blob: abe1b3d947dfa1a218bdf04fb4d0d6bb642a8631 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Brian Carlstromfc0e3212013-07-17 14:40:12 -070017#ifndef ART_COMPILER_DEX_QUICK_X86_X86_LIR_H_
18#define ART_COMPILER_DEX_QUICK_X86_X86_LIR_H_
Brian Carlstrom7940e442013-07-12 13:46:57 -070019
20#include "dex/compiler_internals.h"
21
22namespace art {
23
24/*
Ian Rogers0177e532014-02-11 16:30:46 -080025 * Runtime register conventions. We consider both x86, x86-64 and x32 (32bit mode x86-64). The ABI
26 * has different conventions and we capture those here. Changing something that is callee save and
27 * making it caller save places a burden on up-calls to save/restore the callee save register,
28 * however, there are few registers that are callee save in the ABI. Changing something that is
29 * caller save and making it callee save places a burden on down-calls to save/restore the callee
30 * save register. For these reasons we aim to match native conventions for caller and callee save.
31 * On x86 only the first 4 registers can be used for byte operations, for this reason they are
32 * preferred for temporary scratch registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -070033 *
34 * General Purpose Register:
Ian Rogers0177e532014-02-11 16:30:46 -080035 * Native: x86 | x86-64 / x32 | ART x86 | ART x86-64
36 * r0/eax: caller | caller | caller, Method*, scratch, return value | caller, scratch, return value
37 * r1/ecx: caller | caller, arg4 | caller, arg1, scratch | caller, arg3, scratch
38 * r2/edx: caller | caller, arg3 | caller, arg2, scratch, high half of long return | caller, arg2, scratch
39 * r3/ebx: callEE | callEE | callER, arg3, scratch | callee, promotable
Brian Carlstrom7940e442013-07-12 13:46:57 -070040 * r4/esp: stack pointer
Ian Rogers0177e532014-02-11 16:30:46 -080041 * r5/ebp: callee | callee | callee, promotable | callee, promotable
42 * r6/esi: callEE | callER, arg2 | callee, promotable | caller, arg1, scratch
43 * r7/edi: callEE | callER, arg1 | callee, promotable | caller, Method*, scratch
Brian Carlstrom7940e442013-07-12 13:46:57 -070044 * --- x86-64/x32 registers
45 * Native: x86-64 / x32 | ART
Ian Rogers0177e532014-02-11 16:30:46 -080046 * r8: caller save, arg5 | caller, arg4, scratch
47 * r9: caller save, arg6 | caller, arg5, scratch
Brian Carlstrom7940e442013-07-12 13:46:57 -070048 * r10: caller save | caller, scratch
49 * r11: caller save | caller, scratch
Ian Rogers0177e532014-02-11 16:30:46 -080050 * r12: callee save | callee, available for register promotion (promotable)
51 * r13: callee save | callee, available for register promotion (promotable)
52 * r14: callee save | callee, available for register promotion (promotable)
53 * r15: callee save | callee, available for register promotion (promotable)
Brian Carlstrom7940e442013-07-12 13:46:57 -070054 *
55 * There is no rSELF, instead on x86 fs: has a base address of Thread::Current, whereas on
56 * x86-64/x32 gs: holds it.
57 *
58 * For floating point we don't support CPUs without SSE2 support (ie newer than PIII):
Ian Rogers0177e532014-02-11 16:30:46 -080059 * Native: x86 | x86-64 / x32 | ART x86 | ART x86-64
60 * XMM0: caller | caller, arg1 | caller, float return value | caller, arg1, float return value
61 * XMM1: caller | caller, arg2 | caller, scratch | caller, arg2, scratch
62 * XMM2: caller | caller, arg3 | caller, scratch | caller, arg3, scratch
63 * XMM3: caller | caller, arg4 | caller, scratch | caller, arg4, scratch
64 * XMM4: caller | caller, arg5 | caller, scratch | caller, arg5, scratch
65 * XMM5: caller | caller, arg6 | caller, scratch | caller, arg6, scratch
66 * XMM6: caller | caller, arg7 | caller, scratch | caller, arg7, scratch
67 * XMM7: caller | caller, arg8 | caller, scratch | caller, arg8, scratch
Brian Carlstrom7940e442013-07-12 13:46:57 -070068 * --- x86-64/x32 registers
Ian Rogers0177e532014-02-11 16:30:46 -080069 * XMM8 .. 15: caller save available as scratch registers for ART.
Brian Carlstrom7940e442013-07-12 13:46:57 -070070 *
Ian Rogers0177e532014-02-11 16:30:46 -080071 * X87 is a necessary evil outside of ART code for x86:
Brian Carlstrom7940e442013-07-12 13:46:57 -070072 * ST0: x86 float/double native return value, caller save
73 * ST1 .. ST7: caller save
74 *
75 * Stack frame diagram (stack grows down, higher addresses at top):
76 *
77 * +------------------------+
78 * | IN[ins-1] | {Note: resides in caller's frame}
79 * | . |
80 * | IN[0] |
81 * | caller's Method* |
82 * +========================+ {Note: start of callee's frame}
83 * | return address | {pushed by call}
84 * | spill region | {variable sized}
85 * +------------------------+
86 * | ...filler word... | {Note: used as 2nd word of V[locals-1] if long]
87 * +------------------------+
88 * | V[locals-1] |
89 * | V[locals-2] |
90 * | . |
91 * | . |
92 * | V[1] |
93 * | V[0] |
94 * +------------------------+
95 * | 0 to 3 words padding |
96 * +------------------------+
97 * | OUT[outs-1] |
98 * | OUT[outs-2] |
99 * | . |
100 * | OUT[0] |
101 * | cur_method* | <<== sp w/ 16-byte alignment
102 * +========================+
103 */
104
105// Offset to distingish FP regs.
106#define X86_FP_REG_OFFSET 32
107// Offset to distinguish DP FP regs.
108#define X86_FP_DOUBLE (X86_FP_REG_OFFSET + 16)
109// Offset to distingish the extra regs.
110#define X86_EXTRA_REG_OFFSET (X86_FP_DOUBLE + 16)
111// Reg types.
112#define X86_REGTYPE(x) (x & (X86_FP_REG_OFFSET | X86_FP_DOUBLE))
113#define X86_FPREG(x) ((x & X86_FP_REG_OFFSET) == X86_FP_REG_OFFSET)
114#define X86_EXTRAREG(x) ((x & X86_EXTRA_REG_OFFSET) == X86_EXTRA_REG_OFFSET)
115#define X86_DOUBLEREG(x) ((x & X86_FP_DOUBLE) == X86_FP_DOUBLE)
116#define X86_SINGLEREG(x) (X86_FPREG(x) && !X86_DOUBLEREG(x))
117
118/*
119 * Note: the low register of a floating point pair is sufficient to
120 * create the name of a double, but require both names to be passed to
121 * allow for asserts to verify that the pair is consecutive if significant
122 * rework is done in this area. Also, it is a good reminder in the calling
123 * code that reg locations always describe doubles as a pair of singles.
124 */
Brian Carlstromb1eba212013-07-17 18:07:19 -0700125#define X86_S2D(x, y) ((x) | X86_FP_DOUBLE)
Brian Carlstrom7940e442013-07-12 13:46:57 -0700126/* Mask to strip off fp flags */
127#define X86_FP_REG_MASK 0xF
128
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129enum X86ResourceEncodingPos {
130 kX86GPReg0 = 0,
131 kX86RegSP = 4,
132 kX86FPReg0 = 16, // xmm0 .. xmm7/xmm15.
Serguei Katkove90501d2014-03-12 15:56:54 +0700133 kX86FPRegEnd = 32,
134 kX86FPStack = 33,
135 kX86RegEnd = kX86FPStack,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700136};
137
138#define ENCODE_X86_REG_LIST(N) (static_cast<uint64_t>(N))
139#define ENCODE_X86_REG_SP (1ULL << kX86RegSP)
Serguei Katkove90501d2014-03-12 15:56:54 +0700140#define ENCODE_X86_FP_STACK (1ULL << kX86FPStack)
Brian Carlstrom7940e442013-07-12 13:46:57 -0700141
142enum X86NativeRegisterPool {
143 r0 = 0,
144 rAX = r0,
145 r1 = 1,
146 rCX = r1,
147 r2 = 2,
148 rDX = r2,
149 r3 = 3,
150 rBX = r3,
151 r4sp = 4,
152 rX86_SP = r4sp,
153 r4sib_no_index = r4sp,
154 r5 = 5,
155 rBP = r5,
156 r5sib_no_base = r5,
157 r6 = 6,
158 rSI = r6,
159 r7 = 7,
160 rDI = r7,
161#ifndef TARGET_REX_SUPPORT
162 rRET = 8, // fake return address register for core spill mask.
163#else
164 r8 = 8,
165 r9 = 9,
166 r10 = 10,
167 r11 = 11,
168 r12 = 12,
169 r13 = 13,
170 r14 = 14,
171 r15 = 15,
172 rRET = 16, // fake return address register for core spill mask.
173#endif
174 fr0 = 0 + X86_FP_REG_OFFSET,
175 fr1 = 1 + X86_FP_REG_OFFSET,
176 fr2 = 2 + X86_FP_REG_OFFSET,
177 fr3 = 3 + X86_FP_REG_OFFSET,
178 fr4 = 4 + X86_FP_REG_OFFSET,
179 fr5 = 5 + X86_FP_REG_OFFSET,
180 fr6 = 6 + X86_FP_REG_OFFSET,
181 fr7 = 7 + X86_FP_REG_OFFSET,
182 fr8 = 8 + X86_FP_REG_OFFSET,
183 fr9 = 9 + X86_FP_REG_OFFSET,
184 fr10 = 10 + X86_FP_REG_OFFSET,
185 fr11 = 11 + X86_FP_REG_OFFSET,
186 fr12 = 12 + X86_FP_REG_OFFSET,
187 fr13 = 13 + X86_FP_REG_OFFSET,
188 fr14 = 14 + X86_FP_REG_OFFSET,
189 fr15 = 15 + X86_FP_REG_OFFSET,
190};
191
192#define rX86_ARG0 rAX
193#define rX86_ARG1 rCX
194#define rX86_ARG2 rDX
195#define rX86_ARG3 rBX
196#define rX86_FARG0 rAX
197#define rX86_FARG1 rCX
198#define rX86_FARG2 rDX
199#define rX86_FARG3 rBX
200#define rX86_RET0 rAX
201#define rX86_RET1 rDX
202#define rX86_INVOKE_TGT rAX
203#define rX86_LR INVALID_REG
204#define rX86_SUSPEND INVALID_REG
205#define rX86_SELF INVALID_REG
206#define rX86_COUNT rCX
207#define rX86_PC INVALID_REG
208
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000209// RegisterLocation templates return values (r_V0, or r_V0/r_V1).
210const RegLocation x86_loc_c_return
211 {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
212 RegStorage(RegStorage::k32BitSolo, rAX), INVALID_SREG, INVALID_SREG};
213const RegLocation x86_loc_c_return_wide
214 {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
215 RegStorage(RegStorage::k64BitPair, rAX, rDX), INVALID_SREG, INVALID_SREG};
216// TODO: update to use k32BitVector (must encode in 7 bits, including fp flag).
217const RegLocation x86_loc_c_return_float
218 {kLocPhysReg, 0, 0, 0, 1, 0, 0, 0, 1, kVectorLength4,
219 RegStorage(RegStorage::k32BitSolo, fr0), INVALID_SREG, INVALID_SREG};
220// TODO: update to use k64BitVector (must encode in 7 bits, including fp flag).
221const RegLocation x86_loc_c_return_double
222 {kLocPhysReg, 1, 0, 0, 1, 0, 0, 0, 1, kVectorLength8,
223 RegStorage(RegStorage::k64BitPair, fr0, fr0), INVALID_SREG, INVALID_SREG};
224
Brian Carlstrom7940e442013-07-12 13:46:57 -0700225/*
226 * The following enum defines the list of supported X86 instructions by the
227 * assembler. Their corresponding EncodingMap positions will be defined in
228 * Assemble.cc.
229 */
230enum X86OpCode {
231 kX86First = 0,
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700232 kX8632BitData = kX86First, // data [31..0].
Brian Carlstrom7940e442013-07-12 13:46:57 -0700233 kX86Bkpt,
234 kX86Nop,
235 // Define groups of binary operations
236 // MR - Memory Register - opcode [base + disp], reg
237 // - lir operands - 0: base, 1: disp, 2: reg
238 // AR - Array Register - opcode [base + index * scale + disp], reg
239 // - lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
240 // TR - Thread Register - opcode fs:[disp], reg - where fs: is equal to Thread::Current()
241 // - lir operands - 0: disp, 1: reg
242 // RR - Register Register - opcode reg1, reg2
243 // - lir operands - 0: reg1, 1: reg2
244 // RM - Register Memory - opcode reg, [base + disp]
245 // - lir operands - 0: reg, 1: base, 2: disp
246 // RA - Register Array - opcode reg, [base + index * scale + disp]
247 // - lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
248 // RT - Register Thread - opcode reg, fs:[disp] - where fs: is equal to Thread::Current()
249 // - lir operands - 0: reg, 1: disp
250 // RI - Register Immediate - opcode reg, #immediate
251 // - lir operands - 0: reg, 1: immediate
252 // MI - Memory Immediate - opcode [base + disp], #immediate
253 // - lir operands - 0: base, 1: disp, 2: immediate
254 // AI - Array Immediate - opcode [base + index * scale + disp], #immediate
255 // - lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100256 // TI - Thread Immediate - opcode fs:[disp], imm - where fs: is equal to Thread::Current()
Brian Carlstrom7940e442013-07-12 13:46:57 -0700257 // - lir operands - 0: disp, 1: imm
258#define BinaryOpCode(opcode) \
259 opcode ## 8MR, opcode ## 8AR, opcode ## 8TR, \
260 opcode ## 8RR, opcode ## 8RM, opcode ## 8RA, opcode ## 8RT, \
261 opcode ## 8RI, opcode ## 8MI, opcode ## 8AI, opcode ## 8TI, \
262 opcode ## 16MR, opcode ## 16AR, opcode ## 16TR, \
263 opcode ## 16RR, opcode ## 16RM, opcode ## 16RA, opcode ## 16RT, \
264 opcode ## 16RI, opcode ## 16MI, opcode ## 16AI, opcode ## 16TI, \
265 opcode ## 16RI8, opcode ## 16MI8, opcode ## 16AI8, opcode ## 16TI8, \
266 opcode ## 32MR, opcode ## 32AR, opcode ## 32TR, \
267 opcode ## 32RR, opcode ## 32RM, opcode ## 32RA, opcode ## 32RT, \
268 opcode ## 32RI, opcode ## 32MI, opcode ## 32AI, opcode ## 32TI, \
269 opcode ## 32RI8, opcode ## 32MI8, opcode ## 32AI8, opcode ## 32TI8
270 BinaryOpCode(kX86Add),
271 BinaryOpCode(kX86Or),
272 BinaryOpCode(kX86Adc),
273 BinaryOpCode(kX86Sbb),
274 BinaryOpCode(kX86And),
275 BinaryOpCode(kX86Sub),
276 BinaryOpCode(kX86Xor),
277 BinaryOpCode(kX86Cmp),
278#undef BinaryOpCode
279 kX86Imul16RRI, kX86Imul16RMI, kX86Imul16RAI,
280 kX86Imul32RRI, kX86Imul32RMI, kX86Imul32RAI,
281 kX86Imul32RRI8, kX86Imul32RMI8, kX86Imul32RAI8,
282 kX86Mov8MR, kX86Mov8AR, kX86Mov8TR,
283 kX86Mov8RR, kX86Mov8RM, kX86Mov8RA, kX86Mov8RT,
284 kX86Mov8RI, kX86Mov8MI, kX86Mov8AI, kX86Mov8TI,
285 kX86Mov16MR, kX86Mov16AR, kX86Mov16TR,
286 kX86Mov16RR, kX86Mov16RM, kX86Mov16RA, kX86Mov16RT,
287 kX86Mov16RI, kX86Mov16MI, kX86Mov16AI, kX86Mov16TI,
288 kX86Mov32MR, kX86Mov32AR, kX86Mov32TR,
289 kX86Mov32RR, kX86Mov32RM, kX86Mov32RA, kX86Mov32RT,
290 kX86Mov32RI, kX86Mov32MI, kX86Mov32AI, kX86Mov32TI,
Mark Mendell4028a6c2014-02-19 20:06:20 -0800291 kX86Lea32RM,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700292 kX86Lea32RA,
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800293 // RRC - Register Register ConditionCode - cond_opcode reg1, reg2
294 // - lir operands - 0: reg1, 1: reg2, 2: CC
295 kX86Cmov32RRC,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700296 // RC - Register CL - opcode reg, CL
297 // - lir operands - 0: reg, 1: CL
298 // MC - Memory CL - opcode [base + disp], CL
299 // - lir operands - 0: base, 1: disp, 2: CL
300 // AC - Array CL - opcode [base + index * scale + disp], CL
301 // - lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: CL
302#define BinaryShiftOpCode(opcode) \
303 opcode ## 8RI, opcode ## 8MI, opcode ## 8AI, \
304 opcode ## 8RC, opcode ## 8MC, opcode ## 8AC, \
305 opcode ## 16RI, opcode ## 16MI, opcode ## 16AI, \
306 opcode ## 16RC, opcode ## 16MC, opcode ## 16AC, \
307 opcode ## 32RI, opcode ## 32MI, opcode ## 32AI, \
308 opcode ## 32RC, opcode ## 32MC, opcode ## 32AC
309 BinaryShiftOpCode(kX86Rol),
310 BinaryShiftOpCode(kX86Ror),
311 BinaryShiftOpCode(kX86Rcl),
312 BinaryShiftOpCode(kX86Rcr),
313 BinaryShiftOpCode(kX86Sal),
314 BinaryShiftOpCode(kX86Shr),
315 BinaryShiftOpCode(kX86Sar),
316#undef BinaryShiftOpcode
317 kX86Cmc,
Mark Mendell4708dcd2014-01-22 09:05:18 -0800318 kX86Shld32RRI,
319 kX86Shrd32RRI,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700320#define UnaryOpcode(opcode, reg, mem, array) \
321 opcode ## 8 ## reg, opcode ## 8 ## mem, opcode ## 8 ## array, \
322 opcode ## 16 ## reg, opcode ## 16 ## mem, opcode ## 16 ## array, \
323 opcode ## 32 ## reg, opcode ## 32 ## mem, opcode ## 32 ## array
324 UnaryOpcode(kX86Test, RI, MI, AI),
325 kX86Test32RR,
326 UnaryOpcode(kX86Not, R, M, A),
327 UnaryOpcode(kX86Neg, R, M, A),
328 UnaryOpcode(kX86Mul, DaR, DaM, DaA),
329 UnaryOpcode(kX86Imul, DaR, DaM, DaA),
330 UnaryOpcode(kX86Divmod, DaR, DaM, DaA),
331 UnaryOpcode(kX86Idivmod, DaR, DaM, DaA),
Mark Mendell2bf31e62014-01-23 12:13:40 -0800332 kx86Cdq32Da,
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100333 kX86Bswap32R,
Vladimir Marko70b797d2013-12-03 15:25:24 +0000334 kX86Push32R, kX86Pop32R,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700335#undef UnaryOpcode
336#define Binary0fOpCode(opcode) \
337 opcode ## RR, opcode ## RM, opcode ## RA
338 Binary0fOpCode(kX86Movsd),
339 kX86MovsdMR,
340 kX86MovsdAR,
341 Binary0fOpCode(kX86Movss),
342 kX86MovssMR,
343 kX86MovssAR,
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700344 Binary0fOpCode(kX86Cvtsi2sd), // int to double
345 Binary0fOpCode(kX86Cvtsi2ss), // int to float
346 Binary0fOpCode(kX86Cvttsd2si), // truncating double to int
347 Binary0fOpCode(kX86Cvttss2si), // truncating float to int
348 Binary0fOpCode(kX86Cvtsd2si), // rounding double to int
349 Binary0fOpCode(kX86Cvtss2si), // rounding float to int
Brian Carlstrom7940e442013-07-12 13:46:57 -0700350 Binary0fOpCode(kX86Ucomisd), // unordered double compare
351 Binary0fOpCode(kX86Ucomiss), // unordered float compare
352 Binary0fOpCode(kX86Comisd), // double compare
353 Binary0fOpCode(kX86Comiss), // float compare
354 Binary0fOpCode(kX86Orps), // or of floating point registers
355 Binary0fOpCode(kX86Xorps), // xor of floating point registers
356 Binary0fOpCode(kX86Addsd), // double add
357 Binary0fOpCode(kX86Addss), // float add
358 Binary0fOpCode(kX86Mulsd), // double multiply
359 Binary0fOpCode(kX86Mulss), // float multiply
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700360 Binary0fOpCode(kX86Cvtsd2ss), // double to float
361 Binary0fOpCode(kX86Cvtss2sd), // float to double
Brian Carlstrom7940e442013-07-12 13:46:57 -0700362 Binary0fOpCode(kX86Subsd), // double subtract
363 Binary0fOpCode(kX86Subss), // float subtract
364 Binary0fOpCode(kX86Divsd), // double divide
365 Binary0fOpCode(kX86Divss), // float divide
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800366 Binary0fOpCode(kX86Punpckldq), // Interleave low-order double words
Brian Carlstrom7940e442013-07-12 13:46:57 -0700367 kX86PsrlqRI, // right shift of floating point registers
368 kX86PsllqRI, // left shift of floating point registers
Mark Mendellbff1ef02013-12-13 13:47:34 -0800369 kX86SqrtsdRR, // sqrt of floating point register
Razvan A Lupusoru614c2b42014-01-28 17:05:21 -0800370 kX86Fild32M, // push 32-bit integer on x87 stack
371 kX86Fild64M, // push 64-bit integer on x87 stack
372 kX86Fstp32M, // pop top x87 fp stack and do 32-bit store
373 kX86Fstp64M, // pop top x87 fp stack and do 64-bit store
Razvan A Lupusoru2c498d12014-01-29 16:02:57 -0800374 Binary0fOpCode(kX86Movups), // load unaligned packed single FP values from xmm2/m128 to xmm1
375 kX86MovupsMR, kX86MovupsAR, // store unaligned packed single FP values from xmm1 to m128
376 Binary0fOpCode(kX86Movaps), // load aligned packed single FP values from xmm2/m128 to xmm1
377 kX86MovapsMR, kX86MovapsAR, // store aligned packed single FP values from xmm1 to m128
378 kX86MovlpsRM, kX86MovlpsRA, // load packed single FP values from m64 to low quadword of xmm
379 kX86MovlpsMR, kX86MovlpsAR, // store packed single FP values from low quadword of xmm to m64
380 kX86MovhpsRM, kX86MovhpsRA, // load packed single FP values from m64 to high quadword of xmm
381 kX86MovhpsMR, kX86MovhpsAR, // store packed single FP values from high quadword of xmm to m64
Brian Carlstrom7940e442013-07-12 13:46:57 -0700382 Binary0fOpCode(kX86Movdxr), // move into xmm from gpr
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700383 kX86MovdrxRR, kX86MovdrxMR, kX86MovdrxAR, // move into reg from xmm
384 kX86Set8R, kX86Set8M, kX86Set8A, // set byte depending on condition operand
Brian Carlstrom7940e442013-07-12 13:46:57 -0700385 kX86Mfence, // memory barrier
386 Binary0fOpCode(kX86Imul16), // 16bit multiply
387 Binary0fOpCode(kX86Imul32), // 32bit multiply
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700388 kX86CmpxchgRR, kX86CmpxchgMR, kX86CmpxchgAR, // compare and exchange
Vladimir Markoc29bb612013-11-27 16:47:25 +0000389 kX86LockCmpxchgMR, kX86LockCmpxchgAR, // locked compare and exchange
Vladimir Marko70b797d2013-12-03 15:25:24 +0000390 kX86LockCmpxchg8bM, kX86LockCmpxchg8bA, // locked compare and exchange
Brian Carlstrom7940e442013-07-12 13:46:57 -0700391 Binary0fOpCode(kX86Movzx8), // zero-extend 8-bit value
392 Binary0fOpCode(kX86Movzx16), // zero-extend 16-bit value
393 Binary0fOpCode(kX86Movsx8), // sign-extend 8-bit value
394 Binary0fOpCode(kX86Movsx16), // sign-extend 16-bit value
395#undef Binary0fOpCode
396 kX86Jcc8, kX86Jcc32, // jCC rel8/32; lir operands - 0: rel, 1: CC, target assigned
397 kX86Jmp8, kX86Jmp32, // jmp rel8/32; lir operands - 0: rel, target assigned
398 kX86JmpR, // jmp reg; lir operands - 0: reg
Mark Mendell4028a6c2014-02-19 20:06:20 -0800399 kX86Jecxz8, // jcexz rel8; jump relative if ECX is zero.
Brian Carlstrom60d7a652014-03-13 18:10:08 -0700400 kX86JmpT, // jmp fs:[disp]; fs: is equal to Thread::Current(); lir operands - 0: disp
401
Brian Carlstrom7940e442013-07-12 13:46:57 -0700402 kX86CallR, // call reg; lir operands - 0: reg
403 kX86CallM, // call [base + disp]; lir operands - 0: base, 1: disp
404 kX86CallA, // call [base + index * scale + disp]
405 // lir operands - 0: base, 1: index, 2: scale, 3: disp
406 kX86CallT, // call fs:[disp]; fs: is equal to Thread::Current(); lir operands - 0: disp
Mark Mendell55d0eac2014-02-06 11:02:52 -0800407 kX86CallI, // call <relative> - 0: disp; Used for core.oat linking only
Brian Carlstrom7940e442013-07-12 13:46:57 -0700408 kX86Ret, // ret; no lir operands
409 kX86StartOfMethod, // call 0; pop reg; sub reg, # - generate start of method into reg
410 // lir operands - 0: reg
411 kX86PcRelLoadRA, // mov reg, [base + index * scale + PC relative displacement]
412 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
413 kX86PcRelAdr, // mov reg, PC relative displacement; lir operands - 0: reg, 1: table
Mark Mendell4028a6c2014-02-19 20:06:20 -0800414 kX86RepneScasw, // repne scasw
Brian Carlstrom7940e442013-07-12 13:46:57 -0700415 kX86Last
416};
417
418/* Instruction assembly field_loc kind */
419enum X86EncodingKind {
420 kData, // Special case for raw data.
421 kNop, // Special case for variable length nop.
422 kNullary, // Opcode that takes no arguments.
Mark Mendell4028a6c2014-02-19 20:06:20 -0800423 kPrefix2Nullary, // Opcode that takes no arguments, but 2 prefixes.
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100424 kRegOpcode, // Shorter form of R instruction kind (opcode+rd)
Brian Carlstrom7940e442013-07-12 13:46:57 -0700425 kReg, kMem, kArray, // R, M and A instruction kinds.
426 kMemReg, kArrayReg, kThreadReg, // MR, AR and TR instruction kinds.
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700427 kRegReg, kRegMem, kRegArray, kRegThread, // RR, RM, RA and RT instruction kinds.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700428 kRegRegStore, // RR following the store modrm reg-reg encoding rather than the load.
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700429 kRegImm, kMemImm, kArrayImm, kThreadImm, // RI, MI, AI and TI instruction kinds.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700430 kRegRegImm, kRegMemImm, kRegArrayImm, // RRI, RMI and RAI instruction kinds.
431 kMovRegImm, // Shorter form move RI.
Mark Mendell4708dcd2014-01-22 09:05:18 -0800432 kRegRegImmRev, // RRI with first reg in r/m
Brian Carlstrom7940e442013-07-12 13:46:57 -0700433 kShiftRegImm, kShiftMemImm, kShiftArrayImm, // Shift opcode with immediate.
434 kShiftRegCl, kShiftMemCl, kShiftArrayCl, // Shift opcode with register CL.
435 kRegRegReg, kRegRegMem, kRegRegArray, // RRR, RRM, RRA instruction kinds.
436 kRegCond, kMemCond, kArrayCond, // R, M, A instruction kinds following by a condition.
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800437 kRegRegCond, // RR instruction kind followed by a condition.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700438 kJmp, kJcc, kCall, // Branch instruction kinds.
439 kPcRel, // Operation with displacement that is PC relative
440 kMacro, // An instruction composing multiple others
441 kUnimplemented // Encoding used when an instruction isn't yet implemented.
442};
443
444/* Struct used to define the EncodingMap positions for each X86 opcode */
445struct X86EncodingMap {
446 X86OpCode opcode; // e.g. kOpAddRI
447 X86EncodingKind kind; // Used to discriminate in the union below
448 uint64_t flags;
449 struct {
450 uint8_t prefix1; // non-zero => a prefix byte
451 uint8_t prefix2; // non-zero => a second prefix byte
452 uint8_t opcode; // 1 byte opcode
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700453 uint8_t extra_opcode1; // possible extra opcode byte
454 uint8_t extra_opcode2; // possible second extra opcode byte
Brian Carlstrom7940e442013-07-12 13:46:57 -0700455 // 3bit opcode that gets encoded in the register bits of the modrm byte, use determined by the
456 // encoding kind
457 uint8_t modrm_opcode;
458 uint8_t ax_opcode; // non-zero => shorter encoding for AX as a destination
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700459 uint8_t immediate_bytes; // number of bytes of immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700460 } skeleton;
461 const char *name;
462 const char* fmt;
463};
464
465
466// FIXME: mem barrier type - what do we do for x86?
467#define kSY 0
468#define kST 0
469
470// Offsets of high and low halves of a 64bit value.
471#define LOWORD_OFFSET 0
472#define HIWORD_OFFSET 4
473
474// Segment override instruction prefix used for quick TLS access to Thread::Current().
475#define THREAD_PREFIX 0x64
476
477#define IS_SIMM8(v) ((-128 <= (v)) && ((v) <= 127))
478#define IS_SIMM16(v) ((-32768 <= (v)) && ((v) <= 32767))
479
480extern X86EncodingMap EncodingMap[kX86Last];
481extern X86ConditionCode X86ConditionEncoding(ConditionCode cond);
482
483} // namespace art
484
Brian Carlstromfc0e3212013-07-17 14:40:12 -0700485#endif // ART_COMPILER_DEX_QUICK_X86_X86_LIR_H_