blob: 4aeda41291e3998e3462cf6af6fcf106aae68c35 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
180#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
181{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
182{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
183{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
184{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
185{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
186{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
187 \
188{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
189{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
190{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
191{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
192{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
193{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
194 \
195{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
196{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
197{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
198{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
199{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
200{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
201
202 SHIFT_ENCODING_MAP(Rol, 0x0),
203 SHIFT_ENCODING_MAP(Ror, 0x1),
204 SHIFT_ENCODING_MAP(Rcl, 0x2),
205 SHIFT_ENCODING_MAP(Rcr, 0x3),
206 SHIFT_ENCODING_MAP(Sal, 0x4),
207 SHIFT_ENCODING_MAP(Shr, 0x5),
208 SHIFT_ENCODING_MAP(Sar, 0x7),
209#undef SHIFT_ENCODING_MAP
210
211 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
212
213 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
214 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
215 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
216 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
217 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
218 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
219 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
220 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
221 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
222 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
223
224#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
225 reg, reg_kind, reg_flags, \
226 mem, mem_kind, mem_flags, \
227 arr, arr_kind, arr_flags, imm, \
228 b_flags, hw_flags, w_flags, \
229 b_format, hw_format, w_format) \
230{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
231{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
232{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
233{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
234{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
235{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
236{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
237{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
238{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
239
240 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
241 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
242
243 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
244 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
245 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
246 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
247#undef UNARY_ENCODING_MAP
248
249#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
250{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
251{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
252{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
253
254 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
255 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
256 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
257
258 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
259 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
260 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
261
262 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
263 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
264 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
265 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
266 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
267 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
268 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
269 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
270 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
271 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
272 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
273 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
276 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
277 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
278 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
279 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
280 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
281 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
284
285 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
286 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
287
288 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
289 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
290 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
291 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
292
293 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
294 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
295 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
296
297 // TODO: load/store?
298 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
299 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
300
301 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
302 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
303
304 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
305 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
306 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
307 { kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" },
308 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
309 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
310
311 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
312 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
313 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
314 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
315#undef EXT_0F_ENCODING_MAP
316
317 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
318 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
319 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
320 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
321 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
322 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
323 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
324 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
325 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
326 { kX86Ret, kNullary,NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
327
328 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
329 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
330 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
331};
332
333static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
334 size_t size = 0;
335 if (entry->skeleton.prefix1 > 0) {
336 ++size;
337 if (entry->skeleton.prefix2 > 0) {
338 ++size;
339 }
340 }
341 ++size; // opcode
342 if (entry->skeleton.opcode == 0x0F) {
343 ++size;
344 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
345 ++size;
346 }
347 }
348 ++size; // modrm
349 if (has_sib || base == rX86_SP) {
350 // SP requires a SIB byte.
351 ++size;
352 }
353 if (displacement != 0 || base == rBP) {
354 // BP requires an explicit displacement, even when it's 0.
355 if (entry->opcode != kX86Lea32RA) {
356 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
357 }
358 size += IS_SIMM8(displacement) ? 1 : 4;
359 }
360 size += entry->skeleton.immediate_bytes;
361 return size;
362}
363
364int X86Mir2Lir::GetInsnSize(LIR* lir) {
365 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
366 switch (entry->kind) {
367 case kData:
368 return 4; // 4 bytes of data
369 case kNop:
370 return lir->operands[0]; // length of nop is sole operand
371 case kNullary:
372 return 1; // 1 byte of opcode
373 case kReg: // lir operands - 0: reg
374 return ComputeSize(entry, 0, 0, false);
375 case kMem: // lir operands - 0: base, 1: disp
376 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
377 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
378 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
379 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
380 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
381 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
382 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
383 case kThreadReg: // lir operands - 0: disp, 1: reg
384 return ComputeSize(entry, 0, lir->operands[0], false);
385 case kRegReg:
386 return ComputeSize(entry, 0, 0, false);
387 case kRegRegStore:
388 return ComputeSize(entry, 0, 0, false);
389 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
390 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
391 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
392 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
393 case kRegThread: // lir operands - 0: reg, 1: disp
394 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
395 case kRegImm: { // lir operands - 0: reg, 1: immediate
396 size_t size = ComputeSize(entry, 0, 0, false);
397 if (entry->skeleton.ax_opcode == 0) {
398 return size;
399 } else {
400 // AX opcodes don't require the modrm byte.
401 int reg = lir->operands[0];
402 return size - (reg == rAX ? 1 : 0);
403 }
404 }
405 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
406 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
407 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
408 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
409 case kThreadImm: // lir operands - 0: disp, 1: imm
410 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
411 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
412 return ComputeSize(entry, 0, 0, false);
413 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
414 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
415 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
416 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
417 case kMovRegImm: // lir operands - 0: reg, 1: immediate
418 return 1 + entry->skeleton.immediate_bytes;
419 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
420 // Shift by immediate one has a shorter opcode.
421 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
422 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
423 // Shift by immediate one has a shorter opcode.
424 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
425 (lir->operands[2] == 1 ? 1 : 0);
426 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
427 // Shift by immediate one has a shorter opcode.
428 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
429 (lir->operands[4] == 1 ? 1 : 0);
430 case kShiftRegCl:
431 return ComputeSize(entry, 0, 0, false);
432 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
433 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
434 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
435 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
436 case kRegCond: // lir operands - 0: reg, 1: cond
437 return ComputeSize(entry, 0, 0, false);
438 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
439 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
440 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
441 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
442 case kJcc:
443 if (lir->opcode == kX86Jcc8) {
444 return 2; // opcode + rel8
445 } else {
446 DCHECK(lir->opcode == kX86Jcc32);
447 return 6; // 2 byte opcode + rel32
448 }
449 case kJmp:
450 if (lir->opcode == kX86Jmp8) {
451 return 2; // opcode + rel8
452 } else if (lir->opcode == kX86Jmp32) {
453 return 5; // opcode + rel32
454 } else {
455 DCHECK(lir->opcode == kX86JmpR);
456 return 2; // opcode + modrm
457 }
458 case kCall:
459 switch (lir->opcode) {
460 case kX86CallR: return 2; // opcode modrm
461 case kX86CallM: // lir operands - 0: base, 1: disp
462 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
463 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
464 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
465 case kX86CallT: // lir operands - 0: disp
466 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
467 default:
468 break;
469 }
470 break;
471 case kPcRel:
472 if (entry->opcode == kX86PcRelLoadRA) {
473 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
474 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
475 } else {
476 DCHECK(entry->opcode == kX86PcRelAdr);
477 return 5; // opcode with reg + 4 byte immediate
478 }
479 case kMacro:
480 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
481 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
482 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
483 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
484 default:
485 break;
486 }
487 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
488 return 0;
489}
490
491static uint8_t ModrmForDisp(int base, int disp) {
492 // BP requires an explicit disp, so do not omit it in the 0 case
493 if (disp == 0 && base != rBP) {
494 return 0;
495 } else if (IS_SIMM8(disp)) {
496 return 1;
497 } else {
498 return 2;
499 }
500}
501
502void X86Mir2Lir::EmitDisp(int base, int disp) {
503 // BP requires an explicit disp, so do not omit it in the 0 case
504 if (disp == 0 && base != rBP) {
505 return;
506 } else if (IS_SIMM8(disp)) {
507 code_buffer_.push_back(disp & 0xFF);
508 } else {
509 code_buffer_.push_back(disp & 0xFF);
510 code_buffer_.push_back((disp >> 8) & 0xFF);
511 code_buffer_.push_back((disp >> 16) & 0xFF);
512 code_buffer_.push_back((disp >> 24) & 0xFF);
513 }
514}
515
516void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
517 if (entry->skeleton.prefix1 != 0) {
518 code_buffer_.push_back(entry->skeleton.prefix1);
519 if (entry->skeleton.prefix2 != 0) {
520 code_buffer_.push_back(entry->skeleton.prefix2);
521 }
522 } else {
523 DCHECK_EQ(0, entry->skeleton.prefix2);
524 }
525 code_buffer_.push_back(entry->skeleton.opcode);
526 if (entry->skeleton.opcode == 0x0F) {
527 code_buffer_.push_back(entry->skeleton.extra_opcode1);
528 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
529 code_buffer_.push_back(entry->skeleton.extra_opcode2);
530 } else {
531 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
532 }
533 } else {
534 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
535 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
536 }
537 if (X86_FPREG(reg)) {
538 reg = reg & X86_FP_REG_MASK;
539 }
540 if (reg >= 4) {
541 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
542 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
543 }
544 DCHECK_LT(reg, 8);
545 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
546 code_buffer_.push_back(modrm);
547 DCHECK_EQ(0, entry->skeleton.ax_opcode);
548 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
549}
550
551void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
552 if (entry->skeleton.prefix1 != 0) {
553 code_buffer_.push_back(entry->skeleton.prefix1);
554 if (entry->skeleton.prefix2 != 0) {
555 code_buffer_.push_back(entry->skeleton.prefix2);
556 }
557 } else {
558 DCHECK_EQ(0, entry->skeleton.prefix2);
559 }
560 code_buffer_.push_back(entry->skeleton.opcode);
561 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
562 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
563 DCHECK_LT(entry->skeleton.modrm_opcode, 8);
564 DCHECK_LT(base, 8);
565 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
566 code_buffer_.push_back(modrm);
567 EmitDisp(base, disp);
568 DCHECK_EQ(0, entry->skeleton.ax_opcode);
569 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
570}
571
572void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
573 uint8_t base, int disp, uint8_t reg) {
574 if (entry->skeleton.prefix1 != 0) {
575 code_buffer_.push_back(entry->skeleton.prefix1);
576 if (entry->skeleton.prefix2 != 0) {
577 code_buffer_.push_back(entry->skeleton.prefix2);
578 }
579 } else {
580 DCHECK_EQ(0, entry->skeleton.prefix2);
581 }
582 code_buffer_.push_back(entry->skeleton.opcode);
583 if (entry->skeleton.opcode == 0x0F) {
584 code_buffer_.push_back(entry->skeleton.extra_opcode1);
585 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
586 code_buffer_.push_back(entry->skeleton.extra_opcode2);
587 } else {
588 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
589 }
590 } else {
591 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
592 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
593 }
594 if (X86_FPREG(reg)) {
595 reg = reg & X86_FP_REG_MASK;
596 }
597 if (reg >= 4) {
598 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
599 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
600 }
601 DCHECK_LT(reg, 8);
602 DCHECK_LT(base, 8);
603 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base;
604 code_buffer_.push_back(modrm);
605 if (base == rX86_SP) {
606 // Special SIB for SP base
607 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
608 }
609 EmitDisp(base, disp);
610 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
611 DCHECK_EQ(0, entry->skeleton.ax_opcode);
612 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
613}
614
615void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
616 uint8_t reg, uint8_t base, int disp) {
617 // Opcode will flip operands.
618 EmitMemReg(entry, base, disp, reg);
619}
620
621void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
622 int scale, int disp) {
623 if (entry->skeleton.prefix1 != 0) {
624 code_buffer_.push_back(entry->skeleton.prefix1);
625 if (entry->skeleton.prefix2 != 0) {
626 code_buffer_.push_back(entry->skeleton.prefix2);
627 }
628 } else {
629 DCHECK_EQ(0, entry->skeleton.prefix2);
630 }
631 code_buffer_.push_back(entry->skeleton.opcode);
632 if (entry->skeleton.opcode == 0x0F) {
633 code_buffer_.push_back(entry->skeleton.extra_opcode1);
634 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
635 code_buffer_.push_back(entry->skeleton.extra_opcode2);
636 } else {
637 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
638 }
639 } else {
640 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
641 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
642 }
643 if (X86_FPREG(reg)) {
644 reg = reg & X86_FP_REG_MASK;
645 }
646 DCHECK_LT(reg, 8);
647 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP;
648 code_buffer_.push_back(modrm);
649 DCHECK_LT(scale, 4);
650 DCHECK_LT(index, 8);
651 DCHECK_LT(base, 8);
652 uint8_t sib = (scale << 6) | (index << 3) | base;
653 code_buffer_.push_back(sib);
654 EmitDisp(base, disp);
655 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
656 DCHECK_EQ(0, entry->skeleton.ax_opcode);
657 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
658}
659
660void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
661 uint8_t reg) {
662 // Opcode will flip operands.
663 EmitRegArray(entry, reg, base, index, scale, disp);
664}
665
666void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
667 DCHECK_NE(entry->skeleton.prefix1, 0);
668 code_buffer_.push_back(entry->skeleton.prefix1);
669 if (entry->skeleton.prefix2 != 0) {
670 code_buffer_.push_back(entry->skeleton.prefix2);
671 }
672 code_buffer_.push_back(entry->skeleton.opcode);
673 if (entry->skeleton.opcode == 0x0F) {
674 code_buffer_.push_back(entry->skeleton.extra_opcode1);
675 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
676 code_buffer_.push_back(entry->skeleton.extra_opcode2);
677 } else {
678 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
679 }
680 } else {
681 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
682 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
683 }
684 if (X86_FPREG(reg)) {
685 reg = reg & X86_FP_REG_MASK;
686 }
687 if (reg >= 4) {
688 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
689 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
690 }
691 DCHECK_LT(reg, 8);
692 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
693 code_buffer_.push_back(modrm);
694 code_buffer_.push_back(disp & 0xFF);
695 code_buffer_.push_back((disp >> 8) & 0xFF);
696 code_buffer_.push_back((disp >> 16) & 0xFF);
697 code_buffer_.push_back((disp >> 24) & 0xFF);
698 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
699 DCHECK_EQ(0, entry->skeleton.ax_opcode);
700 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
701}
702
703void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
704 if (entry->skeleton.prefix1 != 0) {
705 code_buffer_.push_back(entry->skeleton.prefix1);
706 if (entry->skeleton.prefix2 != 0) {
707 code_buffer_.push_back(entry->skeleton.prefix2);
708 }
709 } else {
710 DCHECK_EQ(0, entry->skeleton.prefix2);
711 }
712 code_buffer_.push_back(entry->skeleton.opcode);
713 if (entry->skeleton.opcode == 0x0F) {
714 code_buffer_.push_back(entry->skeleton.extra_opcode1);
715 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
716 code_buffer_.push_back(entry->skeleton.extra_opcode2);
717 } else {
718 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
719 }
720 } else {
721 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
722 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
723 }
724 if (X86_FPREG(reg1)) {
725 reg1 = reg1 & X86_FP_REG_MASK;
726 }
727 if (X86_FPREG(reg2)) {
728 reg2 = reg2 & X86_FP_REG_MASK;
729 }
730 DCHECK_LT(reg1, 8);
731 DCHECK_LT(reg2, 8);
732 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
733 code_buffer_.push_back(modrm);
734 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
735 DCHECK_EQ(0, entry->skeleton.ax_opcode);
736 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
737}
738
739void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
740 uint8_t reg1, uint8_t reg2, int32_t imm) {
741 if (entry->skeleton.prefix1 != 0) {
742 code_buffer_.push_back(entry->skeleton.prefix1);
743 if (entry->skeleton.prefix2 != 0) {
744 code_buffer_.push_back(entry->skeleton.prefix2);
745 }
746 } else {
747 DCHECK_EQ(0, entry->skeleton.prefix2);
748 }
749 code_buffer_.push_back(entry->skeleton.opcode);
750 if (entry->skeleton.opcode == 0x0F) {
751 code_buffer_.push_back(entry->skeleton.extra_opcode1);
752 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
753 code_buffer_.push_back(entry->skeleton.extra_opcode2);
754 } else {
755 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
756 }
757 } else {
758 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
759 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
760 }
761 if (X86_FPREG(reg1)) {
762 reg1 = reg1 & X86_FP_REG_MASK;
763 }
764 if (X86_FPREG(reg2)) {
765 reg2 = reg2 & X86_FP_REG_MASK;
766 }
767 DCHECK_LT(reg1, 8);
768 DCHECK_LT(reg2, 8);
769 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
770 code_buffer_.push_back(modrm);
771 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
772 DCHECK_EQ(0, entry->skeleton.ax_opcode);
773 switch (entry->skeleton.immediate_bytes) {
774 case 1:
775 DCHECK(IS_SIMM8(imm));
776 code_buffer_.push_back(imm & 0xFF);
777 break;
778 case 2:
779 DCHECK(IS_SIMM16(imm));
780 code_buffer_.push_back(imm & 0xFF);
781 code_buffer_.push_back((imm >> 8) & 0xFF);
782 break;
783 case 4:
784 code_buffer_.push_back(imm & 0xFF);
785 code_buffer_.push_back((imm >> 8) & 0xFF);
786 code_buffer_.push_back((imm >> 16) & 0xFF);
787 code_buffer_.push_back((imm >> 24) & 0xFF);
788 break;
789 default:
790 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
791 << ") for instruction: " << entry->name;
792 break;
793 }
794}
795
796void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
797 if (entry->skeleton.prefix1 != 0) {
798 code_buffer_.push_back(entry->skeleton.prefix1);
799 if (entry->skeleton.prefix2 != 0) {
800 code_buffer_.push_back(entry->skeleton.prefix2);
801 }
802 } else {
803 DCHECK_EQ(0, entry->skeleton.prefix2);
804 }
805 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
806 code_buffer_.push_back(entry->skeleton.ax_opcode);
807 } else {
808 code_buffer_.push_back(entry->skeleton.opcode);
809 if (entry->skeleton.opcode == 0x0F) {
810 code_buffer_.push_back(entry->skeleton.extra_opcode1);
811 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
812 code_buffer_.push_back(entry->skeleton.extra_opcode2);
813 } else {
814 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
815 }
816 } else {
817 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
818 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
819 }
820 if (X86_FPREG(reg)) {
821 reg = reg & X86_FP_REG_MASK;
822 }
823 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
824 code_buffer_.push_back(modrm);
825 }
826 switch (entry->skeleton.immediate_bytes) {
827 case 1:
828 DCHECK(IS_SIMM8(imm));
829 code_buffer_.push_back(imm & 0xFF);
830 break;
831 case 2:
832 DCHECK(IS_SIMM16(imm));
833 code_buffer_.push_back(imm & 0xFF);
834 code_buffer_.push_back((imm >> 8) & 0xFF);
835 break;
836 case 4:
837 code_buffer_.push_back(imm & 0xFF);
838 code_buffer_.push_back((imm >> 8) & 0xFF);
839 code_buffer_.push_back((imm >> 16) & 0xFF);
840 code_buffer_.push_back((imm >> 24) & 0xFF);
841 break;
842 default:
843 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
844 << ") for instruction: " << entry->name;
845 break;
846 }
847}
848
849void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
850 if (entry->skeleton.prefix1 != 0) {
851 code_buffer_.push_back(entry->skeleton.prefix1);
852 if (entry->skeleton.prefix2 != 0) {
853 code_buffer_.push_back(entry->skeleton.prefix2);
854 }
855 } else {
856 DCHECK_EQ(0, entry->skeleton.prefix2);
857 }
858 code_buffer_.push_back(entry->skeleton.opcode);
859 if (entry->skeleton.opcode == 0x0F) {
860 code_buffer_.push_back(entry->skeleton.extra_opcode1);
861 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
862 code_buffer_.push_back(entry->skeleton.extra_opcode2);
863 } else {
864 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
865 }
866 } else {
867 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
868 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
869 }
870 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
871 code_buffer_.push_back(modrm);
872 code_buffer_.push_back(disp & 0xFF);
873 code_buffer_.push_back((disp >> 8) & 0xFF);
874 code_buffer_.push_back((disp >> 16) & 0xFF);
875 code_buffer_.push_back((disp >> 24) & 0xFF);
876 switch (entry->skeleton.immediate_bytes) {
877 case 1:
878 DCHECK(IS_SIMM8(imm));
879 code_buffer_.push_back(imm & 0xFF);
880 break;
881 case 2:
882 DCHECK(IS_SIMM16(imm));
883 code_buffer_.push_back(imm & 0xFF);
884 code_buffer_.push_back((imm >> 8) & 0xFF);
885 break;
886 case 4:
887 code_buffer_.push_back(imm & 0xFF);
888 code_buffer_.push_back((imm >> 8) & 0xFF);
889 code_buffer_.push_back((imm >> 16) & 0xFF);
890 code_buffer_.push_back((imm >> 24) & 0xFF);
891 break;
892 default:
893 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
894 << ") for instruction: " << entry->name;
895 break;
896 }
897 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
898}
899
900void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
901 DCHECK_LT(reg, 8);
902 code_buffer_.push_back(0xB8 + reg);
903 code_buffer_.push_back(imm & 0xFF);
904 code_buffer_.push_back((imm >> 8) & 0xFF);
905 code_buffer_.push_back((imm >> 16) & 0xFF);
906 code_buffer_.push_back((imm >> 24) & 0xFF);
907}
908
909void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
910 if (entry->skeleton.prefix1 != 0) {
911 code_buffer_.push_back(entry->skeleton.prefix1);
912 if (entry->skeleton.prefix2 != 0) {
913 code_buffer_.push_back(entry->skeleton.prefix2);
914 }
915 } else {
916 DCHECK_EQ(0, entry->skeleton.prefix2);
917 }
918 if (imm != 1) {
919 code_buffer_.push_back(entry->skeleton.opcode);
920 } else {
921 // Shorter encoding for 1 bit shift
922 code_buffer_.push_back(entry->skeleton.ax_opcode);
923 }
924 if (entry->skeleton.opcode == 0x0F) {
925 code_buffer_.push_back(entry->skeleton.extra_opcode1);
926 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
927 code_buffer_.push_back(entry->skeleton.extra_opcode2);
928 } else {
929 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
930 }
931 } else {
932 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
933 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
934 }
935 if (reg >= 4) {
936 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
937 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
938 }
939 DCHECK_LT(reg, 8);
940 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
941 code_buffer_.push_back(modrm);
942 if (imm != 1) {
943 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
944 DCHECK(IS_SIMM8(imm));
945 code_buffer_.push_back(imm & 0xFF);
946 }
947}
948
949void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
950 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
951 if (entry->skeleton.prefix1 != 0) {
952 code_buffer_.push_back(entry->skeleton.prefix1);
953 if (entry->skeleton.prefix2 != 0) {
954 code_buffer_.push_back(entry->skeleton.prefix2);
955 }
956 } else {
957 DCHECK_EQ(0, entry->skeleton.prefix2);
958 }
959 code_buffer_.push_back(entry->skeleton.opcode);
960 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
961 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
962 DCHECK_LT(reg, 8);
963 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
964 code_buffer_.push_back(modrm);
965 DCHECK_EQ(0, entry->skeleton.ax_opcode);
966 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
967}
968
969void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
970 if (entry->skeleton.prefix1 != 0) {
971 code_buffer_.push_back(entry->skeleton.prefix1);
972 if (entry->skeleton.prefix2 != 0) {
973 code_buffer_.push_back(entry->skeleton.prefix2);
974 }
975 } else {
976 DCHECK_EQ(0, entry->skeleton.prefix2);
977 }
978 DCHECK_EQ(0, entry->skeleton.ax_opcode);
979 DCHECK_EQ(0x0F, entry->skeleton.opcode);
980 code_buffer_.push_back(0x0F);
981 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
982 code_buffer_.push_back(0x90 | condition);
983 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
984 DCHECK_LT(reg, 8);
985 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
986 code_buffer_.push_back(modrm);
987 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
988}
989
990void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
991 if (entry->opcode == kX86Jmp8) {
992 DCHECK(IS_SIMM8(rel));
993 code_buffer_.push_back(0xEB);
994 code_buffer_.push_back(rel & 0xFF);
995 } else if (entry->opcode == kX86Jmp32) {
996 code_buffer_.push_back(0xE9);
997 code_buffer_.push_back(rel & 0xFF);
998 code_buffer_.push_back((rel >> 8) & 0xFF);
999 code_buffer_.push_back((rel >> 16) & 0xFF);
1000 code_buffer_.push_back((rel >> 24) & 0xFF);
1001 } else {
1002 DCHECK(entry->opcode == kX86JmpR);
1003 code_buffer_.push_back(entry->skeleton.opcode);
1004 uint8_t reg = static_cast<uint8_t>(rel);
1005 DCHECK_LT(reg, 8);
1006 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
1007 code_buffer_.push_back(modrm);
1008 }
1009}
1010
1011void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
1012 DCHECK_LT(cc, 16);
1013 if (entry->opcode == kX86Jcc8) {
1014 DCHECK(IS_SIMM8(rel));
1015 code_buffer_.push_back(0x70 | cc);
1016 code_buffer_.push_back(rel & 0xFF);
1017 } else {
1018 DCHECK(entry->opcode == kX86Jcc32);
1019 code_buffer_.push_back(0x0F);
1020 code_buffer_.push_back(0x80 | cc);
1021 code_buffer_.push_back(rel & 0xFF);
1022 code_buffer_.push_back((rel >> 8) & 0xFF);
1023 code_buffer_.push_back((rel >> 16) & 0xFF);
1024 code_buffer_.push_back((rel >> 24) & 0xFF);
1025 }
1026}
1027
1028void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
1029 if (entry->skeleton.prefix1 != 0) {
1030 code_buffer_.push_back(entry->skeleton.prefix1);
1031 if (entry->skeleton.prefix2 != 0) {
1032 code_buffer_.push_back(entry->skeleton.prefix2);
1033 }
1034 } else {
1035 DCHECK_EQ(0, entry->skeleton.prefix2);
1036 }
1037 code_buffer_.push_back(entry->skeleton.opcode);
1038 if (entry->skeleton.opcode == 0x0F) {
1039 code_buffer_.push_back(entry->skeleton.extra_opcode1);
1040 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
1041 code_buffer_.push_back(entry->skeleton.extra_opcode2);
1042 } else {
1043 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1044 }
1045 } else {
1046 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1047 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1048 }
1049 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
1050 code_buffer_.push_back(modrm);
1051 if (base == rX86_SP) {
1052 // Special SIB for SP base
1053 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
1054 }
1055 EmitDisp(base, disp);
1056 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1057 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1058}
1059
1060void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
1061 DCHECK_NE(entry->skeleton.prefix1, 0);
1062 code_buffer_.push_back(entry->skeleton.prefix1);
1063 if (entry->skeleton.prefix2 != 0) {
1064 code_buffer_.push_back(entry->skeleton.prefix2);
1065 }
1066 code_buffer_.push_back(entry->skeleton.opcode);
1067 if (entry->skeleton.opcode == 0x0F) {
1068 code_buffer_.push_back(entry->skeleton.extra_opcode1);
1069 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
1070 code_buffer_.push_back(entry->skeleton.extra_opcode2);
1071 } else {
1072 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1073 }
1074 } else {
1075 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1076 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1077 }
1078 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
1079 code_buffer_.push_back(modrm);
1080 code_buffer_.push_back(disp & 0xFF);
1081 code_buffer_.push_back((disp >> 8) & 0xFF);
1082 code_buffer_.push_back((disp >> 16) & 0xFF);
1083 code_buffer_.push_back((disp >> 24) & 0xFF);
1084 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1085 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1086}
1087
1088void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
1089 int base_or_table, uint8_t index, int scale, int table_or_disp) {
1090 int disp;
1091 if (entry->opcode == kX86PcRelLoadRA) {
1092 Mir2Lir::SwitchTable *tab_rec = reinterpret_cast<Mir2Lir::SwitchTable*>(table_or_disp);
1093 disp = tab_rec->offset;
1094 } else {
1095 DCHECK(entry->opcode == kX86PcRelAdr);
1096 Mir2Lir::FillArrayData *tab_rec = reinterpret_cast<Mir2Lir::FillArrayData*>(base_or_table);
1097 disp = tab_rec->offset;
1098 }
1099 if (entry->skeleton.prefix1 != 0) {
1100 code_buffer_.push_back(entry->skeleton.prefix1);
1101 if (entry->skeleton.prefix2 != 0) {
1102 code_buffer_.push_back(entry->skeleton.prefix2);
1103 }
1104 } else {
1105 DCHECK_EQ(0, entry->skeleton.prefix2);
1106 }
1107 if (X86_FPREG(reg)) {
1108 reg = reg & X86_FP_REG_MASK;
1109 }
1110 DCHECK_LT(reg, 8);
1111 if (entry->opcode == kX86PcRelLoadRA) {
1112 code_buffer_.push_back(entry->skeleton.opcode);
1113 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1114 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1115 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
1116 code_buffer_.push_back(modrm);
1117 DCHECK_LT(scale, 4);
1118 DCHECK_LT(index, 8);
1119 DCHECK_LT(base_or_table, 8);
1120 uint8_t base = static_cast<uint8_t>(base_or_table);
1121 uint8_t sib = (scale << 6) | (index << 3) | base;
1122 code_buffer_.push_back(sib);
1123 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1124 } else {
1125 code_buffer_.push_back(entry->skeleton.opcode + reg);
1126 }
1127 code_buffer_.push_back(disp & 0xFF);
1128 code_buffer_.push_back((disp >> 8) & 0xFF);
1129 code_buffer_.push_back((disp >> 16) & 0xFF);
1130 code_buffer_.push_back((disp >> 24) & 0xFF);
1131 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1132 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1133}
1134
1135void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1136 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1137 code_buffer_.push_back(0xE8); // call +0
1138 code_buffer_.push_back(0);
1139 code_buffer_.push_back(0);
1140 code_buffer_.push_back(0);
1141 code_buffer_.push_back(0);
1142
1143 DCHECK_LT(reg, 8);
1144 code_buffer_.push_back(0x58 + reg); // pop reg
1145
1146 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1147}
1148
1149void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1150 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1151 << BuildInsnString(entry->fmt, lir, 0);
1152 for (int i = 0; i < GetInsnSize(lir); ++i) {
1153 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1154 }
1155}
1156
1157/*
1158 * Assemble the LIR into binary instruction format. Note that we may
1159 * discover that pc-relative displacements may not fit the selected
1160 * instruction. In those cases we will try to substitute a new code
1161 * sequence or request that the trace be shortened and retried.
1162 */
1163AssemblerStatus X86Mir2Lir::AssembleInstructions(uintptr_t start_addr) {
1164 LIR *lir;
1165 AssemblerStatus res = kSuccess; // Assume success
1166
1167 const bool kVerbosePcFixup = false;
1168 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1169 if (lir->opcode < 0) {
1170 continue;
1171 }
1172
1173 if (lir->flags.is_nop) {
1174 continue;
1175 }
1176
1177 if (lir->flags.pcRelFixup) {
1178 switch (lir->opcode) {
1179 case kX86Jcc8: {
1180 LIR *target_lir = lir->target;
1181 DCHECK(target_lir != NULL);
1182 int delta = 0;
1183 uintptr_t pc;
1184 if (IS_SIMM8(lir->operands[0])) {
1185 pc = lir->offset + 2 /* opcode + rel8 */;
1186 } else {
1187 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1188 }
1189 uintptr_t target = target_lir->offset;
1190 delta = target - pc;
1191 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1192 if (kVerbosePcFixup) {
1193 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1194 << " delta: " << delta << " old delta: " << lir->operands[0];
1195 }
1196 lir->opcode = kX86Jcc32;
1197 SetupResourceMasks(lir);
1198 res = kRetryAll;
1199 }
1200 if (kVerbosePcFixup) {
1201 LOG(INFO) << "Source:";
1202 DumpLIRInsn(lir, 0);
1203 LOG(INFO) << "Target:";
1204 DumpLIRInsn(target_lir, 0);
1205 LOG(INFO) << "Delta " << delta;
1206 }
1207 lir->operands[0] = delta;
1208 break;
1209 }
1210 case kX86Jcc32: {
1211 LIR *target_lir = lir->target;
1212 DCHECK(target_lir != NULL);
1213 uintptr_t pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1214 uintptr_t target = target_lir->offset;
1215 int delta = target - pc;
1216 if (kVerbosePcFixup) {
1217 LOG(INFO) << "Source:";
1218 DumpLIRInsn(lir, 0);
1219 LOG(INFO) << "Target:";
1220 DumpLIRInsn(target_lir, 0);
1221 LOG(INFO) << "Delta " << delta;
1222 }
1223 lir->operands[0] = delta;
1224 break;
1225 }
1226 case kX86Jmp8: {
1227 LIR *target_lir = lir->target;
1228 DCHECK(target_lir != NULL);
1229 int delta = 0;
1230 uintptr_t pc;
1231 if (IS_SIMM8(lir->operands[0])) {
1232 pc = lir->offset + 2 /* opcode + rel8 */;
1233 } else {
1234 pc = lir->offset + 5 /* opcode + rel32 */;
1235 }
1236 uintptr_t target = target_lir->offset;
1237 delta = target - pc;
1238 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1239 // Useless branch
1240 lir->flags.is_nop = true;
1241 if (kVerbosePcFixup) {
1242 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1243 }
1244 res = kRetryAll;
1245 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1246 if (kVerbosePcFixup) {
1247 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1248 }
1249 lir->opcode = kX86Jmp32;
1250 SetupResourceMasks(lir);
1251 res = kRetryAll;
1252 }
1253 lir->operands[0] = delta;
1254 break;
1255 }
1256 case kX86Jmp32: {
1257 LIR *target_lir = lir->target;
1258 DCHECK(target_lir != NULL);
1259 uintptr_t pc = lir->offset + 5 /* opcode + rel32 */;
1260 uintptr_t target = target_lir->offset;
1261 int delta = target - pc;
1262 lir->operands[0] = delta;
1263 break;
1264 }
1265 default:
1266 break;
1267 }
1268 }
1269
1270 /*
1271 * If one of the pc-relative instructions expanded we'll have
1272 * to make another pass. Don't bother to fully assemble the
1273 * instruction.
1274 */
1275 if (res != kSuccess) {
1276 continue;
1277 }
1278 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1279 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1280 size_t starting_cbuf_size = code_buffer_.size();
1281 switch (entry->kind) {
1282 case kData: // 4 bytes of data
1283 code_buffer_.push_back(lir->operands[0]);
1284 break;
1285 case kNullary: // 1 byte of opcode
1286 DCHECK_EQ(0, entry->skeleton.prefix1);
1287 DCHECK_EQ(0, entry->skeleton.prefix2);
1288 code_buffer_.push_back(entry->skeleton.opcode);
1289 if (entry->skeleton.extra_opcode1 != 0) {
1290 code_buffer_.push_back(entry->skeleton.extra_opcode1);
1291 if (entry->skeleton.extra_opcode2 != 0) {
1292 code_buffer_.push_back(entry->skeleton.extra_opcode2);
1293 }
1294 } else {
1295 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1296 }
1297 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1298 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1299 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1300 break;
1301 case kReg: // lir operands - 0: reg
1302 EmitOpReg(entry, lir->operands[0]);
1303 break;
1304 case kMem: // lir operands - 0: base, 1: disp
1305 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1306 break;
1307 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1308 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1309 break;
1310 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1311 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1312 lir->operands[3], lir->operands[4]);
1313 break;
1314 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1315 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1316 break;
1317 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1318 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1319 lir->operands[3], lir->operands[4]);
1320 break;
1321 case kRegThread: // lir operands - 0: reg, 1: disp
1322 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1323 break;
1324 case kRegReg: // lir operands - 0: reg1, 1: reg2
1325 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1326 break;
1327 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1328 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1329 break;
1330 case kRegRegImm:
1331 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1332 break;
1333 case kRegImm: // lir operands - 0: reg, 1: immediate
1334 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1335 break;
1336 case kThreadImm: // lir operands - 0: disp, 1: immediate
1337 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1338 break;
1339 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1340 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1341 break;
1342 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1343 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1344 break;
1345 case kShiftRegCl: // lir operands - 0: reg, 1: cl
1346 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1347 break;
1348 case kRegCond: // lir operands - 0: reg, 1: condition
1349 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1350 break;
1351 case kJmp: // lir operands - 0: rel
1352 EmitJmp(entry, lir->operands[0]);
1353 break;
1354 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1355 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1356 break;
1357 case kCall:
1358 switch (entry->opcode) {
1359 case kX86CallM: // lir operands - 0: base, 1: disp
1360 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1361 break;
1362 case kX86CallT: // lir operands - 0: disp
1363 EmitCallThread(entry, lir->operands[0]);
1364 break;
1365 default:
1366 EmitUnimplemented(entry, lir);
1367 break;
1368 }
1369 break;
1370 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1371 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1372 lir->operands[3], lir->operands[4]);
1373 break;
1374 case kMacro:
1375 EmitMacro(entry, lir->operands[0], lir->offset);
1376 break;
1377 default:
1378 EmitUnimplemented(entry, lir);
1379 break;
1380 }
1381 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1382 code_buffer_.size() - starting_cbuf_size)
1383 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1384 }
1385 return res;
1386}
1387
1388} // namespace art