blob: 7ada136e201bc1324de7e51a5a203064e5825b99 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the X86 ISA */
#include "x86_lir.h"
#include "../codegen_util.h"
#include "../ralloc_util.h"
namespace art {
void GenSpecialCase(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir,
SpecialCaseHandler specialCase)
{
// TODO
}
/*
* The sparse table in the literal pool is an array of <key,displacement>
* pairs.
*/
BasicBlock *FindBlock(CompilationUnit* cUnit, unsigned int codeOffset,
bool split, bool create, BasicBlock** immedPredBlockP);
void GenSparseSwitch(CompilationUnit* cUnit, uint32_t tableOffset,
RegLocation rlSrc)
{
const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
if (cUnit->printMe) {
DumpSparseSwitchTable(table);
}
int entries = table[1];
const int* keys = reinterpret_cast<const int*>(&table[2]);
const int* targets = &keys[entries];
rlSrc = LoadValue(cUnit, rlSrc, kCoreReg);
for (int i = 0; i < entries; i++) {
int key = keys[i];
BasicBlock* case_block = FindBlock(cUnit,
cUnit->currentDalvikOffset + targets[i],
false, false, NULL);
LIR* labelList = cUnit->blockLabelList;
OpCmpImmBranch(cUnit, kCondEq, rlSrc.lowReg, key,
&labelList[case_block->id]);
}
}
/*
* Code pattern will look something like:
*
* mov rVal, ..
* call 0
* pop rStartOfMethod
* sub rStartOfMethod, ..
* mov rKeyReg, rVal
* sub rKeyReg, lowKey
* cmp rKeyReg, size-1 ; bound check
* ja done
* mov rDisp, [rStartOfMethod + rKeyReg * 4 + tableOffset]
* add rStartOfMethod, rDisp
* jmp rStartOfMethod
* done:
*/
void GenPackedSwitch(CompilationUnit* cUnit, uint32_t tableOffset,
RegLocation rlSrc)
{
const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
if (cUnit->printMe) {
DumpPackedSwitchTable(table);
}
// Add the table to the list - we'll process it later
SwitchTable *tabRec =
static_cast<SwitchTable *>(NewMem(cUnit, sizeof(SwitchTable), true, kAllocData));
tabRec->table = table;
tabRec->vaddr = cUnit->currentDalvikOffset;
int size = table[1];
tabRec->targets = static_cast<LIR**>(NewMem(cUnit, size * sizeof(LIR*), true, kAllocLIR));
InsertGrowableList(cUnit, &cUnit->switchTables, reinterpret_cast<uintptr_t>(tabRec));
// Get the switch value
rlSrc = LoadValue(cUnit, rlSrc, kCoreReg);
int startOfMethodReg = AllocTemp(cUnit);
// Materialize a pointer to the switch table
//NewLIR0(cUnit, kX86Bkpt);
NewLIR1(cUnit, kX86StartOfMethod, startOfMethodReg);
int lowKey = s4FromSwitchData(&table[2]);
int keyReg;
// Remove the bias, if necessary
if (lowKey == 0) {
keyReg = rlSrc.lowReg;
} else {
keyReg = AllocTemp(cUnit);
OpRegRegImm(cUnit, kOpSub, keyReg, rlSrc.lowReg, lowKey);
}
// Bounds check - if < 0 or >= size continue following switch
OpRegImm(cUnit, kOpCmp, keyReg, size-1);
LIR* branchOver = OpCondBranch(cUnit, kCondHi, NULL);
// Load the displacement from the switch table
int dispReg = AllocTemp(cUnit);
NewLIR5(cUnit, kX86PcRelLoadRA, dispReg, startOfMethodReg, keyReg, 2,
reinterpret_cast<uintptr_t>(tabRec));
// Add displacement to start of method
OpRegReg(cUnit, kOpAdd, startOfMethodReg, dispReg);
// ..and go!
LIR* switchBranch = NewLIR1(cUnit, kX86JmpR, startOfMethodReg);
tabRec->anchor = switchBranch;
/* branchOver target here */
LIR* target = NewLIR0(cUnit, kPseudoTargetLabel);
branchOver->target = target;
}
void CallRuntimeHelperRegReg(CompilationUnit* cUnit, int helperOffset,
int arg0, int arg1, bool safepointPC);
/*
* Array data table format:
* ushort ident = 0x0300 magic value
* ushort width width of each element in the table
* uint size number of elements in the table
* ubyte data[size*width] table of data values (may contain a single-byte
* padding at the end)
*
* Total size is 4+(width * size + 1)/2 16-bit code units.
*/
void GenFillArrayData(CompilationUnit* cUnit, uint32_t tableOffset,
RegLocation rlSrc)
{
const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
// Add the table to the list - we'll process it later
FillArrayData *tabRec =
static_cast<FillArrayData*>(NewMem(cUnit, sizeof(FillArrayData), true, kAllocData));
tabRec->table = table;
tabRec->vaddr = cUnit->currentDalvikOffset;
uint16_t width = tabRec->table[1];
uint32_t size = tabRec->table[2] | ((static_cast<uint32_t>(tabRec->table[3])) << 16);
tabRec->size = (size * width) + 8;
InsertGrowableList(cUnit, &cUnit->fillArrayData, reinterpret_cast<uintptr_t>(tabRec));
// Making a call - use explicit registers
FlushAllRegs(cUnit); /* Everything to home location */
LoadValueDirectFixed(cUnit, rlSrc, rX86_ARG0);
// Materialize a pointer to the fill data image
NewLIR1(cUnit, kX86StartOfMethod, rX86_ARG2);
NewLIR2(cUnit, kX86PcRelAdr, rX86_ARG1, reinterpret_cast<uintptr_t>(tabRec));
NewLIR2(cUnit, kX86Add32RR, rX86_ARG1, rX86_ARG2);
CallRuntimeHelperRegReg(cUnit, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode), rX86_ARG0,
rX86_ARG1, true);
}
void GenMonitorEnter(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc)
{
FlushAllRegs(cUnit);
LoadValueDirectFixed(cUnit, rlSrc, rCX); // Get obj
LockCallTemps(cUnit); // Prepare for explicit register usage
GenNullCheck(cUnit, rlSrc.sRegLow, rCX, optFlags);
// If lock is unheld, try to grab it quickly with compare and exchange
// TODO: copy and clear hash state?
NewLIR2(cUnit, kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value());
NewLIR2(cUnit, kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT);
NewLIR2(cUnit, kX86Xor32RR, rAX, rAX);
NewLIR3(cUnit, kX86LockCmpxchgMR, rCX, Object::MonitorOffset().Int32Value(), rDX);
LIR* branch = NewLIR2(cUnit, kX86Jcc8, 0, kX86CondEq);
// If lock is held, go the expensive route - artLockObjectFromCode(self, obj);
CallRuntimeHelperReg(cUnit, ENTRYPOINT_OFFSET(pLockObjectFromCode), rCX, true);
branch->target = NewLIR0(cUnit, kPseudoTargetLabel);
}
void GenMonitorExit(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc)
{
FlushAllRegs(cUnit);
LoadValueDirectFixed(cUnit, rlSrc, rAX); // Get obj
LockCallTemps(cUnit); // Prepare for explicit register usage
GenNullCheck(cUnit, rlSrc.sRegLow, rAX, optFlags);
// If lock is held by the current thread, clear it to quickly release it
// TODO: clear hash state?
NewLIR2(cUnit, kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value());
NewLIR2(cUnit, kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT);
NewLIR3(cUnit, kX86Mov32RM, rCX, rAX, Object::MonitorOffset().Int32Value());
OpRegReg(cUnit, kOpSub, rCX, rDX);
LIR* branch = NewLIR2(cUnit, kX86Jcc8, 0, kX86CondNe);
NewLIR3(cUnit, kX86Mov32MR, rAX, Object::MonitorOffset().Int32Value(), rCX);
LIR* branch2 = NewLIR1(cUnit, kX86Jmp8, 0);
branch->target = NewLIR0(cUnit, kPseudoTargetLabel);
// Otherwise, go the expensive route - UnlockObjectFromCode(obj);
CallRuntimeHelperReg(cUnit, ENTRYPOINT_OFFSET(pUnlockObjectFromCode), rAX, true);
branch2->target = NewLIR0(cUnit, kPseudoTargetLabel);
}
/*
* Mark garbage collection card. Skip if the value we're storing is null.
*/
void MarkGCCard(CompilationUnit* cUnit, int valReg, int tgtAddrReg)
{
int regCardBase = AllocTemp(cUnit);
int regCardNo = AllocTemp(cUnit);
LIR* branchOver = OpCmpImmBranch(cUnit, kCondEq, valReg, 0, NULL);
NewLIR2(cUnit, kX86Mov32RT, regCardBase, Thread::CardTableOffset().Int32Value());
OpRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, CardTable::kCardShift);
StoreBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
kUnsignedByte);
LIR* target = NewLIR0(cUnit, kPseudoTargetLabel);
branchOver->target = target;
FreeTemp(cUnit, regCardBase);
FreeTemp(cUnit, regCardNo);
}
void GenEntrySequence(CompilationUnit* cUnit, RegLocation* ArgLocs,
RegLocation rlMethod)
{
/*
* On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live. Let the register
* allocation mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing. This leaves the utility
* code with no spare temps.
*/
LockTemp(cUnit, rX86_ARG0);
LockTemp(cUnit, rX86_ARG1);
LockTemp(cUnit, rX86_ARG2);
/* Build frame, return address already on stack */
OpRegImm(cUnit, kOpSub, rX86_SP, cUnit->frameSize - 4);
/*
* We can safely skip the stack overflow check if we're
* a leaf *and* our frame size < fudge factor.
*/
bool skipOverflowCheck = ((cUnit->attrs & METHOD_IS_LEAF) &&
(static_cast<size_t>(cUnit->frameSize) <
Thread::kStackOverflowReservedBytes));
NewLIR0(cUnit, kPseudoMethodEntry);
/* Spill core callee saves */
SpillCoreRegs(cUnit);
/* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
DCHECK_EQ(cUnit->numFPSpills, 0);
if (!skipOverflowCheck) {
// cmp rX86_SP, fs:[stack_end_]; jcc throw_launchpad
LIR* tgt = RawLIR(cUnit, 0, kPseudoThrowTarget, kThrowStackOverflow, 0, 0, 0, 0);
OpRegThreadMem(cUnit, kOpCmp, rX86_SP, Thread::StackEndOffset().Int32Value());
OpCondBranch(cUnit, kCondUlt, tgt);
// Remember branch target - will process later
InsertGrowableList(cUnit, &cUnit->throwLaunchpads, reinterpret_cast<uintptr_t>(tgt));
}
FlushIns(cUnit, ArgLocs, rlMethod);
FreeTemp(cUnit, rX86_ARG0);
FreeTemp(cUnit, rX86_ARG1);
FreeTemp(cUnit, rX86_ARG2);
}
void GenExitSequence(CompilationUnit* cUnit) {
/*
* In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't
* allocated by the register utilities as temps.
*/
LockTemp(cUnit, rX86_RET0);
LockTemp(cUnit, rX86_RET1);
NewLIR0(cUnit, kPseudoMethodExit);
UnSpillCoreRegs(cUnit);
/* Remove frame except for return address */
OpRegImm(cUnit, kOpAdd, rX86_SP, cUnit->frameSize - 4);
NewLIR0(cUnit, kX86Ret);
}
} // namespace art