blob: c3b5a2585f8fb0d250326040d00e8a948240389a [file] [log] [blame]
buzbeeee17e0a2013-07-31 10:47:37 -07001/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Vladimir Markobe0e5462014-02-26 11:24:15 +000017#include <algorithm>
buzbeeee17e0a2013-07-31 10:47:37 -070018#include "compiler_internals.h"
19#include "dataflow_iterator-inl.h"
Vladimir Markobe0e5462014-02-26 11:24:15 +000020#include "dex_instruction.h"
21#include "dex_instruction-inl.h"
Vladimir Markof096aad2014-01-23 15:51:58 +000022#include "dex/verified_method.h"
Vladimir Marko5816ed42013-11-27 17:04:20 +000023#include "dex/quick/dex_file_method_inliner.h"
24#include "dex/quick/dex_file_to_method_inliner_map.h"
Brian Carlstrom6449c622014-02-10 23:48:36 -080025#include "driver/compiler_options.h"
Vladimir Markobe0e5462014-02-26 11:24:15 +000026#include "UniquePtr.h"
Vladimir Marko69f08ba2014-04-11 12:28:11 +010027#include "utils/scoped_arena_containers.h"
buzbeeee17e0a2013-07-31 10:47:37 -070028
29namespace art {
30
31 // Instruction characteristics used to statically identify computation-intensive methods.
32const uint32_t MIRGraph::analysis_attributes_[kMirOpLast] = {
33 // 00 NOP
34 AN_NONE,
35
36 // 01 MOVE vA, vB
37 AN_MOVE,
38
39 // 02 MOVE_FROM16 vAA, vBBBB
40 AN_MOVE,
41
42 // 03 MOVE_16 vAAAA, vBBBB
43 AN_MOVE,
44
45 // 04 MOVE_WIDE vA, vB
46 AN_MOVE,
47
48 // 05 MOVE_WIDE_FROM16 vAA, vBBBB
49 AN_MOVE,
50
51 // 06 MOVE_WIDE_16 vAAAA, vBBBB
52 AN_MOVE,
53
54 // 07 MOVE_OBJECT vA, vB
55 AN_MOVE,
56
57 // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
58 AN_MOVE,
59
60 // 09 MOVE_OBJECT_16 vAAAA, vBBBB
61 AN_MOVE,
62
63 // 0A MOVE_RESULT vAA
64 AN_MOVE,
65
66 // 0B MOVE_RESULT_WIDE vAA
67 AN_MOVE,
68
69 // 0C MOVE_RESULT_OBJECT vAA
70 AN_MOVE,
71
72 // 0D MOVE_EXCEPTION vAA
73 AN_MOVE,
74
75 // 0E RETURN_VOID
76 AN_BRANCH,
77
78 // 0F RETURN vAA
79 AN_BRANCH,
80
81 // 10 RETURN_WIDE vAA
82 AN_BRANCH,
83
84 // 11 RETURN_OBJECT vAA
85 AN_BRANCH,
86
87 // 12 CONST_4 vA, #+B
88 AN_SIMPLECONST,
89
90 // 13 CONST_16 vAA, #+BBBB
91 AN_SIMPLECONST,
92
93 // 14 CONST vAA, #+BBBBBBBB
94 AN_SIMPLECONST,
95
96 // 15 CONST_HIGH16 VAA, #+BBBB0000
97 AN_SIMPLECONST,
98
99 // 16 CONST_WIDE_16 vAA, #+BBBB
100 AN_SIMPLECONST,
101
102 // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
103 AN_SIMPLECONST,
104
105 // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
106 AN_SIMPLECONST,
107
108 // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
109 AN_SIMPLECONST,
110
111 // 1A CONST_STRING vAA, string@BBBB
112 AN_NONE,
113
114 // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
115 AN_NONE,
116
117 // 1C CONST_CLASS vAA, type@BBBB
118 AN_NONE,
119
120 // 1D MONITOR_ENTER vAA
121 AN_NONE,
122
123 // 1E MONITOR_EXIT vAA
124 AN_NONE,
125
126 // 1F CHK_CAST vAA, type@BBBB
127 AN_NONE,
128
129 // 20 INSTANCE_OF vA, vB, type@CCCC
130 AN_NONE,
131
132 // 21 ARRAY_LENGTH vA, vB
133 AN_ARRAYOP,
134
135 // 22 NEW_INSTANCE vAA, type@BBBB
136 AN_HEAVYWEIGHT,
137
138 // 23 NEW_ARRAY vA, vB, type@CCCC
139 AN_HEAVYWEIGHT,
140
141 // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
142 AN_HEAVYWEIGHT,
143
144 // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
145 AN_HEAVYWEIGHT,
146
147 // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
148 AN_NONE,
149
150 // 27 THROW vAA
151 AN_HEAVYWEIGHT | AN_BRANCH,
152
153 // 28 GOTO
154 AN_BRANCH,
155
156 // 29 GOTO_16
157 AN_BRANCH,
158
159 // 2A GOTO_32
160 AN_BRANCH,
161
162 // 2B PACKED_SWITCH vAA, +BBBBBBBB
buzbeefe9ca402013-08-21 09:48:11 -0700163 AN_SWITCH,
buzbeeee17e0a2013-07-31 10:47:37 -0700164
165 // 2C SPARSE_SWITCH vAA, +BBBBBBBB
buzbeefe9ca402013-08-21 09:48:11 -0700166 AN_SWITCH,
buzbeeee17e0a2013-07-31 10:47:37 -0700167
168 // 2D CMPL_FLOAT vAA, vBB, vCC
169 AN_MATH | AN_FP | AN_SINGLE,
170
171 // 2E CMPG_FLOAT vAA, vBB, vCC
172 AN_MATH | AN_FP | AN_SINGLE,
173
174 // 2F CMPL_DOUBLE vAA, vBB, vCC
175 AN_MATH | AN_FP | AN_DOUBLE,
176
177 // 30 CMPG_DOUBLE vAA, vBB, vCC
178 AN_MATH | AN_FP | AN_DOUBLE,
179
180 // 31 CMP_LONG vAA, vBB, vCC
181 AN_MATH | AN_LONG,
182
183 // 32 IF_EQ vA, vB, +CCCC
184 AN_MATH | AN_BRANCH | AN_INT,
185
186 // 33 IF_NE vA, vB, +CCCC
187 AN_MATH | AN_BRANCH | AN_INT,
188
189 // 34 IF_LT vA, vB, +CCCC
190 AN_MATH | AN_BRANCH | AN_INT,
191
192 // 35 IF_GE vA, vB, +CCCC
193 AN_MATH | AN_BRANCH | AN_INT,
194
195 // 36 IF_GT vA, vB, +CCCC
196 AN_MATH | AN_BRANCH | AN_INT,
197
198 // 37 IF_LE vA, vB, +CCCC
199 AN_MATH | AN_BRANCH | AN_INT,
200
201 // 38 IF_EQZ vAA, +BBBB
202 AN_MATH | AN_BRANCH | AN_INT,
203
204 // 39 IF_NEZ vAA, +BBBB
205 AN_MATH | AN_BRANCH | AN_INT,
206
207 // 3A IF_LTZ vAA, +BBBB
208 AN_MATH | AN_BRANCH | AN_INT,
209
210 // 3B IF_GEZ vAA, +BBBB
211 AN_MATH | AN_BRANCH | AN_INT,
212
213 // 3C IF_GTZ vAA, +BBBB
214 AN_MATH | AN_BRANCH | AN_INT,
215
216 // 3D IF_LEZ vAA, +BBBB
217 AN_MATH | AN_BRANCH | AN_INT,
218
219 // 3E UNUSED_3E
220 AN_NONE,
221
222 // 3F UNUSED_3F
223 AN_NONE,
224
225 // 40 UNUSED_40
226 AN_NONE,
227
228 // 41 UNUSED_41
229 AN_NONE,
230
231 // 42 UNUSED_42
232 AN_NONE,
233
234 // 43 UNUSED_43
235 AN_NONE,
236
237 // 44 AGET vAA, vBB, vCC
238 AN_ARRAYOP,
239
240 // 45 AGET_WIDE vAA, vBB, vCC
241 AN_ARRAYOP,
242
243 // 46 AGET_OBJECT vAA, vBB, vCC
244 AN_ARRAYOP,
245
246 // 47 AGET_BOOLEAN vAA, vBB, vCC
247 AN_ARRAYOP,
248
249 // 48 AGET_BYTE vAA, vBB, vCC
250 AN_ARRAYOP,
251
252 // 49 AGET_CHAR vAA, vBB, vCC
253 AN_ARRAYOP,
254
255 // 4A AGET_SHORT vAA, vBB, vCC
256 AN_ARRAYOP,
257
258 // 4B APUT vAA, vBB, vCC
259 AN_ARRAYOP,
260
261 // 4C APUT_WIDE vAA, vBB, vCC
262 AN_ARRAYOP,
263
264 // 4D APUT_OBJECT vAA, vBB, vCC
265 AN_ARRAYOP,
266
267 // 4E APUT_BOOLEAN vAA, vBB, vCC
268 AN_ARRAYOP,
269
270 // 4F APUT_BYTE vAA, vBB, vCC
271 AN_ARRAYOP,
272
273 // 50 APUT_CHAR vAA, vBB, vCC
274 AN_ARRAYOP,
275
276 // 51 APUT_SHORT vAA, vBB, vCC
277 AN_ARRAYOP,
278
279 // 52 IGET vA, vB, field@CCCC
280 AN_NONE,
281
282 // 53 IGET_WIDE vA, vB, field@CCCC
283 AN_NONE,
284
285 // 54 IGET_OBJECT vA, vB, field@CCCC
286 AN_NONE,
287
288 // 55 IGET_BOOLEAN vA, vB, field@CCCC
289 AN_NONE,
290
291 // 56 IGET_BYTE vA, vB, field@CCCC
292 AN_NONE,
293
294 // 57 IGET_CHAR vA, vB, field@CCCC
295 AN_NONE,
296
297 // 58 IGET_SHORT vA, vB, field@CCCC
298 AN_NONE,
299
300 // 59 IPUT vA, vB, field@CCCC
301 AN_NONE,
302
303 // 5A IPUT_WIDE vA, vB, field@CCCC
304 AN_NONE,
305
306 // 5B IPUT_OBJECT vA, vB, field@CCCC
307 AN_NONE,
308
309 // 5C IPUT_BOOLEAN vA, vB, field@CCCC
310 AN_NONE,
311
312 // 5D IPUT_BYTE vA, vB, field@CCCC
313 AN_NONE,
314
315 // 5E IPUT_CHAR vA, vB, field@CCCC
316 AN_NONE,
317
318 // 5F IPUT_SHORT vA, vB, field@CCCC
319 AN_NONE,
320
321 // 60 SGET vAA, field@BBBB
322 AN_NONE,
323
324 // 61 SGET_WIDE vAA, field@BBBB
325 AN_NONE,
326
327 // 62 SGET_OBJECT vAA, field@BBBB
328 AN_NONE,
329
330 // 63 SGET_BOOLEAN vAA, field@BBBB
331 AN_NONE,
332
333 // 64 SGET_BYTE vAA, field@BBBB
334 AN_NONE,
335
336 // 65 SGET_CHAR vAA, field@BBBB
337 AN_NONE,
338
339 // 66 SGET_SHORT vAA, field@BBBB
340 AN_NONE,
341
342 // 67 SPUT vAA, field@BBBB
343 AN_NONE,
344
345 // 68 SPUT_WIDE vAA, field@BBBB
346 AN_NONE,
347
348 // 69 SPUT_OBJECT vAA, field@BBBB
349 AN_NONE,
350
351 // 6A SPUT_BOOLEAN vAA, field@BBBB
352 AN_NONE,
353
354 // 6B SPUT_BYTE vAA, field@BBBB
355 AN_NONE,
356
357 // 6C SPUT_CHAR vAA, field@BBBB
358 AN_NONE,
359
360 // 6D SPUT_SHORT vAA, field@BBBB
361 AN_NONE,
362
363 // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
364 AN_INVOKE | AN_HEAVYWEIGHT,
365
366 // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
367 AN_INVOKE | AN_HEAVYWEIGHT,
368
369 // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
370 AN_INVOKE | AN_HEAVYWEIGHT,
371
372 // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
373 AN_INVOKE | AN_HEAVYWEIGHT,
374
375 // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
376 AN_INVOKE | AN_HEAVYWEIGHT,
377
378 // 73 UNUSED_73
379 AN_NONE,
380
381 // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
382 AN_INVOKE | AN_HEAVYWEIGHT,
383
384 // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
385 AN_INVOKE | AN_HEAVYWEIGHT,
386
387 // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
388 AN_INVOKE | AN_HEAVYWEIGHT,
389
390 // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
391 AN_INVOKE | AN_HEAVYWEIGHT,
392
393 // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
394 AN_INVOKE | AN_HEAVYWEIGHT,
395
396 // 79 UNUSED_79
397 AN_NONE,
398
399 // 7A UNUSED_7A
400 AN_NONE,
401
402 // 7B NEG_INT vA, vB
403 AN_MATH | AN_INT,
404
405 // 7C NOT_INT vA, vB
406 AN_MATH | AN_INT,
407
408 // 7D NEG_LONG vA, vB
409 AN_MATH | AN_LONG,
410
411 // 7E NOT_LONG vA, vB
412 AN_MATH | AN_LONG,
413
414 // 7F NEG_FLOAT vA, vB
415 AN_MATH | AN_FP | AN_SINGLE,
416
417 // 80 NEG_DOUBLE vA, vB
418 AN_MATH | AN_FP | AN_DOUBLE,
419
420 // 81 INT_TO_LONG vA, vB
421 AN_MATH | AN_INT | AN_LONG,
422
423 // 82 INT_TO_FLOAT vA, vB
424 AN_MATH | AN_FP | AN_INT | AN_SINGLE,
425
426 // 83 INT_TO_DOUBLE vA, vB
427 AN_MATH | AN_FP | AN_INT | AN_DOUBLE,
428
429 // 84 LONG_TO_INT vA, vB
430 AN_MATH | AN_INT | AN_LONG,
431
432 // 85 LONG_TO_FLOAT vA, vB
433 AN_MATH | AN_FP | AN_LONG | AN_SINGLE,
434
435 // 86 LONG_TO_DOUBLE vA, vB
436 AN_MATH | AN_FP | AN_LONG | AN_DOUBLE,
437
438 // 87 FLOAT_TO_INT vA, vB
439 AN_MATH | AN_FP | AN_INT | AN_SINGLE,
440
441 // 88 FLOAT_TO_LONG vA, vB
442 AN_MATH | AN_FP | AN_LONG | AN_SINGLE,
443
444 // 89 FLOAT_TO_DOUBLE vA, vB
445 AN_MATH | AN_FP | AN_SINGLE | AN_DOUBLE,
446
447 // 8A DOUBLE_TO_INT vA, vB
448 AN_MATH | AN_FP | AN_INT | AN_DOUBLE,
449
450 // 8B DOUBLE_TO_LONG vA, vB
451 AN_MATH | AN_FP | AN_LONG | AN_DOUBLE,
452
453 // 8C DOUBLE_TO_FLOAT vA, vB
454 AN_MATH | AN_FP | AN_SINGLE | AN_DOUBLE,
455
456 // 8D INT_TO_BYTE vA, vB
457 AN_MATH | AN_INT,
458
459 // 8E INT_TO_CHAR vA, vB
460 AN_MATH | AN_INT,
461
462 // 8F INT_TO_SHORT vA, vB
463 AN_MATH | AN_INT,
464
465 // 90 ADD_INT vAA, vBB, vCC
466 AN_MATH | AN_INT,
467
468 // 91 SUB_INT vAA, vBB, vCC
469 AN_MATH | AN_INT,
470
471 // 92 MUL_INT vAA, vBB, vCC
472 AN_MATH | AN_INT,
473
474 // 93 DIV_INT vAA, vBB, vCC
475 AN_MATH | AN_INT,
476
477 // 94 REM_INT vAA, vBB, vCC
478 AN_MATH | AN_INT,
479
480 // 95 AND_INT vAA, vBB, vCC
481 AN_MATH | AN_INT,
482
483 // 96 OR_INT vAA, vBB, vCC
484 AN_MATH | AN_INT,
485
486 // 97 XOR_INT vAA, vBB, vCC
487 AN_MATH | AN_INT,
488
489 // 98 SHL_INT vAA, vBB, vCC
490 AN_MATH | AN_INT,
491
492 // 99 SHR_INT vAA, vBB, vCC
493 AN_MATH | AN_INT,
494
495 // 9A USHR_INT vAA, vBB, vCC
496 AN_MATH | AN_INT,
497
498 // 9B ADD_LONG vAA, vBB, vCC
499 AN_MATH | AN_LONG,
500
501 // 9C SUB_LONG vAA, vBB, vCC
502 AN_MATH | AN_LONG,
503
504 // 9D MUL_LONG vAA, vBB, vCC
505 AN_MATH | AN_LONG,
506
507 // 9E DIV_LONG vAA, vBB, vCC
508 AN_MATH | AN_LONG,
509
510 // 9F REM_LONG vAA, vBB, vCC
511 AN_MATH | AN_LONG,
512
513 // A0 AND_LONG vAA, vBB, vCC
514 AN_MATH | AN_LONG,
515
516 // A1 OR_LONG vAA, vBB, vCC
517 AN_MATH | AN_LONG,
518
519 // A2 XOR_LONG vAA, vBB, vCC
520 AN_MATH | AN_LONG,
521
522 // A3 SHL_LONG vAA, vBB, vCC
523 AN_MATH | AN_LONG,
524
525 // A4 SHR_LONG vAA, vBB, vCC
526 AN_MATH | AN_LONG,
527
528 // A5 USHR_LONG vAA, vBB, vCC
529 AN_MATH | AN_LONG,
530
531 // A6 ADD_FLOAT vAA, vBB, vCC
532 AN_MATH | AN_FP | AN_SINGLE,
533
534 // A7 SUB_FLOAT vAA, vBB, vCC
535 AN_MATH | AN_FP | AN_SINGLE,
536
537 // A8 MUL_FLOAT vAA, vBB, vCC
538 AN_MATH | AN_FP | AN_SINGLE,
539
540 // A9 DIV_FLOAT vAA, vBB, vCC
541 AN_MATH | AN_FP | AN_SINGLE,
542
543 // AA REM_FLOAT vAA, vBB, vCC
544 AN_MATH | AN_FP | AN_SINGLE,
545
546 // AB ADD_DOUBLE vAA, vBB, vCC
547 AN_MATH | AN_FP | AN_DOUBLE,
548
549 // AC SUB_DOUBLE vAA, vBB, vCC
550 AN_MATH | AN_FP | AN_DOUBLE,
551
552 // AD MUL_DOUBLE vAA, vBB, vCC
553 AN_MATH | AN_FP | AN_DOUBLE,
554
555 // AE DIV_DOUBLE vAA, vBB, vCC
556 AN_MATH | AN_FP | AN_DOUBLE,
557
558 // AF REM_DOUBLE vAA, vBB, vCC
559 AN_MATH | AN_FP | AN_DOUBLE,
560
561 // B0 ADD_INT_2ADDR vA, vB
562 AN_MATH | AN_INT,
563
564 // B1 SUB_INT_2ADDR vA, vB
565 AN_MATH | AN_INT,
566
567 // B2 MUL_INT_2ADDR vA, vB
568 AN_MATH | AN_INT,
569
570 // B3 DIV_INT_2ADDR vA, vB
571 AN_MATH | AN_INT,
572
573 // B4 REM_INT_2ADDR vA, vB
574 AN_MATH | AN_INT,
575
576 // B5 AND_INT_2ADDR vA, vB
577 AN_MATH | AN_INT,
578
579 // B6 OR_INT_2ADDR vA, vB
580 AN_MATH | AN_INT,
581
582 // B7 XOR_INT_2ADDR vA, vB
583 AN_MATH | AN_INT,
584
585 // B8 SHL_INT_2ADDR vA, vB
586 AN_MATH | AN_INT,
587
588 // B9 SHR_INT_2ADDR vA, vB
589 AN_MATH | AN_INT,
590
591 // BA USHR_INT_2ADDR vA, vB
592 AN_MATH | AN_INT,
593
594 // BB ADD_LONG_2ADDR vA, vB
595 AN_MATH | AN_LONG,
596
597 // BC SUB_LONG_2ADDR vA, vB
598 AN_MATH | AN_LONG,
599
600 // BD MUL_LONG_2ADDR vA, vB
601 AN_MATH | AN_LONG,
602
603 // BE DIV_LONG_2ADDR vA, vB
604 AN_MATH | AN_LONG,
605
606 // BF REM_LONG_2ADDR vA, vB
607 AN_MATH | AN_LONG,
608
609 // C0 AND_LONG_2ADDR vA, vB
610 AN_MATH | AN_LONG,
611
612 // C1 OR_LONG_2ADDR vA, vB
613 AN_MATH | AN_LONG,
614
615 // C2 XOR_LONG_2ADDR vA, vB
616 AN_MATH | AN_LONG,
617
618 // C3 SHL_LONG_2ADDR vA, vB
619 AN_MATH | AN_LONG,
620
621 // C4 SHR_LONG_2ADDR vA, vB
622 AN_MATH | AN_LONG,
623
624 // C5 USHR_LONG_2ADDR vA, vB
625 AN_MATH | AN_LONG,
626
627 // C6 ADD_FLOAT_2ADDR vA, vB
628 AN_MATH | AN_FP | AN_SINGLE,
629
630 // C7 SUB_FLOAT_2ADDR vA, vB
631 AN_MATH | AN_FP | AN_SINGLE,
632
633 // C8 MUL_FLOAT_2ADDR vA, vB
634 AN_MATH | AN_FP | AN_SINGLE,
635
636 // C9 DIV_FLOAT_2ADDR vA, vB
637 AN_MATH | AN_FP | AN_SINGLE,
638
639 // CA REM_FLOAT_2ADDR vA, vB
640 AN_MATH | AN_FP | AN_SINGLE,
641
642 // CB ADD_DOUBLE_2ADDR vA, vB
643 AN_MATH | AN_FP | AN_DOUBLE,
644
645 // CC SUB_DOUBLE_2ADDR vA, vB
646 AN_MATH | AN_FP | AN_DOUBLE,
647
648 // CD MUL_DOUBLE_2ADDR vA, vB
649 AN_MATH | AN_FP | AN_DOUBLE,
650
651 // CE DIV_DOUBLE_2ADDR vA, vB
652 AN_MATH | AN_FP | AN_DOUBLE,
653
654 // CF REM_DOUBLE_2ADDR vA, vB
655 AN_MATH | AN_FP | AN_DOUBLE,
656
657 // D0 ADD_INT_LIT16 vA, vB, #+CCCC
658 AN_MATH | AN_INT,
659
660 // D1 RSUB_INT vA, vB, #+CCCC
661 AN_MATH | AN_INT,
662
663 // D2 MUL_INT_LIT16 vA, vB, #+CCCC
664 AN_MATH | AN_INT,
665
666 // D3 DIV_INT_LIT16 vA, vB, #+CCCC
667 AN_MATH | AN_INT,
668
669 // D4 REM_INT_LIT16 vA, vB, #+CCCC
670 AN_MATH | AN_INT,
671
672 // D5 AND_INT_LIT16 vA, vB, #+CCCC
673 AN_MATH | AN_INT,
674
675 // D6 OR_INT_LIT16 vA, vB, #+CCCC
676 AN_MATH | AN_INT,
677
678 // D7 XOR_INT_LIT16 vA, vB, #+CCCC
679 AN_MATH | AN_INT,
680
681 // D8 ADD_INT_LIT8 vAA, vBB, #+CC
682 AN_MATH | AN_INT,
683
684 // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
685 AN_MATH | AN_INT,
686
687 // DA MUL_INT_LIT8 vAA, vBB, #+CC
688 AN_MATH | AN_INT,
689
690 // DB DIV_INT_LIT8 vAA, vBB, #+CC
691 AN_MATH | AN_INT,
692
693 // DC REM_INT_LIT8 vAA, vBB, #+CC
694 AN_MATH | AN_INT,
695
696 // DD AND_INT_LIT8 vAA, vBB, #+CC
697 AN_MATH | AN_INT,
698
699 // DE OR_INT_LIT8 vAA, vBB, #+CC
700 AN_MATH | AN_INT,
701
702 // DF XOR_INT_LIT8 vAA, vBB, #+CC
703 AN_MATH | AN_INT,
704
705 // E0 SHL_INT_LIT8 vAA, vBB, #+CC
706 AN_MATH | AN_INT,
707
708 // E1 SHR_INT_LIT8 vAA, vBB, #+CC
709 AN_MATH | AN_INT,
710
711 // E2 USHR_INT_LIT8 vAA, vBB, #+CC
712 AN_MATH | AN_INT,
713
714 // E3 IGET_VOLATILE
715 AN_NONE,
716
717 // E4 IPUT_VOLATILE
718 AN_NONE,
719
720 // E5 SGET_VOLATILE
721 AN_NONE,
722
723 // E6 SPUT_VOLATILE
724 AN_NONE,
725
726 // E7 IGET_OBJECT_VOLATILE
727 AN_NONE,
728
729 // E8 IGET_WIDE_VOLATILE
730 AN_NONE,
731
732 // E9 IPUT_WIDE_VOLATILE
733 AN_NONE,
734
735 // EA SGET_WIDE_VOLATILE
736 AN_NONE,
737
738 // EB SPUT_WIDE_VOLATILE
739 AN_NONE,
740
741 // EC BREAKPOINT
742 AN_NONE,
743
744 // ED THROW_VERIFICATION_ERROR
745 AN_HEAVYWEIGHT | AN_BRANCH,
746
747 // EE EXECUTE_INLINE
748 AN_NONE,
749
750 // EF EXECUTE_INLINE_RANGE
751 AN_NONE,
752
753 // F0 INVOKE_OBJECT_INIT_RANGE
754 AN_INVOKE | AN_HEAVYWEIGHT,
755
756 // F1 RETURN_VOID_BARRIER
757 AN_BRANCH,
758
759 // F2 IGET_QUICK
760 AN_NONE,
761
762 // F3 IGET_WIDE_QUICK
763 AN_NONE,
764
765 // F4 IGET_OBJECT_QUICK
766 AN_NONE,
767
768 // F5 IPUT_QUICK
769 AN_NONE,
770
771 // F6 IPUT_WIDE_QUICK
772 AN_NONE,
773
774 // F7 IPUT_OBJECT_QUICK
775 AN_NONE,
776
777 // F8 INVOKE_VIRTUAL_QUICK
778 AN_INVOKE | AN_HEAVYWEIGHT,
779
780 // F9 INVOKE_VIRTUAL_QUICK_RANGE
781 AN_INVOKE | AN_HEAVYWEIGHT,
782
783 // FA INVOKE_SUPER_QUICK
784 AN_INVOKE | AN_HEAVYWEIGHT,
785
786 // FB INVOKE_SUPER_QUICK_RANGE
787 AN_INVOKE | AN_HEAVYWEIGHT,
788
789 // FC IPUT_OBJECT_VOLATILE
790 AN_NONE,
791
792 // FD SGET_OBJECT_VOLATILE
793 AN_NONE,
794
795 // FE SPUT_OBJECT_VOLATILE
796 AN_NONE,
797
798 // FF UNUSED_FF
799 AN_NONE,
800
801 // Beginning of extended MIR opcodes
802 // 100 MIR_PHI
803 AN_NONE,
804
805 // 101 MIR_COPY
806 AN_NONE,
807
808 // 102 MIR_FUSED_CMPL_FLOAT
809 AN_NONE,
810
811 // 103 MIR_FUSED_CMPG_FLOAT
812 AN_NONE,
813
814 // 104 MIR_FUSED_CMPL_DOUBLE
815 AN_NONE,
816
817 // 105 MIR_FUSED_CMPG_DOUBLE
818 AN_NONE,
819
820 // 106 MIR_FUSED_CMP_LONG
821 AN_NONE,
822
823 // 107 MIR_NOP
824 AN_NONE,
825
826 // 108 MIR_NULL_CHECK
827 AN_NONE,
828
829 // 109 MIR_RANGE_CHECK
830 AN_NONE,
831
832 // 110 MIR_DIV_ZERO_CHECK
833 AN_NONE,
834
835 // 111 MIR_CHECK
836 AN_NONE,
837
838 // 112 MIR_CHECKPART2
839 AN_NONE,
840
841 // 113 MIR_SELECT
842 AN_NONE,
843};
844
845struct MethodStats {
846 int dex_instructions;
847 int math_ops;
848 int fp_ops;
849 int array_ops;
850 int branch_ops;
851 int heavyweight_ops;
852 bool has_computational_loop;
buzbeefe9ca402013-08-21 09:48:11 -0700853 bool has_switch;
buzbeeee17e0a2013-07-31 10:47:37 -0700854 float math_ratio;
855 float fp_ratio;
856 float array_ratio;
857 float branch_ratio;
858 float heavyweight_ratio;
859};
860
861void MIRGraph::AnalyzeBlock(BasicBlock* bb, MethodStats* stats) {
862 if (bb->visited || (bb->block_type != kDalvikByteCode)) {
863 return;
864 }
865 bool computational_block = true;
866 bool has_math = false;
867 /*
868 * For the purposes of this scan, we want to treat the set of basic blocks broken
869 * by an exception edge as a single basic block. We'll scan forward along the fallthrough
870 * edges until we reach an explicit branch or return.
871 */
872 BasicBlock* ending_bb = bb;
873 if (ending_bb->last_mir_insn != NULL) {
874 uint32_t ending_flags = analysis_attributes_[ending_bb->last_mir_insn->dalvikInsn.opcode];
875 while ((ending_flags & AN_BRANCH) == 0) {
buzbee0d829482013-10-11 15:24:55 -0700876 ending_bb = GetBasicBlock(ending_bb->fall_through);
buzbeeee17e0a2013-07-31 10:47:37 -0700877 ending_flags = analysis_attributes_[ending_bb->last_mir_insn->dalvikInsn.opcode];
878 }
879 }
880 /*
881 * Ideally, we'd weight the operations by loop nesting level, but to do so we'd
882 * first need to do some expensive loop detection - and the point of this is to make
883 * an informed guess before investing in computation. However, we can cheaply detect
884 * many simple loop forms without having to do full dataflow analysis.
885 */
886 int loop_scale_factor = 1;
887 // Simple for and while loops
buzbee0d829482013-10-11 15:24:55 -0700888 if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->fall_through == NullBasicBlockId)) {
889 if ((GetBasicBlock(ending_bb->taken)->taken == bb->id) ||
890 (GetBasicBlock(ending_bb->taken)->fall_through == bb->id)) {
buzbeeee17e0a2013-07-31 10:47:37 -0700891 loop_scale_factor = 25;
892 }
893 }
894 // Simple do-while loop
buzbee0d829482013-10-11 15:24:55 -0700895 if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->taken == bb->id)) {
buzbeeee17e0a2013-07-31 10:47:37 -0700896 loop_scale_factor = 25;
897 }
898
899 BasicBlock* tbb = bb;
900 bool done = false;
901 while (!done) {
902 tbb->visited = true;
903 for (MIR* mir = tbb->first_mir_insn; mir != NULL; mir = mir->next) {
904 if (static_cast<uint32_t>(mir->dalvikInsn.opcode) >= kMirOpFirst) {
905 // Skip any MIR pseudo-op.
906 continue;
907 }
908 uint32_t flags = analysis_attributes_[mir->dalvikInsn.opcode];
909 stats->dex_instructions += loop_scale_factor;
910 if ((flags & AN_BRANCH) == 0) {
911 computational_block &= ((flags & AN_COMPUTATIONAL) != 0);
912 } else {
913 stats->branch_ops += loop_scale_factor;
914 }
915 if ((flags & AN_MATH) != 0) {
916 stats->math_ops += loop_scale_factor;
917 has_math = true;
918 }
919 if ((flags & AN_FP) != 0) {
920 stats->fp_ops += loop_scale_factor;
921 }
922 if ((flags & AN_ARRAYOP) != 0) {
923 stats->array_ops += loop_scale_factor;
924 }
925 if ((flags & AN_HEAVYWEIGHT) != 0) {
926 stats->heavyweight_ops += loop_scale_factor;
927 }
buzbeefe9ca402013-08-21 09:48:11 -0700928 if ((flags & AN_SWITCH) != 0) {
929 stats->has_switch = true;
930 }
buzbeeee17e0a2013-07-31 10:47:37 -0700931 }
932 if (tbb == ending_bb) {
933 done = true;
934 } else {
buzbee0d829482013-10-11 15:24:55 -0700935 tbb = GetBasicBlock(tbb->fall_through);
buzbeeee17e0a2013-07-31 10:47:37 -0700936 }
937 }
938 if (has_math && computational_block && (loop_scale_factor > 1)) {
939 stats->has_computational_loop = true;
940 }
941}
942
943bool MIRGraph::ComputeSkipCompilation(MethodStats* stats, bool skip_default) {
944 float count = stats->dex_instructions;
945 stats->math_ratio = stats->math_ops / count;
946 stats->fp_ratio = stats->fp_ops / count;
947 stats->branch_ratio = stats->branch_ops / count;
948 stats->array_ratio = stats->array_ops / count;
949 stats->heavyweight_ratio = stats->heavyweight_ops / count;
950
951 if (cu_->enable_debug & (1 << kDebugShowFilterStats)) {
952 LOG(INFO) << "STATS " << stats->dex_instructions << ", math:"
953 << stats->math_ratio << ", fp:"
954 << stats->fp_ratio << ", br:"
955 << stats->branch_ratio << ", hw:"
buzbeefe9ca402013-08-21 09:48:11 -0700956 << stats->heavyweight_ratio << ", arr:"
buzbeeee17e0a2013-07-31 10:47:37 -0700957 << stats->array_ratio << ", hot:"
958 << stats->has_computational_loop << ", "
959 << PrettyMethod(cu_->method_idx, *cu_->dex_file);
960 }
961
962 // Computation intensive?
963 if (stats->has_computational_loop && (stats->heavyweight_ratio < 0.04)) {
964 return false;
965 }
966
967 // Complex, logic-intensive?
Brian Carlstrom6449c622014-02-10 23:48:36 -0800968 if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) &&
buzbeeee17e0a2013-07-31 10:47:37 -0700969 stats->branch_ratio > 0.3) {
970 return false;
971 }
972
973 // Significant floating point?
974 if (stats->fp_ratio > 0.05) {
975 return false;
976 }
977
978 // Significant generic math?
979 if (stats->math_ratio > 0.3) {
980 return false;
981 }
982
983 // If array-intensive, compiling is probably worthwhile.
984 if (stats->array_ratio > 0.1) {
985 return false;
986 }
987
buzbeefe9ca402013-08-21 09:48:11 -0700988 // Switch operations benefit greatly from compilation, so go ahead and spend the cycles.
989 if (stats->has_switch) {
990 return false;
991 }
992
993 // If significant in size and high proportion of expensive operations, skip.
Brian Carlstrom6449c622014-02-10 23:48:36 -0800994 if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) &&
buzbeefe9ca402013-08-21 09:48:11 -0700995 (stats->heavyweight_ratio > 0.3)) {
buzbeeee17e0a2013-07-31 10:47:37 -0700996 return true;
997 }
998
999 return skip_default;
1000}
1001
1002 /*
1003 * Will eventually want this to be a bit more sophisticated and happen at verification time.
buzbeeee17e0a2013-07-31 10:47:37 -07001004 */
Brian Carlstrom6449c622014-02-10 23:48:36 -08001005bool MIRGraph::SkipCompilation() {
1006 const CompilerOptions& compiler_options = cu_->compiler_driver->GetCompilerOptions();
1007 CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
1008 if (compiler_filter == CompilerOptions::kEverything) {
buzbeeee17e0a2013-07-31 10:47:37 -07001009 return false;
1010 }
1011
buzbeeb1f1d642014-02-27 12:55:32 -08001012 // Contains a pattern we don't want to compile?
1013 if (punt_to_interpreter_) {
1014 return true;
1015 }
1016
Jeff Hao4a200f52014-04-01 14:58:49 -07001017 if (!compiler_options.IsCompilationEnabled() || compiler_filter == CompilerOptions::kProfiled) {
buzbeeee17e0a2013-07-31 10:47:37 -07001018 return true;
1019 }
1020
buzbeefe9ca402013-08-21 09:48:11 -07001021 // Set up compilation cutoffs based on current filter mode.
1022 size_t small_cutoff = 0;
1023 size_t default_cutoff = 0;
1024 switch (compiler_filter) {
Brian Carlstrom6449c622014-02-10 23:48:36 -08001025 case CompilerOptions::kBalanced:
1026 small_cutoff = compiler_options.GetSmallMethodThreshold();
1027 default_cutoff = compiler_options.GetLargeMethodThreshold();
buzbeefe9ca402013-08-21 09:48:11 -07001028 break;
Brian Carlstrom6449c622014-02-10 23:48:36 -08001029 case CompilerOptions::kSpace:
1030 small_cutoff = compiler_options.GetTinyMethodThreshold();
1031 default_cutoff = compiler_options.GetSmallMethodThreshold();
buzbeefe9ca402013-08-21 09:48:11 -07001032 break;
Brian Carlstrom6449c622014-02-10 23:48:36 -08001033 case CompilerOptions::kSpeed:
1034 small_cutoff = compiler_options.GetHugeMethodThreshold();
1035 default_cutoff = compiler_options.GetHugeMethodThreshold();
buzbeefe9ca402013-08-21 09:48:11 -07001036 break;
1037 default:
1038 LOG(FATAL) << "Unexpected compiler_filter_: " << compiler_filter;
1039 }
1040
1041 // If size < cutoff, assume we'll compile - but allow removal.
1042 bool skip_compilation = (GetNumDalvikInsns() >= default_cutoff);
1043
1044 /*
1045 * Filter 1: Huge methods are likely to be machine generated, but some aren't.
1046 * If huge, assume we won't compile, but allow futher analysis to turn it back on.
1047 */
Brian Carlstrom6449c622014-02-10 23:48:36 -08001048 if (compiler_options.IsHugeMethod(GetNumDalvikInsns())) {
buzbeefe9ca402013-08-21 09:48:11 -07001049 skip_compilation = true;
buzbeeb48819d2013-09-14 16:15:25 -07001050 // If we're got a huge number of basic blocks, don't bother with further analysis.
Brian Carlstrom6449c622014-02-10 23:48:36 -08001051 if (static_cast<size_t>(num_blocks_) > (compiler_options.GetHugeMethodThreshold() / 2)) {
buzbeeb48819d2013-09-14 16:15:25 -07001052 return true;
1053 }
Brian Carlstrom6449c622014-02-10 23:48:36 -08001054 } else if (compiler_options.IsLargeMethod(GetNumDalvikInsns()) &&
buzbeeb48819d2013-09-14 16:15:25 -07001055 /* If it's large and contains no branches, it's likely to be machine generated initialization */
1056 (GetBranchCount() == 0)) {
1057 return true;
Brian Carlstrom6449c622014-02-10 23:48:36 -08001058 } else if (compiler_filter == CompilerOptions::kSpeed) {
buzbeefe9ca402013-08-21 09:48:11 -07001059 // If not huge, compile.
1060 return false;
buzbeeee17e0a2013-07-31 10:47:37 -07001061 }
1062
1063 // Filter 2: Skip class initializers.
1064 if (((cu_->access_flags & kAccConstructor) != 0) && ((cu_->access_flags & kAccStatic) != 0)) {
1065 return true;
1066 }
1067
1068 // Filter 3: if this method is a special pattern, go ahead and emit the canned pattern.
Vladimir Marko5816ed42013-11-27 17:04:20 +00001069 if (cu_->compiler_driver->GetMethodInlinerMap() != nullptr &&
1070 cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
1071 ->IsSpecial(cu_->method_idx)) {
buzbeeee17e0a2013-07-31 10:47:37 -07001072 return false;
1073 }
1074
buzbeefe9ca402013-08-21 09:48:11 -07001075 // Filter 4: if small, just compile.
buzbeeee17e0a2013-07-31 10:47:37 -07001076 if (GetNumDalvikInsns() < small_cutoff) {
1077 return false;
1078 }
1079
1080 // Analyze graph for:
1081 // o floating point computation
1082 // o basic blocks contained in loop with heavy arithmetic.
1083 // o proportion of conditional branches.
1084
1085 MethodStats stats;
1086 memset(&stats, 0, sizeof(stats));
1087
1088 ClearAllVisitedFlags();
buzbee56c71782013-09-05 17:13:19 -07001089 AllNodesIterator iter(this);
buzbeeee17e0a2013-07-31 10:47:37 -07001090 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1091 AnalyzeBlock(bb, &stats);
1092 }
1093
1094 return ComputeSkipCompilation(&stats, skip_compilation);
1095}
1096
Vladimir Markobe0e5462014-02-26 11:24:15 +00001097void MIRGraph::DoCacheFieldLoweringInfo() {
Vladimir Markoa24122d2014-03-07 10:18:14 +00001098 // All IGET/IPUT/SGET/SPUT instructions take 2 code units and there must also be a RETURN.
1099 const uint32_t max_refs = (current_code_item_->insns_size_in_code_units_ - 1u) / 2u;
1100 ScopedArenaAllocator allocator(&cu_->arena_stack);
1101 uint16_t* field_idxs =
1102 reinterpret_cast<uint16_t*>(allocator.Alloc(max_refs * sizeof(uint16_t), kArenaAllocMisc));
Vladimir Markobe0e5462014-02-26 11:24:15 +00001103
1104 // Find IGET/IPUT/SGET/SPUT insns, store IGET/IPUT fields at the beginning, SGET/SPUT at the end.
1105 size_t ifield_pos = 0u;
Vladimir Markoa24122d2014-03-07 10:18:14 +00001106 size_t sfield_pos = max_refs;
Vladimir Markobe0e5462014-02-26 11:24:15 +00001107 AllNodesIterator iter(this);
1108 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1109 if (bb->block_type != kDalvikByteCode) {
1110 continue;
1111 }
1112 for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1113 if (mir->dalvikInsn.opcode >= Instruction::IGET &&
1114 mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
Vladimir Markobe0e5462014-02-26 11:24:15 +00001115 const Instruction* insn = Instruction::At(current_code_item_->insns_ + mir->offset);
Vladimir Markobe0e5462014-02-26 11:24:15 +00001116 // Get field index and try to find it among existing indexes. If found, it's usually among
1117 // the last few added, so we'll start the search from ifield_pos/sfield_pos. Though this
1118 // is a linear search, it actually performs much better than map based approach.
1119 if (mir->dalvikInsn.opcode <= Instruction::IPUT_SHORT) {
Vladimir Markoa24122d2014-03-07 10:18:14 +00001120 uint16_t field_idx = insn->VRegC_22c();
Vladimir Markobe0e5462014-02-26 11:24:15 +00001121 size_t i = ifield_pos;
1122 while (i != 0u && field_idxs[i - 1] != field_idx) {
1123 --i;
1124 }
1125 if (i != 0u) {
1126 mir->meta.ifield_lowering_info = i - 1;
1127 } else {
1128 mir->meta.ifield_lowering_info = ifield_pos;
Vladimir Markoa24122d2014-03-07 10:18:14 +00001129 field_idxs[ifield_pos++] = field_idx;
Vladimir Markobe0e5462014-02-26 11:24:15 +00001130 }
1131 } else {
Vladimir Markoa24122d2014-03-07 10:18:14 +00001132 uint16_t field_idx = insn->VRegB_21c();
Vladimir Markobe0e5462014-02-26 11:24:15 +00001133 size_t i = sfield_pos;
Vladimir Markoa24122d2014-03-07 10:18:14 +00001134 while (i != max_refs && field_idxs[i] != field_idx) {
Vladimir Markobe0e5462014-02-26 11:24:15 +00001135 ++i;
1136 }
Vladimir Markoa24122d2014-03-07 10:18:14 +00001137 if (i != max_refs) {
1138 mir->meta.sfield_lowering_info = max_refs - i - 1u;
Vladimir Markobe0e5462014-02-26 11:24:15 +00001139 } else {
Vladimir Markoa24122d2014-03-07 10:18:14 +00001140 mir->meta.sfield_lowering_info = max_refs - sfield_pos;
Vladimir Markobe0e5462014-02-26 11:24:15 +00001141 field_idxs[--sfield_pos] = field_idx;
1142 }
1143 }
1144 DCHECK_LE(ifield_pos, sfield_pos);
1145 }
1146 }
1147 }
1148
1149 if (ifield_pos != 0u) {
1150 // Resolve instance field infos.
1151 DCHECK_EQ(ifield_lowering_infos_.Size(), 0u);
1152 ifield_lowering_infos_.Resize(ifield_pos);
1153 for (size_t pos = 0u; pos != ifield_pos; ++pos) {
1154 ifield_lowering_infos_.Insert(MirIFieldLoweringInfo(field_idxs[pos]));
1155 }
1156 MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(),
1157 ifield_lowering_infos_.GetRawStorage(), ifield_pos);
1158 }
1159
Vladimir Markoa24122d2014-03-07 10:18:14 +00001160 if (sfield_pos != max_refs) {
Vladimir Markobe0e5462014-02-26 11:24:15 +00001161 // Resolve static field infos.
1162 DCHECK_EQ(sfield_lowering_infos_.Size(), 0u);
Vladimir Markoa24122d2014-03-07 10:18:14 +00001163 sfield_lowering_infos_.Resize(max_refs - sfield_pos);
1164 for (size_t pos = max_refs; pos != sfield_pos;) {
Vladimir Markobe0e5462014-02-26 11:24:15 +00001165 --pos;
1166 sfield_lowering_infos_.Insert(MirSFieldLoweringInfo(field_idxs[pos]));
1167 }
1168 MirSFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(),
Vladimir Markoa24122d2014-03-07 10:18:14 +00001169 sfield_lowering_infos_.GetRawStorage(), max_refs - sfield_pos);
Vladimir Markobe0e5462014-02-26 11:24:15 +00001170 }
1171}
1172
Vladimir Markof096aad2014-01-23 15:51:58 +00001173void MIRGraph::DoCacheMethodLoweringInfo() {
1174 static constexpr uint16_t invoke_types[] = { kVirtual, kSuper, kDirect, kStatic, kInterface };
1175
1176 // Embed the map value in the entry to avoid extra padding in 64-bit builds.
1177 struct MapEntry {
1178 // Map key: target_method_idx, invoke_type, devirt_target. Ordered to avoid padding.
1179 const MethodReference* devirt_target;
1180 uint16_t target_method_idx;
1181 uint16_t invoke_type;
1182 // Map value.
1183 uint32_t lowering_info_index;
1184 };
1185
1186 // Sort INVOKEs by method index, then by opcode, then by devirtualization target.
1187 struct MapEntryComparator {
1188 bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
1189 if (lhs.target_method_idx != rhs.target_method_idx) {
1190 return lhs.target_method_idx < rhs.target_method_idx;
1191 }
1192 if (lhs.invoke_type != rhs.invoke_type) {
1193 return lhs.invoke_type < rhs.invoke_type;
1194 }
1195 if (lhs.devirt_target != rhs.devirt_target) {
1196 if (lhs.devirt_target == nullptr) {
1197 return true;
1198 }
1199 if (rhs.devirt_target == nullptr) {
1200 return false;
1201 }
1202 return devirt_cmp(*lhs.devirt_target, *rhs.devirt_target);
1203 }
1204 return false;
1205 }
1206 MethodReferenceComparator devirt_cmp;
1207 };
1208
Vladimir Markof096aad2014-01-23 15:51:58 +00001209 ScopedArenaAllocator allocator(&cu_->arena_stack);
1210
1211 // All INVOKE instructions take 3 code units and there must also be a RETURN.
1212 uint32_t max_refs = (current_code_item_->insns_size_in_code_units_ - 1u) / 3u;
1213
Vladimir Marko69f08ba2014-04-11 12:28:11 +01001214 // Map invoke key (see MapEntry) to lowering info index and vice versa.
Vladimir Markof096aad2014-01-23 15:51:58 +00001215 // The invoke_map and sequential entries are essentially equivalent to Boost.MultiIndex's
1216 // multi_index_container with one ordered index and one sequential index.
Vladimir Marko69f08ba2014-04-11 12:28:11 +01001217 ScopedArenaSet<MapEntry, MapEntryComparator> invoke_map(MapEntryComparator(),
1218 allocator.Adapter());
Vladimir Markof096aad2014-01-23 15:51:58 +00001219 const MapEntry** sequential_entries = reinterpret_cast<const MapEntry**>(
1220 allocator.Alloc(max_refs * sizeof(sequential_entries[0]), kArenaAllocMisc));
1221
1222 // Find INVOKE insns and their devirtualization targets.
1223 AllNodesIterator iter(this);
1224 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1225 if (bb->block_type != kDalvikByteCode) {
1226 continue;
1227 }
1228 for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1229 if (mir->dalvikInsn.opcode >= Instruction::INVOKE_VIRTUAL &&
1230 mir->dalvikInsn.opcode <= Instruction::INVOKE_INTERFACE_RANGE &&
1231 mir->dalvikInsn.opcode != Instruction::RETURN_VOID_BARRIER) {
1232 // Decode target method index and invoke type.
1233 const Instruction* insn = Instruction::At(current_code_item_->insns_ + mir->offset);
1234 uint16_t target_method_idx;
1235 uint16_t invoke_type_idx;
1236 if (mir->dalvikInsn.opcode <= Instruction::INVOKE_INTERFACE) {
1237 target_method_idx = insn->VRegB_35c();
1238 invoke_type_idx = mir->dalvikInsn.opcode - Instruction::INVOKE_VIRTUAL;
1239 } else {
1240 target_method_idx = insn->VRegB_3rc();
1241 invoke_type_idx = mir->dalvikInsn.opcode - Instruction::INVOKE_VIRTUAL_RANGE;
1242 }
1243
1244 // Find devirtualization target.
1245 // TODO: The devirt map is ordered by the dex pc here. Is there a way to get INVOKEs
1246 // ordered by dex pc as well? That would allow us to keep an iterator to devirt targets
1247 // and increment it as needed instead of making O(log n) lookups.
1248 const VerifiedMethod* verified_method = GetCurrentDexCompilationUnit()->GetVerifiedMethod();
1249 const MethodReference* devirt_target = verified_method->GetDevirtTarget(mir->offset);
1250
1251 // Try to insert a new entry. If the insertion fails, we will have found an old one.
1252 MapEntry entry = {
1253 devirt_target,
1254 target_method_idx,
1255 invoke_types[invoke_type_idx],
1256 static_cast<uint32_t>(invoke_map.size())
1257 };
1258 auto it = invoke_map.insert(entry).first; // Iterator to either the old or the new entry.
1259 mir->meta.method_lowering_info = it->lowering_info_index;
1260 // If we didn't actually insert, this will just overwrite an existing value with the same.
1261 sequential_entries[it->lowering_info_index] = &*it;
1262 }
1263 }
1264 }
1265
1266 if (invoke_map.empty()) {
1267 return;
1268 }
1269
1270 // Prepare unique method infos, set method info indexes for their MIRs.
1271 DCHECK_EQ(method_lowering_infos_.Size(), 0u);
1272 const size_t count = invoke_map.size();
1273 method_lowering_infos_.Resize(count);
1274 for (size_t pos = 0u; pos != count; ++pos) {
1275 const MapEntry* entry = sequential_entries[pos];
1276 MirMethodLoweringInfo method_info(entry->target_method_idx,
1277 static_cast<InvokeType>(entry->invoke_type));
1278 if (entry->devirt_target != nullptr) {
1279 method_info.SetDevirtualizationTarget(*entry->devirt_target);
1280 }
1281 method_lowering_infos_.Insert(method_info);
1282 }
1283 MirMethodLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(),
1284 method_lowering_infos_.GetRawStorage(), count);
1285}
1286
Dave Allison39c3bfb2014-01-28 18:33:52 -08001287bool MIRGraph::SkipCompilation(const std::string& methodname) {
1288 return cu_->compiler_driver->SkipCompilation(methodname);
1289}
1290
buzbeeee17e0a2013-07-31 10:47:37 -07001291} // namespace art