Andreas Gampe | 36a296f | 2017-06-13 14:11:11 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2011 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #ifndef ART_RUNTIME_INTERPRETER_SHADOW_FRAME_H_ |
| 18 | #define ART_RUNTIME_INTERPRETER_SHADOW_FRAME_H_ |
| 19 | |
Andreas Gampe | 8cf9cb3 | 2017-07-19 09:28:38 -0700 | [diff] [blame^] | 20 | #include <cstdint> |
Andreas Gampe | 36a296f | 2017-06-13 14:11:11 -0700 | [diff] [blame] | 21 | #include <cstring> |
Andreas Gampe | 36a296f | 2017-06-13 14:11:11 -0700 | [diff] [blame] | 22 | #include <string> |
| 23 | |
| 24 | #include "base/macros.h" |
| 25 | #include "base/mutex.h" |
| 26 | #include "dex_file.h" |
| 27 | #include "lock_count_data.h" |
| 28 | #include "read_barrier.h" |
| 29 | #include "stack_reference.h" |
| 30 | #include "verify_object.h" |
| 31 | |
| 32 | namespace art { |
| 33 | |
| 34 | namespace mirror { |
| 35 | class Object; |
| 36 | } // namespace mirror |
| 37 | |
| 38 | class ArtMethod; |
| 39 | class ShadowFrame; |
| 40 | class Thread; |
| 41 | union JValue; |
| 42 | |
| 43 | // Forward declaration. Just calls the destructor. |
| 44 | struct ShadowFrameDeleter; |
| 45 | using ShadowFrameAllocaUniquePtr = std::unique_ptr<ShadowFrame, ShadowFrameDeleter>; |
| 46 | |
| 47 | // ShadowFrame has 2 possible layouts: |
| 48 | // - interpreter - separate VRegs and reference arrays. References are in the reference array. |
| 49 | // - JNI - just VRegs, but where every VReg holds a reference. |
| 50 | class ShadowFrame { |
| 51 | public: |
| 52 | // Compute size of ShadowFrame in bytes assuming it has a reference array. |
| 53 | static size_t ComputeSize(uint32_t num_vregs) { |
| 54 | return sizeof(ShadowFrame) + (sizeof(uint32_t) * num_vregs) + |
| 55 | (sizeof(StackReference<mirror::Object>) * num_vregs); |
| 56 | } |
| 57 | |
| 58 | // Create ShadowFrame in heap for deoptimization. |
| 59 | static ShadowFrame* CreateDeoptimizedFrame(uint32_t num_vregs, ShadowFrame* link, |
| 60 | ArtMethod* method, uint32_t dex_pc) { |
| 61 | uint8_t* memory = new uint8_t[ComputeSize(num_vregs)]; |
| 62 | return CreateShadowFrameImpl(num_vregs, link, method, dex_pc, memory); |
| 63 | } |
| 64 | |
| 65 | // Delete a ShadowFrame allocated on the heap for deoptimization. |
| 66 | static void DeleteDeoptimizedFrame(ShadowFrame* sf) { |
| 67 | sf->~ShadowFrame(); // Explicitly destruct. |
| 68 | uint8_t* memory = reinterpret_cast<uint8_t*>(sf); |
| 69 | delete[] memory; |
| 70 | } |
| 71 | |
| 72 | // Create a shadow frame in a fresh alloca. This needs to be in the context of the caller. |
| 73 | // Inlining doesn't work, the compiler will still undo the alloca. So this needs to be a macro. |
| 74 | #define CREATE_SHADOW_FRAME(num_vregs, link, method, dex_pc) ({ \ |
| 75 | size_t frame_size = ShadowFrame::ComputeSize(num_vregs); \ |
| 76 | void* alloca_mem = alloca(frame_size); \ |
| 77 | ShadowFrameAllocaUniquePtr( \ |
| 78 | ShadowFrame::CreateShadowFrameImpl((num_vregs), (link), (method), (dex_pc), \ |
| 79 | (alloca_mem))); \ |
| 80 | }) |
| 81 | |
| 82 | ~ShadowFrame() {} |
| 83 | |
| 84 | // TODO(iam): Clean references array up since they're always there, |
| 85 | // we don't need to do conditionals. |
| 86 | bool HasReferenceArray() const { |
| 87 | return true; |
| 88 | } |
| 89 | |
| 90 | uint32_t NumberOfVRegs() const { |
| 91 | return number_of_vregs_; |
| 92 | } |
| 93 | |
| 94 | uint32_t GetDexPC() const { |
| 95 | return (dex_pc_ptr_ == nullptr) ? dex_pc_ : dex_pc_ptr_ - code_item_->insns_; |
| 96 | } |
| 97 | |
| 98 | int16_t GetCachedHotnessCountdown() const { |
| 99 | return cached_hotness_countdown_; |
| 100 | } |
| 101 | |
| 102 | void SetCachedHotnessCountdown(int16_t cached_hotness_countdown) { |
| 103 | cached_hotness_countdown_ = cached_hotness_countdown; |
| 104 | } |
| 105 | |
| 106 | int16_t GetHotnessCountdown() const { |
| 107 | return hotness_countdown_; |
| 108 | } |
| 109 | |
| 110 | void SetHotnessCountdown(int16_t hotness_countdown) { |
| 111 | hotness_countdown_ = hotness_countdown; |
| 112 | } |
| 113 | |
| 114 | void SetDexPC(uint32_t dex_pc) { |
| 115 | dex_pc_ = dex_pc; |
| 116 | dex_pc_ptr_ = nullptr; |
| 117 | } |
| 118 | |
| 119 | ShadowFrame* GetLink() const { |
| 120 | return link_; |
| 121 | } |
| 122 | |
| 123 | void SetLink(ShadowFrame* frame) { |
| 124 | DCHECK_NE(this, frame); |
| 125 | link_ = frame; |
| 126 | } |
| 127 | |
| 128 | int32_t GetVReg(size_t i) const { |
| 129 | DCHECK_LT(i, NumberOfVRegs()); |
| 130 | const uint32_t* vreg = &vregs_[i]; |
| 131 | return *reinterpret_cast<const int32_t*>(vreg); |
| 132 | } |
| 133 | |
| 134 | // Shorts are extended to Ints in VRegs. Interpreter intrinsics needs them as shorts. |
| 135 | int16_t GetVRegShort(size_t i) const { |
| 136 | return static_cast<int16_t>(GetVReg(i)); |
| 137 | } |
| 138 | |
| 139 | uint32_t* GetVRegAddr(size_t i) { |
| 140 | return &vregs_[i]; |
| 141 | } |
| 142 | |
| 143 | uint32_t* GetShadowRefAddr(size_t i) { |
| 144 | DCHECK(HasReferenceArray()); |
| 145 | DCHECK_LT(i, NumberOfVRegs()); |
| 146 | return &vregs_[i + NumberOfVRegs()]; |
| 147 | } |
| 148 | |
| 149 | void SetCodeItem(const DexFile::CodeItem* code_item) { |
| 150 | code_item_ = code_item; |
| 151 | } |
| 152 | |
| 153 | const DexFile::CodeItem* GetCodeItem() const { |
| 154 | return code_item_; |
| 155 | } |
| 156 | |
| 157 | float GetVRegFloat(size_t i) const { |
| 158 | DCHECK_LT(i, NumberOfVRegs()); |
| 159 | // NOTE: Strict-aliasing? |
| 160 | const uint32_t* vreg = &vregs_[i]; |
| 161 | return *reinterpret_cast<const float*>(vreg); |
| 162 | } |
| 163 | |
| 164 | int64_t GetVRegLong(size_t i) const { |
| 165 | DCHECK_LT(i, NumberOfVRegs()); |
| 166 | const uint32_t* vreg = &vregs_[i]; |
| 167 | typedef const int64_t unaligned_int64 __attribute__ ((aligned (4))); |
| 168 | return *reinterpret_cast<unaligned_int64*>(vreg); |
| 169 | } |
| 170 | |
| 171 | double GetVRegDouble(size_t i) const { |
| 172 | DCHECK_LT(i, NumberOfVRegs()); |
| 173 | const uint32_t* vreg = &vregs_[i]; |
| 174 | typedef const double unaligned_double __attribute__ ((aligned (4))); |
| 175 | return *reinterpret_cast<unaligned_double*>(vreg); |
| 176 | } |
| 177 | |
| 178 | // Look up the reference given its virtual register number. |
| 179 | // If this returns non-null then this does not mean the vreg is currently a reference |
| 180 | // on non-moving collectors. Check that the raw reg with GetVReg is equal to this if not certain. |
| 181 | template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> |
| 182 | mirror::Object* GetVRegReference(size_t i) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| 183 | DCHECK_LT(i, NumberOfVRegs()); |
| 184 | mirror::Object* ref; |
| 185 | if (HasReferenceArray()) { |
| 186 | ref = References()[i].AsMirrorPtr(); |
| 187 | } else { |
| 188 | const uint32_t* vreg_ptr = &vregs_[i]; |
| 189 | ref = reinterpret_cast<const StackReference<mirror::Object>*>(vreg_ptr)->AsMirrorPtr(); |
| 190 | } |
| 191 | if (kUseReadBarrier) { |
| 192 | ReadBarrier::AssertToSpaceInvariant(ref); |
| 193 | } |
| 194 | if (kVerifyFlags & kVerifyReads) { |
| 195 | VerifyObject(ref); |
| 196 | } |
| 197 | return ref; |
| 198 | } |
| 199 | |
| 200 | // Get view of vregs as range of consecutive arguments starting at i. |
| 201 | uint32_t* GetVRegArgs(size_t i) { |
| 202 | return &vregs_[i]; |
| 203 | } |
| 204 | |
| 205 | void SetVReg(size_t i, int32_t val) { |
| 206 | DCHECK_LT(i, NumberOfVRegs()); |
| 207 | uint32_t* vreg = &vregs_[i]; |
| 208 | *reinterpret_cast<int32_t*>(vreg) = val; |
| 209 | // This is needed for moving collectors since these can update the vreg references if they |
| 210 | // happen to agree with references in the reference array. |
| 211 | if (kMovingCollector && HasReferenceArray()) { |
| 212 | References()[i].Clear(); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | void SetVRegFloat(size_t i, float val) { |
| 217 | DCHECK_LT(i, NumberOfVRegs()); |
| 218 | uint32_t* vreg = &vregs_[i]; |
| 219 | *reinterpret_cast<float*>(vreg) = val; |
| 220 | // This is needed for moving collectors since these can update the vreg references if they |
| 221 | // happen to agree with references in the reference array. |
| 222 | if (kMovingCollector && HasReferenceArray()) { |
| 223 | References()[i].Clear(); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | void SetVRegLong(size_t i, int64_t val) { |
| 228 | DCHECK_LT(i, NumberOfVRegs()); |
| 229 | uint32_t* vreg = &vregs_[i]; |
| 230 | typedef int64_t unaligned_int64 __attribute__ ((aligned (4))); |
| 231 | *reinterpret_cast<unaligned_int64*>(vreg) = val; |
| 232 | // This is needed for moving collectors since these can update the vreg references if they |
| 233 | // happen to agree with references in the reference array. |
| 234 | if (kMovingCollector && HasReferenceArray()) { |
| 235 | References()[i].Clear(); |
| 236 | References()[i + 1].Clear(); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | void SetVRegDouble(size_t i, double val) { |
| 241 | DCHECK_LT(i, NumberOfVRegs()); |
| 242 | uint32_t* vreg = &vregs_[i]; |
| 243 | typedef double unaligned_double __attribute__ ((aligned (4))); |
| 244 | *reinterpret_cast<unaligned_double*>(vreg) = val; |
| 245 | // This is needed for moving collectors since these can update the vreg references if they |
| 246 | // happen to agree with references in the reference array. |
| 247 | if (kMovingCollector && HasReferenceArray()) { |
| 248 | References()[i].Clear(); |
| 249 | References()[i + 1].Clear(); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> |
| 254 | void SetVRegReference(size_t i, mirror::Object* val) REQUIRES_SHARED(Locks::mutator_lock_) { |
| 255 | DCHECK_LT(i, NumberOfVRegs()); |
| 256 | if (kVerifyFlags & kVerifyWrites) { |
| 257 | VerifyObject(val); |
| 258 | } |
| 259 | if (kUseReadBarrier) { |
| 260 | ReadBarrier::AssertToSpaceInvariant(val); |
| 261 | } |
| 262 | uint32_t* vreg = &vregs_[i]; |
| 263 | reinterpret_cast<StackReference<mirror::Object>*>(vreg)->Assign(val); |
| 264 | if (HasReferenceArray()) { |
| 265 | References()[i].Assign(val); |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | void SetMethod(ArtMethod* method) REQUIRES(Locks::mutator_lock_) { |
| 270 | DCHECK(method != nullptr); |
| 271 | DCHECK(method_ != nullptr); |
| 272 | method_ = method; |
| 273 | } |
| 274 | |
| 275 | ArtMethod* GetMethod() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| 276 | DCHECK(method_ != nullptr); |
| 277 | return method_; |
| 278 | } |
| 279 | |
| 280 | mirror::Object* GetThisObject() const REQUIRES_SHARED(Locks::mutator_lock_); |
| 281 | |
| 282 | mirror::Object* GetThisObject(uint16_t num_ins) const REQUIRES_SHARED(Locks::mutator_lock_); |
| 283 | |
| 284 | bool Contains(StackReference<mirror::Object>* shadow_frame_entry_obj) const { |
| 285 | if (HasReferenceArray()) { |
| 286 | return ((&References()[0] <= shadow_frame_entry_obj) && |
| 287 | (shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1]))); |
| 288 | } else { |
| 289 | uint32_t* shadow_frame_entry = reinterpret_cast<uint32_t*>(shadow_frame_entry_obj); |
| 290 | return ((&vregs_[0] <= shadow_frame_entry) && |
| 291 | (shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1]))); |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | LockCountData& GetLockCountData() { |
| 296 | return lock_count_data_; |
| 297 | } |
| 298 | |
| 299 | static size_t LockCountDataOffset() { |
| 300 | return OFFSETOF_MEMBER(ShadowFrame, lock_count_data_); |
| 301 | } |
| 302 | |
| 303 | static size_t LinkOffset() { |
| 304 | return OFFSETOF_MEMBER(ShadowFrame, link_); |
| 305 | } |
| 306 | |
| 307 | static size_t MethodOffset() { |
| 308 | return OFFSETOF_MEMBER(ShadowFrame, method_); |
| 309 | } |
| 310 | |
| 311 | static size_t DexPCOffset() { |
| 312 | return OFFSETOF_MEMBER(ShadowFrame, dex_pc_); |
| 313 | } |
| 314 | |
| 315 | static size_t NumberOfVRegsOffset() { |
| 316 | return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_); |
| 317 | } |
| 318 | |
| 319 | static size_t VRegsOffset() { |
| 320 | return OFFSETOF_MEMBER(ShadowFrame, vregs_); |
| 321 | } |
| 322 | |
| 323 | static size_t ResultRegisterOffset() { |
| 324 | return OFFSETOF_MEMBER(ShadowFrame, result_register_); |
| 325 | } |
| 326 | |
| 327 | static size_t DexPCPtrOffset() { |
| 328 | return OFFSETOF_MEMBER(ShadowFrame, dex_pc_ptr_); |
| 329 | } |
| 330 | |
| 331 | static size_t CodeItemOffset() { |
| 332 | return OFFSETOF_MEMBER(ShadowFrame, code_item_); |
| 333 | } |
| 334 | |
| 335 | static size_t CachedHotnessCountdownOffset() { |
| 336 | return OFFSETOF_MEMBER(ShadowFrame, cached_hotness_countdown_); |
| 337 | } |
| 338 | |
| 339 | static size_t HotnessCountdownOffset() { |
| 340 | return OFFSETOF_MEMBER(ShadowFrame, hotness_countdown_); |
| 341 | } |
| 342 | |
| 343 | // Create ShadowFrame for interpreter using provided memory. |
| 344 | static ShadowFrame* CreateShadowFrameImpl(uint32_t num_vregs, |
| 345 | ShadowFrame* link, |
| 346 | ArtMethod* method, |
| 347 | uint32_t dex_pc, |
| 348 | void* memory) { |
| 349 | return new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true); |
| 350 | } |
| 351 | |
| 352 | const uint16_t* GetDexPCPtr() { |
| 353 | return dex_pc_ptr_; |
| 354 | } |
| 355 | |
| 356 | void SetDexPCPtr(uint16_t* dex_pc_ptr) { |
| 357 | dex_pc_ptr_ = dex_pc_ptr; |
| 358 | } |
| 359 | |
| 360 | JValue* GetResultRegister() { |
| 361 | return result_register_; |
| 362 | } |
| 363 | |
| 364 | private: |
| 365 | ShadowFrame(uint32_t num_vregs, ShadowFrame* link, ArtMethod* method, |
| 366 | uint32_t dex_pc, bool has_reference_array) |
| 367 | : link_(link), |
| 368 | method_(method), |
| 369 | result_register_(nullptr), |
| 370 | dex_pc_ptr_(nullptr), |
| 371 | code_item_(nullptr), |
| 372 | number_of_vregs_(num_vregs), |
| 373 | dex_pc_(dex_pc), |
| 374 | cached_hotness_countdown_(0), |
| 375 | hotness_countdown_(0) { |
| 376 | // TODO(iam): Remove this parameter, it's an an artifact of portable removal |
| 377 | DCHECK(has_reference_array); |
| 378 | if (has_reference_array) { |
| 379 | memset(vregs_, 0, num_vregs * (sizeof(uint32_t) + sizeof(StackReference<mirror::Object>))); |
| 380 | } else { |
| 381 | memset(vregs_, 0, num_vregs * sizeof(uint32_t)); |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | const StackReference<mirror::Object>* References() const { |
| 386 | DCHECK(HasReferenceArray()); |
| 387 | const uint32_t* vreg_end = &vregs_[NumberOfVRegs()]; |
| 388 | return reinterpret_cast<const StackReference<mirror::Object>*>(vreg_end); |
| 389 | } |
| 390 | |
| 391 | StackReference<mirror::Object>* References() { |
| 392 | return const_cast<StackReference<mirror::Object>*>( |
| 393 | const_cast<const ShadowFrame*>(this)->References()); |
| 394 | } |
| 395 | |
| 396 | // Link to previous shadow frame or null. |
| 397 | ShadowFrame* link_; |
| 398 | ArtMethod* method_; |
| 399 | JValue* result_register_; |
| 400 | const uint16_t* dex_pc_ptr_; |
| 401 | const DexFile::CodeItem* code_item_; |
| 402 | LockCountData lock_count_data_; // This may contain GC roots when lock counting is active. |
| 403 | const uint32_t number_of_vregs_; |
| 404 | uint32_t dex_pc_; |
| 405 | int16_t cached_hotness_countdown_; |
| 406 | int16_t hotness_countdown_; |
| 407 | |
| 408 | // This is a two-part array: |
| 409 | // - [0..number_of_vregs) holds the raw virtual registers, and each element here is always 4 |
| 410 | // bytes. |
| 411 | // - [number_of_vregs..number_of_vregs*2) holds only reference registers. Each element here is |
| 412 | // ptr-sized. |
| 413 | // In other words when a primitive is stored in vX, the second (reference) part of the array will |
| 414 | // be null. When a reference is stored in vX, the second (reference) part of the array will be a |
| 415 | // copy of vX. |
| 416 | uint32_t vregs_[0]; |
| 417 | |
| 418 | DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame); |
| 419 | }; |
| 420 | |
| 421 | struct ShadowFrameDeleter { |
| 422 | inline void operator()(ShadowFrame* frame) { |
| 423 | if (frame != nullptr) { |
| 424 | frame->~ShadowFrame(); |
| 425 | } |
| 426 | } |
| 427 | }; |
| 428 | |
| 429 | } // namespace art |
| 430 | |
| 431 | #endif // ART_RUNTIME_INTERPRETER_SHADOW_FRAME_H_ |