Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2017 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #ifndef ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |
| 18 | #define ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |
| 19 | |
| 20 | // This #include should never be used by compilation, because this header file (nodes_vector.h) |
| 21 | // is included in the header file nodes.h itself. However it gives editing tools better context. |
| 22 | #include "nodes.h" |
| 23 | |
| 24 | namespace art { |
| 25 | |
| 26 | // Memory alignment, represented as an offset relative to a base, where 0 <= offset < base, |
| 27 | // and base is a power of two. For example, the value Alignment(16, 0) means memory is |
| 28 | // perfectly aligned at a 16-byte boundary, whereas the value Alignment(16, 4) means |
| 29 | // memory is always exactly 4 bytes above such a boundary. |
| 30 | class Alignment { |
| 31 | public: |
| 32 | Alignment(size_t base, size_t offset) : base_(base), offset_(offset) { |
| 33 | DCHECK_LT(offset, base); |
| 34 | DCHECK(IsPowerOfTwo(base)); |
| 35 | } |
| 36 | |
| 37 | // Returns true if memory is "at least" aligned at the given boundary. |
| 38 | // Assumes requested base is power of two. |
| 39 | bool IsAlignedAt(size_t base) const { |
| 40 | DCHECK_NE(0u, base); |
| 41 | DCHECK(IsPowerOfTwo(base)); |
| 42 | return ((offset_ | base_) & (base - 1u)) == 0; |
| 43 | } |
| 44 | |
| 45 | std::string ToString() const { |
| 46 | return "ALIGN(" + std::to_string(base_) + "," + std::to_string(offset_) + ")"; |
| 47 | } |
| 48 | |
| 49 | private: |
| 50 | size_t base_; |
| 51 | size_t offset_; |
| 52 | }; |
| 53 | |
| 54 | // |
| 55 | // Definitions of abstract vector operations in HIR. |
| 56 | // |
| 57 | |
| 58 | // Abstraction of a vector operation, i.e., an operation that performs |
| 59 | // GetVectorLength() x GetPackedType() operations simultaneously. |
| 60 | class HVecOperation : public HVariableInputSizeInstruction { |
| 61 | public: |
| 62 | HVecOperation(ArenaAllocator* arena, |
| 63 | Primitive::Type packed_type, |
| 64 | SideEffects side_effects, |
| 65 | size_t number_of_inputs, |
| 66 | size_t vector_length, |
| 67 | uint32_t dex_pc) |
| 68 | : HVariableInputSizeInstruction(side_effects, |
| 69 | dex_pc, |
| 70 | arena, |
| 71 | number_of_inputs, |
| 72 | kArenaAllocVectorNode), |
| 73 | vector_length_(vector_length) { |
| 74 | SetPackedField<TypeField>(packed_type); |
| 75 | DCHECK_LT(1u, vector_length); |
| 76 | } |
| 77 | |
| 78 | // Returns the number of elements packed in a vector. |
| 79 | size_t GetVectorLength() const { |
| 80 | return vector_length_; |
| 81 | } |
| 82 | |
| 83 | // Returns the number of bytes in a full vector. |
| 84 | size_t GetVectorNumberOfBytes() const { |
| 85 | return vector_length_ * Primitive::ComponentSize(GetPackedType()); |
| 86 | } |
| 87 | |
| 88 | // Returns the type of the vector operation: a SIMD operation looks like a FPU location. |
| 89 | // TODO: we could introduce SIMD types in HIR. |
| 90 | Primitive::Type GetType() const OVERRIDE { |
| 91 | return Primitive::kPrimDouble; |
| 92 | } |
| 93 | |
| 94 | // Returns the true component type packed in a vector. |
| 95 | Primitive::Type GetPackedType() const { |
| 96 | return GetPackedField<TypeField>(); |
| 97 | } |
| 98 | |
| 99 | DECLARE_ABSTRACT_INSTRUCTION(VecOperation); |
| 100 | |
| 101 | private: |
| 102 | // Additional packed bits. |
| 103 | static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; |
| 104 | static constexpr size_t kFieldTypeSize = |
| 105 | MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); |
| 106 | static constexpr size_t kNumberOfVectorOpPackedBits = kFieldType + kFieldTypeSize; |
| 107 | static_assert(kNumberOfVectorOpPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| 108 | using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>; |
| 109 | |
| 110 | const size_t vector_length_; |
| 111 | |
| 112 | DISALLOW_COPY_AND_ASSIGN(HVecOperation); |
| 113 | }; |
| 114 | |
| 115 | // Abstraction of a unary vector operation. |
| 116 | class HVecUnaryOperation : public HVecOperation { |
| 117 | public: |
| 118 | HVecUnaryOperation(ArenaAllocator* arena, |
| 119 | Primitive::Type packed_type, |
| 120 | size_t vector_length, |
| 121 | uint32_t dex_pc) |
| 122 | : HVecOperation(arena, |
| 123 | packed_type, |
| 124 | SideEffects::None(), |
| 125 | /*number_of_inputs*/ 1, |
| 126 | vector_length, |
| 127 | dex_pc) { } |
| 128 | DECLARE_ABSTRACT_INSTRUCTION(VecUnaryOperation); |
| 129 | private: |
| 130 | DISALLOW_COPY_AND_ASSIGN(HVecUnaryOperation); |
| 131 | }; |
| 132 | |
| 133 | // Abstraction of a binary vector operation. |
| 134 | class HVecBinaryOperation : public HVecOperation { |
| 135 | public: |
| 136 | HVecBinaryOperation(ArenaAllocator* arena, |
| 137 | Primitive::Type packed_type, |
| 138 | size_t vector_length, |
| 139 | uint32_t dex_pc) |
| 140 | : HVecOperation(arena, |
| 141 | packed_type, |
| 142 | SideEffects::None(), |
| 143 | /*number_of_inputs*/ 2, |
| 144 | vector_length, |
| 145 | dex_pc) { } |
| 146 | DECLARE_ABSTRACT_INSTRUCTION(VecBinaryOperation); |
| 147 | private: |
| 148 | DISALLOW_COPY_AND_ASSIGN(HVecBinaryOperation); |
| 149 | }; |
| 150 | |
| 151 | // Abstraction of a vector operation that references memory, with an alignment. |
| 152 | // The Android runtime guarantees at least "component size" alignment for array |
| 153 | // elements and, thus, vectors. |
| 154 | class HVecMemoryOperation : public HVecOperation { |
| 155 | public: |
| 156 | HVecMemoryOperation(ArenaAllocator* arena, |
| 157 | Primitive::Type packed_type, |
| 158 | SideEffects side_effects, |
| 159 | size_t number_of_inputs, |
| 160 | size_t vector_length, |
| 161 | uint32_t dex_pc) |
| 162 | : HVecOperation(arena, packed_type, side_effects, number_of_inputs, vector_length, dex_pc), |
| 163 | alignment_(Primitive::ComponentSize(packed_type), 0) { } |
| 164 | |
| 165 | void SetAlignment(Alignment alignment) { alignment_ = alignment; } |
| 166 | |
| 167 | Alignment GetAlignment() const { return alignment_; } |
| 168 | |
| 169 | DECLARE_ABSTRACT_INSTRUCTION(VecMemoryOperation); |
| 170 | |
| 171 | private: |
| 172 | Alignment alignment_; |
| 173 | |
| 174 | DISALLOW_COPY_AND_ASSIGN(HVecMemoryOperation); |
| 175 | }; |
| 176 | |
| 177 | // |
| 178 | // Definitions of concrete vector operations in HIR. |
| 179 | // |
| 180 | |
| 181 | // Replicates the given scalar into a vector, |
| 182 | // viz. replicate(x) = [ x, .. , x ]. |
| 183 | class HVecReplicateScalar FINAL : public HVecUnaryOperation { |
| 184 | public: |
| 185 | HVecReplicateScalar(ArenaAllocator* arena, |
| 186 | HInstruction* scalar, |
| 187 | Primitive::Type packed_type, |
| 188 | size_t vector_length, |
| 189 | uint32_t dex_pc = kNoDexPc) |
| 190 | : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 191 | SetRawInputAt(0, scalar); |
| 192 | } |
| 193 | DECLARE_INSTRUCTION(VecReplicateScalar); |
| 194 | private: |
| 195 | DISALLOW_COPY_AND_ASSIGN(HVecReplicateScalar); |
| 196 | }; |
| 197 | |
| 198 | // Assigns the given scalar elements to a vector, |
| 199 | // viz. set( array(x1, .., xn) ) = [ x1, .. , xn ]. |
| 200 | class HVecSetScalars FINAL : public HVecUnaryOperation { |
| 201 | HVecSetScalars(ArenaAllocator* arena, |
| 202 | HInstruction** scalars, // array |
| 203 | Primitive::Type packed_type, |
| 204 | size_t vector_length, |
| 205 | uint32_t dex_pc = kNoDexPc) |
| 206 | : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 207 | for (size_t i = 0; i < vector_length; i++) { |
| 208 | SetRawInputAt(0, scalars[i]); |
| 209 | } |
| 210 | } |
| 211 | DECLARE_INSTRUCTION(VecSetScalars); |
| 212 | private: |
| 213 | DISALLOW_COPY_AND_ASSIGN(HVecSetScalars); |
| 214 | }; |
| 215 | |
| 216 | // Sum-reduces the given vector into a shorter vector (m < n) or scalar (m = 1), |
| 217 | // viz. sum-reduce[ x1, .. , xn ] = [ y1, .., ym ], where yi = sum_j x_j. |
| 218 | class HVecSumReduce FINAL : public HVecUnaryOperation { |
| 219 | HVecSumReduce(ArenaAllocator* arena, |
| 220 | HInstruction* input, |
| 221 | Primitive::Type packed_type, |
| 222 | size_t vector_length, |
| 223 | uint32_t dex_pc = kNoDexPc) |
| 224 | : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 225 | DCHECK(input->IsVecOperation()); |
| 226 | DCHECK_EQ(input->AsVecOperation()->GetPackedType(), packed_type); |
| 227 | SetRawInputAt(0, input); |
| 228 | } |
| 229 | |
| 230 | // TODO: probably integral promotion |
| 231 | Primitive::Type GetType() const OVERRIDE { return GetPackedType(); } |
| 232 | |
| 233 | DECLARE_INSTRUCTION(VecSumReduce); |
| 234 | private: |
| 235 | DISALLOW_COPY_AND_ASSIGN(HVecSumReduce); |
| 236 | }; |
| 237 | |
| 238 | // Converts every component in the vector, |
| 239 | // viz. cnv[ x1, .. , xn ] = [ cnv(x1), .. , cnv(xn) ]. |
| 240 | class HVecCnv FINAL : public HVecUnaryOperation { |
| 241 | public: |
| 242 | HVecCnv(ArenaAllocator* arena, |
| 243 | HInstruction* input, |
| 244 | Primitive::Type packed_type, |
| 245 | size_t vector_length, |
| 246 | uint32_t dex_pc = kNoDexPc) |
| 247 | : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 248 | DCHECK(input->IsVecOperation()); |
| 249 | DCHECK_NE(input->AsVecOperation()->GetPackedType(), packed_type); // actual convert |
| 250 | SetRawInputAt(0, input); |
| 251 | } |
| 252 | |
| 253 | Primitive::Type GetInputType() const { return InputAt(0)->AsVecOperation()->GetPackedType(); } |
| 254 | Primitive::Type GetResultType() const { return GetPackedType(); } |
| 255 | |
| 256 | DECLARE_INSTRUCTION(VecCnv); |
| 257 | |
| 258 | private: |
| 259 | DISALLOW_COPY_AND_ASSIGN(HVecCnv); |
| 260 | }; |
| 261 | |
| 262 | // Negates every component in the vector, |
| 263 | // viz. neg[ x1, .. , xn ] = [ -x1, .. , -xn ]. |
| 264 | class HVecNeg FINAL : public HVecUnaryOperation { |
| 265 | public: |
| 266 | HVecNeg(ArenaAllocator* arena, |
| 267 | HInstruction* input, |
| 268 | Primitive::Type packed_type, |
| 269 | size_t vector_length, |
| 270 | uint32_t dex_pc = kNoDexPc) |
| 271 | : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 272 | DCHECK(input->IsVecOperation()); |
| 273 | DCHECK_EQ(input->AsVecOperation()->GetPackedType(), packed_type); |
| 274 | SetRawInputAt(0, input); |
| 275 | } |
| 276 | DECLARE_INSTRUCTION(VecNeg); |
| 277 | private: |
| 278 | DISALLOW_COPY_AND_ASSIGN(HVecNeg); |
| 279 | }; |
| 280 | |
Aart Bik | 6daebeb | 2017-04-03 14:35:41 -0700 | [diff] [blame] | 281 | // Takes absolute value of every component in the vector, |
| 282 | // viz. abs[ x1, .. , xn ] = [ |x1|, .. , |xn| ]. |
| 283 | class HVecAbs FINAL : public HVecUnaryOperation { |
| 284 | public: |
| 285 | HVecAbs(ArenaAllocator* arena, |
| 286 | HInstruction* input, |
| 287 | Primitive::Type packed_type, |
| 288 | size_t vector_length, |
| 289 | uint32_t dex_pc = kNoDexPc) |
| 290 | : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 291 | DCHECK(input->IsVecOperation()); |
| 292 | DCHECK_EQ(input->AsVecOperation()->GetPackedType(), packed_type); |
| 293 | SetRawInputAt(0, input); |
| 294 | } |
| 295 | DECLARE_INSTRUCTION(VecAbs); |
| 296 | private: |
| 297 | DISALLOW_COPY_AND_ASSIGN(HVecAbs); |
| 298 | }; |
| 299 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 300 | // Bitwise- or boolean-nots every component in the vector, |
| 301 | // viz. not[ x1, .. , xn ] = [ ~x1, .. , ~xn ], or |
| 302 | // not[ x1, .. , xn ] = [ !x1, .. , !xn ] for boolean. |
| 303 | class HVecNot FINAL : public HVecUnaryOperation { |
| 304 | public: |
| 305 | HVecNot(ArenaAllocator* arena, |
| 306 | HInstruction* input, |
| 307 | Primitive::Type packed_type, |
| 308 | size_t vector_length, |
| 309 | uint32_t dex_pc = kNoDexPc) |
| 310 | : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 311 | DCHECK(input->IsVecOperation()); |
| 312 | SetRawInputAt(0, input); |
| 313 | } |
| 314 | DECLARE_INSTRUCTION(VecNot); |
| 315 | private: |
| 316 | DISALLOW_COPY_AND_ASSIGN(HVecNot); |
| 317 | }; |
| 318 | |
| 319 | // Adds every component in the two vectors, |
| 320 | // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 + y1, .. , xn + yn ]. |
| 321 | class HVecAdd FINAL : public HVecBinaryOperation { |
| 322 | public: |
| 323 | HVecAdd(ArenaAllocator* arena, |
| 324 | HInstruction* left, |
| 325 | HInstruction* right, |
| 326 | Primitive::Type packed_type, |
| 327 | size_t vector_length, |
| 328 | uint32_t dex_pc = kNoDexPc) |
| 329 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 330 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 331 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 332 | DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| 333 | SetRawInputAt(0, left); |
| 334 | SetRawInputAt(1, right); |
| 335 | } |
| 336 | DECLARE_INSTRUCTION(VecAdd); |
| 337 | private: |
| 338 | DISALLOW_COPY_AND_ASSIGN(HVecAdd); |
| 339 | }; |
| 340 | |
Aart Bik | f3e61ee | 2017-04-12 17:09:20 -0700 | [diff] [blame^] | 341 | // Performs halving add on every component in the two vectors, viz. |
| 342 | // rounded [ x1, .. , xn ] hradd [ y1, .. , yn ] = [ (x1 + y1 + 1) >> 1, .. , (xn + yn + 1) >> 1 ] |
| 343 | // or [ x1, .. , xn ] hadd [ y1, .. , yn ] = [ (x1 + y1) >> 1, .. , (xn + yn ) >> 1 ] |
| 344 | // for signed operands x, y (sign extension) or unsigned operands x, y (zero extension). |
| 345 | class HVecHalvingAdd FINAL : public HVecBinaryOperation { |
| 346 | public: |
| 347 | HVecHalvingAdd(ArenaAllocator* arena, |
| 348 | HInstruction* left, |
| 349 | HInstruction* right, |
| 350 | Primitive::Type packed_type, |
| 351 | size_t vector_length, |
| 352 | bool is_unsigned, |
| 353 | bool is_rounded, |
| 354 | uint32_t dex_pc = kNoDexPc) |
| 355 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc), |
| 356 | is_unsigned_(is_unsigned), |
| 357 | is_rounded_(is_rounded) { |
| 358 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 359 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 360 | DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| 361 | SetRawInputAt(0, left); |
| 362 | SetRawInputAt(1, right); |
| 363 | } |
| 364 | |
| 365 | bool IsUnsigned() const { return is_unsigned_; } |
| 366 | bool IsRounded() const { return is_rounded_; } |
| 367 | |
| 368 | DECLARE_INSTRUCTION(VecHalvingAdd); |
| 369 | |
| 370 | private: |
| 371 | bool is_unsigned_; |
| 372 | bool is_rounded_; |
| 373 | |
| 374 | DISALLOW_COPY_AND_ASSIGN(HVecHalvingAdd); |
| 375 | }; |
| 376 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 377 | // Subtracts every component in the two vectors, |
| 378 | // viz. [ x1, .. , xn ] - [ y1, .. , yn ] = [ x1 - y1, .. , xn - yn ]. |
| 379 | class HVecSub FINAL : public HVecBinaryOperation { |
| 380 | public: |
| 381 | HVecSub(ArenaAllocator* arena, |
| 382 | HInstruction* left, |
| 383 | HInstruction* right, |
| 384 | Primitive::Type packed_type, |
| 385 | size_t vector_length, |
| 386 | uint32_t dex_pc = kNoDexPc) |
| 387 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 388 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 389 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 390 | DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| 391 | SetRawInputAt(0, left); |
| 392 | SetRawInputAt(1, right); |
| 393 | } |
| 394 | DECLARE_INSTRUCTION(VecSub); |
| 395 | private: |
| 396 | DISALLOW_COPY_AND_ASSIGN(HVecSub); |
| 397 | }; |
| 398 | |
| 399 | // Multiplies every component in the two vectors, |
| 400 | // viz. [ x1, .. , xn ] * [ y1, .. , yn ] = [ x1 * y1, .. , xn * yn ]. |
| 401 | class HVecMul FINAL : public HVecBinaryOperation { |
| 402 | public: |
| 403 | HVecMul(ArenaAllocator* arena, |
| 404 | HInstruction* left, |
| 405 | HInstruction* right, |
| 406 | Primitive::Type packed_type, |
| 407 | size_t vector_length, |
| 408 | uint32_t dex_pc = kNoDexPc) |
| 409 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 410 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 411 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 412 | DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| 413 | SetRawInputAt(0, left); |
| 414 | SetRawInputAt(1, right); |
| 415 | } |
| 416 | DECLARE_INSTRUCTION(VecMul); |
| 417 | private: |
| 418 | DISALLOW_COPY_AND_ASSIGN(HVecMul); |
| 419 | }; |
| 420 | |
| 421 | // Divides every component in the two vectors, |
| 422 | // viz. [ x1, .. , xn ] / [ y1, .. , yn ] = [ x1 / y1, .. , xn / yn ]. |
| 423 | class HVecDiv FINAL : public HVecBinaryOperation { |
| 424 | public: |
| 425 | HVecDiv(ArenaAllocator* arena, |
| 426 | HInstruction* left, |
| 427 | HInstruction* right, |
| 428 | Primitive::Type packed_type, |
| 429 | size_t vector_length, |
| 430 | uint32_t dex_pc = kNoDexPc) |
| 431 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 432 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 433 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 434 | DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| 435 | SetRawInputAt(0, left); |
| 436 | SetRawInputAt(1, right); |
| 437 | } |
| 438 | DECLARE_INSTRUCTION(VecDiv); |
| 439 | private: |
| 440 | DISALLOW_COPY_AND_ASSIGN(HVecDiv); |
| 441 | }; |
| 442 | |
Aart Bik | f3e61ee | 2017-04-12 17:09:20 -0700 | [diff] [blame^] | 443 | // Takes minimum of every component in the two vectors, |
| 444 | // viz. MIN( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ min(x1, y1), .. , min(xn, yn) ]. |
| 445 | class HVecMin FINAL : public HVecBinaryOperation { |
| 446 | public: |
| 447 | HVecMin(ArenaAllocator* arena, |
| 448 | HInstruction* left, |
| 449 | HInstruction* right, |
| 450 | Primitive::Type packed_type, |
| 451 | size_t vector_length, |
| 452 | uint32_t dex_pc = kNoDexPc) |
| 453 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 454 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 455 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 456 | DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| 457 | SetRawInputAt(0, left); |
| 458 | SetRawInputAt(1, right); |
| 459 | } |
| 460 | DECLARE_INSTRUCTION(VecMin); |
| 461 | private: |
| 462 | DISALLOW_COPY_AND_ASSIGN(HVecMin); |
| 463 | }; |
| 464 | |
| 465 | // Takes maximum of every component in the two vectors, |
| 466 | // viz. MAX( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ max(x1, y1), .. , max(xn, yn) ]. |
| 467 | class HVecMax FINAL : public HVecBinaryOperation { |
| 468 | public: |
| 469 | HVecMax(ArenaAllocator* arena, |
| 470 | HInstruction* left, |
| 471 | HInstruction* right, |
| 472 | Primitive::Type packed_type, |
| 473 | size_t vector_length, |
| 474 | uint32_t dex_pc = kNoDexPc) |
| 475 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 476 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 477 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 478 | DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| 479 | SetRawInputAt(0, left); |
| 480 | SetRawInputAt(1, right); |
| 481 | } |
| 482 | DECLARE_INSTRUCTION(VecMax); |
| 483 | private: |
| 484 | DISALLOW_COPY_AND_ASSIGN(HVecMax); |
| 485 | }; |
| 486 | |
Aart Bik | f8f5a16 | 2017-02-06 15:35:29 -0800 | [diff] [blame] | 487 | // Bitwise-ands every component in the two vectors, |
| 488 | // viz. [ x1, .. , xn ] & [ y1, .. , yn ] = [ x1 & y1, .. , xn & yn ]. |
| 489 | class HVecAnd FINAL : public HVecBinaryOperation { |
| 490 | public: |
| 491 | HVecAnd(ArenaAllocator* arena, |
| 492 | HInstruction* left, |
| 493 | HInstruction* right, |
| 494 | Primitive::Type packed_type, |
| 495 | size_t vector_length, |
| 496 | uint32_t dex_pc = kNoDexPc) |
| 497 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 498 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 499 | SetRawInputAt(0, left); |
| 500 | SetRawInputAt(1, right); |
| 501 | } |
| 502 | DECLARE_INSTRUCTION(VecAnd); |
| 503 | private: |
| 504 | DISALLOW_COPY_AND_ASSIGN(HVecAnd); |
| 505 | }; |
| 506 | |
| 507 | // Bitwise-and-nots every component in the two vectors, |
| 508 | // viz. [ x1, .. , xn ] and-not [ y1, .. , yn ] = [ ~x1 & y1, .. , ~xn & yn ]. |
| 509 | class HVecAndNot FINAL : public HVecBinaryOperation { |
| 510 | public: |
| 511 | HVecAndNot(ArenaAllocator* arena, |
| 512 | HInstruction* left, |
| 513 | HInstruction* right, |
| 514 | Primitive::Type packed_type, |
| 515 | size_t vector_length, |
| 516 | uint32_t dex_pc = kNoDexPc) |
| 517 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 518 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 519 | SetRawInputAt(0, left); |
| 520 | SetRawInputAt(1, right); |
| 521 | } |
| 522 | DECLARE_INSTRUCTION(VecAndNot); |
| 523 | private: |
| 524 | DISALLOW_COPY_AND_ASSIGN(HVecAndNot); |
| 525 | }; |
| 526 | |
| 527 | // Bitwise-ors every component in the two vectors, |
| 528 | // viz. [ x1, .. , xn ] | [ y1, .. , yn ] = [ x1 | y1, .. , xn | yn ]. |
| 529 | class HVecOr FINAL : public HVecBinaryOperation { |
| 530 | public: |
| 531 | HVecOr(ArenaAllocator* arena, |
| 532 | HInstruction* left, |
| 533 | HInstruction* right, |
| 534 | Primitive::Type packed_type, |
| 535 | size_t vector_length, |
| 536 | uint32_t dex_pc = kNoDexPc) |
| 537 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 538 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 539 | SetRawInputAt(0, left); |
| 540 | SetRawInputAt(1, right); |
| 541 | } |
| 542 | DECLARE_INSTRUCTION(VecOr); |
| 543 | private: |
| 544 | DISALLOW_COPY_AND_ASSIGN(HVecOr); |
| 545 | }; |
| 546 | |
| 547 | // Bitwise-xors every component in the two vectors, |
| 548 | // viz. [ x1, .. , xn ] ^ [ y1, .. , yn ] = [ x1 ^ y1, .. , xn ^ yn ]. |
| 549 | class HVecXor FINAL : public HVecBinaryOperation { |
| 550 | public: |
| 551 | HVecXor(ArenaAllocator* arena, |
| 552 | HInstruction* left, |
| 553 | HInstruction* right, |
| 554 | Primitive::Type packed_type, |
| 555 | size_t vector_length, |
| 556 | uint32_t dex_pc = kNoDexPc) |
| 557 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 558 | DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| 559 | SetRawInputAt(0, left); |
| 560 | SetRawInputAt(1, right); |
| 561 | } |
| 562 | DECLARE_INSTRUCTION(VecXor); |
| 563 | private: |
| 564 | DISALLOW_COPY_AND_ASSIGN(HVecXor); |
| 565 | }; |
| 566 | |
| 567 | // Logically shifts every component in the vector left by the given distance, |
| 568 | // viz. [ x1, .. , xn ] << d = [ x1 << d, .. , xn << d ]. |
| 569 | class HVecShl FINAL : public HVecBinaryOperation { |
| 570 | public: |
| 571 | HVecShl(ArenaAllocator* arena, |
| 572 | HInstruction* left, |
| 573 | HInstruction* right, |
| 574 | Primitive::Type packed_type, |
| 575 | size_t vector_length, |
| 576 | uint32_t dex_pc = kNoDexPc) |
| 577 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 578 | DCHECK(left->IsVecOperation()); |
| 579 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 580 | SetRawInputAt(0, left); |
| 581 | SetRawInputAt(1, right); |
| 582 | } |
| 583 | DECLARE_INSTRUCTION(VecShl); |
| 584 | private: |
| 585 | DISALLOW_COPY_AND_ASSIGN(HVecShl); |
| 586 | }; |
| 587 | |
| 588 | // Arithmetically shifts every component in the vector right by the given distance, |
| 589 | // viz. [ x1, .. , xn ] >> d = [ x1 >> d, .. , xn >> d ]. |
| 590 | class HVecShr FINAL : public HVecBinaryOperation { |
| 591 | public: |
| 592 | HVecShr(ArenaAllocator* arena, |
| 593 | HInstruction* left, |
| 594 | HInstruction* right, |
| 595 | Primitive::Type packed_type, |
| 596 | size_t vector_length, |
| 597 | uint32_t dex_pc = kNoDexPc) |
| 598 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 599 | DCHECK(left->IsVecOperation()); |
| 600 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 601 | SetRawInputAt(0, left); |
| 602 | SetRawInputAt(1, right); |
| 603 | } |
| 604 | DECLARE_INSTRUCTION(VecShr); |
| 605 | private: |
| 606 | DISALLOW_COPY_AND_ASSIGN(HVecShr); |
| 607 | }; |
| 608 | |
| 609 | // Logically shifts every component in the vector right by the given distance, |
| 610 | // viz. [ x1, .. , xn ] >>> d = [ x1 >>> d, .. , xn >>> d ]. |
| 611 | class HVecUShr FINAL : public HVecBinaryOperation { |
| 612 | public: |
| 613 | HVecUShr(ArenaAllocator* arena, |
| 614 | HInstruction* left, |
| 615 | HInstruction* right, |
| 616 | Primitive::Type packed_type, |
| 617 | size_t vector_length, |
| 618 | uint32_t dex_pc = kNoDexPc) |
| 619 | : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| 620 | DCHECK(left->IsVecOperation()); |
| 621 | DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| 622 | SetRawInputAt(0, left); |
| 623 | SetRawInputAt(1, right); |
| 624 | } |
| 625 | DECLARE_INSTRUCTION(VecUShr); |
| 626 | private: |
| 627 | DISALLOW_COPY_AND_ASSIGN(HVecUShr); |
| 628 | }; |
| 629 | |
| 630 | // Loads a vector from memory, viz. load(mem, 1) |
| 631 | // yield the vector [ mem(1), .. , mem(n) ]. |
| 632 | class HVecLoad FINAL : public HVecMemoryOperation { |
| 633 | public: |
| 634 | HVecLoad(ArenaAllocator* arena, |
| 635 | HInstruction* base, |
| 636 | HInstruction* index, |
| 637 | Primitive::Type packed_type, |
| 638 | size_t vector_length, |
| 639 | uint32_t dex_pc = kNoDexPc) |
| 640 | : HVecMemoryOperation(arena, |
| 641 | packed_type, |
| 642 | SideEffects::ArrayReadOfType(packed_type), |
| 643 | /*number_of_inputs*/ 2, |
| 644 | vector_length, |
| 645 | dex_pc) { |
| 646 | SetRawInputAt(0, base); |
| 647 | SetRawInputAt(1, index); |
| 648 | } |
| 649 | DECLARE_INSTRUCTION(VecLoad); |
| 650 | private: |
| 651 | DISALLOW_COPY_AND_ASSIGN(HVecLoad); |
| 652 | }; |
| 653 | |
| 654 | // Stores a vector to memory, viz. store(m, 1, [x1, .. , xn] ) |
| 655 | // sets mem(1) = x1, .. , mem(n) = xn. |
| 656 | class HVecStore FINAL : public HVecMemoryOperation { |
| 657 | public: |
| 658 | HVecStore(ArenaAllocator* arena, |
| 659 | HInstruction* base, |
| 660 | HInstruction* index, |
| 661 | HInstruction* value, |
| 662 | Primitive::Type packed_type, |
| 663 | size_t vector_length, |
| 664 | uint32_t dex_pc = kNoDexPc) |
| 665 | : HVecMemoryOperation(arena, |
| 666 | packed_type, |
| 667 | SideEffects::ArrayWriteOfType(packed_type), |
| 668 | /*number_of_inputs*/ 3, |
| 669 | vector_length, |
| 670 | dex_pc) { |
| 671 | DCHECK(value->IsVecOperation()); |
| 672 | DCHECK_EQ(value->AsVecOperation()->GetPackedType(), packed_type); |
| 673 | SetRawInputAt(0, base); |
| 674 | SetRawInputAt(1, index); |
| 675 | SetRawInputAt(2, value); |
| 676 | } |
| 677 | DECLARE_INSTRUCTION(VecStore); |
| 678 | private: |
| 679 | DISALLOW_COPY_AND_ASSIGN(HVecStore); |
| 680 | }; |
| 681 | |
| 682 | } // namespace art |
| 683 | |
| 684 | #endif // ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |