blob: 379aa7c5d35b2594bab9e887fddce10d45f963ac [file] [log] [blame]
Nicolas Geoffray2a905b22019-06-06 09:04:07 +01001/*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "jit_memory_region.h"
18
Nicolas Geoffray2411f492019-06-14 08:54:46 +010019#include <fcntl.h>
20#include <unistd.h>
21
Nicolas Geoffray2a905b22019-06-06 09:04:07 +010022#include <android-base/unique_fd.h>
23#include "base/bit_utils.h" // For RoundDown, RoundUp
24#include "base/globals.h"
25#include "base/logging.h" // For VLOG.
Nicolas Geoffray349845a2019-06-19 13:13:10 +010026#include "base/membarrier.h"
Nicolas Geoffray2a905b22019-06-06 09:04:07 +010027#include "base/memfd.h"
28#include "base/systrace.h"
29#include "gc/allocator/dlmalloc.h"
30#include "jit/jit_scoped_code_cache_write.h"
31#include "oat_quick_method_header.h"
Nicolas Geoffray2411f492019-06-14 08:54:46 +010032#include "palette/palette.h"
Nicolas Geoffray2a905b22019-06-06 09:04:07 +010033
34using android::base::unique_fd;
35
36namespace art {
37namespace jit {
38
39// Data cache will be half of the capacity
40// Code cache will be the other half of the capacity.
41// TODO: Make this variable?
42static constexpr size_t kCodeAndDataCapacityDivider = 2;
43
Nicolas Geoffray9c54e182019-06-18 10:42:52 +010044bool JitMemoryRegion::Initialize(size_t initial_capacity,
45 size_t max_capacity,
46 bool rwx_memory_allowed,
47 bool is_zygote,
48 std::string* error_msg) {
Nicolas Geoffray2a905b22019-06-06 09:04:07 +010049 ScopedTrace trace(__PRETTY_FUNCTION__);
50
Nicolas Geoffray9c54e182019-06-18 10:42:52 +010051 CHECK_GE(max_capacity, initial_capacity);
52 CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB";
53 // Align both capacities to page size, as that's the unit mspaces use.
54 initial_capacity_ = RoundDown(initial_capacity, 2 * kPageSize);
55 max_capacity_ = RoundDown(max_capacity, 2 * kPageSize);
56 current_capacity_ = initial_capacity,
57 data_end_ = initial_capacity / kCodeAndDataCapacityDivider;
58 exec_end_ = initial_capacity - data_end_;
59
Nicolas Geoffray2a905b22019-06-06 09:04:07 +010060 const size_t capacity = max_capacity_;
61 const size_t data_capacity = capacity / kCodeAndDataCapacityDivider;
62 const size_t exec_capacity = capacity - data_capacity;
63
64 // File descriptor enabling dual-view mapping of code section.
65 unique_fd mem_fd;
66
Nicolas Geoffraya48c3df2019-06-27 13:11:12 +000067 if (is_zygote) {
68 // Because we are not going to GC code generated by the zygote, just use all available.
69 current_capacity_ = max_capacity;
70 mem_fd = unique_fd(CreateZygoteMemory(capacity, error_msg));
71 if (mem_fd.get() < 0) {
72 return false;
73 }
74 } else {
Nicolas Geoffray2a905b22019-06-06 09:04:07 +010075 // Bionic supports memfd_create, but the call may fail on older kernels.
76 mem_fd = unique_fd(art::memfd_create("/jit-cache", /* flags= */ 0));
77 if (mem_fd.get() < 0) {
78 std::ostringstream oss;
79 oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno);
80 if (!rwx_memory_allowed) {
81 // Without using RWX page permissions, the JIT can not fallback to single mapping as it
82 // requires tranitioning the code pages to RWX for updates.
83 *error_msg = oss.str();
84 return false;
85 }
86 VLOG(jit) << oss.str();
Nicolas Geoffraya48c3df2019-06-27 13:11:12 +000087 } else if (ftruncate(mem_fd, capacity) != 0) {
88 std::ostringstream oss;
89 oss << "Failed to initialize memory file: " << strerror(errno);
90 *error_msg = oss.str();
91 return false;
Nicolas Geoffray2a905b22019-06-06 09:04:07 +010092 }
93 }
94
Nicolas Geoffray2a905b22019-06-06 09:04:07 +010095 std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache";
96 std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache";
97
98 std::string error_str;
99 // Map name specific for android_os_Debug.cpp accounting.
100 // Map in low 4gb to simplify accessing root tables for x86_64.
101 // We could do PC-relative addressing to avoid this problem, but that
102 // would require reserving code and data area before submitting, which
103 // means more windows for the code memory to be RWX.
104 int base_flags;
105 MemMap data_pages;
106 if (mem_fd.get() >= 0) {
107 // Dual view of JIT code cache case. Create an initial mapping of data pages large enough
108 // for data and non-writable view of JIT code pages. We use the memory file descriptor to
109 // enable dual mapping - we'll create a second mapping using the descriptor below. The
110 // mappings will look like:
111 //
112 // VA PA
113 //
114 // +---------------+
115 // | non exec code |\
116 // +---------------+ \
117 // : :\ \
118 // +---------------+.\.+---------------+
119 // | exec code | \| code |
120 // +---------------+...+---------------+
121 // | data | | data |
122 // +---------------+...+---------------+
123 //
124 // In this configuration code updates are written to the non-executable view of the code
125 // cache, and the executable view of the code cache has fixed RX memory protections.
126 //
127 // This memory needs to be mapped shared as the code portions will have two mappings.
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100128 //
129 // Additionally, the zyzote will create a dual view of the data portion of
130 // the cache. This mapping will be read-only, whereas the second mapping
131 // will be writable.
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100132 base_flags = MAP_SHARED;
133 data_pages = MemMap::MapFile(
134 data_capacity + exec_capacity,
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100135 is_zygote ? kProtR : kProtRW,
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100136 base_flags,
137 mem_fd,
138 /* start= */ 0,
139 /* low_4gb= */ true,
140 data_cache_name.c_str(),
141 &error_str);
142 } else {
143 // Single view of JIT code cache case. Create an initial mapping of data pages large enough
144 // for data and JIT code pages. The mappings will look like:
145 //
146 // VA PA
147 //
148 // +---------------+...+---------------+
149 // | exec code | | code |
150 // +---------------+...+---------------+
151 // | data | | data |
152 // +---------------+...+---------------+
153 //
154 // In this configuration code updates are written to the executable view of the code cache,
155 // and the executable view of the code cache transitions RX to RWX for the update and then
156 // back to RX after the update.
157 base_flags = MAP_PRIVATE | MAP_ANON;
158 data_pages = MemMap::MapAnonymous(
159 data_cache_name.c_str(),
160 data_capacity + exec_capacity,
161 kProtRW,
162 /* low_4gb= */ true,
163 &error_str);
164 }
165
166 if (!data_pages.IsValid()) {
167 std::ostringstream oss;
168 oss << "Failed to create read write cache: " << error_str << " size=" << capacity;
169 *error_msg = oss.str();
170 return false;
171 }
172
173 MemMap exec_pages;
174 MemMap non_exec_pages;
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100175 MemMap writable_data_pages;
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100176 if (exec_capacity > 0) {
177 uint8_t* const divider = data_pages.Begin() + data_capacity;
178 // Set initial permission for executable view to catch any SELinux permission problems early
179 // (for processes that cannot map WX pages). Otherwise, this region does not need to be
180 // executable as there is no code in the cache yet.
181 exec_pages = data_pages.RemapAtEnd(divider,
182 exec_cache_name.c_str(),
183 kProtRX,
184 base_flags | MAP_FIXED,
185 mem_fd.get(),
186 (mem_fd.get() >= 0) ? data_capacity : 0,
187 &error_str);
188 if (!exec_pages.IsValid()) {
189 std::ostringstream oss;
190 oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity;
191 *error_msg = oss.str();
192 return false;
193 }
194
195 if (mem_fd.get() >= 0) {
196 // For dual view, create the secondary view of code memory used for updating code. This view
197 // is never executable.
198 std::string name = exec_cache_name + "-rw";
199 non_exec_pages = MemMap::MapFile(exec_capacity,
200 kProtR,
201 base_flags,
202 mem_fd,
203 /* start= */ data_capacity,
204 /* low_4GB= */ false,
205 name.c_str(),
206 &error_str);
207 if (!non_exec_pages.IsValid()) {
208 static const char* kFailedNxView = "Failed to map non-executable view of JIT code cache";
209 if (rwx_memory_allowed) {
210 // Log and continue as single view JIT (requires RWX memory).
211 VLOG(jit) << kFailedNxView;
212 } else {
213 *error_msg = kFailedNxView;
214 return false;
215 }
216 }
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100217 // For the zygote, create a dual view of the data cache.
218 if (is_zygote) {
219 name = data_cache_name + "-rw";
220 writable_data_pages = MemMap::MapFile(data_capacity,
221 kProtRW,
222 base_flags,
223 mem_fd,
224 /* start= */ 0,
225 /* low_4GB= */ false,
226 name.c_str(),
227 &error_str);
228 if (!writable_data_pages.IsValid()) {
229 std::ostringstream oss;
230 oss << "Failed to create dual data view for zygote: " << error_str;
231 *error_msg = oss.str();
232 return false;
233 }
Nicolas Geoffray88f3fd92019-06-27 16:32:13 +0100234 if (writable_data_pages.MadviseDontFork() != 0) {
235 *error_msg = "Failed to madvise dont fork the writable data view";
236 return false;
237 }
238 if (non_exec_pages.MadviseDontFork() != 0) {
239 *error_msg = "Failed to madvise dont fork the writable code view";
240 return false;
241 }
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100242 // Now that we have created the writable and executable mappings, prevent creating any new
243 // ones.
244 if (!ProtectZygoteMemory(mem_fd.get(), error_msg)) {
245 return false;
246 }
Nicolas Geoffraya48c3df2019-06-27 13:11:12 +0000247 }
248 }
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100249 } else {
250 // Profiling only. No memory for code required.
251 }
252
253 data_pages_ = std::move(data_pages);
254 exec_pages_ = std::move(exec_pages);
255 non_exec_pages_ = std::move(non_exec_pages);
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100256 writable_data_pages_ = std::move(writable_data_pages);
257
258 VLOG(jit) << "Created JitMemoryRegion"
259 << ": data_pages=" << reinterpret_cast<void*>(data_pages_.Begin())
260 << ", exec_pages=" << reinterpret_cast<void*>(exec_pages_.Begin())
261 << ", non_exec_pages=" << reinterpret_cast<void*>(non_exec_pages_.Begin())
262 << ", writable_data_pages=" << reinterpret_cast<void*>(writable_data_pages_.Begin());
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100263
Nicolas Geoffray9c54e182019-06-18 10:42:52 +0100264 // Now that the pages are initialized, initialize the spaces.
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100265
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100266 // Initialize the data heap.
267 data_mspace_ = create_mspace_with_base(
268 HasDualDataMapping() ? writable_data_pages_.Begin() : data_pages_.Begin(),
269 data_end_,
270 /* locked= */ false);
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100271 CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed";
272
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100273 // Initialize the code heap.
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100274 MemMap* code_heap = nullptr;
275 if (non_exec_pages_.IsValid()) {
276 code_heap = &non_exec_pages_;
277 } else if (exec_pages_.IsValid()) {
278 code_heap = &exec_pages_;
279 }
280 if (code_heap != nullptr) {
281 // Make all pages reserved for the code heap writable. The mspace allocator, that manages the
282 // heap, will take and initialize pages in create_mspace_with_base().
283 CheckedCall(mprotect, "create code heap", code_heap->Begin(), code_heap->Size(), kProtRW);
284 exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/);
285 CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed";
Nicolas Geoffraya48c3df2019-06-27 13:11:12 +0000286 SetFootprintLimit(current_capacity_);
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100287 // Protect pages containing heap metadata. Updates to the code heap toggle write permission to
288 // perform the update and there are no other times write access is required.
289 CheckedCall(mprotect, "protect code heap", code_heap->Begin(), code_heap->Size(), kProtR);
290 } else {
291 exec_mspace_ = nullptr;
Nicolas Geoffraya48c3df2019-06-27 13:11:12 +0000292 SetFootprintLimit(current_capacity_);
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100293 }
Nicolas Geoffray9c54e182019-06-18 10:42:52 +0100294 return true;
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100295}
296
297void JitMemoryRegion::SetFootprintLimit(size_t new_footprint) {
298 size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider;
299 DCHECK(IsAlignedParam(data_space_footprint, kPageSize));
300 DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint);
301 mspace_set_footprint_limit(data_mspace_, data_space_footprint);
302 if (HasCodeMapping()) {
303 ScopedCodeCacheWrite scc(*this);
304 mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint);
305 }
306}
307
308bool JitMemoryRegion::IncreaseCodeCacheCapacity() {
309 if (current_capacity_ == max_capacity_) {
310 return false;
311 }
312
313 // Double the capacity if we're below 1MB, or increase it by 1MB if
314 // we're above.
315 if (current_capacity_ < 1 * MB) {
316 current_capacity_ *= 2;
317 } else {
318 current_capacity_ += 1 * MB;
319 }
320 if (current_capacity_ > max_capacity_) {
321 current_capacity_ = max_capacity_;
322 }
323
324 VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_);
325
326 SetFootprintLimit(current_capacity_);
327
328 return true;
329}
330
331// NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock
332// is already held.
333void* JitMemoryRegion::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS {
334 if (mspace == exec_mspace_) {
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100335 CHECK(exec_mspace_ != nullptr);
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100336 const MemMap* const code_pages = GetUpdatableCodeMapping();
337 void* result = code_pages->Begin() + exec_end_;
338 exec_end_ += increment;
339 return result;
340 } else {
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100341 CHECK_EQ(data_mspace_, mspace);
342 const MemMap* const writable_data_pages = GetWritableDataMapping();
343 void* result = writable_data_pages->Begin() + data_end_;
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100344 data_end_ += increment;
345 return result;
346 }
347}
348
Nicolas Geoffray349845a2019-06-19 13:13:10 +0100349const uint8_t* JitMemoryRegion::AllocateCode(const uint8_t* code,
350 size_t code_size,
351 const uint8_t* stack_map,
352 bool has_should_deoptimize_flag) {
353 ScopedCodeCacheWrite scc(*this);
354
Orion Hodsone764f382019-06-27 12:56:48 +0100355 size_t alignment = GetInstructionSetAlignment(kRuntimeISA);
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100356 // Ensure the header ends up at expected instruction alignment.
Nicolas Geoffray349845a2019-06-19 13:13:10 +0100357 size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment);
358 size_t total_size = header_size + code_size;
359
360 // Each allocation should be on its own set of cache lines.
361 // `total_size` covers the OatQuickMethodHeader, the JIT generated machine code,
362 // and any alignment padding.
363 DCHECK_GT(total_size, header_size);
364 uint8_t* w_memory = reinterpret_cast<uint8_t*>(
365 mspace_memalign(exec_mspace_, alignment, total_size));
366 if (w_memory == nullptr) {
367 return nullptr;
368 }
369 uint8_t* x_memory = GetExecutableAddress(w_memory);
370 // Ensure the header ends up at expected instruction alignment.
371 DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(w_memory + header_size), alignment);
372 used_memory_for_code_ += mspace_usable_size(w_memory);
373 const uint8_t* result = x_memory + header_size;
374
375 // Write the code.
376 std::copy(code, code + code_size, w_memory + header_size);
377
378 // Write the header.
379 OatQuickMethodHeader* method_header =
380 OatQuickMethodHeader::FromCodePointer(w_memory + header_size);
381 new (method_header) OatQuickMethodHeader(
382 (stack_map != nullptr) ? result - stack_map : 0u,
383 code_size);
384 if (has_should_deoptimize_flag) {
385 method_header->SetHasShouldDeoptimizeFlag();
386 }
387
388 // Both instruction and data caches need flushing to the point of unification where both share
389 // a common view of memory. Flushing the data cache ensures the dirty cachelines from the
390 // newly added code are written out to the point of unification. Flushing the instruction
391 // cache ensures the newly written code will be fetched from the point of unification before
392 // use. Memory in the code cache is re-cycled as code is added and removed. The flushes
393 // prevent stale code from residing in the instruction cache.
394 //
395 // Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels
396 // may trigger a segfault if a page fault occurs when requesting a cache maintenance
397 // operation. This is a kernel bug that we need to work around until affected devices
398 // (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed.
399 //
400 // For reference, this behavior is caused by this commit:
401 // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c
402 //
Orion Hodsonaeb02232019-06-25 14:18:18 +0100403 bool cache_flush_success = true;
Nicolas Geoffray349845a2019-06-19 13:13:10 +0100404 if (HasDualCodeMapping()) {
Orion Hodsonaeb02232019-06-25 14:18:18 +0100405 // Flush d-cache for the non-executable mapping.
406 cache_flush_success = FlushCpuCaches(w_memory, w_memory + total_size);
Nicolas Geoffray349845a2019-06-19 13:13:10 +0100407 }
408
Orion Hodsonaeb02232019-06-25 14:18:18 +0100409 // Invalidate i-cache for the executable mapping.
410 if (cache_flush_success) {
411 cache_flush_success = FlushCpuCaches(x_memory, x_memory + total_size);
412 }
413
414 // If flushing the cache has failed, reject the allocation because we can't guarantee
415 // correctness of the instructions present in the processor caches.
416 if (!cache_flush_success) {
417 PLOG(ERROR) << "Cache flush failed triggering code allocation failure";
418 FreeCode(x_memory);
419 return nullptr;
420 }
Nicolas Geoffray349845a2019-06-19 13:13:10 +0100421
422 // Ensure CPU instruction pipelines are flushed for all cores. This is necessary for
423 // correctness as code may still be in instruction pipelines despite the i-cache flush. It is
424 // not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB
425 // shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to
426 // notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have
427 // hardware support that broadcasts TLB invalidations and so their kernels have no software
428 // based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to
429 // address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on
430 // platforms lacking the appropriate support.
431 art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore);
432
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100433 return result;
434}
435
Nicolas Geoffray00a37ff2019-06-20 14:27:22 +0100436static void FillRootTable(uint8_t* roots_data, const std::vector<Handle<mirror::Object>>& roots)
437 REQUIRES(Locks::jit_lock_)
438 REQUIRES_SHARED(Locks::mutator_lock_) {
439 GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data);
440 const uint32_t length = roots.size();
441 // Put all roots in `roots_data`.
442 for (uint32_t i = 0; i < length; ++i) {
443 ObjPtr<mirror::Object> object = roots[i].Get();
444 gc_roots[i] = GcRoot<mirror::Object>(object);
445 }
446 // Store the length of the table at the end. This will allow fetching it from a stack_map
447 // pointer.
448 reinterpret_cast<uint32_t*>(roots_data)[length] = length;
449}
450
Orion Hodsonaeb02232019-06-25 14:18:18 +0100451bool JitMemoryRegion::CommitData(uint8_t* roots_data,
Nicolas Geoffray00a37ff2019-06-20 14:27:22 +0100452 const std::vector<Handle<mirror::Object>>& roots,
453 const uint8_t* stack_map,
454 size_t stack_map_size) {
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100455 roots_data = GetWritableDataAddress(roots_data);
Nicolas Geoffray00a37ff2019-06-20 14:27:22 +0100456 size_t root_table_size = ComputeRootTableSize(roots.size());
457 uint8_t* stack_map_data = roots_data + root_table_size;
458 FillRootTable(roots_data, roots);
459 memcpy(stack_map_data, stack_map, stack_map_size);
460 // Flush data cache, as compiled code references literals in it.
Orion Hodsonaeb02232019-06-25 14:18:18 +0100461 // TODO(oth): establish whether this is necessary.
462 if (UNLIKELY(!FlushCpuCaches(roots_data, roots_data + root_table_size + stack_map_size))) {
463 VLOG(jit) << "Failed to flush data in CommitData";
464 return false;
465 }
466 return true;
Nicolas Geoffray00a37ff2019-06-20 14:27:22 +0100467}
468
Nicolas Geoffray349845a2019-06-19 13:13:10 +0100469void JitMemoryRegion::FreeCode(const uint8_t* code) {
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100470 code = GetNonExecutableAddress(code);
471 used_memory_for_code_ -= mspace_usable_size(code);
Nicolas Geoffray349845a2019-06-19 13:13:10 +0100472 mspace_free(exec_mspace_, const_cast<uint8_t*>(code));
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100473}
474
475uint8_t* JitMemoryRegion::AllocateData(size_t data_size) {
476 void* result = mspace_malloc(data_mspace_, data_size);
477 used_memory_for_data_ += mspace_usable_size(result);
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100478 return reinterpret_cast<uint8_t*>(GetNonWritableDataAddress(result));
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100479}
480
481void JitMemoryRegion::FreeData(uint8_t* data) {
Nicolas Geoffrayac933ed2019-06-26 13:36:37 +0100482 data = GetWritableDataAddress(data);
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100483 used_memory_for_data_ -= mspace_usable_size(data);
484 mspace_free(data_mspace_, data);
485}
486
Nicolas Geoffray2411f492019-06-14 08:54:46 +0100487#if defined(__BIONIC__)
488
489static bool IsSealFutureWriteSupportedInternal() {
490 unique_fd fd(art::memfd_create("test_android_memfd", MFD_ALLOW_SEALING));
491 if (fd == -1) {
492 LOG(INFO) << "memfd_create failed: " << strerror(errno) << ", no memfd support.";
493 return false;
494 }
495
496 if (fcntl(fd, F_ADD_SEALS, F_SEAL_FUTURE_WRITE) == -1) {
497 LOG(INFO) << "fcntl(F_ADD_SEALS) failed: " << strerror(errno) << ", no memfd support.";
498 return false;
499 }
500
501 LOG(INFO) << "Using memfd for future sealing";
502 return true;
503}
504
505static bool IsSealFutureWriteSupported() {
506 static bool is_seal_future_write_supported = IsSealFutureWriteSupportedInternal();
507 return is_seal_future_write_supported;
508}
509
510int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) {
511 /* Check if kernel support exists, otherwise fall back to ashmem */
512 static const char* kRegionName = "/jit-zygote-cache";
513 if (IsSealFutureWriteSupported()) {
514 int fd = art::memfd_create(kRegionName, MFD_ALLOW_SEALING);
515 if (fd == -1) {
516 std::ostringstream oss;
517 oss << "Failed to create zygote mapping: " << strerror(errno);
518 *error_msg = oss.str();
519 return -1;
520 }
521
522 if (ftruncate(fd, capacity) != 0) {
523 std::ostringstream oss;
524 oss << "Failed to create zygote mapping: " << strerror(errno);
525 *error_msg = oss.str();
526 return -1;
527 }
528
529 return fd;
530 }
531
532 LOG(INFO) << "Falling back to ashmem implementation for JIT zygote mapping";
533
534 int fd;
535 PaletteStatus status = PaletteAshmemCreateRegion(kRegionName, capacity, &fd);
536 if (status != PaletteStatus::kOkay) {
537 CHECK_EQ(status, PaletteStatus::kCheckErrno);
538 std::ostringstream oss;
539 oss << "Failed to create zygote mapping: " << strerror(errno);
540 *error_msg = oss.str();
541 return -1;
542 }
543 return fd;
544}
545
546bool JitMemoryRegion::ProtectZygoteMemory(int fd, std::string* error_msg) {
547 if (IsSealFutureWriteSupported()) {
548 if (fcntl(fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL | F_SEAL_FUTURE_WRITE)
549 == -1) {
550 std::ostringstream oss;
551 oss << "Failed to protect zygote mapping: " << strerror(errno);
552 *error_msg = oss.str();
553 return false;
554 }
555 } else {
556 PaletteStatus status = PaletteAshmemSetProtRegion(fd, PROT_READ);
557 if (status != PaletteStatus::kOkay) {
558 CHECK_EQ(status, PaletteStatus::kCheckErrno);
559 std::ostringstream oss;
560 oss << "Failed to protect zygote mapping: " << strerror(errno);
561 *error_msg = oss.str();
562 return false;
563 }
564 }
565 return true;
566}
567
568#else
569
570// When running on non-bionic configuration, this is not supported.
571int JitMemoryRegion::CreateZygoteMemory(size_t capacity ATTRIBUTE_UNUSED,
572 std::string* error_msg ATTRIBUTE_UNUSED) {
573 return -1;
574}
575
576bool JitMemoryRegion::ProtectZygoteMemory(int fd ATTRIBUTE_UNUSED,
577 std::string* error_msg ATTRIBUTE_UNUSED) {
578 return true;
579}
580
581#endif
582
Nicolas Geoffray2a905b22019-06-06 09:04:07 +0100583} // namespace jit
584} // namespace art