blob: 7d0ba279d5107b9c2ec0d570e99daeacf30e9a63 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
160 NewLIR2(kX86PsllqRI, dest_hi, 32);
161 NewLIR2(kX86OrpsRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000162 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700163 }
164 } else {
165 if (src_fp) {
166 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
167 NewLIR2(kX86PsrlqRI, src_lo, 32);
168 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
169 } else {
170 // Handle overlap
171 if (src_hi == dest_lo) {
172 OpRegCopy(dest_hi, src_hi);
173 OpRegCopy(dest_lo, src_lo);
174 } else {
175 OpRegCopy(dest_lo, src_lo);
176 OpRegCopy(dest_hi, src_hi);
177 }
178 }
179 }
180}
181
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700182void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800183 RegLocation rl_result;
184 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
185 RegLocation rl_dest = mir_graph_->GetDest(mir);
186 rl_src = LoadValue(rl_src, kCoreReg);
187
188 // The kMirOpSelect has two variants, one for constants and one for moves.
189 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
190
191 if (is_constant_case) {
192 int true_val = mir->dalvikInsn.vB;
193 int false_val = mir->dalvikInsn.vC;
194 rl_result = EvalLoc(rl_dest, kCoreReg, true);
195
196 /*
197 * 1) When the true case is zero and result_reg is not same as src_reg:
198 * xor result_reg, result_reg
199 * cmp $0, src_reg
200 * mov t1, $false_case
201 * cmovnz result_reg, t1
202 * 2) When the false case is zero and result_reg is not same as src_reg:
203 * xor result_reg, result_reg
204 * cmp $0, src_reg
205 * mov t1, $true_case
206 * cmovz result_reg, t1
207 * 3) All other cases (we do compare first to set eflags):
208 * cmp $0, src_reg
209 * mov result_reg, $true_case
210 * mov t1, $false_case
211 * cmovnz result_reg, t1
212 */
213 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
214 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
215 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
216 const bool catch_all_case = !(true_zero_case || false_zero_case);
217
218 if (true_zero_case || false_zero_case) {
219 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
220 }
221
222 if (true_zero_case || false_zero_case || catch_all_case) {
223 OpRegImm(kOpCmp, rl_src.low_reg, 0);
224 }
225
226 if (catch_all_case) {
227 OpRegImm(kOpMov, rl_result.low_reg, true_val);
228 }
229
230 if (true_zero_case || false_zero_case || catch_all_case) {
231 int immediateForTemp = false_zero_case ? true_val : false_val;
232 int temp1_reg = AllocTemp();
233 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
234
235 ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
236 OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
237
238 FreeTemp(temp1_reg);
239 }
240 } else {
241 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
242 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
243 rl_true = LoadValue(rl_true, kCoreReg);
244 rl_false = LoadValue(rl_false, kCoreReg);
245 rl_result = EvalLoc(rl_dest, kCoreReg, true);
246
247 /*
248 * 1) When true case is already in place:
249 * cmp $0, src_reg
250 * cmovnz result_reg, false_reg
251 * 2) When false case is already in place:
252 * cmp $0, src_reg
253 * cmovz result_reg, true_reg
254 * 3) When neither cases are in place:
255 * cmp $0, src_reg
256 * mov result_reg, true_reg
257 * cmovnz result_reg, false_reg
258 */
259
260 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
261 OpRegImm(kOpCmp, rl_src.low_reg, 0);
262
263 if (rl_result.low_reg == rl_true.low_reg) {
264 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
265 } else if (rl_result.low_reg == rl_false.low_reg) {
266 OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
267 } else {
268 OpRegCopy(rl_result.low_reg, rl_true.low_reg);
269 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
270 }
271 }
272
273 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700274}
275
276void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700277 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700278 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
279 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000280 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800281
282 if (rl_src1.is_const) {
283 std::swap(rl_src1, rl_src2);
284 ccode = FlipComparisonOrder(ccode);
285 }
286 if (rl_src2.is_const) {
287 // Do special compare/branch against simple const operand
288 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
289 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
290 return;
291 }
292
Brian Carlstrom7940e442013-07-12 13:46:57 -0700293 FlushAllRegs();
294 LockCallTemps(); // Prepare for explicit register usage
295 LoadValueDirectWideFixed(rl_src1, r0, r1);
296 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700297 // Swap operands and condition code to prevent use of zero flag.
298 if (ccode == kCondLe || ccode == kCondGt) {
299 // Compute (r3:r2) = (r3:r2) - (r1:r0)
300 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
301 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
302 } else {
303 // Compute (r1:r0) = (r1:r0) - (r3:r2)
304 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
305 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
306 }
307 switch (ccode) {
308 case kCondEq:
309 case kCondNe:
310 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
311 break;
312 case kCondLe:
313 ccode = kCondGe;
314 break;
315 case kCondGt:
316 ccode = kCondLt;
317 break;
318 case kCondLt:
319 case kCondGe:
320 break;
321 default:
322 LOG(FATAL) << "Unexpected ccode: " << ccode;
323 }
324 OpCondBranch(ccode, taken);
325}
326
Mark Mendell412d4f82013-12-18 13:32:36 -0800327void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
328 int64_t val, ConditionCode ccode) {
329 int32_t val_lo = Low32Bits(val);
330 int32_t val_hi = High32Bits(val);
331 LIR* taken = &block_label_list_[bb->taken];
332 LIR* not_taken = &block_label_list_[bb->fall_through];
333 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
334 int32_t low_reg = rl_src1.low_reg;
335 int32_t high_reg = rl_src1.high_reg;
336
337 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
338 int t_reg = AllocTemp();
339 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
340 FreeTemp(t_reg);
341 OpCondBranch(ccode, taken);
342 return;
343 }
344
345 OpRegImm(kOpCmp, high_reg, val_hi);
346 switch (ccode) {
347 case kCondEq:
348 case kCondNe:
349 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
350 break;
351 case kCondLt:
352 OpCondBranch(kCondLt, taken);
353 OpCondBranch(kCondGt, not_taken);
354 ccode = kCondUlt;
355 break;
356 case kCondLe:
357 OpCondBranch(kCondLt, taken);
358 OpCondBranch(kCondGt, not_taken);
359 ccode = kCondLs;
360 break;
361 case kCondGt:
362 OpCondBranch(kCondGt, taken);
363 OpCondBranch(kCondLt, not_taken);
364 ccode = kCondHi;
365 break;
366 case kCondGe:
367 OpCondBranch(kCondGt, taken);
368 OpCondBranch(kCondLt, not_taken);
369 ccode = kCondUge;
370 break;
371 default:
372 LOG(FATAL) << "Unexpected ccode: " << ccode;
373 }
374 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
375}
376
Mark Mendell2bf31e62014-01-23 12:13:40 -0800377void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
378 // It does not make sense to calculate magic and shift for zero divisor.
379 DCHECK_NE(divisor, 0);
380
381 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
382 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
383 * The magic number M and shift S can be calculated in the following way:
384 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
385 * where divisor(d) >=2.
386 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
387 * where divisor(d) <= -2.
388 * Thus nc can be calculated like:
389 * nc = 2^31 + 2^31 % d - 1, where d >= 2
390 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
391 *
392 * So the shift p is the smallest p satisfying
393 * 2^p > nc * (d - 2^p % d), where d >= 2
394 * 2^p > nc * (d + 2^p % d), where d <= -2.
395 *
396 * the magic number M is calcuated by
397 * M = (2^p + d - 2^p % d) / d, where d >= 2
398 * M = (2^p - d - 2^p % d) / d, where d <= -2.
399 *
400 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
401 * the shift number S.
402 */
403
404 int32_t p = 31;
405 const uint32_t two31 = 0x80000000U;
406
407 // Initialize the computations.
408 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
409 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
410 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
411 uint32_t quotient1 = two31 / abs_nc;
412 uint32_t remainder1 = two31 % abs_nc;
413 uint32_t quotient2 = two31 / abs_d;
414 uint32_t remainder2 = two31 % abs_d;
415
416 /*
417 * To avoid handling both positive and negative divisor, Hacker's Delight
418 * introduces a method to handle these 2 cases together to avoid duplication.
419 */
420 uint32_t delta;
421 do {
422 p++;
423 quotient1 = 2 * quotient1;
424 remainder1 = 2 * remainder1;
425 if (remainder1 >= abs_nc) {
426 quotient1++;
427 remainder1 = remainder1 - abs_nc;
428 }
429 quotient2 = 2 * quotient2;
430 remainder2 = 2 * remainder2;
431 if (remainder2 >= abs_d) {
432 quotient2++;
433 remainder2 = remainder2 - abs_d;
434 }
435 delta = abs_d - remainder2;
436 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
437
438 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
439 shift = p - 32;
440}
441
Brian Carlstrom7940e442013-07-12 13:46:57 -0700442RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700443 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700444 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
445 return rl_dest;
446}
447
Mark Mendell2bf31e62014-01-23 12:13:40 -0800448RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
449 int imm, bool is_div) {
450 // Use a multiply (and fixup) to perform an int div/rem by a constant.
451
452 // We have to use fixed registers, so flush all the temps.
453 FlushAllRegs();
454 LockCallTemps(); // Prepare for explicit register usage.
455
456 // Assume that the result will be in EDX.
457 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
458 r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
459
460 // handle 0x80000000 / -1 special case.
461 LIR *minint_branch = 0;
462 if (imm == -1) {
463 if (is_div) {
464 LoadValueDirectFixed(rl_src, r0);
465 OpRegImm(kOpCmp, r0, 0x80000000);
466 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
467
468 // for x != MIN_INT, x / -1 == -x.
469 NewLIR1(kX86Neg32R, r0);
470
471 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
472 // The target for cmp/jmp above.
473 minint_branch->target = NewLIR0(kPseudoTargetLabel);
474 // EAX already contains the right value (0x80000000),
475 branch_around->target = NewLIR0(kPseudoTargetLabel);
476 } else {
477 // x % -1 == 0.
478 LoadConstantNoClobber(r0, 0);
479 }
480 // For this case, return the result in EAX.
481 rl_result.low_reg = r0;
482 } else {
483 DCHECK(imm <= -2 || imm >= 2);
484 // Use H.S.Warren's Hacker's Delight Chapter 10 and
485 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
486 int magic, shift;
487 CalculateMagicAndShift(imm, magic, shift);
488
489 /*
490 * For imm >= 2,
491 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
492 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
493 * For imm <= -2,
494 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
495 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
496 * We implement this algorithm in the following way:
497 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
498 * 2. if imm > 0 and magic < 0, add numerator to EDX
499 * if imm < 0 and magic > 0, sub numerator from EDX
500 * 3. if S !=0, SAR S bits for EDX
501 * 4. add 1 to EDX if EDX < 0
502 * 5. Thus, EDX is the quotient
503 */
504
505 // Numerator into EAX.
506 int numerator_reg = -1;
507 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
508 // We will need the value later.
509 if (rl_src.location == kLocPhysReg) {
510 // We can use it directly.
511 DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
512 numerator_reg = rl_src.low_reg;
513 } else {
514 LoadValueDirectFixed(rl_src, r1);
515 numerator_reg = r1;
516 }
517 OpRegCopy(r0, numerator_reg);
518 } else {
519 // Only need this once. Just put it into EAX.
520 LoadValueDirectFixed(rl_src, r0);
521 }
522
523 // EDX = magic.
524 LoadConstantNoClobber(r2, magic);
525
526 // EDX:EAX = magic & dividend.
527 NewLIR1(kX86Imul32DaR, r2);
528
529 if (imm > 0 && magic < 0) {
530 // Add numerator to EDX.
531 DCHECK_NE(numerator_reg, -1);
532 NewLIR2(kX86Add32RR, r2, numerator_reg);
533 } else if (imm < 0 && magic > 0) {
534 DCHECK_NE(numerator_reg, -1);
535 NewLIR2(kX86Sub32RR, r2, numerator_reg);
536 }
537
538 // Do we need the shift?
539 if (shift != 0) {
540 // Shift EDX by 'shift' bits.
541 NewLIR2(kX86Sar32RI, r2, shift);
542 }
543
544 // Add 1 to EDX if EDX < 0.
545
546 // Move EDX to EAX.
547 OpRegCopy(r0, r2);
548
549 // Move sign bit to bit 0, zeroing the rest.
550 NewLIR2(kX86Shr32RI, r2, 31);
551
552 // EDX = EDX + EAX.
553 NewLIR2(kX86Add32RR, r2, r0);
554
555 // Quotient is in EDX.
556 if (!is_div) {
557 // We need to compute the remainder.
558 // Remainder is divisor - (quotient * imm).
559 DCHECK_NE(numerator_reg, -1);
560 OpRegCopy(r0, numerator_reg);
561
562 // EAX = numerator * imm.
563 OpRegRegImm(kOpMul, r2, r2, imm);
564
565 // EDX -= EAX.
566 NewLIR2(kX86Sub32RR, r0, r2);
567
568 // For this case, return the result in EAX.
569 rl_result.low_reg = r0;
570 }
571 }
572
573 return rl_result;
574}
575
Brian Carlstrom7940e442013-07-12 13:46:57 -0700576RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700577 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700578 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
579 return rl_dest;
580}
581
Mark Mendell2bf31e62014-01-23 12:13:40 -0800582RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
583 RegLocation rl_src2, bool is_div, bool check_zero) {
584 // We have to use fixed registers, so flush all the temps.
585 FlushAllRegs();
586 LockCallTemps(); // Prepare for explicit register usage.
587
588 // Load LHS into EAX.
589 LoadValueDirectFixed(rl_src1, r0);
590
591 // Load RHS into EBX.
592 LoadValueDirectFixed(rl_src2, r1);
593
594 // Copy LHS sign bit into EDX.
595 NewLIR0(kx86Cdq32Da);
596
597 if (check_zero) {
598 // Handle division by zero case.
599 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
600 }
601
602 // Have to catch 0x80000000/-1 case, or we will get an exception!
603 OpRegImm(kOpCmp, r1, -1);
604 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
605
606 // RHS is -1.
607 OpRegImm(kOpCmp, r0, 0x80000000);
608 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
609
610 // In 0x80000000/-1 case.
611 if (!is_div) {
612 // For DIV, EAX is already right. For REM, we need EDX 0.
613 LoadConstantNoClobber(r2, 0);
614 }
615 LIR* done = NewLIR1(kX86Jmp8, 0);
616
617 // Expected case.
618 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
619 minint_branch->target = minus_one_branch->target;
620 NewLIR1(kX86Idivmod32DaR, r1);
621 done->target = NewLIR0(kPseudoTargetLabel);
622
623 // Result is in EAX for div and EDX for rem.
624 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
625 r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
626 if (!is_div) {
627 rl_result.low_reg = r2;
628 }
629 return rl_result;
630}
631
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700632bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700633 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800634
635 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700636 RegLocation rl_src1 = info->args[0];
637 RegLocation rl_src2 = info->args[1];
638 rl_src1 = LoadValue(rl_src1, kCoreReg);
639 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800640
Brian Carlstrom7940e442013-07-12 13:46:57 -0700641 RegLocation rl_dest = InlineTarget(info);
642 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800643
644 /*
645 * If the result register is the same as the second element, then we need to be careful.
646 * The reason is that the first copy will inadvertently clobber the second element with
647 * the first one thus yielding the wrong result. Thus we do a swap in that case.
648 */
649 if (rl_result.low_reg == rl_src2.low_reg) {
650 std::swap(rl_src1, rl_src2);
651 }
652
653 // Pick the first integer as min/max.
654 OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
655
656 // If the integers are both in the same register, then there is nothing else to do
657 // because they are equal and we have already moved one into the result.
658 if (rl_src1.low_reg != rl_src2.low_reg) {
659 // It is possible we didn't pick correctly so do the actual comparison now.
660 OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
661
662 // Conditionally move the other integer into the destination register.
663 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
664 OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
665 }
666
Brian Carlstrom7940e442013-07-12 13:46:57 -0700667 StoreValue(rl_dest, rl_result);
668 return true;
669}
670
Vladimir Markoe508a202013-11-04 15:24:22 +0000671bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
672 RegLocation rl_src_address = info->args[0]; // long address
673 rl_src_address.wide = 0; // ignore high half in info->args[1]
674 RegLocation rl_dest = InlineTarget(info);
675 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
676 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
677 if (size == kLong) {
678 // Unaligned access is allowed on x86.
679 LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
680 StoreValueWide(rl_dest, rl_result);
681 } else {
682 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
683 // Unaligned access is allowed on x86.
684 LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
685 StoreValue(rl_dest, rl_result);
686 }
687 return true;
688}
689
690bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
691 RegLocation rl_src_address = info->args[0]; // long address
692 rl_src_address.wide = 0; // ignore high half in info->args[1]
693 RegLocation rl_src_value = info->args[2]; // [size] value
694 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
695 if (size == kLong) {
696 // Unaligned access is allowed on x86.
697 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
698 StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
699 } else {
700 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
701 // Unaligned access is allowed on x86.
702 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
703 StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
704 }
705 return true;
706}
707
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700708void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700709 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
710}
711
Ian Rogers468532e2013-08-05 10:56:33 -0700712void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
713 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700714}
715
Vladimir Marko1c282e22013-11-21 14:49:47 +0000716bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000717 DCHECK_EQ(cu_->instruction_set, kX86);
718 // Unused - RegLocation rl_src_unsafe = info->args[0];
719 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
720 RegLocation rl_src_offset = info->args[2]; // long low
721 rl_src_offset.wide = 0; // ignore high half in info->args[3]
722 RegLocation rl_src_expected = info->args[4]; // int, long or Object
723 // If is_long, high half is in info->args[5]
724 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
725 // If is_long, high half is in info->args[7]
726
727 if (is_long) {
Vladimir Marko70b797d2013-12-03 15:25:24 +0000728 FlushAllRegs();
729 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000730 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
731 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000732 NewLIR1(kX86Push32R, rDI);
733 MarkTemp(rDI);
734 LockTemp(rDI);
735 NewLIR1(kX86Push32R, rSI);
736 MarkTemp(rSI);
737 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000738 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
739 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
740 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000741 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
742 FreeTemp(rSI);
743 UnmarkTemp(rSI);
744 NewLIR1(kX86Pop32R, rSI);
745 FreeTemp(rDI);
746 UnmarkTemp(rDI);
747 NewLIR1(kX86Pop32R, rDI);
748 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000749 } else {
750 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
751 FlushReg(r0);
752 LockTemp(r0);
753
754 // Release store semantics, get the barrier out of the way. TODO: revisit
755 GenMemBarrier(kStoreLoad);
756
757 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
758 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
759
760 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
761 // Mark card for object assuming new value is stored.
762 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
763 MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
764 LockTemp(r0);
765 }
766
767 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
768 LoadValueDirect(rl_src_expected, r0);
769 NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
770
771 FreeTemp(r0);
772 }
773
774 // Convert ZF to boolean
775 RegLocation rl_dest = InlineTarget(info); // boolean place for result
776 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
777 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
778 NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
779 StoreValue(rl_dest, rl_result);
780 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700781}
782
783LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
784 LOG(FATAL) << "Unexpected use of OpPcRelLoad for x86";
785 return NULL;
786}
787
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700788LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700789 LOG(FATAL) << "Unexpected use of OpVldm for x86";
790 return NULL;
791}
792
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700793LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700794 LOG(FATAL) << "Unexpected use of OpVstm for x86";
795 return NULL;
796}
797
798void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
799 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700800 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700801 int t_reg = AllocTemp();
802 OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
803 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
804 FreeTemp(t_reg);
805 if (first_bit != 0) {
806 OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
807 }
808}
809
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700810void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800811 // We are not supposed to clobber either of the provided registers, so allocate
812 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700813 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800814
815 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700816 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800817
818 // In case of zero, throw ArithmeticException.
819 GenCheck(kCondEq, kThrowDivZero);
820
821 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700822 FreeTemp(t_reg);
823}
824
825// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700826LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700827 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700828 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
829}
830
831// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700832LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700833 OpRegImm(kOpSub, reg, 1);
834 return OpCmpImmBranch(c_code, reg, 0, target);
835}
836
buzbee11b63d12013-08-27 07:34:17 -0700837bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700838 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700839 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
840 return false;
841}
842
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700843LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700844 LOG(FATAL) << "Unexpected use of OpIT in x86";
845 return NULL;
846}
847
Mark Mendell4708dcd2014-01-22 09:05:18 -0800848void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
849 switch (val) {
850 case 0:
851 NewLIR2(kX86Xor32RR, dest, dest);
852 break;
853 case 1:
854 OpRegCopy(dest, src);
855 break;
856 default:
857 OpRegRegImm(kOpMul, dest, src, val);
858 break;
859 }
860}
861
862void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
863 LIR *m;
864 switch (val) {
865 case 0:
866 NewLIR2(kX86Xor32RR, dest, dest);
867 break;
868 case 1:
869 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
870 break;
871 default:
872 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
873 displacement, val);
874 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
875 break;
876 }
877}
878
Mark Mendelle02d48f2014-01-15 11:19:23 -0800879void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700880 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800881 if (rl_src1.is_const) {
882 std::swap(rl_src1, rl_src2);
883 }
884 // Are we multiplying by a constant?
885 if (rl_src2.is_const) {
886 // Do special compare/branch against simple const operand
887 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
888 if (val == 0) {
889 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
890 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
891 OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
892 StoreValueWide(rl_dest, rl_result);
893 return;
894 } else if (val == 1) {
895 rl_src1 = EvalLocWide(rl_src1, kCoreReg, true);
896 StoreValueWide(rl_dest, rl_src1);
897 return;
898 } else if (val == 2) {
899 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
900 return;
901 } else if (IsPowerOfTwo(val)) {
902 int shift_amount = LowestSetBit(val);
903 if (!BadOverlap(rl_src1, rl_dest)) {
904 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
905 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
906 rl_src1, shift_amount);
907 StoreValueWide(rl_dest, rl_result);
908 return;
909 }
910 }
911
912 // Okay, just bite the bullet and do it.
913 int32_t val_lo = Low32Bits(val);
914 int32_t val_hi = High32Bits(val);
915 FlushAllRegs();
916 LockCallTemps(); // Prepare for explicit register usage.
917 rl_src1 = UpdateLocWide(rl_src1);
918 bool src1_in_reg = rl_src1.location == kLocPhysReg;
919 int displacement = SRegOffset(rl_src1.s_reg_low);
920
921 // ECX <- 1H * 2L
922 // EAX <- 1L * 2H
923 if (src1_in_reg) {
924 GenImulRegImm(r1, rl_src1.high_reg, val_lo);
925 GenImulRegImm(r0, rl_src1.low_reg, val_hi);
926 } else {
927 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
928 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
929 }
930
931 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
932 NewLIR2(kX86Add32RR, r1, r0);
933
934 // EAX <- 2L
935 LoadConstantNoClobber(r0, val_lo);
936
937 // EDX:EAX <- 2L * 1L (double precision)
938 if (src1_in_reg) {
939 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
940 } else {
941 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
942 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
943 true /* is_load */, true /* is_64bit */);
944 }
945
946 // EDX <- EDX + ECX (add high words)
947 NewLIR2(kX86Add32RR, r2, r1);
948
949 // Result is EDX:EAX
950 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
951 INVALID_SREG, INVALID_SREG};
952 StoreValueWide(rl_dest, rl_result);
953 return;
954 }
955
956 // Nope. Do it the hard way
957 FlushAllRegs();
958 LockCallTemps(); // Prepare for explicit register usage.
959 rl_src1 = UpdateLocWide(rl_src1);
960 rl_src2 = UpdateLocWide(rl_src2);
961
962 // At this point, the VRs are in their home locations.
963 bool src1_in_reg = rl_src1.location == kLocPhysReg;
964 bool src2_in_reg = rl_src2.location == kLocPhysReg;
965
966 // ECX <- 1H
967 if (src1_in_reg) {
968 NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
969 } else {
970 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
971 kWord, GetSRegHi(rl_src1.s_reg_low));
972 }
973
974 // EAX <- 2H
975 if (src2_in_reg) {
976 NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
977 } else {
978 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
979 kWord, GetSRegHi(rl_src2.s_reg_low));
980 }
981
982 // EAX <- EAX * 1L (2H * 1L)
983 if (src1_in_reg) {
984 NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
985 } else {
986 int displacement = SRegOffset(rl_src1.s_reg_low);
987 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
988 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
989 true /* is_load */, true /* is_64bit */);
990 }
991
992 // ECX <- ECX * 2L (1H * 2L)
993 if (src2_in_reg) {
994 NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
995 } else {
996 int displacement = SRegOffset(rl_src2.s_reg_low);
997 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
998 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
999 true /* is_load */, true /* is_64bit */);
1000 }
1001
1002 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1003 NewLIR2(kX86Add32RR, r1, r0);
1004
1005 // EAX <- 2L
1006 if (src2_in_reg) {
1007 NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
1008 } else {
1009 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1010 kWord, rl_src2.s_reg_low);
1011 }
1012
1013 // EDX:EAX <- 2L * 1L (double precision)
1014 if (src1_in_reg) {
1015 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
1016 } else {
1017 int displacement = SRegOffset(rl_src1.s_reg_low);
1018 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1019 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1020 true /* is_load */, true /* is_64bit */);
1021 }
1022
1023 // EDX <- EDX + ECX (add high words)
1024 NewLIR2(kX86Add32RR, r2, r1);
1025
1026 // Result is EDX:EAX
1027 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
1028 INVALID_SREG, INVALID_SREG};
1029 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001030}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001031
1032void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1033 Instruction::Code op) {
1034 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1035 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1036 if (rl_src.location == kLocPhysReg) {
1037 // Both operands are in registers.
1038 if (rl_dest.low_reg == rl_src.high_reg) {
1039 // The registers are the same, so we would clobber it before the use.
1040 int temp_reg = AllocTemp();
1041 OpRegCopy(temp_reg, rl_dest.low_reg);
1042 rl_src.high_reg = temp_reg;
1043 }
1044 NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
1045
1046 x86op = GetOpcode(op, rl_dest, rl_src, true);
1047 NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
1048 FreeTemp(rl_src.low_reg);
1049 FreeTemp(rl_src.high_reg);
1050 return;
1051 }
1052
1053 // RHS is in memory.
1054 DCHECK((rl_src.location == kLocDalvikFrame) ||
1055 (rl_src.location == kLocCompilerTemp));
1056 int rBase = TargetReg(kSp);
1057 int displacement = SRegOffset(rl_src.s_reg_low);
1058
1059 LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
1060 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1061 true /* is_load */, true /* is64bit */);
1062 x86op = GetOpcode(op, rl_dest, rl_src, true);
1063 lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
1064 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1065 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001066}
1067
Mark Mendelle02d48f2014-01-15 11:19:23 -08001068void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1069 rl_dest = UpdateLocWide(rl_dest);
1070 if (rl_dest.location == kLocPhysReg) {
1071 // Ensure we are in a register pair
1072 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1073
1074 rl_src = UpdateLocWide(rl_src);
1075 GenLongRegOrMemOp(rl_result, rl_src, op);
1076 StoreFinalValueWide(rl_dest, rl_result);
1077 return;
1078 }
1079
1080 // It wasn't in registers, so it better be in memory.
1081 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1082 (rl_dest.location == kLocCompilerTemp));
1083 rl_src = LoadValueWide(rl_src, kCoreReg);
1084
1085 // Operate directly into memory.
1086 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1087 int rBase = TargetReg(kSp);
1088 int displacement = SRegOffset(rl_dest.s_reg_low);
1089
1090 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
1091 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1092 false /* is_load */, true /* is64bit */);
1093 x86op = GetOpcode(op, rl_dest, rl_src, true);
1094 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
1095 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1096 false /* is_load */, true /* is64bit */);
1097 FreeTemp(rl_src.low_reg);
1098 FreeTemp(rl_src.high_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001099}
1100
Mark Mendelle02d48f2014-01-15 11:19:23 -08001101void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1102 RegLocation rl_src2, Instruction::Code op,
1103 bool is_commutative) {
1104 // Is this really a 2 operand operation?
1105 switch (op) {
1106 case Instruction::ADD_LONG_2ADDR:
1107 case Instruction::SUB_LONG_2ADDR:
1108 case Instruction::AND_LONG_2ADDR:
1109 case Instruction::OR_LONG_2ADDR:
1110 case Instruction::XOR_LONG_2ADDR:
1111 GenLongArith(rl_dest, rl_src2, op);
1112 return;
1113 default:
1114 break;
1115 }
1116
1117 if (rl_dest.location == kLocPhysReg) {
1118 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1119
1120 // We are about to clobber the LHS, so it needs to be a temp.
1121 rl_result = ForceTempWide(rl_result);
1122
1123 // Perform the operation using the RHS.
1124 rl_src2 = UpdateLocWide(rl_src2);
1125 GenLongRegOrMemOp(rl_result, rl_src2, op);
1126
1127 // And now record that the result is in the temp.
1128 StoreFinalValueWide(rl_dest, rl_result);
1129 return;
1130 }
1131
1132 // It wasn't in registers, so it better be in memory.
1133 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1134 (rl_dest.location == kLocCompilerTemp));
1135 rl_src1 = UpdateLocWide(rl_src1);
1136 rl_src2 = UpdateLocWide(rl_src2);
1137
1138 // Get one of the source operands into temporary register.
1139 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1140 if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
1141 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1142 } else if (is_commutative) {
1143 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1144 // We need at least one of them to be a temporary.
1145 if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
1146 rl_src1 = ForceTempWide(rl_src1);
1147 }
1148 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1149 } else {
1150 // Need LHS to be the temp.
1151 rl_src1 = ForceTempWide(rl_src1);
1152 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1153 }
1154
1155 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001156}
1157
Mark Mendelle02d48f2014-01-15 11:19:23 -08001158void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001159 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001160 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1161}
1162
1163void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1164 RegLocation rl_src1, RegLocation rl_src2) {
1165 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1166}
1167
1168void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1169 RegLocation rl_src1, RegLocation rl_src2) {
1170 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1171}
1172
1173void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1174 RegLocation rl_src1, RegLocation rl_src2) {
1175 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1176}
1177
1178void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1179 RegLocation rl_src1, RegLocation rl_src2) {
1180 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001181}
1182
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001183void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001184 rl_src = LoadValueWide(rl_src, kCoreReg);
1185 RegLocation rl_result = ForceTempWide(rl_src);
1186 if (rl_dest.low_reg == rl_src.high_reg) {
1187 // The registers are the same, so we would clobber it before the use.
1188 int temp_reg = AllocTemp();
1189 OpRegCopy(temp_reg, rl_result.low_reg);
1190 rl_result.high_reg = temp_reg;
1191 }
1192 OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg); // rLow = -rLow
1193 OpRegImm(kOpAdc, rl_result.high_reg, 0); // rHigh = rHigh + CF
1194 OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001195 StoreValueWide(rl_dest, rl_result);
1196}
1197
Ian Rogers468532e2013-08-05 10:56:33 -07001198void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001199 X86OpCode opcode = kX86Bkpt;
1200 switch (op) {
1201 case kOpCmp: opcode = kX86Cmp32RT; break;
1202 case kOpMov: opcode = kX86Mov32RT; break;
1203 default:
1204 LOG(FATAL) << "Bad opcode: " << op;
1205 break;
1206 }
Ian Rogers468532e2013-08-05 10:56:33 -07001207 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001208}
1209
1210/*
1211 * Generate array load
1212 */
1213void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001214 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001215 RegisterClass reg_class = oat_reg_class_by_size(size);
1216 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001217 RegLocation rl_result;
1218 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001219
Mark Mendell343adb52013-12-18 06:02:17 -08001220 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001221 if (size == kLong || size == kDouble) {
1222 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1223 } else {
1224 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1225 }
1226
Mark Mendell343adb52013-12-18 06:02:17 -08001227 bool constant_index = rl_index.is_const;
1228 int32_t constant_index_value = 0;
1229 if (!constant_index) {
1230 rl_index = LoadValue(rl_index, kCoreReg);
1231 } else {
1232 constant_index_value = mir_graph_->ConstantValue(rl_index);
1233 // If index is constant, just fold it into the data offset
1234 data_offset += constant_index_value << scale;
1235 // treat as non array below
1236 rl_index.low_reg = INVALID_REG;
1237 }
1238
Brian Carlstrom7940e442013-07-12 13:46:57 -07001239 /* null object? */
1240 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1241
1242 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001243 if (constant_index) {
1244 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1245 constant_index_value, kThrowConstantArrayBounds);
1246 } else {
1247 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1248 len_offset, kThrowArrayBounds);
1249 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001250 }
Mark Mendell343adb52013-12-18 06:02:17 -08001251 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001252 if ((size == kLong) || (size == kDouble)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001253 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001254 rl_result.high_reg, size, INVALID_SREG);
1255 StoreValueWide(rl_dest, rl_result);
1256 } else {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001257 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
1258 data_offset, rl_result.low_reg, INVALID_REG, size,
1259 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001260 StoreValue(rl_dest, rl_result);
1261 }
1262}
1263
1264/*
1265 * Generate array store
1266 *
1267 */
1268void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001269 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001270 RegisterClass reg_class = oat_reg_class_by_size(size);
1271 int len_offset = mirror::Array::LengthOffset().Int32Value();
1272 int data_offset;
1273
1274 if (size == kLong || size == kDouble) {
1275 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1276 } else {
1277 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1278 }
1279
1280 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001281 bool constant_index = rl_index.is_const;
1282 int32_t constant_index_value = 0;
1283 if (!constant_index) {
1284 rl_index = LoadValue(rl_index, kCoreReg);
1285 } else {
1286 // If index is constant, just fold it into the data offset
1287 constant_index_value = mir_graph_->ConstantValue(rl_index);
1288 data_offset += constant_index_value << scale;
1289 // treat as non array below
1290 rl_index.low_reg = INVALID_REG;
1291 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001292
1293 /* null object? */
1294 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1295
1296 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001297 if (constant_index) {
1298 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1299 constant_index_value, kThrowConstantArrayBounds);
1300 } else {
1301 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1302 len_offset, kThrowArrayBounds);
1303 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001304 }
1305 if ((size == kLong) || (size == kDouble)) {
1306 rl_src = LoadValueWide(rl_src, reg_class);
1307 } else {
1308 rl_src = LoadValue(rl_src, reg_class);
1309 }
1310 // If the src reg can't be byte accessed, move it to a temp first.
1311 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
1312 int temp = AllocTemp();
1313 OpRegCopy(temp, rl_src.low_reg);
1314 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
1315 INVALID_REG, size, INVALID_SREG);
1316 } else {
1317 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
1318 rl_src.high_reg, size, INVALID_SREG);
1319 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001320 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001321 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001322 if (!constant_index) {
1323 FreeTemp(rl_index.low_reg);
1324 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001325 MarkGCCard(rl_src.low_reg, rl_array.low_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001326 }
1327}
1328
Mark Mendell4708dcd2014-01-22 09:05:18 -08001329RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1330 RegLocation rl_src, int shift_amount) {
1331 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1332 switch (opcode) {
1333 case Instruction::SHL_LONG:
1334 case Instruction::SHL_LONG_2ADDR:
1335 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1336 if (shift_amount == 32) {
1337 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1338 LoadConstant(rl_result.low_reg, 0);
1339 } else if (shift_amount > 31) {
1340 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1341 FreeTemp(rl_src.high_reg);
1342 NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
1343 LoadConstant(rl_result.low_reg, 0);
1344 } else {
1345 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1346 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1347 NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
1348 NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
1349 }
1350 break;
1351 case Instruction::SHR_LONG:
1352 case Instruction::SHR_LONG_2ADDR:
1353 if (shift_amount == 32) {
1354 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1355 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1356 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1357 } else if (shift_amount > 31) {
1358 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1359 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1360 NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
1361 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1362 } else {
1363 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1364 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1365 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1366 NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
1367 }
1368 break;
1369 case Instruction::USHR_LONG:
1370 case Instruction::USHR_LONG_2ADDR:
1371 if (shift_amount == 32) {
1372 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1373 LoadConstant(rl_result.high_reg, 0);
1374 } else if (shift_amount > 31) {
1375 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1376 NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
1377 LoadConstant(rl_result.high_reg, 0);
1378 } else {
1379 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1380 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1381 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1382 NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
1383 }
1384 break;
1385 default:
1386 LOG(FATAL) << "Unexpected case";
1387 }
1388 return rl_result;
1389}
1390
Brian Carlstrom7940e442013-07-12 13:46:57 -07001391void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001392 RegLocation rl_src, RegLocation rl_shift) {
1393 // Per spec, we only care about low 6 bits of shift amount.
1394 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1395 if (shift_amount == 0) {
1396 rl_src = LoadValueWide(rl_src, kCoreReg);
1397 StoreValueWide(rl_dest, rl_src);
1398 return;
1399 } else if (shift_amount == 1 &&
1400 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1401 // Need to handle this here to avoid calling StoreValueWide twice.
1402 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1403 return;
1404 }
1405 if (BadOverlap(rl_src, rl_dest)) {
1406 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1407 return;
1408 }
1409 rl_src = LoadValueWide(rl_src, kCoreReg);
1410 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1411 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001412}
1413
1414void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001415 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001416 switch (opcode) {
1417 case Instruction::ADD_LONG:
1418 case Instruction::AND_LONG:
1419 case Instruction::OR_LONG:
1420 case Instruction::XOR_LONG:
1421 if (rl_src2.is_const) {
1422 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1423 } else {
1424 DCHECK(rl_src1.is_const);
1425 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1426 }
1427 break;
1428 case Instruction::SUB_LONG:
1429 case Instruction::SUB_LONG_2ADDR:
1430 if (rl_src2.is_const) {
1431 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1432 } else {
1433 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1434 }
1435 break;
1436 case Instruction::ADD_LONG_2ADDR:
1437 case Instruction::OR_LONG_2ADDR:
1438 case Instruction::XOR_LONG_2ADDR:
1439 case Instruction::AND_LONG_2ADDR:
1440 if (rl_src2.is_const) {
1441 GenLongImm(rl_dest, rl_src2, opcode);
1442 } else {
1443 DCHECK(rl_src1.is_const);
1444 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1445 }
1446 break;
1447 default:
1448 // Default - bail to non-const handler.
1449 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1450 break;
1451 }
1452}
1453
1454bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1455 switch (op) {
1456 case Instruction::AND_LONG_2ADDR:
1457 case Instruction::AND_LONG:
1458 return value == -1;
1459 case Instruction::OR_LONG:
1460 case Instruction::OR_LONG_2ADDR:
1461 case Instruction::XOR_LONG:
1462 case Instruction::XOR_LONG_2ADDR:
1463 return value == 0;
1464 default:
1465 return false;
1466 }
1467}
1468
1469X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1470 bool is_high_op) {
1471 bool rhs_in_mem = rhs.location != kLocPhysReg;
1472 bool dest_in_mem = dest.location != kLocPhysReg;
1473 DCHECK(!rhs_in_mem || !dest_in_mem);
1474 switch (op) {
1475 case Instruction::ADD_LONG:
1476 case Instruction::ADD_LONG_2ADDR:
1477 if (dest_in_mem) {
1478 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1479 } else if (rhs_in_mem) {
1480 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1481 }
1482 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1483 case Instruction::SUB_LONG:
1484 case Instruction::SUB_LONG_2ADDR:
1485 if (dest_in_mem) {
1486 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1487 } else if (rhs_in_mem) {
1488 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1489 }
1490 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1491 case Instruction::AND_LONG_2ADDR:
1492 case Instruction::AND_LONG:
1493 if (dest_in_mem) {
1494 return kX86And32MR;
1495 }
1496 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1497 case Instruction::OR_LONG:
1498 case Instruction::OR_LONG_2ADDR:
1499 if (dest_in_mem) {
1500 return kX86Or32MR;
1501 }
1502 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1503 case Instruction::XOR_LONG:
1504 case Instruction::XOR_LONG_2ADDR:
1505 if (dest_in_mem) {
1506 return kX86Xor32MR;
1507 }
1508 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1509 default:
1510 LOG(FATAL) << "Unexpected opcode: " << op;
1511 return kX86Add32RR;
1512 }
1513}
1514
1515X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1516 int32_t value) {
1517 bool in_mem = loc.location != kLocPhysReg;
1518 bool byte_imm = IS_SIMM8(value);
1519 DCHECK(in_mem || !IsFpReg(loc.low_reg));
1520 switch (op) {
1521 case Instruction::ADD_LONG:
1522 case Instruction::ADD_LONG_2ADDR:
1523 if (byte_imm) {
1524 if (in_mem) {
1525 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1526 }
1527 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1528 }
1529 if (in_mem) {
1530 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1531 }
1532 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1533 case Instruction::SUB_LONG:
1534 case Instruction::SUB_LONG_2ADDR:
1535 if (byte_imm) {
1536 if (in_mem) {
1537 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1538 }
1539 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1540 }
1541 if (in_mem) {
1542 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1543 }
1544 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1545 case Instruction::AND_LONG_2ADDR:
1546 case Instruction::AND_LONG:
1547 if (byte_imm) {
1548 return in_mem ? kX86And32MI8 : kX86And32RI8;
1549 }
1550 return in_mem ? kX86And32MI : kX86And32RI;
1551 case Instruction::OR_LONG:
1552 case Instruction::OR_LONG_2ADDR:
1553 if (byte_imm) {
1554 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1555 }
1556 return in_mem ? kX86Or32MI : kX86Or32RI;
1557 case Instruction::XOR_LONG:
1558 case Instruction::XOR_LONG_2ADDR:
1559 if (byte_imm) {
1560 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1561 }
1562 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1563 default:
1564 LOG(FATAL) << "Unexpected opcode: " << op;
1565 return kX86Add32MI;
1566 }
1567}
1568
1569void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1570 DCHECK(rl_src.is_const);
1571 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1572 int32_t val_lo = Low32Bits(val);
1573 int32_t val_hi = High32Bits(val);
1574 rl_dest = UpdateLocWide(rl_dest);
1575
1576 // Can we just do this into memory?
1577 if ((rl_dest.location == kLocDalvikFrame) ||
1578 (rl_dest.location == kLocCompilerTemp)) {
1579 int rBase = TargetReg(kSp);
1580 int displacement = SRegOffset(rl_dest.s_reg_low);
1581
1582 if (!IsNoOp(op, val_lo)) {
1583 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1584 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1585 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1586 false /* is_load */, true /* is64bit */);
1587 }
1588 if (!IsNoOp(op, val_hi)) {
1589 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1590 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1591 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1592 false /* is_load */, true /* is64bit */);
1593 }
1594 return;
1595 }
1596
1597 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1598 DCHECK_EQ(rl_result.location, kLocPhysReg);
1599 DCHECK(!IsFpReg(rl_result.low_reg));
1600
1601 if (!IsNoOp(op, val_lo)) {
1602 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1603 NewLIR2(x86op, rl_result.low_reg, val_lo);
1604 }
1605 if (!IsNoOp(op, val_hi)) {
1606 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1607 NewLIR2(x86op, rl_result.high_reg, val_hi);
1608 }
1609 StoreValueWide(rl_dest, rl_result);
1610}
1611
1612void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1613 RegLocation rl_src2, Instruction::Code op) {
1614 DCHECK(rl_src2.is_const);
1615 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1616 int32_t val_lo = Low32Bits(val);
1617 int32_t val_hi = High32Bits(val);
1618 rl_dest = UpdateLocWide(rl_dest);
1619 rl_src1 = UpdateLocWide(rl_src1);
1620
1621 // Can we do this directly into the destination registers?
1622 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1623 rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
1624 !IsFpReg(rl_dest.low_reg)) {
1625 if (!IsNoOp(op, val_lo)) {
1626 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1627 NewLIR2(x86op, rl_dest.low_reg, val_lo);
1628 }
1629 if (!IsNoOp(op, val_hi)) {
1630 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1631 NewLIR2(x86op, rl_dest.high_reg, val_hi);
1632 }
1633 return;
1634 }
1635
1636 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1637 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1638
1639 // We need the values to be in a temporary
1640 RegLocation rl_result = ForceTempWide(rl_src1);
1641 if (!IsNoOp(op, val_lo)) {
1642 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1643 NewLIR2(x86op, rl_result.low_reg, val_lo);
1644 }
1645 if (!IsNoOp(op, val_hi)) {
1646 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1647 NewLIR2(x86op, rl_result.high_reg, val_hi);
1648 }
1649
1650 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001651}
1652
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001653// For final classes there are no sub-classes to check and so we can answer the instance-of
1654// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1655void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1656 RegLocation rl_dest, RegLocation rl_src) {
1657 RegLocation object = LoadValue(rl_src, kCoreReg);
1658 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1659 int result_reg = rl_result.low_reg;
1660
1661 // SETcc only works with EAX..EDX.
1662 if (result_reg == object.low_reg || result_reg >= 4) {
1663 result_reg = AllocTypedTemp(false, kCoreReg);
1664 DCHECK_LT(result_reg, 4);
1665 }
1666
1667 // Assume that there is no match.
1668 LoadConstant(result_reg, 0);
1669 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
1670
1671 int check_class = AllocTypedTemp(false, kCoreReg);
1672
1673 // If Method* is already in a register, we can save a copy.
1674 RegLocation rl_method = mir_graph_->GetMethodLoc();
1675 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1676 (sizeof(mirror::Class*) * type_idx);
1677
1678 if (rl_method.location == kLocPhysReg) {
1679 if (use_declaring_class) {
1680 LoadWordDisp(rl_method.low_reg,
1681 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1682 check_class);
1683 } else {
1684 LoadWordDisp(rl_method.low_reg,
1685 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1686 check_class);
1687 LoadWordDisp(check_class, offset_of_type, check_class);
1688 }
1689 } else {
1690 LoadCurrMethodDirect(check_class);
1691 if (use_declaring_class) {
1692 LoadWordDisp(check_class,
1693 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1694 check_class);
1695 } else {
1696 LoadWordDisp(check_class,
1697 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1698 check_class);
1699 LoadWordDisp(check_class, offset_of_type, check_class);
1700 }
1701 }
1702
1703 // Compare the computed class to the class in the object.
1704 DCHECK_EQ(object.location, kLocPhysReg);
1705 OpRegMem(kOpCmp, check_class, object.low_reg,
1706 mirror::Object::ClassOffset().Int32Value());
1707
1708 // Set the low byte of the result to 0 or 1 from the compare condition code.
1709 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1710
1711 LIR* target = NewLIR0(kPseudoTargetLabel);
1712 null_branchover->target = target;
1713 FreeTemp(check_class);
1714 if (IsTemp(result_reg)) {
1715 OpRegCopy(rl_result.low_reg, result_reg);
1716 FreeTemp(result_reg);
1717 }
1718 StoreValue(rl_dest, rl_result);
1719}
1720
Brian Carlstrom7940e442013-07-12 13:46:57 -07001721} // namespace art