blob: 906b4cc759e126a327bafa1bb9333b2e718ee130 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23void X86Mir2Lir::GenArithOpFloat(Instruction::Code opcode,
24 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
25 X86OpCode op = kX86Nop;
26 RegLocation rl_result;
27
28 /*
29 * Don't attempt to optimize register usage since these opcodes call out to
30 * the handlers.
31 */
32 switch (opcode) {
33 case Instruction::ADD_FLOAT_2ADDR:
34 case Instruction::ADD_FLOAT:
35 op = kX86AddssRR;
36 break;
37 case Instruction::SUB_FLOAT_2ADDR:
38 case Instruction::SUB_FLOAT:
39 op = kX86SubssRR;
40 break;
41 case Instruction::DIV_FLOAT_2ADDR:
42 case Instruction::DIV_FLOAT:
43 op = kX86DivssRR;
44 break;
45 case Instruction::MUL_FLOAT_2ADDR:
46 case Instruction::MUL_FLOAT:
47 op = kX86MulssRR;
48 break;
49 case Instruction::REM_FLOAT_2ADDR:
50 case Instruction::REM_FLOAT:
51 FlushAllRegs(); // Send everything to home location
52 CallRuntimeHelperRegLocationRegLocation(ENTRYPOINT_OFFSET(pFmodf), rl_src1, rl_src2, false);
53 rl_result = GetReturn(true);
54 StoreValue(rl_dest, rl_result);
55 return;
56 case Instruction::NEG_FLOAT:
57 GenNegFloat(rl_dest, rl_src1);
58 return;
59 default:
60 LOG(FATAL) << "Unexpected opcode: " << opcode;
61 }
62 rl_src1 = LoadValue(rl_src1, kFPReg);
63 rl_src2 = LoadValue(rl_src2, kFPReg);
64 rl_result = EvalLoc(rl_dest, kFPReg, true);
65 int r_dest = rl_result.low_reg;
66 int r_src1 = rl_src1.low_reg;
67 int r_src2 = rl_src2.low_reg;
68 if (r_dest == r_src2) {
69 r_src2 = AllocTempFloat();
70 OpRegCopy(r_src2, r_dest);
71 }
72 OpRegCopy(r_dest, r_src1);
73 NewLIR2(op, r_dest, r_src2);
74 StoreValue(rl_dest, rl_result);
75}
76
77void X86Mir2Lir::GenArithOpDouble(Instruction::Code opcode,
78 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
79 X86OpCode op = kX86Nop;
80 RegLocation rl_result;
81
82 switch (opcode) {
83 case Instruction::ADD_DOUBLE_2ADDR:
84 case Instruction::ADD_DOUBLE:
85 op = kX86AddsdRR;
86 break;
87 case Instruction::SUB_DOUBLE_2ADDR:
88 case Instruction::SUB_DOUBLE:
89 op = kX86SubsdRR;
90 break;
91 case Instruction::DIV_DOUBLE_2ADDR:
92 case Instruction::DIV_DOUBLE:
93 op = kX86DivsdRR;
94 break;
95 case Instruction::MUL_DOUBLE_2ADDR:
96 case Instruction::MUL_DOUBLE:
97 op = kX86MulsdRR;
98 break;
99 case Instruction::REM_DOUBLE_2ADDR:
100 case Instruction::REM_DOUBLE:
101 FlushAllRegs(); // Send everything to home location
102 CallRuntimeHelperRegLocationRegLocation(ENTRYPOINT_OFFSET(pFmod), rl_src1, rl_src2, false);
103 rl_result = GetReturnWide(true);
104 StoreValueWide(rl_dest, rl_result);
105 return;
106 case Instruction::NEG_DOUBLE:
107 GenNegDouble(rl_dest, rl_src1);
108 return;
109 default:
110 LOG(FATAL) << "Unexpected opcode: " << opcode;
111 }
112 rl_src1 = LoadValueWide(rl_src1, kFPReg);
113 DCHECK(rl_src1.wide);
114 rl_src2 = LoadValueWide(rl_src2, kFPReg);
115 DCHECK(rl_src2.wide);
116 rl_result = EvalLoc(rl_dest, kFPReg, true);
117 DCHECK(rl_dest.wide);
118 DCHECK(rl_result.wide);
119 int r_dest = S2d(rl_result.low_reg, rl_result.high_reg);
120 int r_src1 = S2d(rl_src1.low_reg, rl_src1.high_reg);
121 int r_src2 = S2d(rl_src2.low_reg, rl_src2.high_reg);
122 if (r_dest == r_src2) {
123 r_src2 = AllocTempDouble() | X86_FP_DOUBLE;
124 OpRegCopy(r_src2, r_dest);
125 }
126 OpRegCopy(r_dest, r_src1);
127 NewLIR2(op, r_dest, r_src2);
128 StoreValueWide(rl_dest, rl_result);
129}
130
131void X86Mir2Lir::GenConversion(Instruction::Code opcode, RegLocation rl_dest,
132 RegLocation rl_src) {
133 RegisterClass rcSrc = kFPReg;
134 X86OpCode op = kX86Nop;
135 int src_reg;
136 RegLocation rl_result;
137 switch (opcode) {
138 case Instruction::INT_TO_FLOAT:
139 rcSrc = kCoreReg;
140 op = kX86Cvtsi2ssRR;
141 break;
142 case Instruction::DOUBLE_TO_FLOAT:
143 rcSrc = kFPReg;
144 op = kX86Cvtsd2ssRR;
145 break;
146 case Instruction::FLOAT_TO_DOUBLE:
147 rcSrc = kFPReg;
148 op = kX86Cvtss2sdRR;
149 break;
150 case Instruction::INT_TO_DOUBLE:
151 rcSrc = kCoreReg;
152 op = kX86Cvtsi2sdRR;
153 break;
154 case Instruction::FLOAT_TO_INT: {
155 rl_src = LoadValue(rl_src, kFPReg);
156 src_reg = rl_src.low_reg;
157 // In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
158 ClobberSReg(rl_dest.s_reg_low);
159 rl_result = EvalLoc(rl_dest, kCoreReg, true);
160 int temp_reg = AllocTempFloat();
161
162 LoadConstant(rl_result.low_reg, 0x7fffffff);
163 NewLIR2(kX86Cvtsi2ssRR, temp_reg, rl_result.low_reg);
164 NewLIR2(kX86ComissRR, src_reg, temp_reg);
165 LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondA);
166 LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
167 NewLIR2(kX86Cvttss2siRR, rl_result.low_reg, src_reg);
168 LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
169 branch_na_n->target = NewLIR0(kPseudoTargetLabel);
170 NewLIR2(kX86Xor32RR, rl_result.low_reg, rl_result.low_reg);
171 branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
172 branch_normal->target = NewLIR0(kPseudoTargetLabel);
173 StoreValue(rl_dest, rl_result);
174 return;
175 }
176 case Instruction::DOUBLE_TO_INT: {
177 rl_src = LoadValueWide(rl_src, kFPReg);
178 src_reg = rl_src.low_reg;
179 // In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
180 ClobberSReg(rl_dest.s_reg_low);
181 rl_result = EvalLoc(rl_dest, kCoreReg, true);
182 int temp_reg = AllocTempDouble() | X86_FP_DOUBLE;
183
184 LoadConstant(rl_result.low_reg, 0x7fffffff);
185 NewLIR2(kX86Cvtsi2sdRR, temp_reg, rl_result.low_reg);
186 NewLIR2(kX86ComisdRR, src_reg, temp_reg);
187 LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondA);
188 LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
189 NewLIR2(kX86Cvttsd2siRR, rl_result.low_reg, src_reg);
190 LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
191 branch_na_n->target = NewLIR0(kPseudoTargetLabel);
192 NewLIR2(kX86Xor32RR, rl_result.low_reg, rl_result.low_reg);
193 branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
194 branch_normal->target = NewLIR0(kPseudoTargetLabel);
195 StoreValue(rl_dest, rl_result);
196 return;
197 }
198 case Instruction::LONG_TO_DOUBLE:
199 GenConversionCall(ENTRYPOINT_OFFSET(pL2d), rl_dest, rl_src);
200 return;
201 case Instruction::LONG_TO_FLOAT:
202 // TODO: inline by using memory as a 64-bit source. Be careful about promoted registers.
203 GenConversionCall(ENTRYPOINT_OFFSET(pL2f), rl_dest, rl_src);
204 return;
205 case Instruction::FLOAT_TO_LONG:
206 GenConversionCall(ENTRYPOINT_OFFSET(pF2l), rl_dest, rl_src);
207 return;
208 case Instruction::DOUBLE_TO_LONG:
209 GenConversionCall(ENTRYPOINT_OFFSET(pD2l), rl_dest, rl_src);
210 return;
211 default:
212 LOG(INFO) << "Unexpected opcode: " << opcode;
213 }
214 if (rl_src.wide) {
215 rl_src = LoadValueWide(rl_src, rcSrc);
216 src_reg = S2d(rl_src.low_reg, rl_src.high_reg);
217 } else {
218 rl_src = LoadValue(rl_src, rcSrc);
219 src_reg = rl_src.low_reg;
220 }
221 if (rl_dest.wide) {
222 rl_result = EvalLoc(rl_dest, kFPReg, true);
223 NewLIR2(op, S2d(rl_result.low_reg, rl_result.high_reg), src_reg);
224 StoreValueWide(rl_dest, rl_result);
225 } else {
226 rl_result = EvalLoc(rl_dest, kFPReg, true);
227 NewLIR2(op, rl_result.low_reg, src_reg);
228 StoreValue(rl_dest, rl_result);
229 }
230}
231
232void X86Mir2Lir::GenCmpFP(Instruction::Code code, RegLocation rl_dest,
233 RegLocation rl_src1, RegLocation rl_src2) {
234 bool single = (code == Instruction::CMPL_FLOAT) || (code == Instruction::CMPG_FLOAT);
235 bool unordered_gt = (code == Instruction::CMPG_DOUBLE) || (code == Instruction::CMPG_FLOAT);
236 int src_reg1;
237 int src_reg2;
238 if (single) {
239 rl_src1 = LoadValue(rl_src1, kFPReg);
240 src_reg1 = rl_src1.low_reg;
241 rl_src2 = LoadValue(rl_src2, kFPReg);
242 src_reg2 = rl_src2.low_reg;
243 } else {
244 rl_src1 = LoadValueWide(rl_src1, kFPReg);
245 src_reg1 = S2d(rl_src1.low_reg, rl_src1.high_reg);
246 rl_src2 = LoadValueWide(rl_src2, kFPReg);
247 src_reg2 = S2d(rl_src2.low_reg, rl_src2.high_reg);
248 }
249 // In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
250 ClobberSReg(rl_dest.s_reg_low);
251 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
252 LoadConstantNoClobber(rl_result.low_reg, unordered_gt ? 1 : 0);
253 if (single) {
254 NewLIR2(kX86UcomissRR, src_reg1, src_reg2);
255 } else {
256 NewLIR2(kX86UcomisdRR, src_reg1, src_reg2);
257 }
258 LIR* branch = NULL;
259 if (unordered_gt) {
260 branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
261 }
262 // If the result reg can't be byte accessed, use a jump and move instead of a set.
263 if (rl_result.low_reg >= 4) {
264 LIR* branch2 = NULL;
265 if (unordered_gt) {
266 branch2 = NewLIR2(kX86Jcc8, 0, kX86CondA);
267 NewLIR2(kX86Mov32RI, rl_result.low_reg, 0x0);
268 } else {
269 branch2 = NewLIR2(kX86Jcc8, 0, kX86CondBe);
270 NewLIR2(kX86Mov32RI, rl_result.low_reg, 0x1);
271 }
272 branch2->target = NewLIR0(kPseudoTargetLabel);
273 } else {
274 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondA /* above - unsigned > */);
275 }
276 NewLIR2(kX86Sbb32RI, rl_result.low_reg, 0);
277 if (unordered_gt) {
278 branch->target = NewLIR0(kPseudoTargetLabel);
279 }
280 StoreValue(rl_dest, rl_result);
281}
282
283void X86Mir2Lir::GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias,
284 bool is_double) {
285 LIR* taken = &block_label_list_[bb->taken->id];
286 LIR* not_taken = &block_label_list_[bb->fall_through->id];
287 LIR* branch = NULL;
288 RegLocation rl_src1;
289 RegLocation rl_src2;
290 if (is_double) {
291 rl_src1 = mir_graph_->GetSrcWide(mir, 0);
292 rl_src2 = mir_graph_->GetSrcWide(mir, 2);
293 rl_src1 = LoadValueWide(rl_src1, kFPReg);
294 rl_src2 = LoadValueWide(rl_src2, kFPReg);
295 NewLIR2(kX86UcomisdRR, S2d(rl_src1.low_reg, rl_src1.high_reg),
296 S2d(rl_src2.low_reg, rl_src2.high_reg));
297 } else {
298 rl_src1 = mir_graph_->GetSrc(mir, 0);
299 rl_src2 = mir_graph_->GetSrc(mir, 1);
300 rl_src1 = LoadValue(rl_src1, kFPReg);
301 rl_src2 = LoadValue(rl_src2, kFPReg);
302 NewLIR2(kX86UcomissRR, rl_src1.low_reg, rl_src2.low_reg);
303 }
304 ConditionCode ccode = static_cast<ConditionCode>(mir->dalvikInsn.arg[0]);
305 switch (ccode) {
306 case kCondEq:
307 if (!gt_bias) {
308 branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
309 branch->target = not_taken;
310 }
311 break;
312 case kCondNe:
313 if (!gt_bias) {
314 branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
315 branch->target = taken;
316 }
317 break;
318 case kCondLt:
319 if (gt_bias) {
320 branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
321 branch->target = not_taken;
322 }
323 ccode = kCondCs;
324 break;
325 case kCondLe:
326 if (gt_bias) {
327 branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
328 branch->target = not_taken;
329 }
330 ccode = kCondLs;
331 break;
332 case kCondGt:
333 if (gt_bias) {
334 branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
335 branch->target = taken;
336 }
337 ccode = kCondHi;
338 break;
339 case kCondGe:
340 if (gt_bias) {
341 branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
342 branch->target = taken;
343 }
344 ccode = kCondCc;
345 break;
346 default:
347 LOG(FATAL) << "Unexpected ccode: " << ccode;
348 }
349 OpCondBranch(ccode, taken);
350}
351
352void X86Mir2Lir::GenNegFloat(RegLocation rl_dest, RegLocation rl_src)
353{
354 RegLocation rl_result;
355 rl_src = LoadValue(rl_src, kCoreReg);
356 rl_result = EvalLoc(rl_dest, kCoreReg, true);
357 OpRegRegImm(kOpAdd, rl_result.low_reg, rl_src.low_reg, 0x80000000);
358 StoreValue(rl_dest, rl_result);
359}
360
361void X86Mir2Lir::GenNegDouble(RegLocation rl_dest, RegLocation rl_src)
362{
363 RegLocation rl_result;
364 rl_src = LoadValueWide(rl_src, kCoreReg);
365 rl_result = EvalLoc(rl_dest, kCoreReg, true);
366 OpRegRegImm(kOpAdd, rl_result.high_reg, rl_src.high_reg, 0x80000000);
367 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
368 StoreValueWide(rl_dest, rl_result);
369}
370
371bool X86Mir2Lir::GenInlinedSqrt(CallInfo* info) {
372 DCHECK_NE(cu_->instruction_set, kThumb2);
373 return false;
374}
375
376
377
378} // namespace art