buzbee | e88dfbf | 2012-03-05 11:19:57 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2012 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | /* |
| 18 | * This file contains codegen for the Mips ISA and is intended to be |
| 19 | * includes by: |
| 20 | * |
| 21 | * Codegen-$(TARGET_ARCH_VARIANT).c |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | namespace art { |
| 26 | |
| 27 | /* |
| 28 | * The lack of pc-relative loads on Mips presents somewhat of a challenge |
| 29 | * for our PIC switch table strategy. To materialize the current location |
| 30 | * we'll do a dummy JAL and reference our tables using r_RA as the |
| 31 | * base register. Note that r_RA will be used both as the base to |
| 32 | * locate the switch table data and as the reference base for the switch |
| 33 | * target offsets stored in the table. We'll use a special pseudo-instruction |
| 34 | * to represent the jal and trigger the construction of the |
| 35 | * switch table offsets (which will happen after final assembly and all |
| 36 | * labels are fixed). |
| 37 | * |
| 38 | * The test loop will look something like: |
| 39 | * |
| 40 | * ori rEnd, r_ZERO, #tableSize ; size in bytes |
| 41 | * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA |
| 42 | * nop ; opportunistically fill |
| 43 | * BaseLabel: |
| 44 | * addiu rBase, r_RA, <table> - <BaseLabel> ; table relative to BaseLabel |
| 45 | addu rEnd, rEnd, rBase ; end of table |
| 46 | * lw rVal, [rSP, vRegOff] ; Test Value |
| 47 | * loop: |
| 48 | * beq rBase, rEnd, done |
| 49 | * lw rKey, 0(rBase) |
| 50 | * addu rBase, 8 |
| 51 | * bne rVal, rKey, loop |
| 52 | * lw rDisp, -4(rBase) |
| 53 | * addu r_RA, rDisp |
| 54 | * jr r_RA |
| 55 | * done: |
| 56 | * |
| 57 | */ |
| 58 | void genSparseSwitch(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc) |
| 59 | { |
| 60 | UNIMPLEMENTED(WARNING) << "genSparseSwitch"; |
| 61 | return NULL; |
| 62 | #if 0 |
| 63 | const u2* table = cUnit->insns + mir->offset + mir->dalvikInsn.vB; |
| 64 | if (cUnit->printMe) { |
| 65 | dumpSparseSwitchTable(table); |
| 66 | } |
| 67 | // Add the table to the list - we'll process it later |
| 68 | SwitchTable *tabRec = (SwitchTable *)oatNew(cUnit, sizeof(SwitchTable), |
| 69 | true, kAllocData); |
| 70 | tabRec->table = table; |
| 71 | tabRec->vaddr = mir->offset; |
| 72 | int elements = table[1]; |
| 73 | tabRec->targets = (LIR* *)oatNew(cUnit, elements * sizeof(LIR*), true, |
| 74 | kAllocLIR); |
| 75 | oatInsertGrowableList(cUnit, &cUnit->switchTables, (intptr_t)tabRec); |
| 76 | |
| 77 | // The table is composed of 8-byte key/disp pairs |
| 78 | int byteSize = elements * 8; |
| 79 | |
| 80 | int sizeHi = byteSize >> 16; |
| 81 | int sizeLo = byteSize & 0xffff; |
| 82 | |
| 83 | int rEnd = oatAllocTemp(cUnit); |
| 84 | if (sizeHi) { |
| 85 | newLIR2(cUnit, kMipsLui, rEnd, sizeHi); |
| 86 | } |
| 87 | // Must prevent code motion for the curr pc pair |
| 88 | genBarrier(cUnit); // Scheduling barrier |
| 89 | newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8 |
| 90 | // Now, fill the branch delay slot |
| 91 | if (sizeHi) { |
| 92 | newLIR3(cUnit, kMipsOri, rEnd, rEnd, sizeLo); |
| 93 | } else { |
| 94 | newLIR3(cUnit, kMipsOri, rEnd, r_ZERO, sizeLo); |
| 95 | } |
| 96 | genBarrier(cUnit); // Scheduling barrier |
| 97 | |
| 98 | // Construct BaseLabel and set up table base register |
| 99 | LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| 100 | // Remember base label so offsets can be computed later |
| 101 | tabRec->anchor = baseLabel; |
| 102 | int rBase = oatAllocTemp(cUnit); |
| 103 | newLIR4(cUnit, kMipsDelta, rBase, 0, (intptr_t)baseLabel, (intptr_t)tabRec); |
| 104 | opRegRegReg(cUnit, kOpAdd, rEnd, rEnd, rBase); |
| 105 | |
| 106 | // Grab switch test value |
| 107 | rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| 108 | |
| 109 | // Test loop |
| 110 | int rKey = oatAllocTemp(cUnit); |
| 111 | LIR* loopLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| 112 | LIR* exitBranch = opCmpBranch(cUnit , kCondEq, rBase, rEnd, NULL); |
| 113 | loadWordDisp(cUnit, rBase, 0, rKey); |
| 114 | opRegImm(cUnit, kOpAdd, rBase, 8); |
| 115 | opCmpBranch(cUnit, kCondNe, rlSrc.lowReg, rKey, loopLabel); |
| 116 | int rDisp = oatAllocTemp(cUnit); |
| 117 | loadWordDisp(cUnit, rBase, -4, rDisp); |
| 118 | opRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp); |
| 119 | opReg(cUnit, kOpBx, r_RA); |
| 120 | |
| 121 | // Loop exit |
| 122 | LIR* exitLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| 123 | exitBranch->target = exitLabel; |
| 124 | #endif |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * Code pattern will look something like: |
| 129 | * |
| 130 | * lw rVal |
| 131 | * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA |
| 132 | * nop ; opportunistically fill |
| 133 | * [subiu rVal, bias] ; Remove bias if lowVal != 0 |
| 134 | * bound check -> done |
| 135 | * lw rDisp, [r_RA, rVal] |
| 136 | * addu r_RA, rDisp |
| 137 | * jr r_RA |
| 138 | * done: |
| 139 | */ |
| 140 | void genPackedSwitch(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc) |
| 141 | { |
| 142 | UNIMPLEMENTED(WARNING) << "genPackedSwitch"; |
| 143 | #if 0 |
| 144 | const u2* table = cUnit->insns + mir->offset + mir->dalvikInsn.vB; |
| 145 | if (cUnit->printMe) { |
| 146 | dumpPackedSwitchTable(table); |
| 147 | } |
| 148 | // Add the table to the list - we'll process it later |
| 149 | SwitchTable *tabRec = (SwitchTable *)oatNew(cUnit, sizeof(SwitchTable), |
| 150 | true, kAllocData); |
| 151 | tabRec->table = table; |
| 152 | tabRec->vaddr = mir->offset; |
| 153 | int size = table[1]; |
| 154 | tabRec->targets = (LIR* *)oatNew(cUnit, size * sizeof(LIR*), true, |
| 155 | kAllocLIR); |
| 156 | oatInsertGrowableList(cUnit, &cUnit->switchTables, (intptr_t)tabRec); |
| 157 | |
| 158 | // Get the switch value |
| 159 | rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| 160 | |
| 161 | // Prepare the bias. If too big, handle 1st stage here |
| 162 | int lowKey = s4FromSwitchData(&table[2]); |
| 163 | bool largeBias = false; |
| 164 | int rKey; |
| 165 | if (lowKey == 0) { |
| 166 | rKey = rlSrc.lowReg; |
| 167 | } else if ((lowKey & 0xffff) != lowKey) { |
| 168 | rKey = oatAllocTemp(cUnit); |
| 169 | loadConstant(cUnit, rKey, lowKey); |
| 170 | largeBias = true; |
| 171 | } else { |
| 172 | rKey = oatAllocTemp(cUnit); |
| 173 | } |
| 174 | |
| 175 | // Must prevent code motion for the curr pc pair |
| 176 | genBarrier(cUnit); |
| 177 | newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8 |
| 178 | // Now, fill the branch delay slot with bias strip |
| 179 | if (lowKey == 0) { |
| 180 | newLIR0(cUnit, kMipsNop); |
| 181 | } else { |
| 182 | if (largeBias) { |
| 183 | opRegRegReg(cUnit, kOpSub, rKey, rlSrc.lowReg, rKey); |
| 184 | } else { |
| 185 | opRegRegImm(cUnit, kOpSub, rKey, rlSrc.lowReg, lowKey); |
| 186 | } |
| 187 | } |
| 188 | genBarrier(cUnit); // Scheduling barrier |
| 189 | |
| 190 | // Construct BaseLabel and set up table base register |
| 191 | LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| 192 | // Remember base label so offsets can be computed later |
| 193 | tabRec->anchor = baseLabel; |
| 194 | |
| 195 | // Bounds check - if < 0 or >= size continue following switch |
| 196 | LIR* branchOver = opCmpImmBranch(cUnit, kCondHi, rKey, size-1, NULL); |
| 197 | |
| 198 | // Materialize the table base pointer |
| 199 | int rBase = oatAllocTemp(cUnit); |
| 200 | newLIR4(cUnit, kMipsDelta, rBase, 0, (intptr_t)baseLabel, (intptr_t)tabRec); |
| 201 | |
| 202 | // Load the displacement from the switch table |
| 203 | int rDisp = oatAllocTemp(cUnit); |
| 204 | loadBaseIndexed(cUnit, rBase, rKey, rDisp, 2, kWord); |
| 205 | |
| 206 | // Add to r_AP and go |
| 207 | opRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp); |
| 208 | opReg(cUnit, kOpBx, r_RA); |
| 209 | |
| 210 | /* branchOver target here */ |
| 211 | LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| 212 | branchOver->target = (LIR*)target; |
| 213 | #endif |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * Array data table format: |
| 218 | * ushort ident = 0x0300 magic value |
| 219 | * ushort width width of each element in the table |
| 220 | * uint size number of elements in the table |
| 221 | * ubyte data[size*width] table of data values (may contain a single-byte |
| 222 | * padding at the end) |
| 223 | * |
| 224 | * Total size is 4+(width * size + 1)/2 16-bit code units. |
| 225 | */ |
| 226 | void genFillArrayData(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc) |
| 227 | { |
| 228 | UNIMPLEMENTED(WARNING) << "genFillArrayData"; |
| 229 | #if 0 |
| 230 | const u2* table = cUnit->insns + mir->offset + mir->dalvikInsn.vB; |
| 231 | // Add the table to the list - we'll process it later |
| 232 | FillArrayData *tabRec = (FillArrayData *) |
| 233 | oatNew(cUnit, sizeof(FillArrayData), true, kAllocData); |
| 234 | tabRec->table = table; |
| 235 | tabRec->vaddr = mir->offset; |
| 236 | u2 width = tabRec->table[1]; |
| 237 | u4 size = tabRec->table[2] | (((u4)tabRec->table[3]) << 16); |
| 238 | tabRec->size = (size * width) + 8; |
| 239 | |
| 240 | oatInsertGrowableList(cUnit, &cUnit->fillArrayData, (intptr_t)tabRec); |
| 241 | |
| 242 | // Making a call - use explicit registers |
| 243 | oatFlushAllRegs(cUnit); /* Everything to home location */ |
| 244 | oatLockCallTemps(cUnit); |
| 245 | loadValueDirectFixed(cUnit, rlSrc, rARG0); |
| 246 | |
| 247 | // Must prevent code motion for the curr pc pair |
| 248 | genBarrier(cUnit); |
| 249 | newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8 |
| 250 | // Now, fill the branch delay slot with the helper load |
| 251 | int rTgt = loadHelper(cUnit, OFFSETOF_MEMBER(Thread, |
| 252 | pHandleFillArrayDataFromCode)); |
| 253 | genBarrier(cUnit); // Scheduling barrier |
| 254 | |
| 255 | // Construct BaseLabel and set up table base register |
| 256 | LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| 257 | |
| 258 | // Materialize a pointer to the fill data image |
| 259 | newLIR4(cUnit, kMipsDelta, rARG1, 0, (intptr_t)baseLabel, (intptr_t)tabRec); |
| 260 | |
| 261 | // And go... |
| 262 | callRuntimeHelper(cUnit, rTgt); // ( array*, fill_data* ) |
| 263 | } |
| 264 | |
| 265 | void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest, RegLocation rlSrc) |
| 266 | { |
| 267 | RegLocation rlResult; |
| 268 | rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| 269 | rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| 270 | opRegRegImm(cUnit, kOpAdd, rlResult.lowReg, |
| 271 | rlSrc.lowReg, 0x80000000); |
| 272 | storeValue(cUnit, rlDest, rlResult); |
| 273 | #endif |
| 274 | } |
| 275 | |
| 276 | void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest, RegLocation rlSrc) |
| 277 | { |
| 278 | UNIMPLEMENTED(WARNING) << "genNegDouble"; |
| 279 | #if 0 |
| 280 | RegLocation rlResult; |
| 281 | rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); |
| 282 | rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| 283 | opRegRegImm(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg, |
| 284 | 0x80000000); |
| 285 | opRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); |
| 286 | storeValueWide(cUnit, rlDest, rlResult); |
| 287 | #endif |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * TODO: implement fast path to short-circuit thin-lock case |
| 292 | */ |
| 293 | void genMonitorEnter(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc) |
| 294 | { |
| 295 | UNIMPLEMENTED(WARNING) << "genMonitorEnter"; |
| 296 | #if 0 |
| 297 | oatFlushAllRegs(cUnit); |
| 298 | loadValueDirectFixed(cUnit, rlSrc, rARG0); // Get obj |
| 299 | oatLockCallTemps(cUnit); // Prepare for explicit register usage |
| 300 | genNullCheck(cUnit, rlSrc.sRegLow, rARG0, mir); |
| 301 | // Go expensive route - artLockObjectFromCode(self, obj); |
| 302 | int rTgt = loadHelper(cUnit, OFFSETOF_MEMBER(Thread, pLockObjectFromCode)); |
| 303 | callRuntimeHelper(cUnit, rTgt); |
| 304 | #endif |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * TODO: implement fast path to short-circuit thin-lock case |
| 309 | */ |
| 310 | void genMonitorExit(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc) |
| 311 | { |
| 312 | UNIMPLEMENTED(WARNING) << "genMonitor"; |
| 313 | #if 0 |
| 314 | oatFlushAllRegs(cUnit); |
| 315 | loadValueDirectFixed(cUnit, rlSrc, rARG0); // Get obj |
| 316 | oatLockCallTemps(cUnit); // Prepare for explicit register usage |
| 317 | genNullCheck(cUnit, rlSrc.sRegLow, rARG0, mir); |
| 318 | // Go expensive route - UnlockObjectFromCode(obj); |
| 319 | int rTgt = loadHelper(cUnit, OFFSETOF_MEMBER(Thread, pUnlockObjectFromCode)); |
| 320 | callRuntimeHelper(cUnit, rTgt); |
| 321 | #endif |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * Compare two 64-bit values |
| 326 | * x = y return 0 |
| 327 | * x < y return -1 |
| 328 | * x > y return 1 |
| 329 | * |
| 330 | * slt t0, x.hi, y.hi; # (x.hi < y.hi) ? 1:0 |
| 331 | * sgt t1, x.hi, y.hi; # (y.hi > x.hi) ? 1:0 |
| 332 | * subu res, t0, t1 # res = -1:1:0 for [ < > = ] |
| 333 | * bnez res, finish |
| 334 | * sltu t0, x.lo, y.lo |
| 335 | * sgtu r1, x.lo, y.lo |
| 336 | * subu res, t0, t1 |
| 337 | * finish: |
| 338 | * |
| 339 | */ |
| 340 | void genCmpLong(CompilationUnit* cUnit, MIR* mir, RegLocation rlDest, |
| 341 | RegLocation rlSrc1, RegLocation rlSrc2) |
| 342 | { |
| 343 | UNIMPLEMENTED(WARNING) << "genCmpLong"; |
| 344 | #if 0 |
| 345 | rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg); |
| 346 | rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); |
| 347 | int t0 = oatAllocTemp(cUnit); |
| 348 | int t1 = oatAllocTemp(cUnit); |
| 349 | RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| 350 | newLIR3(cUnit, kMipsSlt, t0, rlSrc1.highReg, rlSrc2.highReg); |
| 351 | newLIR3(cUnit, kMipsSlt, t1, rlSrc2.highReg, rlSrc1.highReg); |
| 352 | newLIR3(cUnit, kMipsSubu, rlResult.lowReg, t1, t0); |
| 353 | LIR* branch = opCmpImmBranch(cUnit, kCondNe, rlResult.lowReg, 0, NULL); |
| 354 | newLIR3(cUnit, kMipsSltu, t0, rlSrc1.lowReg, rlSrc2.lowReg); |
| 355 | newLIR3(cUnit, kMipsSltu, t1, rlSrc2.lowReg, rlSrc1.lowReg); |
| 356 | newLIR3(cUnit, kMipsSubu, rlResult.lowReg, t1, t0); |
| 357 | oatFreeTemp(cUnit, t0); |
| 358 | oatFreeTemp(cUnit, t1); |
| 359 | LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| 360 | branch->target = (LIR*)target; |
| 361 | storeValue(cUnit, rlDest, rlResult); |
| 362 | #endif |
| 363 | } |
| 364 | |
| 365 | LIR* opCmpBranch(CompilationUnit* cUnit, ConditionCode cond, int src1, |
| 366 | int src2, LIR* target) |
| 367 | { |
| 368 | UNIMPLEMENTED(WARNING) << "opCmpBranch"; |
| 369 | return NULL; |
| 370 | #if 0 |
| 371 | LIR* branch; |
| 372 | MipsOpCode sltOp; |
| 373 | MipsOpCode brOp; |
| 374 | bool cmpZero = false; |
| 375 | bool swapped = false; |
| 376 | switch(cond) { |
| 377 | case kCondEq: |
| 378 | brOp = kMipsBeq; |
| 379 | cmpZero = true; |
| 380 | break; |
| 381 | case kCondNe: |
| 382 | brOp = kMipsBne; |
| 383 | cmpZero = true; |
| 384 | break; |
| 385 | case kCondCc: |
| 386 | sltOp = kMipsSltu; |
| 387 | brOp = kMipsBnez; |
| 388 | break; |
| 389 | case kCondCs: |
| 390 | sltOp = kMipsSltu; |
| 391 | brOp = kMipsBeqz; |
| 392 | break; |
| 393 | case kCondGe: |
| 394 | sltOp = kMipsSlt; |
| 395 | brOp = kMipsBeqz; |
| 396 | break; |
| 397 | case kCondGt: |
| 398 | sltOp = kMipsSlt; |
| 399 | brOp = kMipsBnez; |
| 400 | swapped = true; |
| 401 | break; |
| 402 | case kCondLe: |
| 403 | sltOp = kMipsSlt; |
| 404 | brOp = kMipsBeqz; |
| 405 | swapped = true; |
| 406 | break; |
| 407 | case kCondLt: |
| 408 | sltOp = kMipsSlt; |
| 409 | brOp = kMipsBnez; |
| 410 | break; |
| 411 | case kCondHi: // Gtu |
| 412 | sltOp = kMipsSltu; |
| 413 | brOp = kMipsBnez; |
| 414 | swapped = true; |
| 415 | break; |
| 416 | default: |
| 417 | LOG(FATAL) << "No support for ConditionCode: " << (int) cond; |
| 418 | return NULL; |
| 419 | } |
| 420 | if (cmpZero) { |
| 421 | branch = newLIR2(cUnit, brOp, src1, src2); |
| 422 | } else { |
| 423 | int tReg = oatAllocTemp(cUnit); |
| 424 | if (swapped) { |
| 425 | newLIR3(cUnit, sltOp, tReg, src2, src1); |
| 426 | } else { |
| 427 | newLIR3(cUnit, sltOp, tReg, src1, src2); |
| 428 | } |
| 429 | branch = newLIR1(cUnit, brOp, tReg); |
| 430 | oatFreeTemp(cUnit, tReg); |
| 431 | } |
| 432 | branch->target = target; |
| 433 | return branch; |
| 434 | #endif |
| 435 | } |
| 436 | |
| 437 | LIR* opCmpImmBranch(CompilationUnit* cUnit, ConditionCode cond, int reg, |
| 438 | int checkValue, LIR* target) |
| 439 | { |
| 440 | UNIMPLEMENTED(WARNING) >> "opCmpImmBranch"; |
| 441 | return NULL; |
| 442 | #if 0 |
| 443 | LIR* branch; |
| 444 | if (checkValue != 0) { |
| 445 | // TUNING: handle s16 & kCondLt/Mi case using slti |
| 446 | int tReg = oatAllocTemp(cUnit); |
| 447 | loadConstant(cUnit, tReg, checkValue); |
| 448 | branch = opCmpBranch(cUnit, cond, reg, tReg, target); |
| 449 | oatFreeTemp(cUnit, tReg); |
| 450 | return branch; |
| 451 | } |
| 452 | MipsOpCode opc; |
| 453 | switch(cond) { |
| 454 | case kCondEq: opc = kMipsBeqz; break; |
| 455 | case kCondGe: opc = kMipsBgez; break; |
| 456 | case kCondGt: opc = kMipsBgtz; break; |
| 457 | case kCondLe: opc = kMipsBlez; break; |
| 458 | //case KCondMi: |
| 459 | case kCondLt: opc = kMipsBltz; break; |
| 460 | case kCondNe: opc = kMipsBnez; break; |
| 461 | default: |
| 462 | // Tuning: use slti when applicable |
| 463 | int tReg = oatAllocTemp(cUnit); |
| 464 | loadConstant(cUnit, tReg, checkValue); |
| 465 | branch = opCmpBranch(cUnit, cond, reg, tReg, target); |
| 466 | oatFreeTemp(cUnit, tReg); |
| 467 | return branch; |
| 468 | } |
| 469 | branch = newLIR1(cUnit, opc, reg); |
| 470 | branch->target = target; |
| 471 | return branch; |
| 472 | #endif |
| 473 | } |
| 474 | |
| 475 | LIR* opRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc) |
| 476 | { |
| 477 | UNIMPLEMENTED(WARNING) << "opRegCopyNoInsert"; |
| 478 | return NULL; |
| 479 | #if 0 |
| 480 | if (FPREG(rDest) || FPREG(rSrc)) |
| 481 | return fpRegCopy(cUnit, rDest, rSrc); |
| 482 | LIR* res = rawLIR(cUnit, cUnit->currentDalvikOffset, kMipsMove, |
| 483 | rDest, rSrc); |
| 484 | if (rDest == rSrc) { |
| 485 | res->flags.isNop = true; |
| 486 | } |
| 487 | return res; |
| 488 | #endif |
| 489 | } |
| 490 | |
| 491 | LIR* opRegCopy(CompilationUnit *cUnit, int rDest, int rSrc) |
| 492 | { |
| 493 | LIR *res = opRegCopyNoInsert(cUnit, rDest, rSrc); |
| 494 | oatAppendLIR(cUnit, (LIR*)res); |
| 495 | return res; |
| 496 | } |
| 497 | |
| 498 | void opRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi, |
| 499 | int srcLo, int srcHi) |
| 500 | { |
| 501 | UNIMPLEMENTED(WARNING) << "opRegCopyWide"; |
| 502 | #if 0 |
| 503 | bool destFP = FPREG(destLo) && FPREG(destHi); |
| 504 | bool srcFP = FPREG(srcLo) && FPREG(srcHi); |
| 505 | assert(FPREG(srcLo) == FPREG(srcHi)); |
| 506 | assert(FPREG(destLo) == FPREG(destHi)); |
| 507 | if (destFP) { |
| 508 | if (srcFP) { |
| 509 | opRegCopy(cUnit, S2D(destLo, destHi), S2D(srcLo, srcHi)); |
| 510 | } else { |
| 511 | /* note the operands are swapped for the mtc1 instr */ |
| 512 | newLIR2(cUnit, kMipsMtc1, srcLo, destLo); |
| 513 | newLIR2(cUnit, kMipsMtc1, srcHi, destHi); |
| 514 | } |
| 515 | } else { |
| 516 | if (srcFP) { |
| 517 | newLIR2(cUnit, kMipsMfc1, destLo, srcLo); |
| 518 | newLIR2(cUnit, kMipsMfc1, destHi, srcHi); |
| 519 | } else { |
| 520 | // Handle overlap |
| 521 | if (srcHi == destLo) { |
| 522 | opRegCopy(cUnit, destHi, srcHi); |
| 523 | opRegCopy(cUnit, destLo, srcLo); |
| 524 | } else { |
| 525 | opRegCopy(cUnit, destLo, srcLo); |
| 526 | opRegCopy(cUnit, destHi, srcHi); |
| 527 | } |
| 528 | } |
| 529 | } |
| 530 | // Handle overlap |
| 531 | if (srcHi == destLo) { |
| 532 | opRegCopy(cUnit, destHi, srcHi); |
| 533 | opRegCopy(cUnit, destLo, srcLo); |
| 534 | } else { |
| 535 | opRegCopy(cUnit, destLo, srcLo); |
| 536 | opRegCopy(cUnit, destHi, srcHi); |
| 537 | } |
| 538 | #endif |
| 539 | } |
| 540 | |
| 541 | } // namespace art |