Aart Bik | 22af3be | 2015-09-10 12:50:58 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2015 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | // |
| 18 | // Test on loop optimizations. |
| 19 | // |
| 20 | public class Main { |
| 21 | |
| 22 | static int sResult; |
| 23 | |
| 24 | // |
| 25 | // Various sequence variables where bound checks can be removed from loop. |
| 26 | // |
| 27 | |
| 28 | /// CHECK-START: int Main.linear(int[]) BCE (before) |
| 29 | /// CHECK-DAG: BoundsCheck |
| 30 | /// CHECK-START: int Main.linear(int[]) BCE (after) |
| 31 | /// CHECK-NOT: BoundsCheck |
| 32 | private static int linear(int[] x) { |
| 33 | int result = 0; |
| 34 | for (int i = 0; i < x.length; i++) { |
| 35 | result += x[i]; |
| 36 | } |
| 37 | return result; |
| 38 | } |
| 39 | |
| 40 | /// CHECK-START: int Main.linearDown(int[]) BCE (before) |
| 41 | /// CHECK-DAG: BoundsCheck |
| 42 | /// CHECK-START: int Main.linearDown(int[]) BCE (after) |
| 43 | /// CHECK-NOT: BoundsCheck |
| 44 | private static int linearDown(int[] x) { |
| 45 | int result = 0; |
| 46 | for (int i = x.length - 1; i >= 0; i--) { |
| 47 | result += x[i]; |
| 48 | } |
| 49 | return result; |
| 50 | } |
| 51 | |
| 52 | /// CHECK-START: int Main.linearObscure(int[]) BCE (before) |
| 53 | /// CHECK-DAG: BoundsCheck |
| 54 | /// CHECK-START: int Main.linearObscure(int[]) BCE (after) |
| 55 | /// CHECK-NOT: BoundsCheck |
| 56 | private static int linearObscure(int[] x) { |
| 57 | int result = 0; |
| 58 | for (int i = x.length - 1; i >= 0; i--) { |
| 59 | int k = i + 5; |
| 60 | result += x[k - 5]; |
| 61 | } |
| 62 | return result; |
| 63 | } |
| 64 | |
| 65 | /// CHECK-START: int Main.linearWhile(int[]) BCE (before) |
| 66 | /// CHECK-DAG: BoundsCheck |
| 67 | /// CHECK-START: int Main.linearWhile(int[]) BCE (after) |
| 68 | /// CHECK-NOT: BoundsCheck |
| 69 | private static int linearWhile(int[] x) { |
| 70 | int i = 0; |
| 71 | int result = 0; |
| 72 | while (i < x.length) { |
| 73 | result += x[i++]; |
| 74 | } |
| 75 | return result; |
| 76 | } |
| 77 | |
| 78 | /// CHECK-START: int Main.wrapAroundThenLinear(int[]) BCE (before) |
| 79 | /// CHECK-DAG: BoundsCheck |
| 80 | /// CHECK-START: int Main.wrapAroundThenLinear(int[]) BCE (after) |
| 81 | /// CHECK-NOT: BoundsCheck |
| 82 | private static int wrapAroundThenLinear(int[] x) { |
| 83 | // Loop with wrap around (length - 1, 0, 1, 2, ..). |
| 84 | int w = x.length - 1; |
| 85 | int result = 0; |
| 86 | for (int i = 0; i < x.length; i++) { |
| 87 | result += x[w]; |
| 88 | w = i; |
| 89 | } |
| 90 | return result; |
| 91 | } |
| 92 | |
| 93 | /// CHECK-START: int[] Main.linearWithParameter(int) BCE (before) |
| 94 | /// CHECK-DAG: BoundsCheck |
| 95 | /// CHECK-START: int[] Main.linearWithParameter(int) BCE (after) |
| 96 | /// CHECK-NOT: BoundsCheck |
| 97 | private static int[] linearWithParameter(int n) { |
| 98 | int[] x = new int[n]; |
| 99 | for (int i = 0; i < n; i++) { |
| 100 | x[i] = i; |
| 101 | } |
| 102 | return x; |
| 103 | } |
| 104 | |
| 105 | /// CHECK-START: int Main.linearWithCompoundStride() BCE (before) |
| 106 | /// CHECK-DAG: BoundsCheck |
| 107 | /// CHECK-START: int Main.linearWithCompoundStride() BCE (after) |
| 108 | /// CHECK-NOT: BoundsCheck |
| 109 | private static int linearWithCompoundStride() { |
| 110 | int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; |
| 111 | int result = 0; |
| 112 | for (int i = 0; i <= 12; ) { |
| 113 | i++; |
| 114 | result += x[i]; |
| 115 | i++; |
| 116 | } |
| 117 | return result; |
| 118 | } |
| 119 | |
| 120 | /// CHECK-START: int Main.linearWithLargePositiveStride() BCE (before) |
| 121 | /// CHECK-DAG: BoundsCheck |
| 122 | /// CHECK-START: int Main.linearWithLargePositiveStride() BCE (after) |
| 123 | /// CHECK-NOT: BoundsCheck |
| 124 | private static int linearWithLargePositiveStride() { |
| 125 | int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
| 126 | int result = 0; |
| 127 | int k = 0; |
| 128 | // Range analysis has no problem with a trip-count defined by a |
| 129 | // reasonably large positive stride. |
| 130 | for (int i = 1; i <= 10 * 10000000 + 1; i += 10000000) { |
| 131 | result += x[k++]; |
| 132 | } |
| 133 | return result; |
| 134 | } |
| 135 | |
| 136 | /// CHECK-START: int Main.linearWithVeryLargePositiveStride() BCE (before) |
| 137 | /// CHECK-DAG: BoundsCheck |
| 138 | /// CHECK-START: int Main.linearWithVeryLargePositiveStride() BCE (after) |
| 139 | /// CHECK-DAG: BoundsCheck |
| 140 | private static int linearWithVeryLargePositiveStride() { |
| 141 | int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
| 142 | int result = 0; |
| 143 | int k = 0; |
| 144 | // Range analysis conservatively bails due to potential of wrap-around |
| 145 | // arithmetic while computing the trip-count for this very large stride. |
| 146 | for (int i = 1; i < 2147483647; i += 195225786) { |
| 147 | result += x[k++]; |
| 148 | } |
| 149 | return result; |
| 150 | } |
| 151 | |
| 152 | /// CHECK-START: int Main.linearWithLargeNegativeStride() BCE (before) |
| 153 | /// CHECK-DAG: BoundsCheck |
| 154 | /// CHECK-START: int Main.linearWithLargeNegativeStride() BCE (after) |
| 155 | /// CHECK-NOT: BoundsCheck |
| 156 | private static int linearWithLargeNegativeStride() { |
| 157 | int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
| 158 | int result = 0; |
| 159 | int k = 0; |
| 160 | // Range analysis has no problem with a trip-count defined by a |
| 161 | // reasonably large negative stride. |
| 162 | for (int i = -1; i >= -10 * 10000000 - 1; i -= 10000000) { |
| 163 | result += x[k++]; |
| 164 | } |
| 165 | return result; |
| 166 | } |
| 167 | |
| 168 | /// CHECK-START: int Main.linearWithVeryLargeNegativeStride() BCE (before) |
| 169 | /// CHECK-DAG: BoundsCheck |
| 170 | /// CHECK-START: int Main.linearWithVeryLargeNegativeStride() BCE (after) |
| 171 | /// CHECK-DAG: BoundsCheck |
| 172 | private static int linearWithVeryLargeNegativeStride() { |
| 173 | int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
| 174 | int result = 0; |
| 175 | int k = 0; |
| 176 | // Range analysis conservatively bails due to potential of wrap-around |
| 177 | // arithmetic while computing the trip-count for this very large stride. |
| 178 | for (int i = -2; i > -2147483648; i -= 195225786) { |
| 179 | result += x[k++]; |
| 180 | } |
| 181 | return result; |
| 182 | } |
| 183 | |
| 184 | /// CHECK-START: int Main.periodicIdiom(int) BCE (before) |
| 185 | /// CHECK-DAG: BoundsCheck |
| 186 | /// CHECK-START: int Main.periodicIdiom(int) BCE (after) |
| 187 | /// CHECK-NOT: BoundsCheck |
| 188 | private static int periodicIdiom(int tc) { |
| 189 | int[] x = { 1, 3 }; |
| 190 | // Loop with periodic sequence (0, 1). |
| 191 | int k = 0; |
| 192 | int result = 0; |
| 193 | for (int i = 0; i < tc; i++) { |
| 194 | result += x[k]; |
| 195 | k = 1 - k; |
| 196 | } |
| 197 | return result; |
| 198 | } |
| 199 | |
| 200 | /// CHECK-START: int Main.periodicSequence2(int) BCE (before) |
| 201 | /// CHECK-DAG: BoundsCheck |
| 202 | /// CHECK-START: int Main.periodicSequence2(int) BCE (after) |
| 203 | /// CHECK-NOT: BoundsCheck |
| 204 | private static int periodicSequence2(int tc) { |
| 205 | int[] x = { 1, 3 }; |
| 206 | // Loop with periodic sequence (0, 1). |
| 207 | int k = 0; |
| 208 | int l = 1; |
| 209 | int result = 0; |
| 210 | for (int i = 0; i < tc; i++) { |
| 211 | result += x[k]; |
| 212 | int t = l; |
| 213 | l = k; |
| 214 | k = t; |
| 215 | } |
| 216 | return result; |
| 217 | } |
| 218 | |
| 219 | /// CHECK-START: int Main.periodicSequence4(int) BCE (before) |
| 220 | /// CHECK-DAG: BoundsCheck |
| 221 | /// CHECK-DAG: BoundsCheck |
| 222 | /// CHECK-DAG: BoundsCheck |
| 223 | /// CHECK-DAG: BoundsCheck |
| 224 | /// CHECK-START: int Main.periodicSequence4(int) BCE (after) |
| 225 | /// CHECK-NOT: BoundsCheck |
| 226 | private static int periodicSequence4(int tc) { |
| 227 | int[] x = { 1, 3, 5, 7 }; |
| 228 | // Loop with periodic sequence (0, 1, 2, 3). |
| 229 | int k = 0; |
| 230 | int l = 1; |
| 231 | int m = 2; |
| 232 | int n = 3; |
| 233 | int result = 0; |
| 234 | for (int i = 0; i < tc; i++) { |
| 235 | result += x[k] + x[l] + x[m] + x[n]; // all used at once |
| 236 | int t = n; |
| 237 | n = k; |
| 238 | k = l; |
| 239 | l = m; |
| 240 | m = t; |
| 241 | } |
| 242 | return result; |
| 243 | } |
| 244 | |
| 245 | // |
| 246 | // Cases that actually go out of bounds. These test cases |
| 247 | // ensure the exceptions are thrown at the right places. |
| 248 | // |
| 249 | |
| 250 | private static void lowerOOB(int[] x) { |
| 251 | for (int i = -1; i < x.length; i++) { |
| 252 | sResult += x[i]; |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | private static void upperOOB(int[] x) { |
| 257 | for (int i = 0; i <= x.length; i++) { |
| 258 | sResult += x[i]; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | // |
| 263 | // Verifier. |
| 264 | // |
| 265 | |
| 266 | public static void main(String[] args) { |
| 267 | int[] empty = { }; |
| 268 | int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| 269 | |
| 270 | // Linear and wrap-around. |
| 271 | expectEquals(0, linear(empty)); |
| 272 | expectEquals(55, linear(x)); |
| 273 | expectEquals(0, linearDown(empty)); |
| 274 | expectEquals(55, linearDown(x)); |
| 275 | expectEquals(0, linearObscure(empty)); |
| 276 | expectEquals(55, linearObscure(x)); |
| 277 | expectEquals(0, linearWhile(empty)); |
| 278 | expectEquals(55, linearWhile(x)); |
| 279 | expectEquals(0, wrapAroundThenLinear(empty)); |
| 280 | expectEquals(55, wrapAroundThenLinear(x)); |
| 281 | |
| 282 | // Linear with parameter. |
| 283 | sResult = 0; |
| 284 | try { |
| 285 | linearWithParameter(-1); |
| 286 | } catch (NegativeArraySizeException e) { |
| 287 | sResult = 1; |
| 288 | } |
| 289 | expectEquals(1, sResult); |
| 290 | for (int n = 0; n < 32; n++) { |
| 291 | int[] r = linearWithParameter(n); |
| 292 | expectEquals(n, r.length); |
| 293 | for (int i = 0; i < n; i++) { |
| 294 | expectEquals(i, r[i]); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | // Linear with non-unit strides. |
| 299 | expectEquals(56, linearWithCompoundStride()); |
| 300 | expectEquals(66, linearWithLargePositiveStride()); |
| 301 | expectEquals(66, linearWithVeryLargePositiveStride()); |
| 302 | expectEquals(66, linearWithLargeNegativeStride()); |
| 303 | expectEquals(66, linearWithVeryLargeNegativeStride()); |
| 304 | |
| 305 | // Periodic adds (1, 3), one at the time. |
| 306 | expectEquals(0, periodicIdiom(-1)); |
| 307 | for (int tc = 0; tc < 32; tc++) { |
| 308 | int expected = (tc >> 1) << 2; |
| 309 | if ((tc & 1) != 0) |
| 310 | expected += 1; |
| 311 | expectEquals(expected, periodicIdiom(tc)); |
| 312 | } |
| 313 | |
| 314 | // Periodic adds (1, 3), one at the time. |
| 315 | expectEquals(0, periodicSequence2(-1)); |
| 316 | for (int tc = 0; tc < 32; tc++) { |
| 317 | int expected = (tc >> 1) << 2; |
| 318 | if ((tc & 1) != 0) |
| 319 | expected += 1; |
| 320 | expectEquals(expected, periodicSequence2(tc)); |
| 321 | } |
| 322 | |
| 323 | // Periodic adds (1, 3, 5, 7), all at once. |
| 324 | expectEquals(0, periodicSequence4(-1)); |
| 325 | for (int tc = 0; tc < 32; tc++) { |
| 326 | expectEquals(tc * 16, periodicSequence4(tc)); |
| 327 | } |
| 328 | |
| 329 | // Lower bound goes OOB. |
| 330 | sResult = 0; |
| 331 | try { |
| 332 | lowerOOB(x); |
| 333 | } catch (ArrayIndexOutOfBoundsException e) { |
| 334 | sResult += 1000; |
| 335 | } |
| 336 | expectEquals(1000, sResult); |
| 337 | |
| 338 | // Upper bound goes OOB. |
| 339 | sResult = 0; |
| 340 | try { |
| 341 | upperOOB(x); |
| 342 | } catch (ArrayIndexOutOfBoundsException e) { |
| 343 | sResult += 1000; |
| 344 | } |
| 345 | expectEquals(1055, sResult); |
| 346 | |
| 347 | } |
| 348 | |
| 349 | private static void expectEquals(int expected, int result) { |
| 350 | if (expected != result) { |
| 351 | throw new Error("Expected: " + expected + ", found: " + result); |
| 352 | } |
| 353 | } |
| 354 | } |