_reg = out.AsRegister<Register>(); | 
|  | if (read_barrier_option == kWithReadBarrier) { | 
|  | CHECK(kEmitCompilerReadBarrier); | 
|  | DCHECK(maybe_temp.IsRegister()) << maybe_temp; | 
|  | if (kUseBakerReadBarrier) { | 
|  | // Load with fast path based Baker's read barrier. | 
|  | // /* HeapReference<Object> */ out = *(out + offset) | 
|  | codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
|  | instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false); | 
|  | } else { | 
|  | // Load with slow path based read barrier. | 
|  | // Save the value of `out` into `maybe_temp` before overwriting it | 
|  | // in the following move operation, as we will need it for the | 
|  | // read barrier below. | 
|  | __ Mov(maybe_temp.AsRegister<Register>(), out_reg); | 
|  | // /* HeapReference<Object> */ out = *(out + offset) | 
|  | __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); | 
|  | codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); | 
|  | } | 
|  | } else { | 
|  | // Plain load with no read barrier. | 
|  | // /* HeapReference<Object> */ out = *(out + offset) | 
|  | __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); | 
|  | __ MaybeUnpoisonHeapReference(out_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateReferenceLoadTwoRegisters( | 
|  | HInstruction* instruction, | 
|  | Location out, | 
|  | Location obj, | 
|  | uint32_t offset, | 
|  | Location maybe_temp, | 
|  | ReadBarrierOption read_barrier_option) { | 
|  | Register out_reg = out.AsRegister<Register>(); | 
|  | Register obj_reg = obj.AsRegister<Register>(); | 
|  | if (read_barrier_option == kWithReadBarrier) { | 
|  | CHECK(kEmitCompilerReadBarrier); | 
|  | if (kUseBakerReadBarrier) { | 
|  | DCHECK(maybe_temp.IsRegister()) << maybe_temp; | 
|  | // Load with fast path based Baker's read barrier. | 
|  | // /* HeapReference<Object> */ out = *(obj + offset) | 
|  | codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
|  | instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false); | 
|  | } else { | 
|  | // Load with slow path based read barrier. | 
|  | // /* HeapReference<Object> */ out = *(obj + offset) | 
|  | __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); | 
|  | codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); | 
|  | } | 
|  | } else { | 
|  | // Plain load with no read barrier. | 
|  | // /* HeapReference<Object> */ out = *(obj + offset) | 
|  | __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); | 
|  | __ MaybeUnpoisonHeapReference(out_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::GenerateGcRootFieldLoad(HInstruction* instruction, | 
|  | Location root, | 
|  | Register obj, | 
|  | uint32_t offset, | 
|  | ReadBarrierOption read_barrier_option) { | 
|  | Register root_reg = root.AsRegister<Register>(); | 
|  | if (read_barrier_option == kWithReadBarrier) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | if (kUseBakerReadBarrier) { | 
|  | // Fast path implementation of art::ReadBarrier::BarrierForRoot when | 
|  | // Baker's read barrier are used: | 
|  | // | 
|  | //   root = obj.field; | 
|  | //   temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() | 
|  | //   if (temp != null) { | 
|  | //     root = temp(root) | 
|  | //   } | 
|  |  | 
|  | // /* GcRoot<mirror::Object> */ root = *(obj + offset) | 
|  | __ LoadFromOffset(kLoadWord, root_reg, obj, offset); | 
|  | static_assert( | 
|  | sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), | 
|  | "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " | 
|  | "have different sizes."); | 
|  | static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), | 
|  | "art::mirror::CompressedReference<mirror::Object> and int32_t " | 
|  | "have different sizes."); | 
|  |  | 
|  | // Slow path marking the GC root `root`. | 
|  | Location temp = Location::RegisterLocation(LR); | 
|  | SlowPathCodeARM* slow_path = | 
|  | new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM( | 
|  | instruction, | 
|  | root, | 
|  | /*entrypoint*/ temp); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  |  | 
|  | // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() | 
|  | const int32_t entry_point_offset = | 
|  | CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(root.reg()); | 
|  | // Loading the entrypoint does not require a load acquire since it is only changed when | 
|  | // threads are suspended or running a checkpoint. | 
|  | __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset); | 
|  | // The entrypoint is null when the GC is not marking, this prevents one load compared to | 
|  | // checking GetIsGcMarking. | 
|  | __ CompareAndBranchIfNonZero(temp.AsRegister<Register>(), slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } else { | 
|  | // GC root loaded through a slow path for read barriers other | 
|  | // than Baker's. | 
|  | // /* GcRoot<mirror::Object>* */ root = obj + offset | 
|  | __ AddConstant(root_reg, obj, offset); | 
|  | // /* mirror::Object* */ root = root->Read() | 
|  | codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); | 
|  | } | 
|  | } else { | 
|  | // Plain GC root load with no read barrier. | 
|  | // /* GcRoot<mirror::Object> */ root = *(obj + offset) | 
|  | __ LoadFromOffset(kLoadWord, root_reg, obj, offset); | 
|  | // Note that GC roots are not affected by heap poisoning, thus we | 
|  | // do not have to unpoison `root_reg` here. | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, | 
|  | Location ref, | 
|  | Register obj, | 
|  | uint32_t offset, | 
|  | Location temp, | 
|  | bool needs_null_check) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | DCHECK(kUseBakerReadBarrier); | 
|  |  | 
|  | // /* HeapReference<Object> */ ref = *(obj + offset) | 
|  | Location no_index = Location::NoLocation(); | 
|  | ScaleFactor no_scale_factor = TIMES_1; | 
|  | GenerateReferenceLoadWithBakerReadBarrier( | 
|  | instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, | 
|  | Location ref, | 
|  | Register obj, | 
|  | uint32_t data_offset, | 
|  | Location index, | 
|  | Location temp, | 
|  | bool needs_null_check) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | DCHECK(kUseBakerReadBarrier); | 
|  |  | 
|  | static_assert( | 
|  | sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
|  | "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
|  | // /* HeapReference<Object> */ ref = | 
|  | //     *(obj + data_offset + index * sizeof(HeapReference<Object>)) | 
|  | ScaleFactor scale_factor = TIMES_4; | 
|  | GenerateReferenceLoadWithBakerReadBarrier( | 
|  | instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, | 
|  | Location ref, | 
|  | Register obj, | 
|  | uint32_t offset, | 
|  | Location index, | 
|  | ScaleFactor scale_factor, | 
|  | Location temp, | 
|  | bool needs_null_check, | 
|  | bool always_update_field, | 
|  | Register* temp2) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | DCHECK(kUseBakerReadBarrier); | 
|  |  | 
|  | // In slow path based read barriers, the read barrier call is | 
|  | // inserted after the original load. However, in fast path based | 
|  | // Baker's read barriers, we need to perform the load of | 
|  | // mirror::Object::monitor_ *before* the original reference load. | 
|  | // This load-load ordering is required by the read barrier. | 
|  | // The fast path/slow path (for Baker's algorithm) should look like: | 
|  | // | 
|  | //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); | 
|  | //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering | 
|  | //   HeapReference<Object> ref = *src;  // Original reference load. | 
|  | //   bool is_gray = (rb_state == ReadBarrier::GrayState()); | 
|  | //   if (is_gray) { | 
|  | //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path. | 
|  | //   } | 
|  | // | 
|  | // Note: the original implementation in ReadBarrier::Barrier is | 
|  | // slightly more complex as it performs additional checks that we do | 
|  | // not do here for performance reasons. | 
|  |  | 
|  | Register ref_reg = ref.AsRegister<Register>(); | 
|  | Register temp_reg = temp.AsRegister<Register>(); | 
|  | uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); | 
|  |  | 
|  | // /* int32_t */ monitor = obj->monitor_ | 
|  | __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset); | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | // /* LockWord */ lock_word = LockWord(monitor) | 
|  | static_assert(sizeof(LockWord) == sizeof(int32_t), | 
|  | "art::LockWord and int32_t have different sizes."); | 
|  |  | 
|  | // Introduce a dependency on the lock_word including the rb_state, | 
|  | // which shall prevent load-load reordering without using | 
|  | // a memory barrier (which would be more expensive). | 
|  | // `obj` is unchanged by this operation, but its value now depends | 
|  | // on `temp_reg`. | 
|  | __ add(obj, obj, ShifterOperand(temp_reg, LSR, 32)); | 
|  |  | 
|  | // The actual reference load. | 
|  | if (index.IsValid()) { | 
|  | // Load types involving an "index": ArrayGet, | 
|  | // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject | 
|  | // intrinsics. | 
|  | // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor)) | 
|  | if (index.IsConstant()) { | 
|  | size_t computed_offset = | 
|  | (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset; | 
|  | __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset); | 
|  | } else { | 
|  | // Handle the special case of the | 
|  | // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject | 
|  | // intrinsics, which use a register pair as index ("long | 
|  | // offset"), of which only the low part contains data. | 
|  | Register index_reg = index.IsRegisterPair() | 
|  | ? index.AsRegisterPairLow<Register>() | 
|  | : index.AsRegister<Register>(); | 
|  | __ add(IP, obj, ShifterOperand(index_reg, LSL, scale_factor)); | 
|  | __ LoadFromOffset(kLoadWord, ref_reg, IP, offset); | 
|  | } | 
|  | } else { | 
|  | // /* HeapReference<Object> */ ref = *(obj + offset) | 
|  | __ LoadFromOffset(kLoadWord, ref_reg, obj, offset); | 
|  | } | 
|  |  | 
|  | // Object* ref = ref_addr->AsMirrorPtr() | 
|  | __ MaybeUnpoisonHeapReference(ref_reg); | 
|  |  | 
|  | // Slow path marking the object `ref` when it is gray. | 
|  | SlowPathCodeARM* slow_path; | 
|  | if (always_update_field) { | 
|  | DCHECK(temp2 != nullptr); | 
|  | // ReadBarrierMarkAndUpdateFieldSlowPathARM only supports address | 
|  | // of the form `obj + field_offset`, where `obj` is a register and | 
|  | // `field_offset` is a register pair (of which only the lower half | 
|  | // is used). Thus `offset` and `scale_factor` above are expected | 
|  | // to be null in this code path. | 
|  | DCHECK_EQ(offset, 0u); | 
|  | DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1); | 
|  | slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkAndUpdateFieldSlowPathARM( | 
|  | instruction, ref, obj, /* field_offset */ index, temp_reg, *temp2); | 
|  | } else { | 
|  | slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, ref); | 
|  | } | 
|  | AddSlowPath(slow_path); | 
|  |  | 
|  | // if (rb_state == ReadBarrier::GrayState()) | 
|  | //   ref = ReadBarrier::Mark(ref); | 
|  | // Given the numeric representation, it's enough to check the low bit of the | 
|  | // rb_state. We do that by shifting the bit out of the lock word with LSRS | 
|  | // which can be a 16-bit instruction unlike the TST immediate. | 
|  | static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); | 
|  | static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); | 
|  | __ Lsrs(temp_reg, temp_reg, LockWord::kReadBarrierStateShift + 1); | 
|  | __ b(slow_path->GetEntryLabel(), CS);  // Carry flag is the last bit shifted out by LSRS. | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateReadBarrierSlow(HInstruction* instruction, | 
|  | Location out, | 
|  | Location ref, | 
|  | Location obj, | 
|  | uint32_t offset, | 
|  | Location index) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  |  | 
|  | // Insert a slow path based read barrier *after* the reference load. | 
|  | // | 
|  | // If heap poisoning is enabled, the unpoisoning of the loaded | 
|  | // reference will be carried out by the runtime within the slow | 
|  | // path. | 
|  | // | 
|  | // Note that `ref` currently does not get unpoisoned (when heap | 
|  | // poisoning is enabled), which is alright as the `ref` argument is | 
|  | // not used by the artReadBarrierSlow entry point. | 
|  | // | 
|  | // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. | 
|  | SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) | 
|  | ReadBarrierForHeapReferenceSlowPathARM(instruction, out, ref, obj, offset, index); | 
|  | AddSlowPath(slow_path); | 
|  |  | 
|  | __ b(slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::MaybeGenerateReadBarrierSlow(HInstruction* instruction, | 
|  | Location out, | 
|  | Location ref, | 
|  | Location obj, | 
|  | uint32_t offset, | 
|  | Location index) { | 
|  | if (kEmitCompilerReadBarrier) { | 
|  | // Baker's read barriers shall be handled by the fast path | 
|  | // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier). | 
|  | DCHECK(!kUseBakerReadBarrier); | 
|  | // If heap poisoning is enabled, unpoisoning will be taken care of | 
|  | // by the runtime within the slow path. | 
|  | GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); | 
|  | } else if (kPoisonHeapReferences) { | 
|  | __ UnpoisonHeapReference(out.AsRegister<Register>()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateReadBarrierForRootSlow(HInstruction* instruction, | 
|  | Location out, | 
|  | Location root) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  |  | 
|  | // Insert a slow path based read barrier *after* the GC root load. | 
|  | // | 
|  | // Note that GC roots are not affected by heap poisoning, so we do | 
|  | // not need to do anything special for this here. | 
|  | SlowPathCodeARM* slow_path = | 
|  | new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM(instruction, out, root); | 
|  | AddSlowPath(slow_path); | 
|  |  | 
|  | __ b(slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM::GetSupportedInvokeStaticOrDirectDispatch( | 
|  | const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, | 
|  | HInvokeStaticOrDirect* invoke) { | 
|  | HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info; | 
|  | // We disable pc-relative load when there is an irreducible loop, as the optimization | 
|  | // is incompatible with it. | 
|  | // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods | 
|  | // with irreducible loops. | 
|  | if (GetGraph()->HasIrreducibleLoops() && | 
|  | (dispatch_info.method_load_kind == | 
|  | HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) { | 
|  | dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod; | 
|  | } | 
|  |  | 
|  | if (dispatch_info.code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative) { | 
|  | const DexFile& outer_dex_file = GetGraph()->GetDexFile(); | 
|  | if (&outer_dex_file != invoke->GetTargetMethod().dex_file) { | 
|  | // Calls across dex files are more likely to exceed the available BL range, | 
|  | // so use absolute patch with fixup if available and kCallArtMethod otherwise. | 
|  | HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = | 
|  | (desired_dispatch_info.method_load_kind == | 
|  | HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup) | 
|  | ? HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup | 
|  | : HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod; | 
|  | return HInvokeStaticOrDirect::DispatchInfo { | 
|  | dispatch_info.method_load_kind, | 
|  | code_ptr_location, | 
|  | dispatch_info.method_load_data, | 
|  | 0u | 
|  | }; | 
|  | } | 
|  | } | 
|  | return dispatch_info; | 
|  | } | 
|  |  | 
|  | Register CodeGeneratorARM::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, | 
|  | Register temp) { | 
|  | DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); | 
|  | Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); | 
|  | if (!invoke->GetLocations()->Intrinsified()) { | 
|  | return location.AsRegister<Register>(); | 
|  | } | 
|  | // For intrinsics we allow any location, so it may be on the stack. | 
|  | if (!location.IsRegister()) { | 
|  | __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex()); | 
|  | return temp; | 
|  | } | 
|  | // For register locations, check if the register was saved. If so, get it from the stack. | 
|  | // Note: There is a chance that the register was saved but not overwritten, so we could | 
|  | // save one load. However, since this is just an intrinsic slow path we prefer this | 
|  | // simple and more robust approach rather that trying to determine if that's the case. | 
|  | SlowPathCode* slow_path = GetCurrentSlowPath(); | 
|  | DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path. | 
|  | if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) { | 
|  | int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>()); | 
|  | __ LoadFromOffset(kLoadWord, temp, SP, stack_offset); | 
|  | return temp; | 
|  | } | 
|  | return location.AsRegister<Register>(); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { | 
|  | // For better instruction scheduling we load the direct code pointer before the method pointer. | 
|  | switch (invoke->GetCodePtrLocation()) { | 
|  | case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: | 
|  | // LR = code address from literal pool with link-time patch. | 
|  | __ LoadLiteral(LR, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod())); | 
|  | break; | 
|  | case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: | 
|  | // LR = invoke->GetDirectCodePtr(); | 
|  | __ LoadImmediate(LR, invoke->GetDirectCodePtr()); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp. | 
|  | switch (invoke->GetMethodLoadKind()) { | 
|  | case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { | 
|  | uint32_t offset = | 
|  | GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); | 
|  | // temp = thread->string_init_entrypoint | 
|  | __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, offset); | 
|  | break; | 
|  | } | 
|  | case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: | 
|  | callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); | 
|  | break; | 
|  | case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: | 
|  | __ LoadImmediate(temp.AsRegister<Register>(), invoke->GetMethodAddress()); | 
|  | break; | 
|  | case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: | 
|  | __ LoadLiteral(temp.AsRegister<Register>(), | 
|  | DeduplicateMethodAddressLiteral(invoke->GetTargetMethod())); | 
|  | break; | 
|  | case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { | 
|  | HArmDexCacheArraysBase* base = | 
|  | invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase(); | 
|  | Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke, | 
|  | temp.AsRegister<Register>()); | 
|  | int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset(); | 
|  | __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), base_reg, offset); | 
|  | break; | 
|  | } | 
|  | case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { | 
|  | Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); | 
|  | Register method_reg; | 
|  | Register reg = temp.AsRegister<Register>(); | 
|  | if (current_method.IsRegister()) { | 
|  | method_reg = current_method.AsRegister<Register>(); | 
|  | } else { | 
|  | DCHECK(invoke->GetLocations()->Intrinsified()); | 
|  | DCHECK(!current_method.IsValid()); | 
|  | method_reg = reg; | 
|  | __ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset); | 
|  | } | 
|  | // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; | 
|  | __ LoadFromOffset(kLoadWord, | 
|  | reg, | 
|  | method_reg, | 
|  | ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value()); | 
|  | // temp = temp[index_in_cache]; | 
|  | // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. | 
|  | uint32_t index_in_cache = invoke->GetDexMethodIndex(); | 
|  | __ LoadFromOffset(kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (invoke->GetCodePtrLocation()) { | 
|  | case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: | 
|  | __ bl(GetFrameEntryLabel()); | 
|  | break; | 
|  | case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: | 
|  | relative_call_patches_.emplace_back(*invoke->GetTargetMethod().dex_file, | 
|  | invoke->GetTargetMethod().dex_method_index); | 
|  | __ BindTrackedLabel(&relative_call_patches_.back().label); | 
|  | // Arbitrarily branch to the BL itself, override at link time. | 
|  | __ bl(&relative_call_patches_.back().label); | 
|  | break; | 
|  | case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: | 
|  | case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: | 
|  | // LR prepared above for better instruction scheduling. | 
|  | // LR() | 
|  | __ blx(LR); | 
|  | break; | 
|  | case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: | 
|  | // LR = callee_method->entry_point_from_quick_compiled_code_ | 
|  | __ LoadFromOffset( | 
|  | kLoadWord, LR, callee_method.AsRegister<Register>(), | 
|  | ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value()); | 
|  | // LR() | 
|  | __ blx(LR); | 
|  | break; | 
|  | } | 
|  |  | 
|  | DCHECK(!IsLeafMethod()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) { | 
|  | Register temp = temp_location.AsRegister<Register>(); | 
|  | uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
|  | invoke->GetVTableIndex(), kArmPointerSize).Uint32Value(); | 
|  |  | 
|  | // Use the calling convention instead of the location of the receiver, as | 
|  | // intrinsics may have put the receiver in a different register. In the intrinsics | 
|  | // slow path, the arguments have been moved to the right place, so here we are | 
|  | // guaranteed that the receiver is the first register of the calling convention. | 
|  | InvokeDexCallingConvention calling_convention; | 
|  | Register receiver = calling_convention.GetRegisterAt(0); | 
|  | uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
|  | // /* HeapReference<Class> */ temp = receiver->klass_ | 
|  | __ LoadFromOffset(kLoadWord, temp, receiver, class_offset); | 
|  | MaybeRecordImplicitNullCheck(invoke); | 
|  | // Instead of simply (possibly) unpoisoning `temp` here, we should | 
|  | // emit a read barrier for the previous class reference load. | 
|  | // However this is not required in practice, as this is an | 
|  | // intermediate/temporary reference and because the current | 
|  | // concurrent copying collector keeps the from-space memory | 
|  | // intact/accessible until the end of the marking phase (the | 
|  | // concurrent copying collector may not in the future). | 
|  | __ MaybeUnpoisonHeapReference(temp); | 
|  | // temp = temp->GetMethodAt(method_offset); | 
|  | uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset( | 
|  | kArmPointerSize).Int32Value(); | 
|  | __ LoadFromOffset(kLoadWord, temp, temp, method_offset); | 
|  | // LR = temp->GetEntryPoint(); | 
|  | __ LoadFromOffset(kLoadWord, LR, temp, entry_point); | 
|  | // LR(); | 
|  | __ blx(LR); | 
|  | } | 
|  |  | 
|  | CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeStringPatch( | 
|  | const DexFile& dex_file, uint32_t string_index) { | 
|  | return NewPcRelativePatch(dex_file, string_index, &pc_relative_string_patches_); | 
|  | } | 
|  |  | 
|  | CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeTypePatch( | 
|  | const DexFile& dex_file, dex::TypeIndex type_index) { | 
|  | return NewPcRelativePatch(dex_file, type_index.index_, &pc_relative_type_patches_); | 
|  | } | 
|  |  | 
|  | CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeDexCacheArrayPatch( | 
|  | const DexFile& dex_file, uint32_t element_offset) { | 
|  | return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_); | 
|  | } | 
|  |  | 
|  | CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativePatch( | 
|  | const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) { | 
|  | patches->emplace_back(dex_file, offset_or_index); | 
|  | return &patches->back(); | 
|  | } | 
|  |  | 
|  | Literal* CodeGeneratorARM::DeduplicateBootImageStringLiteral(const DexFile& dex_file, | 
|  | dex::StringIndex string_index) { | 
|  | return boot_image_string_patches_.GetOrCreate( | 
|  | StringReference(&dex_file, string_index), | 
|  | [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); | 
|  | } | 
|  |  | 
|  | Literal* CodeGeneratorARM::DeduplicateBootImageTypeLiteral(const DexFile& dex_file, | 
|  | dex::TypeIndex type_index) { | 
|  | return boot_image_type_patches_.GetOrCreate( | 
|  | TypeReference(&dex_file, type_index), | 
|  | [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); | 
|  | } | 
|  |  | 
|  | Literal* CodeGeneratorARM::DeduplicateBootImageAddressLiteral(uint32_t address) { | 
|  | bool needs_patch = GetCompilerOptions().GetIncludePatchInformation(); | 
|  | Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_; | 
|  | return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map); | 
|  | } | 
|  |  | 
|  | Literal* CodeGeneratorARM::DeduplicateJitStringLiteral(const DexFile& dex_file, | 
|  | dex::StringIndex string_index) { | 
|  | jit_string_roots_.Overwrite(StringReference(&dex_file, string_index), /* placeholder */ 0u); | 
|  | return jit_string_patches_.GetOrCreate( | 
|  | StringReference(&dex_file, string_index), | 
|  | [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); | 
|  | } | 
|  |  | 
|  | Literal* CodeGeneratorARM::DeduplicateJitClassLiteral(const DexFile& dex_file, | 
|  | dex::TypeIndex type_index, | 
|  | uint64_t address) { | 
|  | jit_class_roots_.Overwrite(TypeReference(&dex_file, type_index), address); | 
|  | return jit_class_patches_.GetOrCreate( | 
|  | TypeReference(&dex_file, type_index), | 
|  | [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); | 
|  | } | 
|  |  | 
|  | template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> | 
|  | inline void CodeGeneratorARM::EmitPcRelativeLinkerPatches( | 
|  | const ArenaDeque<PcRelativePatchInfo>& infos, | 
|  | ArenaVector<LinkerPatch>* linker_patches) { | 
|  | for (const PcRelativePatchInfo& info : infos) { | 
|  | const DexFile& dex_file = info.target_dex_file; | 
|  | size_t offset_or_index = info.offset_or_index; | 
|  | DCHECK(info.add_pc_label.IsBound()); | 
|  | uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position()); | 
|  | // Add MOVW patch. | 
|  | DCHECK(info.movw_label.IsBound()); | 
|  | uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position()); | 
|  | linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index)); | 
|  | // Add MOVT patch. | 
|  | DCHECK(info.movt_label.IsBound()); | 
|  | uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position()); | 
|  | linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { | 
|  | DCHECK(linker_patches->empty()); | 
|  | size_t size = | 
|  | method_patches_.size() + | 
|  | call_patches_.size() + | 
|  | relative_call_patches_.size() + | 
|  | /* MOVW+MOVT for each entry */ 2u * pc_relative_dex_cache_patches_.size() + | 
|  | boot_image_string_patches_.size() + | 
|  | /* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() + | 
|  | boot_image_type_patches_.size() + | 
|  | /* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() + | 
|  | boot_image_address_patches_.size(); | 
|  | linker_patches->reserve(size); | 
|  | for (const auto& entry : method_patches_) { | 
|  | const MethodReference& target_method = entry.first; | 
|  | Literal* literal = entry.second; | 
|  | DCHECK(literal->GetLabel()->IsBound()); | 
|  | uint32_t literal_offset = literal->GetLabel()->Position(); | 
|  | linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset, | 
|  | target_method.dex_file, | 
|  | target_method.dex_method_index)); | 
|  | } | 
|  | for (const auto& entry : call_patches_) { | 
|  | const MethodReference& target_method = entry.first; | 
|  | Literal* literal = entry.second; | 
|  | DCHECK(literal->GetLabel()->IsBound()); | 
|  | uint32_t literal_offset = literal->GetLabel()->Position(); | 
|  | linker_patches->push_back(LinkerPatch::CodePatch(literal_offset, | 
|  | target_method.dex_file, | 
|  | target_method.dex_method_index)); | 
|  | } | 
|  | for (const PatchInfo<Label>& info : relative_call_patches_) { | 
|  | uint32_t literal_offset = info.label.Position(); | 
|  | linker_patches->push_back( | 
|  | LinkerPatch::RelativeCodePatch(literal_offset, &info.dex_file, info.index)); | 
|  | } | 
|  | EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_, | 
|  | linker_patches); | 
|  | for (const auto& entry : boot_image_string_patches_) { | 
|  | const StringReference& target_string = entry.first; | 
|  | Literal* literal = entry.second; | 
|  | DCHECK(literal->GetLabel()->IsBound()); | 
|  | uint32_t literal_offset = literal->GetLabel()->Position(); | 
|  | linker_patches->push_back(LinkerPatch::StringPatch(literal_offset, | 
|  | target_string.dex_file, | 
|  | target_string.string_index.index_)); | 
|  | } | 
|  | if (!GetCompilerOptions().IsBootImage()) { | 
|  | EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_, | 
|  | linker_patches); | 
|  | } else { | 
|  | EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_, | 
|  | linker_patches); | 
|  | } | 
|  | for (const auto& entry : boot_image_type_patches_) { | 
|  | const TypeReference& target_type = entry.first; | 
|  | Literal* literal = entry.second; | 
|  | DCHECK(literal->GetLabel()->IsBound()); | 
|  | uint32_t literal_offset = literal->GetLabel()->Position(); | 
|  | linker_patches->push_back(LinkerPatch::TypePatch(literal_offset, | 
|  | target_type.dex_file, | 
|  | target_type.type_index.index_)); | 
|  | } | 
|  | EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_, | 
|  | linker_patches); | 
|  | for (const auto& entry : boot_image_address_patches_) { | 
|  | DCHECK(GetCompilerOptions().GetIncludePatchInformation()); | 
|  | Literal* literal = entry.second; | 
|  | DCHECK(literal->GetLabel()->IsBound()); | 
|  | uint32_t literal_offset = literal->GetLabel()->Position(); | 
|  | linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Literal* CodeGeneratorARM::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) { | 
|  | return map->GetOrCreate( | 
|  | value, | 
|  | [this, value]() { return __ NewLiteral<uint32_t>(value); }); | 
|  | } | 
|  |  | 
|  | Literal* CodeGeneratorARM::DeduplicateMethodLiteral(MethodReference target_method, | 
|  | MethodToLiteralMap* map) { | 
|  | return map->GetOrCreate( | 
|  | target_method, | 
|  | [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); | 
|  | } | 
|  |  | 
|  | Literal* CodeGeneratorARM::DeduplicateMethodAddressLiteral(MethodReference target_method) { | 
|  | return DeduplicateMethodLiteral(target_method, &method_patches_); | 
|  | } | 
|  |  | 
|  | Literal* CodeGeneratorARM::DeduplicateMethodCodeLiteral(MethodReference target_method) { | 
|  | return DeduplicateMethodLiteral(target_method, &call_patches_); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall); | 
|  | locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, | 
|  | Location::RequiresRegister()); | 
|  | locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); | 
|  | locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { | 
|  | LocationSummary* locations = instr->GetLocations(); | 
|  | Register res = locations->Out().AsRegister<Register>(); | 
|  | Register accumulator = | 
|  | locations->InAt(HMultiplyAccumulate::kInputAccumulatorIndex).AsRegister<Register>(); | 
|  | Register mul_left = | 
|  | locations->InAt(HMultiplyAccumulate::kInputMulLeftIndex).AsRegister<Register>(); | 
|  | Register mul_right = | 
|  | locations->InAt(HMultiplyAccumulate::kInputMulRightIndex).AsRegister<Register>(); | 
|  |  | 
|  | if (instr->GetOpKind() == HInstruction::kAdd) { | 
|  | __ mla(res, mul_left, mul_right, accumulator); | 
|  | } else { | 
|  | __ mls(res, mul_left, mul_right, accumulator); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
|  | // Nothing to do, this should be removed during prepare for register allocator. | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
|  | // Nothing to do, this should be removed during prepare for register allocator. | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | } | 
|  |  | 
|  | // Simple implementation of packed switch - generate cascaded compare/jumps. | 
|  | void LocationsBuilderARM::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold && | 
|  | codegen_->GetAssembler()->IsThumb()) { | 
|  | locations->AddTemp(Location::RequiresRegister());  // We need a temp for the table base. | 
|  | if (switch_instr->GetStartValue() != 0) { | 
|  | locations->AddTemp(Location::RequiresRegister());  // We need a temp for the bias. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
|  | int32_t lower_bound = switch_instr->GetStartValue(); | 
|  | uint32_t num_entries = switch_instr->GetNumEntries(); | 
|  | LocationSummary* locations = switch_instr->GetLocations(); | 
|  | Register value_reg = locations->InAt(0).AsRegister<Register>(); | 
|  | HBasicBlock* default_block = switch_instr->GetDefaultBlock(); | 
|  |  | 
|  | if (num_entries <= kPackedSwitchCompareJumpThreshold || !codegen_->GetAssembler()->IsThumb()) { | 
|  | // Create a series of compare/jumps. | 
|  | Register temp_reg = IP; | 
|  | // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store | 
|  | // the immediate, because IP is used as the destination register. For the other | 
|  | // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant, | 
|  | // and they can be encoded in the instruction without making use of IP register. | 
|  | __ AddConstantSetFlags(temp_reg, value_reg, -lower_bound); | 
|  |  | 
|  | const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); | 
|  | // Jump to successors[0] if value == lower_bound. | 
|  | __ b(codegen_->GetLabelOf(successors[0]), EQ); | 
|  | int32_t last_index = 0; | 
|  | for (; num_entries - last_index > 2; last_index += 2) { | 
|  | __ AddConstantSetFlags(temp_reg, temp_reg, -2); | 
|  | // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. | 
|  | __ b(codegen_->GetLabelOf(successors[last_index + 1]), LO); | 
|  | // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. | 
|  | __ b(codegen_->GetLabelOf(successors[last_index + 2]), EQ); | 
|  | } | 
|  | if (num_entries - last_index == 2) { | 
|  | // The last missing case_value. | 
|  | __ CmpConstant(temp_reg, 1); | 
|  | __ b(codegen_->GetLabelOf(successors[last_index + 1]), EQ); | 
|  | } | 
|  |  | 
|  | // And the default for any other value. | 
|  | if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { | 
|  | __ b(codegen_->GetLabelOf(default_block)); | 
|  | } | 
|  | } else { | 
|  | // Create a table lookup. | 
|  | Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); | 
|  |  | 
|  | // Materialize a pointer to the switch table | 
|  | std::vector<Label*> labels(num_entries); | 
|  | const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); | 
|  | for (uint32_t i = 0; i < num_entries; i++) { | 
|  | labels[i] = codegen_->GetLabelOf(successors[i]); | 
|  | } | 
|  | JumpTable* table = __ CreateJumpTable(std::move(labels), temp_reg); | 
|  |  | 
|  | // Remove the bias. | 
|  | Register key_reg; | 
|  | if (lower_bound != 0) { | 
|  | key_reg = locations->GetTemp(1).AsRegister<Register>(); | 
|  | __ AddConstant(key_reg, value_reg, -lower_bound); | 
|  | } else { | 
|  | key_reg = value_reg; | 
|  | } | 
|  |  | 
|  | // Check whether the value is in the table, jump to default block if not. | 
|  | __ CmpConstant(key_reg, num_entries - 1); | 
|  | __ b(codegen_->GetLabelOf(default_block), Condition::HI); | 
|  |  | 
|  | // Load the displacement from the table. | 
|  | __ ldr(temp_reg, Address(temp_reg, key_reg, Shift::LSL, 2)); | 
|  |  | 
|  | // Dispatch is a direct add to the PC (for Thumb2). | 
|  | __ EmitJumpTableDispatch(table, temp_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) { | 
|  | LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) { | 
|  | Register base_reg = base->GetLocations()->Out().AsRegister<Register>(); | 
|  | CodeGeneratorARM::PcRelativePatchInfo* labels = | 
|  | codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset()); | 
|  | __ BindTrackedLabel(&labels->movw_label); | 
|  | __ movw(base_reg, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->movt_label); | 
|  | __ movt(base_reg, /* placeholder */ 0u); | 
|  | __ BindTrackedLabel(&labels->add_pc_label); | 
|  | __ add(base_reg, base_reg, ShifterOperand(PC)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::MoveFromReturnRegister(Location trg, Primitive::Type type) { | 
|  | if (!trg.IsValid()) { | 
|  | DCHECK_EQ(type, Primitive::kPrimVoid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DCHECK_NE(type, Primitive::kPrimVoid); | 
|  |  | 
|  | Location return_loc = InvokeDexCallingConventionVisitorARM().GetReturnLocation(type); | 
|  | if (return_loc.Equals(trg)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged | 
|  | //       with the last branch. | 
|  | if (type == Primitive::kPrimLong) { | 
|  | HParallelMove parallel_move(GetGraph()->GetArena()); | 
|  | parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimInt, nullptr); | 
|  | parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimInt, nullptr); | 
|  | GetMoveResolver()->EmitNativeCode(¶llel_move); | 
|  | } else if (type == Primitive::kPrimDouble) { | 
|  | HParallelMove parallel_move(GetGraph()->GetArena()); | 
|  | parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimFloat, nullptr); | 
|  | parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimFloat, nullptr); | 
|  | GetMoveResolver()->EmitNativeCode(¶llel_move); | 
|  | } else { | 
|  | // Let the parallel move resolver take care of all of this. | 
|  | HParallelMove parallel_move(GetGraph()->GetArena()); | 
|  | parallel_move.AddMove(return_loc, trg, type, nullptr); | 
|  | GetMoveResolver()->EmitNativeCode(¶llel_move); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM::VisitClassTableGet(HClassTableGet* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM::VisitClassTableGet(HClassTableGet* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { | 
|  | uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
|  | instruction->GetIndex(), kArmPointerSize).SizeValue(); | 
|  | __ LoadFromOffset(kLoadWord, | 
|  | locations->Out().AsRegister<Register>(), | 
|  | locations->InAt(0).AsRegister<Register>(), | 
|  | method_offset); | 
|  | } else { | 
|  | uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( | 
|  | instruction->GetIndex(), kArmPointerSize)); | 
|  | __ LoadFromOffset(kLoadWord, | 
|  | locations->Out().AsRegister<Register>(), | 
|  | locations->InAt(0).AsRegister<Register>(), | 
|  | mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); | 
|  | __ LoadFromOffset(kLoadWord, | 
|  | locations->Out().AsRegister<Register>(), | 
|  | locations->Out().AsRegister<Register>(), | 
|  | method_offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void PatchJitRootUse(uint8_t* code, | 
|  | const uint8_t* roots_data, | 
|  | Literal* literal, | 
|  | uint64_t index_in_table) { | 
|  | DCHECK(literal->GetLabel()->IsBound()); | 
|  | uint32_t literal_offset = literal->GetLabel()->Position(); | 
|  | uintptr_t address = | 
|  | reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); | 
|  | uint8_t* data = code + literal_offset; | 
|  | reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { | 
|  | for (const auto& entry : jit_string_patches_) { | 
|  | const auto& it = jit_string_roots_.find(entry.first); | 
|  | DCHECK(it != jit_string_roots_.end()); | 
|  | PatchJitRootUse(code, roots_data, entry.second, it->second); | 
|  | } | 
|  | for (const auto& entry : jit_class_patches_) { | 
|  | const auto& it = jit_class_roots_.find(entry.first); | 
|  | DCHECK(it != jit_class_roots_.end()); | 
|  | PatchJitRootUse(code, roots_data, entry.second, it->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef __ | 
|  | #undef QUICK_ENTRY_POINT | 
|  |  | 
|  | }  // namespace arm | 
|  | }  // namespace art |