blob: bf67b42645645a765425588c2c29268422c09299 [file] [log] [blame]
buzbeeefc63692012-11-14 16:31:52 -08001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Mips ISA */
18
19#include "oat/runtime/oat_support_entrypoints.h"
20
21namespace art {
22
23void genSpecialCase(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir,
24 SpecialCaseHandler specialCase)
25{
26 // TODO
27}
28
29/*
30 * The lack of pc-relative loads on Mips presents somewhat of a challenge
31 * for our PIC switch table strategy. To materialize the current location
32 * we'll do a dummy JAL and reference our tables using r_RA as the
33 * base register. Note that r_RA will be used both as the base to
34 * locate the switch table data and as the reference base for the switch
35 * target offsets stored in the table. We'll use a special pseudo-instruction
36 * to represent the jal and trigger the construction of the
37 * switch table offsets (which will happen after final assembly and all
38 * labels are fixed).
39 *
40 * The test loop will look something like:
41 *
42 * ori rEnd, r_ZERO, #tableSize ; size in bytes
43 * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
44 * nop ; opportunistically fill
45 * BaseLabel:
46 * addiu rBase, r_RA, <table> - <BaseLabel> ; table relative to BaseLabel
47 addu rEnd, rEnd, rBase ; end of table
48 * lw rVal, [rSP, vRegOff] ; Test Value
49 * loop:
50 * beq rBase, rEnd, done
51 * lw rKey, 0(rBase)
52 * addu rBase, 8
53 * bne rVal, rKey, loop
54 * lw rDisp, -4(rBase)
55 * addu r_RA, rDisp
56 * jr r_RA
57 * done:
58 *
59 */
60void genSparseSwitch(CompilationUnit* cUnit, uint32_t tableOffset,
61 RegLocation rlSrc)
62{
buzbeeeaf09bc2012-11-15 14:51:41 -080063 const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
buzbeeefc63692012-11-14 16:31:52 -080064 if (cUnit->printMe) {
65 dumpSparseSwitchTable(table);
66 }
67 // Add the table to the list - we'll process it later
68 SwitchTable *tabRec = (SwitchTable *)oatNew(cUnit, sizeof(SwitchTable),
69 true, kAllocData);
70 tabRec->table = table;
71 tabRec->vaddr = cUnit->currentDalvikOffset;
72 int elements = table[1];
73 tabRec->targets = (LIR* *)oatNew(cUnit, elements * sizeof(LIR*), true,
74 kAllocLIR);
75 oatInsertGrowableList(cUnit, &cUnit->switchTables, (intptr_t)tabRec);
76
77 // The table is composed of 8-byte key/disp pairs
78 int byteSize = elements * 8;
79
80 int sizeHi = byteSize >> 16;
81 int sizeLo = byteSize & 0xffff;
82
83 int rEnd = oatAllocTemp(cUnit);
84 if (sizeHi) {
85 newLIR2(cUnit, kMipsLui, rEnd, sizeHi);
86 }
87 // Must prevent code motion for the curr pc pair
88 genBarrier(cUnit); // Scheduling barrier
89 newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8
90 // Now, fill the branch delay slot
91 if (sizeHi) {
92 newLIR3(cUnit, kMipsOri, rEnd, rEnd, sizeLo);
93 } else {
94 newLIR3(cUnit, kMipsOri, rEnd, r_ZERO, sizeLo);
95 }
96 genBarrier(cUnit); // Scheduling barrier
97
98 // Construct BaseLabel and set up table base register
99 LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel);
100 // Remember base label so offsets can be computed later
101 tabRec->anchor = baseLabel;
102 int rBase = oatAllocTemp(cUnit);
103 newLIR4(cUnit, kMipsDelta, rBase, 0, (intptr_t)baseLabel, (intptr_t)tabRec);
104 opRegRegReg(cUnit, kOpAdd, rEnd, rEnd, rBase);
105
106 // Grab switch test value
107 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
108
109 // Test loop
110 int rKey = oatAllocTemp(cUnit);
111 LIR* loopLabel = newLIR0(cUnit, kPseudoTargetLabel);
112 LIR* exitBranch = opCmpBranch(cUnit , kCondEq, rBase, rEnd, NULL);
113 loadWordDisp(cUnit, rBase, 0, rKey);
114 opRegImm(cUnit, kOpAdd, rBase, 8);
115 opCmpBranch(cUnit, kCondNe, rlSrc.lowReg, rKey, loopLabel);
116 int rDisp = oatAllocTemp(cUnit);
117 loadWordDisp(cUnit, rBase, -4, rDisp);
118 opRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp);
119 opReg(cUnit, kOpBx, r_RA);
120
121 // Loop exit
122 LIR* exitLabel = newLIR0(cUnit, kPseudoTargetLabel);
123 exitBranch->target = exitLabel;
124}
125
126/*
127 * Code pattern will look something like:
128 *
129 * lw rVal
130 * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
131 * nop ; opportunistically fill
132 * [subiu rVal, bias] ; Remove bias if lowVal != 0
133 * bound check -> done
134 * lw rDisp, [r_RA, rVal]
135 * addu r_RA, rDisp
136 * jr r_RA
137 * done:
138 */
139void genPackedSwitch(CompilationUnit* cUnit, uint32_t tableOffset,
140 RegLocation rlSrc)
141{
buzbeeeaf09bc2012-11-15 14:51:41 -0800142 const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
buzbeeefc63692012-11-14 16:31:52 -0800143 if (cUnit->printMe) {
144 dumpPackedSwitchTable(table);
145 }
146 // Add the table to the list - we'll process it later
147 SwitchTable *tabRec = (SwitchTable *)oatNew(cUnit, sizeof(SwitchTable),
148 true, kAllocData);
149 tabRec->table = table;
150 tabRec->vaddr = cUnit->currentDalvikOffset;
151 int size = table[1];
152 tabRec->targets = (LIR* *)oatNew(cUnit, size * sizeof(LIR*), true,
153 kAllocLIR);
154 oatInsertGrowableList(cUnit, &cUnit->switchTables, (intptr_t)tabRec);
155
156 // Get the switch value
157 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
158
159 // Prepare the bias. If too big, handle 1st stage here
160 int lowKey = s4FromSwitchData(&table[2]);
161 bool largeBias = false;
162 int rKey;
163 if (lowKey == 0) {
164 rKey = rlSrc.lowReg;
165 } else if ((lowKey & 0xffff) != lowKey) {
166 rKey = oatAllocTemp(cUnit);
167 loadConstant(cUnit, rKey, lowKey);
168 largeBias = true;
169 } else {
170 rKey = oatAllocTemp(cUnit);
171 }
172
173 // Must prevent code motion for the curr pc pair
174 genBarrier(cUnit);
175 newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8
176 // Now, fill the branch delay slot with bias strip
177 if (lowKey == 0) {
178 newLIR0(cUnit, kMipsNop);
179 } else {
180 if (largeBias) {
181 opRegRegReg(cUnit, kOpSub, rKey, rlSrc.lowReg, rKey);
182 } else {
183 opRegRegImm(cUnit, kOpSub, rKey, rlSrc.lowReg, lowKey);
184 }
185 }
186 genBarrier(cUnit); // Scheduling barrier
187
188 // Construct BaseLabel and set up table base register
189 LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel);
190 // Remember base label so offsets can be computed later
191 tabRec->anchor = baseLabel;
192
193 // Bounds check - if < 0 or >= size continue following switch
194 LIR* branchOver = opCmpImmBranch(cUnit, kCondHi, rKey, size-1, NULL);
195
196 // Materialize the table base pointer
197 int rBase = oatAllocTemp(cUnit);
198 newLIR4(cUnit, kMipsDelta, rBase, 0, (intptr_t)baseLabel, (intptr_t)tabRec);
199
200 // Load the displacement from the switch table
201 int rDisp = oatAllocTemp(cUnit);
202 loadBaseIndexed(cUnit, rBase, rKey, rDisp, 2, kWord);
203
204 // Add to r_AP and go
205 opRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp);
206 opReg(cUnit, kOpBx, r_RA);
207
208 /* branchOver target here */
209 LIR* target = newLIR0(cUnit, kPseudoTargetLabel);
210 branchOver->target = (LIR*)target;
211}
212
213/*
214 * Array data table format:
215 * ushort ident = 0x0300 magic value
216 * ushort width width of each element in the table
217 * uint size number of elements in the table
218 * ubyte data[size*width] table of data values (may contain a single-byte
219 * padding at the end)
220 *
221 * Total size is 4+(width * size + 1)/2 16-bit code units.
222 */
223void genFillArrayData(CompilationUnit* cUnit, uint32_t tableOffset,
224 RegLocation rlSrc)
225{
buzbeeeaf09bc2012-11-15 14:51:41 -0800226 const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
buzbeeefc63692012-11-14 16:31:52 -0800227 // Add the table to the list - we'll process it later
228 FillArrayData *tabRec = (FillArrayData *)
229 oatNew(cUnit, sizeof(FillArrayData), true, kAllocData);
230 tabRec->table = table;
231 tabRec->vaddr = cUnit->currentDalvikOffset;
buzbeeeaf09bc2012-11-15 14:51:41 -0800232 uint16_t width = tabRec->table[1];
233 uint32_t size = tabRec->table[2] | ((static_cast<uint32_t>(tabRec->table[3])) << 16);
buzbeeefc63692012-11-14 16:31:52 -0800234 tabRec->size = (size * width) + 8;
235
236 oatInsertGrowableList(cUnit, &cUnit->fillArrayData, (intptr_t)tabRec);
237
238 // Making a call - use explicit registers
239 oatFlushAllRegs(cUnit); /* Everything to home location */
240 oatLockCallTemps(cUnit);
241 loadValueDirectFixed(cUnit, rlSrc, rMIPS_ARG0);
242
243 // Must prevent code motion for the curr pc pair
244 genBarrier(cUnit);
245 newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8
246 // Now, fill the branch delay slot with the helper load
247 int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode));
248 genBarrier(cUnit); // Scheduling barrier
249
250 // Construct BaseLabel and set up table base register
251 LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel);
252
253 // Materialize a pointer to the fill data image
254 newLIR4(cUnit, kMipsDelta, rMIPS_ARG1, 0, (intptr_t)baseLabel, (intptr_t)tabRec);
255
256 // And go...
257 oatClobberCalleeSave(cUnit);
258 LIR* callInst = opReg(cUnit, kOpBlx, rTgt); // ( array*, fill_data* )
259 markSafepointPC(cUnit, callInst);
260}
261
262/*
263 * TODO: implement fast path to short-circuit thin-lock case
264 */
265void genMonitorEnter(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc)
266{
267 oatFlushAllRegs(cUnit);
268 loadValueDirectFixed(cUnit, rlSrc, rMIPS_ARG0); // Get obj
269 oatLockCallTemps(cUnit); // Prepare for explicit register usage
270 genNullCheck(cUnit, rlSrc.sRegLow, rMIPS_ARG0, optFlags);
271 // Go expensive route - artLockObjectFromCode(self, obj);
272 int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pLockObjectFromCode));
273 oatClobberCalleeSave(cUnit);
274 LIR* callInst = opReg(cUnit, kOpBlx, rTgt);
275 markSafepointPC(cUnit, callInst);
276}
277
278/*
279 * TODO: implement fast path to short-circuit thin-lock case
280 */
281void genMonitorExit(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc)
282{
283 oatFlushAllRegs(cUnit);
284 loadValueDirectFixed(cUnit, rlSrc, rMIPS_ARG0); // Get obj
285 oatLockCallTemps(cUnit); // Prepare for explicit register usage
286 genNullCheck(cUnit, rlSrc.sRegLow, rMIPS_ARG0, optFlags);
287 // Go expensive route - UnlockObjectFromCode(obj);
288 int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pUnlockObjectFromCode));
289 oatClobberCalleeSave(cUnit);
290 LIR* callInst = opReg(cUnit, kOpBlx, rTgt);
291 markSafepointPC(cUnit, callInst);
292}
293
294/*
295 * Mark garbage collection card. Skip if the value we're storing is null.
296 */
297void markGCCard(CompilationUnit* cUnit, int valReg, int tgtAddrReg)
298{
299 int regCardBase = oatAllocTemp(cUnit);
300 int regCardNo = oatAllocTemp(cUnit);
301 LIR* branchOver = opCmpImmBranch(cUnit, kCondEq, valReg, 0, NULL);
302 loadWordDisp(cUnit, rMIPS_SELF, Thread::CardTableOffset().Int32Value(), regCardBase);
303 opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, CardTable::kCardShift);
304 storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
305 kUnsignedByte);
306 LIR* target = newLIR0(cUnit, kPseudoTargetLabel);
307 branchOver->target = (LIR*)target;
308 oatFreeTemp(cUnit, regCardBase);
309 oatFreeTemp(cUnit, regCardNo);
310}
311void genEntrySequence(CompilationUnit* cUnit, RegLocation* argLocs,
312 RegLocation rlMethod)
313{
314 int spillCount = cUnit->numCoreSpills + cUnit->numFPSpills;
315 /*
316 * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live. Let the register
317 * allocation mechanism know so it doesn't try to use any of them when
318 * expanding the frame or flushing. This leaves the utility
319 * code with a single temp: r12. This should be enough.
320 */
321 oatLockTemp(cUnit, rMIPS_ARG0);
322 oatLockTemp(cUnit, rMIPS_ARG1);
323 oatLockTemp(cUnit, rMIPS_ARG2);
324 oatLockTemp(cUnit, rMIPS_ARG3);
325
326 /*
327 * We can safely skip the stack overflow check if we're
328 * a leaf *and* our frame size < fudge factor.
329 */
330 bool skipOverflowCheck = ((cUnit->attrs & METHOD_IS_LEAF) &&
331 ((size_t)cUnit->frameSize < Thread::kStackOverflowReservedBytes));
332 newLIR0(cUnit, kPseudoMethodEntry);
333 int checkReg = oatAllocTemp(cUnit);
334 int newSP = oatAllocTemp(cUnit);
335 if (!skipOverflowCheck) {
336 /* Load stack limit */
337 loadWordDisp(cUnit, rMIPS_SELF, Thread::StackEndOffset().Int32Value(), checkReg);
338 }
339 /* Spill core callee saves */
340 spillCoreRegs(cUnit);
341 /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
342 DCHECK_EQ(cUnit->numFPSpills, 0);
343 if (!skipOverflowCheck) {
344 opRegRegImm(cUnit, kOpSub, newSP, rMIPS_SP, cUnit->frameSize - (spillCount * 4));
345 genRegRegCheck(cUnit, kCondCc, newSP, checkReg, kThrowStackOverflow);
346 opRegCopy(cUnit, rMIPS_SP, newSP); // Establish stack
347 } else {
348 opRegImm(cUnit, kOpSub, rMIPS_SP, cUnit->frameSize - (spillCount * 4));
349 }
350
351 flushIns(cUnit, argLocs, rlMethod);
352
353 oatFreeTemp(cUnit, rMIPS_ARG0);
354 oatFreeTemp(cUnit, rMIPS_ARG1);
355 oatFreeTemp(cUnit, rMIPS_ARG2);
356 oatFreeTemp(cUnit, rMIPS_ARG3);
357}
358
359void genExitSequence(CompilationUnit* cUnit)
360{
361 /*
362 * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
363 * allocated by the register utilities as temps.
364 */
365 oatLockTemp(cUnit, rMIPS_RET0);
366 oatLockTemp(cUnit, rMIPS_RET1);
367
368 newLIR0(cUnit, kPseudoMethodExit);
369 unSpillCoreRegs(cUnit);
370 opReg(cUnit, kOpBx, r_RA);
371}
372
373} // namespace art