blob: 5fa3c8b34218577906402aa6729ebff751054d04 [file] [log] [blame]
Hiroshi Yamauchid5307ec2014-03-27 21:07:51 -07001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -080019#include "gc/accounting/heap_bitmap-inl.h"
20#include "gc/accounting/space_bitmap-inl.h"
21#include "gc/space/image_space.h"
22#include "gc/space/space.h"
23#include "intern_table.h"
24#include "mirror/art_field-inl.h"
25#include "mirror/object-inl.h"
26#include "scoped_thread_state_change.h"
27#include "thread-inl.h"
28#include "thread_list.h"
29#include "well_known_classes.h"
30
Hiroshi Yamauchid5307ec2014-03-27 21:07:51 -070031namespace art {
32namespace gc {
33namespace collector {
34
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -080035ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
36 : GarbageCollector(heap,
37 name_prefix + (name_prefix.empty() ? "" : " ") +
38 "concurrent copying + mark sweep"),
39 region_space_(nullptr), gc_barrier_(new Barrier(0)), mark_queue_(2 * MB),
40 is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
41 heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0),
42 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
43 rb_table_(heap_->GetReadBarrierTable()),
44 force_evacuate_all_(false) {
45 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
46 "The region space size and the read barrier table region size must match");
47 cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
48 {
49 Thread* self = Thread::Current();
50 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
51 // Cache this so that we won't have to lock heap_bitmap_lock_ in
52 // Mark() which could cause a nested lock on heap_bitmap_lock_
53 // when GC causes a RB while doing GC or a lock order violation
54 // (class_linker_lock_ and heap_bitmap_lock_).
55 heap_mark_bitmap_ = heap->GetMarkBitmap();
56 }
57}
58
59ConcurrentCopying::~ConcurrentCopying() {
60}
61
62void ConcurrentCopying::RunPhases() {
63 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
64 CHECK(!is_active_);
65 is_active_ = true;
66 Thread* self = Thread::Current();
67 Locks::mutator_lock_->AssertNotHeld(self);
68 {
69 ReaderMutexLock mu(self, *Locks::mutator_lock_);
70 InitializePhase();
71 }
72 FlipThreadRoots();
73 {
74 ReaderMutexLock mu(self, *Locks::mutator_lock_);
75 MarkingPhase();
76 }
77 // Verify no from space refs. This causes a pause.
78 if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
79 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
80 ScopedPause pause(this);
81 CheckEmptyMarkQueue();
82 if (kVerboseMode) {
83 LOG(INFO) << "Verifying no from-space refs";
84 }
85 VerifyNoFromSpaceReferences();
86 CheckEmptyMarkQueue();
87 }
88 {
89 ReaderMutexLock mu(self, *Locks::mutator_lock_);
90 ReclaimPhase();
91 }
92 FinishPhase();
93 CHECK(is_active_);
94 is_active_ = false;
95}
96
97void ConcurrentCopying::BindBitmaps() {
98 Thread* self = Thread::Current();
99 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
100 // Mark all of the spaces we never collect as immune.
101 for (const auto& space : heap_->GetContinuousSpaces()) {
102 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
103 || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
104 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
105 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
106 const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
107 "cc zygote space bitmap";
108 // TODO: try avoiding using bitmaps for image/zygote to save space.
109 accounting::ContinuousSpaceBitmap* bitmap =
110 accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
111 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
112 cc_bitmaps_.push_back(bitmap);
113 } else if (space == region_space_) {
114 accounting::ContinuousSpaceBitmap* bitmap =
115 accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
116 space->Begin(), space->Capacity());
117 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
118 cc_bitmaps_.push_back(bitmap);
119 region_space_bitmap_ = bitmap;
120 }
121 }
122}
123
124void ConcurrentCopying::InitializePhase() {
125 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
126 if (kVerboseMode) {
127 LOG(INFO) << "GC InitializePhase";
128 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
129 << reinterpret_cast<void*>(region_space_->Limit());
130 }
131 CHECK(mark_queue_.IsEmpty());
132 immune_region_.Reset();
133 bytes_moved_.StoreRelaxed(0);
134 objects_moved_.StoreRelaxed(0);
135 if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
136 GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
137 GetCurrentIteration()->GetClearSoftReferences()) {
138 force_evacuate_all_ = true;
139 } else {
140 force_evacuate_all_ = false;
141 }
142 BindBitmaps();
143 if (kVerboseMode) {
144 LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
145 LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
146 LOG(INFO) << "GC end of InitializePhase";
147 }
148}
149
150// Used to switch the thread roots of a thread from from-space refs to to-space refs.
151class ThreadFlipVisitor : public Closure {
152 public:
153 explicit ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
154 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
155 }
156
157 virtual void Run(Thread* thread) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
158 // Note: self is not necessarily equal to thread since thread may be suspended.
159 Thread* self = Thread::Current();
160 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
161 << thread->GetState() << " thread " << thread << " self " << self;
162 if (use_tlab_ && thread->HasTlab()) {
163 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
164 // This must come before the revoke.
165 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
166 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
167 reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
168 FetchAndAddSequentiallyConsistent(thread_local_objects);
169 } else {
170 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
171 }
172 }
173 if (kUseThreadLocalAllocationStack) {
174 thread->RevokeThreadLocalAllocationStack();
175 }
176 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
177 thread->VisitRoots(ConcurrentCopying::ProcessRootCallback, concurrent_copying_);
178 concurrent_copying_->GetBarrier().Pass(self);
179 }
180
181 private:
182 ConcurrentCopying* const concurrent_copying_;
183 const bool use_tlab_;
184};
185
186// Called back from Runtime::FlipThreadRoots() during a pause.
187class FlipCallback : public Closure {
188 public:
189 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
190 : concurrent_copying_(concurrent_copying) {
191 }
192
193 virtual void Run(Thread* thread) OVERRIDE EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) {
194 ConcurrentCopying* cc = concurrent_copying_;
195 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
196 // Note: self is not necessarily equal to thread since thread may be suspended.
197 Thread* self = Thread::Current();
198 CHECK(thread == self);
199 Locks::mutator_lock_->AssertExclusiveHeld(self);
200 cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
201 cc->SwapStacks(self);
202 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
203 cc->RecordLiveStackFreezeSize(self);
204 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
205 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
206 }
207 cc->is_marking_ = true;
208 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
209 CHECK(Runtime::Current()->IsCompiler());
210 TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
211 Runtime::Current()->VisitTransactionRoots(ConcurrentCopying::ProcessRootCallback, cc);
212 }
213 }
214
215 private:
216 ConcurrentCopying* const concurrent_copying_;
217};
218
219// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
220void ConcurrentCopying::FlipThreadRoots() {
221 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
222 if (kVerboseMode) {
223 LOG(INFO) << "time=" << region_space_->Time();
224 region_space_->DumpNonFreeRegions(LOG(INFO));
225 }
226 Thread* self = Thread::Current();
227 Locks::mutator_lock_->AssertNotHeld(self);
228 gc_barrier_->Init(self, 0);
229 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
230 FlipCallback flip_callback(this);
231 size_t barrier_count = Runtime::Current()->FlipThreadRoots(
232 &thread_flip_visitor, &flip_callback, this);
233 {
234 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
235 gc_barrier_->Increment(self, barrier_count);
236 }
237 is_asserting_to_space_invariant_ = true;
238 QuasiAtomic::ThreadFenceForConstructor();
239 if (kVerboseMode) {
240 LOG(INFO) << "time=" << region_space_->Time();
241 region_space_->DumpNonFreeRegions(LOG(INFO));
242 LOG(INFO) << "GC end of FlipThreadRoots";
243 }
244}
245
246void ConcurrentCopying::SwapStacks(Thread* self) {
247 heap_->SwapStacks(self);
248}
249
250void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
251 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
252 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
253}
254
255// Used to visit objects in the immune spaces.
256class ConcurrentCopyingImmuneSpaceObjVisitor {
257 public:
258 explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
259 : collector_(cc) {}
260
261 void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
262 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
263 DCHECK(obj != nullptr);
264 DCHECK(collector_->immune_region_.ContainsObject(obj));
265 accounting::ContinuousSpaceBitmap* cc_bitmap =
266 collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
267 DCHECK(cc_bitmap != nullptr)
268 << "An immune space object must have a bitmap";
269 if (kIsDebugBuild) {
270 DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
271 << "Immune space object must be already marked";
272 }
273 // This may or may not succeed, which is ok.
274 if (kUseBakerReadBarrier) {
275 obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
276 }
277 if (cc_bitmap->AtomicTestAndSet(obj)) {
278 // Already marked. Do nothing.
279 } else {
280 // Newly marked. Set the gray bit and push it onto the mark stack.
281 CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
282 collector_->PushOntoMarkStack<true>(obj);
283 }
284 }
285
286 private:
287 ConcurrentCopying* collector_;
288};
289
290class EmptyCheckpoint : public Closure {
291 public:
292 explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
293 : concurrent_copying_(concurrent_copying) {
294 }
295
296 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
297 // Note: self is not necessarily equal to thread since thread may be suspended.
298 Thread* self = Thread::Current();
299 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
300 << thread->GetState() << " thread " << thread << " self " << self;
301 concurrent_copying_->GetBarrier().Pass(self);
302 }
303
304 private:
305 ConcurrentCopying* const concurrent_copying_;
306};
307
308// Concurrently mark roots that are guarded by read barriers and process the mark stack.
309void ConcurrentCopying::MarkingPhase() {
310 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
311 if (kVerboseMode) {
312 LOG(INFO) << "GC MarkingPhase";
313 }
314 {
315 // Mark the image root. The WB-based collectors do not need to
316 // scan the image objects from roots by relying on the card table,
317 // but it's necessary for the RB to-space invariant to hold.
318 TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
319 gc::space::ImageSpace* image = heap_->GetImageSpace();
320 if (image != nullptr) {
321 mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
322 mirror::Object* marked_image_root = Mark(image_root);
323 CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
324 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
325 AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
326 }
327 }
328 }
329 {
330 TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
331 Runtime::Current()->VisitConstantRoots(ProcessRootCallback, this);
332 }
333 {
334 TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
335 Runtime::Current()->GetInternTable()->VisitRoots(ProcessRootCallback,
336 this, kVisitRootFlagAllRoots);
337 }
338 {
339 TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
340 Runtime::Current()->GetClassLinker()->VisitRoots(ProcessRootCallback,
341 this, kVisitRootFlagAllRoots);
342 }
343 {
344 // TODO: don't visit the transaction roots if it's not active.
345 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
346 Runtime::Current()->VisitNonThreadRoots(ProcessRootCallback, this);
347 }
348
349 // Immune spaces.
350 for (auto& space : heap_->GetContinuousSpaces()) {
351 if (immune_region_.ContainsSpace(space)) {
352 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
353 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
354 ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
355 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
356 reinterpret_cast<uintptr_t>(space->Limit()),
357 visitor);
358 }
359 }
360
361 Thread* self = Thread::Current();
362 {
363 TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
364 // Process the mark stack and issue an empty check point. If the
365 // mark stack is still empty after the check point, we're
366 // done. Otherwise, repeat.
367 ProcessMarkStack();
368 size_t count = 0;
369 while (!ProcessMarkStack()) {
370 ++count;
371 if (kVerboseMode) {
372 LOG(INFO) << "Issue an empty check point. " << count;
373 }
374 IssueEmptyCheckpoint();
375 }
376 // Need to ensure the mark stack is empty before reference
377 // processing to get rid of non-reference gray objects.
378 CheckEmptyMarkQueue();
379 // Enable the GetReference slow path and disallow access to the system weaks.
380 GetHeap()->GetReferenceProcessor()->EnableSlowPath();
381 Runtime::Current()->DisallowNewSystemWeaks();
382 QuasiAtomic::ThreadFenceForConstructor();
383 // Lock-unlock the system weak locks so that there's no thread in
384 // the middle of accessing system weaks.
385 Runtime::Current()->EnsureNewSystemWeaksDisallowed();
386 // Note: Do not issue a checkpoint from here to the
387 // SweepSystemWeaks call or else a deadlock due to
388 // WaitHoldingLocks() would occur.
389 if (kVerboseMode) {
390 LOG(INFO) << "Enabled the ref proc slow path & disabled access to system weaks.";
391 LOG(INFO) << "ProcessReferences";
392 }
393 ProcessReferences(self, true);
394 CheckEmptyMarkQueue();
395 if (kVerboseMode) {
396 LOG(INFO) << "SweepSystemWeaks";
397 }
398 SweepSystemWeaks(self);
399 if (kVerboseMode) {
400 LOG(INFO) << "SweepSystemWeaks done";
401 }
402 // Because hash_set::Erase() can call the hash function for
403 // arbitrary elements in the weak intern table in
404 // InternTable::Table::SweepWeaks(), the above SweepSystemWeaks()
405 // call may have marked some objects (strings) alive. So process
406 // the mark stack here once again.
407 ProcessMarkStack();
408 CheckEmptyMarkQueue();
409 // Disable marking.
410 if (kUseTableLookupReadBarrier) {
411 heap_->rb_table_->ClearAll();
412 DCHECK(heap_->rb_table_->IsAllCleared());
413 }
414 is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(1);
415 is_marking_ = false;
416 if (kVerboseMode) {
417 LOG(INFO) << "AllowNewSystemWeaks";
418 }
419 Runtime::Current()->AllowNewSystemWeaks();
420 CheckEmptyMarkQueue();
421 }
422
423 if (kVerboseMode) {
424 LOG(INFO) << "GC end of MarkingPhase";
425 }
426}
427
428void ConcurrentCopying::IssueEmptyCheckpoint() {
429 Thread* self = Thread::Current();
430 EmptyCheckpoint check_point(this);
431 ThreadList* thread_list = Runtime::Current()->GetThreadList();
432 gc_barrier_->Init(self, 0);
433 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
434 // Release locks then wait for all mutator threads to pass the barrier.
435 Locks::mutator_lock_->SharedUnlock(self);
436 {
437 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
438 gc_barrier_->Increment(self, barrier_count);
439 }
440 Locks::mutator_lock_->SharedLock(self);
441}
442
443mirror::Object* ConcurrentCopying::PopOffMarkStack() {
444 return mark_queue_.Dequeue();
445}
446
447template<bool kThreadSafe>
448void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
449 CHECK_EQ(is_mark_queue_push_disallowed_.LoadRelaxed(), 0)
450 << " " << to_ref << " " << PrettyTypeOf(to_ref);
451 if (kThreadSafe) {
452 CHECK(mark_queue_.Enqueue(to_ref)) << "Mark queue overflow";
453 } else {
454 CHECK(mark_queue_.EnqueueThreadUnsafe(to_ref)) << "Mark queue overflow";
455 }
456}
457
458accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
459 return heap_->allocation_stack_.get();
460}
461
462accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
463 return heap_->live_stack_.get();
464}
465
466inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
467 DCHECK(region_space_->IsInFromSpace(from_ref));
468 LockWord lw = from_ref->GetLockWord(false);
469 if (lw.GetState() == LockWord::kForwardingAddress) {
470 mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
471 CHECK(fwd_ptr != nullptr);
472 return fwd_ptr;
473 } else {
474 return nullptr;
475 }
476}
477
478inline void ConcurrentCopying::SetFwdPtr(mirror::Object* from_ref, mirror::Object* to_ref) {
479 DCHECK(region_space_->IsInFromSpace(from_ref));
480 DCHECK(region_space_->IsInToSpace(to_ref) || heap_->GetNonMovingSpace()->HasAddress(to_ref));
481 LockWord lw = from_ref->GetLockWord(false);
482 DCHECK_NE(lw.GetState(), LockWord::kForwardingAddress);
483 from_ref->SetLockWord(LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref)), false);
484}
485
486// The following visitors are that used to verify that there's no
487// references to the from-space left after marking.
488class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor {
489 public:
490 explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
491 : collector_(collector) {}
492
493 void operator()(mirror::Object* ref) const
494 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
495 if (ref == nullptr) {
496 // OK.
497 return;
498 }
499 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
500 if (kUseBakerReadBarrier) {
501 if (collector_->RegionSpace()->IsInToSpace(ref)) {
502 CHECK(ref->GetReadBarrierPointer() == nullptr)
503 << "To-space ref " << ref << " " << PrettyTypeOf(ref)
504 << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
505 } else {
506 CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
507 (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
508 collector_->IsOnAllocStack(ref)))
509 << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
510 << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
511 << " but isn't on the alloc stack (and has white rb_ptr)."
512 << " Is it in the non-moving space="
513 << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
514 }
515 }
516 }
517
518 static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
519 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
520 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
521 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector);
522 DCHECK(root != nullptr);
523 visitor(*root);
524 }
525
526 private:
527 ConcurrentCopying* collector_;
528};
529
530class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
531 public:
532 explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
533 : collector_(collector) {}
534
535 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
536 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
537 mirror::Object* ref =
538 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
539 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
540 visitor(ref);
541 }
542 void operator()(mirror::Class* klass, mirror::Reference* ref) const
543 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
544 CHECK(klass->IsTypeOfReferenceClass());
545 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
546 }
547
548 private:
549 ConcurrentCopying* collector_;
550};
551
552class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
553 public:
554 explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
555 : collector_(collector) {}
556 void operator()(mirror::Object* obj) const
557 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
558 ObjectCallback(obj, collector_);
559 }
560 static void ObjectCallback(mirror::Object* obj, void *arg)
561 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
562 CHECK(obj != nullptr);
563 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
564 space::RegionSpace* region_space = collector->RegionSpace();
565 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
566 ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
567 obj->VisitReferences<true>(visitor, visitor);
568 if (kUseBakerReadBarrier) {
569 if (collector->RegionSpace()->IsInToSpace(obj)) {
570 CHECK(obj->GetReadBarrierPointer() == nullptr)
571 << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
572 } else {
573 CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
574 (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
575 collector->IsOnAllocStack(obj)))
576 << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
577 << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
578 << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
579 << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
580 }
581 }
582 }
583
584 private:
585 ConcurrentCopying* const collector_;
586};
587
588// Verify there's no from-space references left after the marking phase.
589void ConcurrentCopying::VerifyNoFromSpaceReferences() {
590 Thread* self = Thread::Current();
591 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
592 ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
593 // Roots.
594 {
595 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
596 Runtime::Current()->VisitRoots(
597 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor::RootCallback, this);
598 }
599 // The to-space.
600 region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
601 this);
602 // Non-moving spaces.
603 {
604 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
605 heap_->GetMarkBitmap()->Visit(visitor);
606 }
607 // The alloc stack.
608 {
609 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
610 for (mirror::Object** it = heap_->allocation_stack_->Begin(),
611 **end = heap_->allocation_stack_->End(); it < end; ++it) {
612 mirror::Object* obj = *it;
613 if (obj != nullptr && obj->GetClass() != nullptr) {
614 // TODO: need to call this only if obj is alive?
615 ref_visitor(obj);
616 visitor(obj);
617 }
618 }
619 }
620 // TODO: LOS. But only refs in LOS are classes.
621}
622
623// The following visitors are used to assert the to-space invariant.
624class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
625 public:
626 explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
627 : collector_(collector) {}
628
629 void operator()(mirror::Object* ref) const
630 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
631 if (ref == nullptr) {
632 // OK.
633 return;
634 }
635 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
636 }
637 static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
638 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
639 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
640 ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector);
641 DCHECK(root != nullptr);
642 visitor(*root);
643 }
644
645 private:
646 ConcurrentCopying* collector_;
647};
648
649class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
650 public:
651 explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
652 : collector_(collector) {}
653
654 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
655 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
656 mirror::Object* ref =
657 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
658 ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
659 visitor(ref);
660 }
661 void operator()(mirror::Class* klass, mirror::Reference* /* ref */) const
662 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
663 CHECK(klass->IsTypeOfReferenceClass());
664 }
665
666 private:
667 ConcurrentCopying* collector_;
668};
669
670class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
671 public:
672 explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
673 : collector_(collector) {}
674 void operator()(mirror::Object* obj) const
675 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
676 ObjectCallback(obj, collector_);
677 }
678 static void ObjectCallback(mirror::Object* obj, void *arg)
679 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
680 CHECK(obj != nullptr);
681 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
682 space::RegionSpace* region_space = collector->RegionSpace();
683 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
684 collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
685 ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
686 obj->VisitReferences<true>(visitor, visitor);
687 }
688
689 private:
690 ConcurrentCopying* collector_;
691};
692
693bool ConcurrentCopying::ProcessMarkStack() {
694 if (kVerboseMode) {
695 LOG(INFO) << "ProcessMarkStack. ";
696 }
697 size_t count = 0;
698 mirror::Object* to_ref;
699 while ((to_ref = PopOffMarkStack()) != nullptr) {
700 ++count;
701 DCHECK(!region_space_->IsInFromSpace(to_ref));
702 if (kUseBakerReadBarrier) {
703 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
704 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
705 << " is_marked=" << IsMarked(to_ref);
706 }
707 // Scan ref fields.
708 Scan(to_ref);
709 // Mark the gray ref as white or black.
710 if (kUseBakerReadBarrier) {
711 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
712 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
713 << " is_marked=" << IsMarked(to_ref);
714 }
715 if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
716 to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
717 !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
718 // Leave References gray so that GetReferent() will trigger RB.
719 CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
720 } else {
721 if (kUseBakerReadBarrier) {
722 if (region_space_->IsInToSpace(to_ref)) {
723 // If to-space, change from gray to white.
724 bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
725 ReadBarrier::WhitePtr());
726 CHECK(success) << "Must succeed as we won the race.";
727 CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
728 } else {
729 // If non-moving space/unevac from space, change from gray
730 // to black. We can't change gray to white because it's not
731 // safe to use CAS if two threads change values in opposite
732 // directions (A->B and B->A). So, we change it to black to
733 // indicate non-moving objects that have been marked
734 // through. Note we'd need to change from black to white
735 // later (concurrently).
736 bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
737 ReadBarrier::BlackPtr());
738 CHECK(success) << "Must succeed as we won the race.";
739 CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
740 }
741 }
742 }
743 if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
744 ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
745 visitor(to_ref);
746 }
747 }
748 // Return true if the stack was empty.
749 return count == 0;
750}
751
752void ConcurrentCopying::CheckEmptyMarkQueue() {
753 if (!mark_queue_.IsEmpty()) {
754 while (!mark_queue_.IsEmpty()) {
755 mirror::Object* obj = mark_queue_.Dequeue();
756 if (kUseBakerReadBarrier) {
757 mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
758 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
759 << " is_marked=" << IsMarked(obj);
760 } else {
761 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
762 << " is_marked=" << IsMarked(obj);
763 }
764 }
765 LOG(FATAL) << "mark queue is not empty";
766 }
767}
768
769void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
770 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
771 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
772 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
773}
774
775void ConcurrentCopying::Sweep(bool swap_bitmaps) {
776 {
777 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
778 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
779 if (kEnableFromSpaceAccountingCheck) {
780 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
781 }
782 heap_->MarkAllocStackAsLive(live_stack);
783 live_stack->Reset();
784 }
785 CHECK(mark_queue_.IsEmpty());
786 TimingLogger::ScopedTiming split("Sweep", GetTimings());
787 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
788 if (space->IsContinuousMemMapAllocSpace()) {
789 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
790 if (space == region_space_ || immune_region_.ContainsSpace(space)) {
791 continue;
792 }
793 TimingLogger::ScopedTiming split2(
794 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
795 RecordFree(alloc_space->Sweep(swap_bitmaps));
796 }
797 }
798 SweepLargeObjects(swap_bitmaps);
799}
800
801void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
802 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
803 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
804}
805
806class ConcurrentCopyingClearBlackPtrsVisitor {
807 public:
808 explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
809 : collector_(cc) {}
810 void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
811 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
812 DCHECK(obj != nullptr);
813 CHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
814 CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
815 obj->SetReadBarrierPointer(ReadBarrier::WhitePtr());
816 CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
817 }
818
819 private:
820 ConcurrentCopying* const collector_;
821};
822
823// Clear the black ptrs in non-moving objects back to white.
824void ConcurrentCopying::ClearBlackPtrs() {
825 CHECK(kUseBakerReadBarrier);
826 TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
827 ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
828 for (auto& space : heap_->GetContinuousSpaces()) {
829 if (space == region_space_) {
830 continue;
831 }
832 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
833 if (kVerboseMode) {
834 LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
835 }
836 mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
837 reinterpret_cast<uintptr_t>(space->Limit()),
838 visitor);
839 }
840 space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
841 large_object_space->GetMarkBitmap()->VisitMarkedRange(
842 reinterpret_cast<uintptr_t>(large_object_space->Begin()),
843 reinterpret_cast<uintptr_t>(large_object_space->End()),
844 visitor);
845 // Objects on the allocation stack?
846 if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
847 size_t count = GetAllocationStack()->Size();
848 mirror::Object** it = GetAllocationStack()->Begin();
849 mirror::Object** end = GetAllocationStack()->End();
850 for (size_t i = 0; i < count; ++i, ++it) {
851 CHECK(it < end);
852 mirror::Object* obj = *it;
853 if (obj != nullptr) {
854 // Must have been cleared above.
855 CHECK(obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr()) << obj;
856 }
857 }
858 }
859}
860
861void ConcurrentCopying::ReclaimPhase() {
862 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
863 if (kVerboseMode) {
864 LOG(INFO) << "GC ReclaimPhase";
865 }
866 Thread* self = Thread::Current();
867
868 {
869 // Double-check that the mark stack is empty.
870 // Note: need to set this after VerifyNoFromSpaceRef().
871 is_asserting_to_space_invariant_ = false;
872 QuasiAtomic::ThreadFenceForConstructor();
873 if (kVerboseMode) {
874 LOG(INFO) << "Issue an empty check point. ";
875 }
876 IssueEmptyCheckpoint();
877 // Disable the check.
878 is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(0);
879 CheckEmptyMarkQueue();
880 }
881
882 {
883 // Record freed objects.
884 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
885 // Don't include thread-locals that are in the to-space.
886 uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
887 uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
888 uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
889 uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
890 uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
891 uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
892 if (kEnableFromSpaceAccountingCheck) {
893 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
894 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
895 }
896 CHECK_LE(to_objects, from_objects);
897 CHECK_LE(to_bytes, from_bytes);
898 int64_t freed_bytes = from_bytes - to_bytes;
899 int64_t freed_objects = from_objects - to_objects;
900 if (kVerboseMode) {
901 LOG(INFO) << "RecordFree:"
902 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
903 << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
904 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
905 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
906 << " from_space size=" << region_space_->FromSpaceSize()
907 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
908 << " to_space size=" << region_space_->ToSpaceSize();
909 LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
910 }
911 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
912 if (kVerboseMode) {
913 LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
914 }
915 }
916
917 {
918 TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
919 ComputeUnevacFromSpaceLiveRatio();
920 }
921
922 {
923 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
924 region_space_->ClearFromSpace();
925 }
926
927 {
928 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
929 if (kUseBakerReadBarrier) {
930 ClearBlackPtrs();
931 }
932 Sweep(false);
933 SwapBitmaps();
934 heap_->UnBindBitmaps();
935
936 // Remove bitmaps for the immune spaces.
937 while (!cc_bitmaps_.empty()) {
938 accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
939 cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
940 delete cc_bitmap;
941 cc_bitmaps_.pop_back();
942 }
943 region_space_bitmap_ = nullptr;
944 }
945
946 if (kVerboseMode) {
947 LOG(INFO) << "GC end of ReclaimPhase";
948 }
949}
950
951class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
952 public:
953 explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
954 : collector_(cc) {}
955 void operator()(mirror::Object* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
956 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
957 DCHECK(ref != nullptr);
958 CHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
959 CHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
960 if (kUseBakerReadBarrier) {
961 CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr()) << ref;
962 // Clear the black ptr.
963 ref->SetReadBarrierPointer(ReadBarrier::WhitePtr());
964 }
965 size_t obj_size = ref->SizeOf();
966 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
967 collector_->region_space_->AddLiveBytes(ref, alloc_size);
968 }
969
970 private:
971 ConcurrentCopying* collector_;
972};
973
974// Compute how much live objects are left in regions.
975void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
976 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
977 ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
978 region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
979 reinterpret_cast<uintptr_t>(region_space_->Limit()),
980 visitor);
981}
982
983// Assert the to-space invariant.
984void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
985 mirror::Object* ref) {
986 CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
987 if (is_asserting_to_space_invariant_) {
988 if (region_space_->IsInToSpace(ref)) {
989 // OK.
990 return;
991 } else if (region_space_->IsInUnevacFromSpace(ref)) {
992 CHECK(region_space_bitmap_->Test(ref)) << ref;
993 } else if (region_space_->IsInFromSpace(ref)) {
994 // Not OK. Do extra logging.
995 if (obj != nullptr) {
996 if (kUseBakerReadBarrier) {
997 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
998 << " holder rb_ptr=" << obj->GetReadBarrierPointer();
999 } else {
1000 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1001 }
1002 if (region_space_->IsInFromSpace(obj)) {
1003 LOG(INFO) << "holder is in the from-space.";
1004 } else if (region_space_->IsInToSpace(obj)) {
1005 LOG(INFO) << "holder is in the to-space.";
1006 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1007 LOG(INFO) << "holder is in the unevac from-space.";
1008 if (region_space_bitmap_->Test(obj)) {
1009 LOG(INFO) << "holder is marked in the region space bitmap.";
1010 } else {
1011 LOG(INFO) << "holder is not marked in the region space bitmap.";
1012 }
1013 } else {
1014 // In a non-moving space.
1015 if (immune_region_.ContainsObject(obj)) {
1016 LOG(INFO) << "holder is in the image or the zygote space.";
1017 accounting::ContinuousSpaceBitmap* cc_bitmap =
1018 cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1019 CHECK(cc_bitmap != nullptr)
1020 << "An immune space object must have a bitmap.";
1021 if (cc_bitmap->Test(obj)) {
1022 LOG(INFO) << "holder is marked in the bit map.";
1023 } else {
1024 LOG(INFO) << "holder is NOT marked in the bit map.";
1025 }
1026 } else {
1027 LOG(INFO) << "holder is in a non-moving (or main) space.";
1028 accounting::ContinuousSpaceBitmap* mark_bitmap =
1029 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1030 accounting::LargeObjectBitmap* los_bitmap =
1031 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1032 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1033 bool is_los = mark_bitmap == nullptr;
1034 if (!is_los && mark_bitmap->Test(obj)) {
1035 LOG(INFO) << "holder is marked in the mark bit map.";
1036 } else if (is_los && los_bitmap->Test(obj)) {
1037 LOG(INFO) << "holder is marked in the los bit map.";
1038 } else {
1039 // If ref is on the allocation stack, then it is considered
1040 // mark/alive (but not necessarily on the live stack.)
1041 if (IsOnAllocStack(obj)) {
1042 LOG(INFO) << "holder is on the alloc stack.";
1043 } else {
1044 LOG(INFO) << "holder is not marked or on the alloc stack.";
1045 }
1046 }
1047 }
1048 }
1049 LOG(INFO) << "offset=" << offset.SizeValue();
1050 }
1051 CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1052 } else {
1053 // In a non-moving spaces. Check that the ref is marked.
1054 if (immune_region_.ContainsObject(ref)) {
1055 accounting::ContinuousSpaceBitmap* cc_bitmap =
1056 cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1057 CHECK(cc_bitmap != nullptr)
1058 << "An immune space ref must have a bitmap. " << ref;
1059 if (kUseBakerReadBarrier) {
1060 CHECK(cc_bitmap->Test(ref))
1061 << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1062 << obj->GetReadBarrierPointer() << " ref=" << ref;
1063 } else {
1064 CHECK(cc_bitmap->Test(ref))
1065 << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1066 }
1067 } else {
1068 accounting::ContinuousSpaceBitmap* mark_bitmap =
1069 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1070 accounting::LargeObjectBitmap* los_bitmap =
1071 heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1072 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1073 bool is_los = mark_bitmap == nullptr;
1074 if ((!is_los && mark_bitmap->Test(ref)) ||
1075 (is_los && los_bitmap->Test(ref))) {
1076 // OK.
1077 } else {
1078 // If ref is on the allocation stack, then it may not be
1079 // marked live, but considered marked/alive (but not
1080 // necessarily on the live stack).
1081 CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1082 << "obj=" << obj << " ref=" << ref;
1083 }
1084 }
1085 }
1086 }
1087}
1088
1089void ConcurrentCopying::ProcessRootCallback(mirror::Object** root, void* arg,
1090 const RootInfo& /*root_info*/) {
1091 reinterpret_cast<ConcurrentCopying*>(arg)->Process(root);
1092}
1093
1094// Used to scan ref fields of an object.
1095class ConcurrentCopyingRefFieldsVisitor {
1096 public:
1097 explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1098 : collector_(collector) {}
1099
1100 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1101 const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1102 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1103 collector_->Process(obj, offset);
1104 }
1105
1106 void operator()(mirror::Class* klass, mirror::Reference* ref) const
1107 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
1108 CHECK(klass->IsTypeOfReferenceClass());
1109 collector_->DelayReferenceReferent(klass, ref);
1110 }
1111
1112 private:
1113 ConcurrentCopying* const collector_;
1114};
1115
1116// Scan ref fields of an object.
1117void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1118 DCHECK(!region_space_->IsInFromSpace(to_ref));
1119 ConcurrentCopyingRefFieldsVisitor visitor(this);
1120 to_ref->VisitReferences<true>(visitor, visitor);
1121}
1122
1123// Process a field.
1124inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1125 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1126 if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1127 return;
1128 }
1129 mirror::Object* to_ref = Mark(ref);
1130 if (to_ref == ref) {
1131 return;
1132 }
1133 // This may fail if the mutator writes to the field at the same time. But it's ok.
1134 mirror::Object* expected_ref = ref;
1135 mirror::Object* new_ref = to_ref;
1136 do {
1137 if (expected_ref !=
1138 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1139 // It was updated by the mutator.
1140 break;
1141 }
1142 } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<false, false, kVerifyNone>(
1143 offset, expected_ref, new_ref));
1144}
1145
1146// Process a root.
1147void ConcurrentCopying::Process(mirror::Object** root) {
1148 mirror::Object* ref = *root;
1149 if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1150 return;
1151 }
1152 mirror::Object* to_ref = Mark(ref);
1153 if (to_ref == ref) {
1154 return;
1155 }
1156 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1157 mirror::Object* expected_ref = ref;
1158 mirror::Object* new_ref = to_ref;
1159 do {
1160 if (expected_ref != addr->LoadRelaxed()) {
1161 // It was updated by the mutator.
1162 break;
1163 }
1164 } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1165}
1166
1167// Fill the given memory block with a dummy object. Used to fill in a
1168// copy of objects that was lost in race.
1169void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1170 CHECK(IsAligned<kObjectAlignment>(byte_size));
1171 memset(dummy_obj, 0, byte_size);
1172 mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1173 CHECK(int_array_class != nullptr);
1174 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1175 size_t component_size = int_array_class->GetComponentSize();
1176 CHECK_EQ(component_size, sizeof(int32_t));
1177 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1178 if (data_offset > byte_size) {
1179 // An int array is too big. Use java.lang.Object.
1180 mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1181 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1182 CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1183 dummy_obj->SetClass(java_lang_Object);
1184 CHECK_EQ(byte_size, dummy_obj->SizeOf());
1185 } else {
1186 // Use an int array.
1187 dummy_obj->SetClass(int_array_class);
1188 CHECK(dummy_obj->IsArrayInstance());
1189 int32_t length = (byte_size - data_offset) / component_size;
1190 dummy_obj->AsArray()->SetLength(length);
1191 CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1192 << "byte_size=" << byte_size << " length=" << length
1193 << " component_size=" << component_size << " data_offset=" << data_offset;
1194 CHECK_EQ(byte_size, dummy_obj->SizeOf())
1195 << "byte_size=" << byte_size << " length=" << length
1196 << " component_size=" << component_size << " data_offset=" << data_offset;
1197 }
1198}
1199
1200// Reuse the memory blocks that were copy of objects that were lost in race.
1201mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1202 // Try to reuse the blocks that were unused due to CAS failures.
1203 CHECK(IsAligned<space::RegionSpace::kAlignment>(alloc_size));
1204 Thread* self = Thread::Current();
1205 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1206 MutexLock mu(self, skipped_blocks_lock_);
1207 auto it = skipped_blocks_map_.lower_bound(alloc_size);
1208 if (it == skipped_blocks_map_.end()) {
1209 // Not found.
1210 return nullptr;
1211 }
1212 {
1213 size_t byte_size = it->first;
1214 CHECK_GE(byte_size, alloc_size);
1215 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1216 // If remainder would be too small for a dummy object, retry with a larger request size.
1217 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1218 if (it == skipped_blocks_map_.end()) {
1219 // Not found.
1220 return nullptr;
1221 }
1222 CHECK(IsAligned<space::RegionSpace::kAlignment>(it->first - alloc_size));
1223 CHECK_GE(it->first - alloc_size, min_object_size)
1224 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1225 }
1226 }
1227 // Found a block.
1228 CHECK(it != skipped_blocks_map_.end());
1229 size_t byte_size = it->first;
1230 uint8_t* addr = it->second;
1231 CHECK_GE(byte_size, alloc_size);
1232 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1233 CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size));
1234 if (kVerboseMode) {
1235 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1236 }
1237 skipped_blocks_map_.erase(it);
1238 memset(addr, 0, byte_size);
1239 if (byte_size > alloc_size) {
1240 // Return the remainder to the map.
1241 CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size - alloc_size));
1242 CHECK_GE(byte_size - alloc_size, min_object_size);
1243 FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1244 byte_size - alloc_size);
1245 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1246 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1247 }
1248 return reinterpret_cast<mirror::Object*>(addr);
1249}
1250
1251mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1252 DCHECK(region_space_->IsInFromSpace(from_ref));
1253 // No read barrier to avoid nested RB that might violate the to-space
1254 // invariant. Note that from_ref is a from space ref so the SizeOf()
1255 // call will access the from-space meta objects, but it's ok and necessary.
1256 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1257 size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1258 size_t region_space_bytes_allocated = 0U;
1259 size_t non_moving_space_bytes_allocated = 0U;
1260 size_t bytes_allocated = 0U;
1261 mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1262 region_space_alloc_size, &region_space_bytes_allocated, nullptr);
1263 bytes_allocated = region_space_bytes_allocated;
1264 if (to_ref != nullptr) {
1265 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1266 }
1267 bool fall_back_to_non_moving = false;
1268 if (UNLIKELY(to_ref == nullptr)) {
1269 // Failed to allocate in the region space. Try the skipped blocks.
1270 to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1271 if (to_ref != nullptr) {
1272 // Succeeded to allocate in a skipped block.
1273 if (heap_->use_tlab_) {
1274 // This is necessary for the tlab case as it's not accounted in the space.
1275 region_space_->RecordAlloc(to_ref);
1276 }
1277 bytes_allocated = region_space_alloc_size;
1278 } else {
1279 // Fall back to the non-moving space.
1280 fall_back_to_non_moving = true;
1281 if (kVerboseMode) {
1282 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1283 << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1284 << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1285 }
1286 fall_back_to_non_moving = true;
1287 to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1288 &non_moving_space_bytes_allocated, nullptr);
1289 CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1290 bytes_allocated = non_moving_space_bytes_allocated;
1291 // Mark it in the mark bitmap.
1292 accounting::ContinuousSpaceBitmap* mark_bitmap =
1293 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1294 CHECK(mark_bitmap != nullptr);
1295 CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1296 }
1297 }
1298 DCHECK(to_ref != nullptr);
1299
1300 // Attempt to install the forward pointer. This is in a loop as the
1301 // lock word atomic write can fail.
1302 while (true) {
1303 // Copy the object. TODO: copy only the lockword in the second iteration and on?
1304 memcpy(to_ref, from_ref, obj_size);
1305 // Set the gray ptr.
1306 if (kUseBakerReadBarrier) {
1307 to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1308 }
1309
1310 LockWord old_lock_word = to_ref->GetLockWord(false);
1311
1312 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1313 // Lost the race. Another thread (either GC or mutator) stored
1314 // the forwarding pointer first. Make the lost copy (to_ref)
1315 // look like a valid but dead (dummy) object and keep it for
1316 // future reuse.
1317 FillWithDummyObject(to_ref, bytes_allocated);
1318 if (!fall_back_to_non_moving) {
1319 DCHECK(region_space_->IsInToSpace(to_ref));
1320 if (bytes_allocated > space::RegionSpace::kRegionSize) {
1321 // Free the large alloc.
1322 region_space_->FreeLarge(to_ref, bytes_allocated);
1323 } else {
1324 // Record the lost copy for later reuse.
1325 heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1326 to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1327 to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1328 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1329 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1330 reinterpret_cast<uint8_t*>(to_ref)));
1331 }
1332 } else {
1333 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1334 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1335 // Free the non-moving-space chunk.
1336 accounting::ContinuousSpaceBitmap* mark_bitmap =
1337 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1338 CHECK(mark_bitmap != nullptr);
1339 CHECK(mark_bitmap->Clear(to_ref));
1340 heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1341 }
1342
1343 // Get the winner's forward ptr.
1344 mirror::Object* lost_fwd_ptr = to_ref;
1345 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1346 CHECK(to_ref != nullptr);
1347 CHECK_NE(to_ref, lost_fwd_ptr);
1348 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1349 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1350 return to_ref;
1351 }
1352
1353 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1354
1355 // Try to atomically write the fwd ptr.
1356 bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1357 if (LIKELY(success)) {
1358 // The CAS succeeded.
1359 objects_moved_.FetchAndAddSequentiallyConsistent(1);
1360 bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1361 if (LIKELY(!fall_back_to_non_moving)) {
1362 DCHECK(region_space_->IsInToSpace(to_ref));
1363 } else {
1364 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1365 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1366 }
1367 if (kUseBakerReadBarrier) {
1368 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1369 }
1370 DCHECK(GetFwdPtr(from_ref) == to_ref);
1371 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1372 PushOntoMarkStack<true>(to_ref);
1373 return to_ref;
1374 } else {
1375 // The CAS failed. It may have lost the race or may have failed
1376 // due to monitor/hashcode ops. Either way, retry.
1377 }
1378 }
1379}
1380
1381mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1382 DCHECK(from_ref != nullptr);
1383 if (region_space_->IsInToSpace(from_ref)) {
1384 // It's already marked.
1385 return from_ref;
1386 }
1387 mirror::Object* to_ref;
1388 if (region_space_->IsInFromSpace(from_ref)) {
1389 to_ref = GetFwdPtr(from_ref);
1390 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1391 heap_->non_moving_space_->HasAddress(to_ref))
1392 << "from_ref=" << from_ref << " to_ref=" << to_ref;
1393 } else if (region_space_->IsInUnevacFromSpace(from_ref)) {
1394 if (region_space_bitmap_->Test(from_ref)) {
1395 to_ref = from_ref;
1396 } else {
1397 to_ref = nullptr;
1398 }
1399 } else {
1400 // from_ref is in a non-moving space.
1401 if (immune_region_.ContainsObject(from_ref)) {
1402 accounting::ContinuousSpaceBitmap* cc_bitmap =
1403 cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1404 DCHECK(cc_bitmap != nullptr)
1405 << "An immune space object must have a bitmap";
1406 if (kIsDebugBuild) {
1407 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1408 << "Immune space object must be already marked";
1409 }
1410 if (cc_bitmap->Test(from_ref)) {
1411 // Already marked.
1412 to_ref = from_ref;
1413 } else {
1414 // Newly marked.
1415 to_ref = nullptr;
1416 }
1417 } else {
1418 // Non-immune non-moving space. Use the mark bitmap.
1419 accounting::ContinuousSpaceBitmap* mark_bitmap =
1420 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1421 accounting::LargeObjectBitmap* los_bitmap =
1422 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1423 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1424 bool is_los = mark_bitmap == nullptr;
1425 if (!is_los && mark_bitmap->Test(from_ref)) {
1426 // Already marked.
1427 to_ref = from_ref;
1428 } else if (is_los && los_bitmap->Test(from_ref)) {
1429 // Already marked in LOS.
1430 to_ref = from_ref;
1431 } else {
1432 // Not marked.
1433 if (IsOnAllocStack(from_ref)) {
1434 // If on the allocation stack, it's considered marked.
1435 to_ref = from_ref;
1436 } else {
1437 // Not marked.
1438 to_ref = nullptr;
1439 }
1440 }
1441 }
1442 }
1443 return to_ref;
1444}
1445
1446bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1447 QuasiAtomic::ThreadFenceAcquire();
1448 accounting::ObjectStack* alloc_stack = GetAllocationStack();
1449 mirror::Object** begin = alloc_stack->Begin();
1450 // Important to read end once as it could be concurrently updated and screw up std::find().
1451 mirror::Object** end = alloc_stack->End();
1452 return std::find(begin, end, ref) != end;
1453}
1454
1455mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
1456 if (from_ref == nullptr) {
1457 return nullptr;
1458 }
1459 DCHECK(from_ref != nullptr);
1460 DCHECK(heap_->collector_type_ == kCollectorTypeCC);
1461 if (region_space_->IsInToSpace(from_ref)) {
1462 // It's already marked.
1463 return from_ref;
1464 }
1465 mirror::Object* to_ref;
1466 if (region_space_->IsInFromSpace(from_ref)) {
1467 to_ref = GetFwdPtr(from_ref);
1468 if (kUseBakerReadBarrier) {
1469 DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
1470 }
1471 if (to_ref == nullptr) {
1472 // It isn't marked yet. Mark it by copying it to the to-space.
1473 to_ref = Copy(from_ref);
1474 }
1475 DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
1476 << "from_ref=" << from_ref << " to_ref=" << to_ref;
1477 } else if (region_space_->IsInUnevacFromSpace(from_ref)) {
1478 // This may or may not succeed, which is ok.
1479 if (kUseBakerReadBarrier) {
1480 from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1481 }
1482 if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
1483 // Already marked.
1484 to_ref = from_ref;
1485 } else {
1486 // Newly marked.
1487 to_ref = from_ref;
1488 if (kUseBakerReadBarrier) {
1489 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1490 }
1491 PushOntoMarkStack<true>(to_ref);
1492 }
1493 } else {
1494 // from_ref is in a non-moving space.
1495 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
1496 if (immune_region_.ContainsObject(from_ref)) {
1497 accounting::ContinuousSpaceBitmap* cc_bitmap =
1498 cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1499 DCHECK(cc_bitmap != nullptr)
1500 << "An immune space object must have a bitmap";
1501 if (kIsDebugBuild) {
1502 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1503 << "Immune space object must be already marked";
1504 }
1505 // This may or may not succeed, which is ok.
1506 if (kUseBakerReadBarrier) {
1507 from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1508 }
1509 if (cc_bitmap->AtomicTestAndSet(from_ref)) {
1510 // Already marked.
1511 to_ref = from_ref;
1512 } else {
1513 // Newly marked.
1514 to_ref = from_ref;
1515 if (kUseBakerReadBarrier) {
1516 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1517 }
1518 PushOntoMarkStack<true>(to_ref);
1519 }
1520 } else {
1521 // Use the mark bitmap.
1522 accounting::ContinuousSpaceBitmap* mark_bitmap =
1523 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1524 accounting::LargeObjectBitmap* los_bitmap =
1525 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1526 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1527 bool is_los = mark_bitmap == nullptr;
1528 if (!is_los && mark_bitmap->Test(from_ref)) {
1529 // Already marked.
1530 to_ref = from_ref;
1531 if (kUseBakerReadBarrier) {
1532 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1533 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1534 }
1535 } else if (is_los && los_bitmap->Test(from_ref)) {
1536 // Already marked in LOS.
1537 to_ref = from_ref;
1538 if (kUseBakerReadBarrier) {
1539 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1540 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1541 }
1542 } else {
1543 // Not marked.
1544 if (IsOnAllocStack(from_ref)) {
1545 // If it's on the allocation stack, it's considered marked. Keep it white.
1546 to_ref = from_ref;
1547 // Objects on the allocation stack need not be marked.
1548 if (!is_los) {
1549 DCHECK(!mark_bitmap->Test(to_ref));
1550 } else {
1551 DCHECK(!los_bitmap->Test(to_ref));
1552 }
1553 if (kUseBakerReadBarrier) {
1554 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1555 }
1556 } else {
1557 // Not marked or on the allocation stack. Try to mark it.
1558 // This may or may not succeed, which is ok.
1559 if (kUseBakerReadBarrier) {
1560 from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1561 }
1562 if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
1563 // Already marked.
1564 to_ref = from_ref;
1565 } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
1566 // Already marked in LOS.
1567 to_ref = from_ref;
1568 } else {
1569 // Newly marked.
1570 to_ref = from_ref;
1571 if (kUseBakerReadBarrier) {
1572 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1573 }
1574 PushOntoMarkStack<true>(to_ref);
1575 }
1576 }
1577 }
1578 }
1579 }
1580 return to_ref;
1581}
1582
1583void ConcurrentCopying::FinishPhase() {
1584 region_space_ = nullptr;
1585 CHECK(mark_queue_.IsEmpty());
1586 mark_queue_.Clear();
1587 {
1588 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1589 skipped_blocks_map_.clear();
1590 }
1591 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1592 heap_->ClearMarkedObjects();
1593}
1594
1595mirror::Object* ConcurrentCopying::IsMarkedCallback(mirror::Object* from_ref, void* arg) {
1596 return reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1597}
1598
1599bool ConcurrentCopying::IsHeapReferenceMarkedCallback(
1600 mirror::HeapReference<mirror::Object>* field, void* arg) {
1601 mirror::Object* from_ref = field->AsMirrorPtr();
1602 mirror::Object* to_ref = reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1603 if (to_ref == nullptr) {
1604 return false;
1605 }
1606 if (from_ref != to_ref) {
1607 QuasiAtomic::ThreadFenceRelease();
1608 field->Assign(to_ref);
1609 QuasiAtomic::ThreadFenceSequentiallyConsistent();
1610 }
1611 return true;
1612}
1613
1614mirror::Object* ConcurrentCopying::MarkCallback(mirror::Object* from_ref, void* arg) {
1615 return reinterpret_cast<ConcurrentCopying*>(arg)->Mark(from_ref);
1616}
1617
1618void ConcurrentCopying::ProcessMarkStackCallback(void* arg) {
1619 reinterpret_cast<ConcurrentCopying*>(arg)->ProcessMarkStack();
1620}
1621
1622void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
1623 heap_->GetReferenceProcessor()->DelayReferenceReferent(
1624 klass, reference, &IsHeapReferenceMarkedCallback, this);
1625}
1626
1627void ConcurrentCopying::ProcessReferences(Thread* self, bool concurrent) {
1628 TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
1629 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1630 GetHeap()->GetReferenceProcessor()->ProcessReferences(
1631 concurrent, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
1632 &IsHeapReferenceMarkedCallback, &MarkCallback, &ProcessMarkStackCallback, this);
1633}
1634
1635void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
1636 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1637 region_space_->RevokeAllThreadLocalBuffers();
1638}
1639
Hiroshi Yamauchid5307ec2014-03-27 21:07:51 -07001640} // namespace collector
1641} // namespace gc
1642} // namespace art