blob: 3d2b0e5bbd4a80f49b9e564f41c25d8a2ec6947a [file] [log] [blame]
buzbeee88dfbf2012-03-05 11:19:57 -08001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "../../Dalvik.h"
18#include "../../CompilerInternals.h"
19#include "X86LIR.h"
20#include "Codegen.h"
21#include <sys/mman.h> /* for protection change */
22
23namespace art {
24
25#define MAX_ASSEMBLER_RETRIES 50
26
buzbeea7678db2012-03-05 15:35:46 -080027X86EncodingMap EncodingMap[kX86Last] = {
Ian Rogersb5d09b22012-03-06 22:14:17 -080028 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
29 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 4 }, "int 3", "" },
30 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
31
32#define ENCODING_MAP(opname, \
33 rm8_r8, rm32_r32, \
34 r8_rm8, r32_rm32, \
35 ax8_i8, ax32_i32, \
36 rm8_i8, rm8_i8_modrm, \
37 rm32_i32, rm32_i32_modrm, \
38 rm32_i8, rm32_i8_modrm) \
39{ kX86 ## opname ## 8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
40{ kX86 ## opname ## 8AR, kArrayReg, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
41{ kX86 ## opname ## 8TR, kThreadReg,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
42{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | SETS_CCODES, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
43{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
44{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | SETS_CCODES, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
45{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
46{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
47{ kX86 ## opname ## 8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2r" }, \
48{ kX86 ## opname ## 8AI, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4r" }, \
49{ kX86 ## opname ## 8TI, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1r" }, \
50 \
51{ kX86 ## opname ## 16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
52{ kX86 ## opname ## 16AR, kArrayReg, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
53{ kX86 ## opname ## 16TR, kThreadReg,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
54{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
55{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
56{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | SETS_CCODES, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
57{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
58{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
59{ kX86 ## opname ## 16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
60{ kX86 ## opname ## 16AI, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
61{ kX86 ## opname ## 16TI, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
62{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
63{ kX86 ## opname ## 16MI8, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
64{ kX86 ## opname ## 16AI8, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
65{ kX86 ## opname ## 16TI8, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
66 \
67{ kX86 ## opname ## 32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
68{ kX86 ## opname ## 32AR, kArrayReg, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
69{ kX86 ## opname ## 32TR, kThreadReg,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
70{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | SETS_CCODES, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
71{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
72{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | SETS_CCODES, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
73{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
74{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
75{ kX86 ## opname ## 32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2r" }, \
76{ kX86 ## opname ## 32AI, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
77{ kX86 ## opname ## 32TI, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
78{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
79{ kX86 ## opname ## 32MI8, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
80{ kX86 ## opname ## 32AI8, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
81{ kX86 ## opname ## 32TI8, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
82
83ENCODING_MAP(Add,
Ian Rogers96ab4202012-03-05 19:51:02 -080084 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
85 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
86 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
87 0x80, 0x0 /* RegMem8/imm8 */,
88 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
Ian Rogersb5d09b22012-03-06 22:14:17 -080089ENCODING_MAP(Or,
Ian Rogers96ab4202012-03-05 19:51:02 -080090 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
91 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
92 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
93 0x80, 0x1 /* RegMem8/imm8 */,
94 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
Ian Rogersb5d09b22012-03-06 22:14:17 -080095ENCODING_MAP(Adc,
Ian Rogers96ab4202012-03-05 19:51:02 -080096 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
97 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
98 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
99 0x80, 0x2 /* RegMem8/imm8 */,
100 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
Ian Rogersb5d09b22012-03-06 22:14:17 -0800101ENCODING_MAP(Sbb,
Ian Rogers96ab4202012-03-05 19:51:02 -0800102 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
103 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
104 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
105 0x80, 0x3 /* RegMem8/imm8 */,
106 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
Ian Rogersb5d09b22012-03-06 22:14:17 -0800107ENCODING_MAP(And,
Ian Rogers96ab4202012-03-05 19:51:02 -0800108 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
109 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
110 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
111 0x80, 0x4 /* RegMem8/imm8 */,
112 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
Ian Rogersb5d09b22012-03-06 22:14:17 -0800113ENCODING_MAP(Sub,
Ian Rogers96ab4202012-03-05 19:51:02 -0800114 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
115 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
116 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
117 0x80, 0x5 /* RegMem8/imm8 */,
118 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
Ian Rogersb5d09b22012-03-06 22:14:17 -0800119ENCODING_MAP(Xor,
Ian Rogers96ab4202012-03-05 19:51:02 -0800120 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
121 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
122 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
123 0x80, 0x6 /* RegMem8/imm8 */,
124 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
Ian Rogersb5d09b22012-03-06 22:14:17 -0800125ENCODING_MAP(Cmp,
Ian Rogers96ab4202012-03-05 19:51:02 -0800126 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
127 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
128 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
129 0x80, 0x7 /* RegMem8/imm8 */,
Ian Rogersde797832012-03-06 10:18:10 -0800130 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
Ian Rogersb5d09b22012-03-06 22:14:17 -0800131#undef ENCODING_MAP
132
133 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "" },
134 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "" },
135 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "" },
136
137 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul32RRI", "" },
138 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul32RMI", "" },
139 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul32RAI", "" },
140 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "" },
141 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "" },
142 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "" },
143
144 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
145 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
146 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
147 { kX86Mov8RR, kRegReg, IS_BINARY_OP, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
148 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
149 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
150 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
151 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
152 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2r" },
153 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
154 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
155
156 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
157 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
158 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
159 { kX86Mov16RR, kRegReg, IS_BINARY_OP, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
160 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
161 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
162 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
163 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
164 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2r" },
165 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
166 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
167
168 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
169 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
170 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
171 { kX86Mov32RR, kRegReg, IS_BINARY_OP, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
172 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
173 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
174 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
175 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
176 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2r" },
177 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
178 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
179
180 { kX86Lea32RA, kRegArray, IS_QUIN_OP, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
181
182#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
183{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
184{ kX86 ## opname ## 8MI, kShiftMemImm, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2r" }, \
185{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_QUIN_OP | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
186{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "" }, \
187{ kX86 ## opname ## 8MC, kShiftMemCl, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "" }, \
188{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_QUIN_OP | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "" }, \
189 \
190{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
191{ kX86 ## opname ## 16MI, kShiftMemImm, IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2r" }, \
192{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_QUIN_OP | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
193{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "" }, \
194{ kX86 ## opname ## 16MC, kShiftMemCl, IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "" }, \
195{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_QUIN_OP | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "" }, \
196 \
197{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
198{ kX86 ## opname ## 32MI, kShiftMemImm, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2r" }, \
199{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_QUIN_OP | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
200{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "32RC", "" }, \
201{ kX86 ## opname ## 32MC, kShiftMemCl, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "32MC", "" }, \
202{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_QUIN_OP | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "32AC", "" }
203
204 SHIFT_ENCODING_MAP(Rol, 0x0),
205 SHIFT_ENCODING_MAP(Ror, 0x1),
206 SHIFT_ENCODING_MAP(Rcl, 0x2),
207 SHIFT_ENCODING_MAP(Rcr, 0x3),
208 SHIFT_ENCODING_MAP(Sal, 0x4),
209 SHIFT_ENCODING_MAP(Shl, 0x5),
210 SHIFT_ENCODING_MAP(Shr, 0x6),
211 SHIFT_ENCODING_MAP(Sar, 0x7),
212#undef SHIFT_ENCODING_MAP
213
214#define UNARY_ENCODING_MAP(opname, modrm, \
215 reg, reg_kind, reg_flags, \
216 mem, mem_kind, mem_flags, \
217 arr, arr_kind, arr_flags, imm) \
218{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, "" }, \
219{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | mem_flags, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, "" }, \
220{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | arr_flags, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, "" }, \
221{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, "" }, \
222{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | mem_flags, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, "" }, \
223{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | arr_flags, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, "" }, \
224{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, "" }, \
225{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | mem_flags, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, "" }, \
226{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | arr_flags, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, "" }
227
228 UNARY_ENCODING_MAP(Test, 0x0, RI, kRegImm, IS_BINARY_OP, MI, kMemImm, IS_TERTIARY_OP, AI, kArrayImm, IS_QUIN_OP, 1),
229 UNARY_ENCODING_MAP(Not, 0x2, R, kReg, IS_UNARY_OP, M, kMem, IS_BINARY_OP, A, kArray, IS_QUAD_OP, 0),
230 UNARY_ENCODING_MAP(Neg, 0x3, R, kReg, IS_UNARY_OP, M, kMem, IS_BINARY_OP, A, kArray, IS_QUAD_OP, 0),
231 UNARY_ENCODING_MAP(Mul, 0x4, DaR, kRegRegReg, IS_TERTIARY_OP, DaM, kRegRegMem, IS_QUAD_OP, DaA, kRegRegArray, IS_SEXTUPLE_OP, 0),
232 UNARY_ENCODING_MAP(Imul, 0x5, DaR, kRegRegReg, IS_TERTIARY_OP, DaM, kRegRegMem, IS_QUAD_OP, DaA, kRegRegArray, IS_SEXTUPLE_OP, 0),
233 UNARY_ENCODING_MAP(Divmod, 0x6, DaR, kRegRegReg, IS_TERTIARY_OP, DaM, kRegRegMem, IS_QUAD_OP, DaA, kRegRegArray, IS_SEXTUPLE_OP, 0),
234 UNARY_ENCODING_MAP(Idivmod, 0x7, DaR, kRegRegReg, IS_TERTIARY_OP, DaM, kRegRegMem, IS_QUAD_OP, DaA, kRegRegArray, IS_SEXTUPLE_OP, 0),
235#undef UNARY_ENCODING_MAP
236
237#define EXT_0F_ENCODING_MAP(opname, prefix, opcode) \
238{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
239{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
240{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
241
242 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10),
243 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
244 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
245
246 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10),
247 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
248 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
249
250 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A),
251 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A),
252 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C),
253 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C),
254 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D),
255 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D),
256 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E),
257 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E),
258 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F),
259 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F),
260 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58),
261 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58),
262 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59),
263 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59),
264 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF2, 0x5A),
265 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF3, 0x5A),
266 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C),
267 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C),
268 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E),
269 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E),
270
271 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E),
272 EXT_0F_ENCODING_MAP(Movdrx, 0x66, 0x7E),
273
274 { kX86Set8R, kRegCond, IS_BINARY_OP, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
275 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
276 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
277
278 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF),
279 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF),
280 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6),
281 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7),
282 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE),
283 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF),
284#undef EXT_0F_ENCODING_MAP
285
286 { kX86Jcc, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc", "!1c" },
287 { kX86Jmp, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp", "" },
288 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "" },
289 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "" },
290 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "" },
291 { kX86Ret, kNullary,NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
buzbeee88dfbf2012-03-05 11:19:57 -0800292};
293
Ian Rogersb5d09b22012-03-06 22:14:17 -0800294static size_t computeSize(X86EncodingMap* entry, int displacement, bool has_sib) {
295 size_t size = 0;
296 if (entry->skeleton.prefix1 > 0) {
297 ++size;
298 if (entry->skeleton.prefix2 > 0) {
299 ++size;
Ian Rogersde797832012-03-06 10:18:10 -0800300 }
Ian Rogersde797832012-03-06 10:18:10 -0800301 }
Ian Rogersb5d09b22012-03-06 22:14:17 -0800302 ++size; // opcode
303 if (entry->skeleton.opcode == 0x0F) {
304 ++size;
305 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
306 ++size;
307 }
308 }
309 ++size; // modrm
310 if (has_sib) {
311 ++size;
312 }
313 if (displacement != 0) {
314 if (entry->opcode != kX86Lea32RA) {
315 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0);
316 }
317 size += IS_SIMM8(displacement) ? 1 : 4;
318 }
319 size += entry->skeleton.immediate_bytes;
320 return size;
321}
322
323int oatGetInsnSize(LIR* lir) {
324 X86EncodingMap* entry = &EncodingMap[lir->opcode];
325 switch (entry->kind) {
326 case kData:
327 return 4; // 4 bytes of data
328 case kNop:
329 return lir->operands[0]; // length of nop is sole operand
330 case kNullary:
331 return 1; // 1 byte of opcode
332 case kReg: // lir operands - 0: reg
333 return computeSize(entry, 0, false);
334 case kMem: { // lir operands - 0: base, 1: disp
335 int base = lir->operands[0];
336 // SP requires a special extra SIB byte
337 return computeSize(entry, lir->operands[1], false) + (base == rSP ? 1 : 0);
338 }
339 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
340 return computeSize(entry, lir->operands[3], true);
341 case kMemReg: { // lir operands - 0: base, 1: disp, 2: reg
342 int base = lir->operands[0];
343 // SP requires a special extra SIB byte
344 return computeSize(entry, lir->operands[1], false) + (base == rSP ? 1 : 0);
345 }
346 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
347 return computeSize(entry, lir->operands[3], true);
348 case kThreadReg: // lir operands - 0: disp, 1: reg
349 return computeSize(entry, lir->operands[0], false);
350 case kRegReg:
351 return computeSize(entry, 0, false);
352 case kRegMem: { // lir operands - 0: reg, 1: base, 2: disp
353 int base = lir->operands[1];
354 return computeSize(entry, lir->operands[2], false) + (base == rSP ? 1 : 0);
355 }
356 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
357 return computeSize(entry, lir->operands[4], true);
358 case kRegThread: // lir operands - 0: reg, 1: disp
359 return computeSize(entry, lir->operands[1], false);
360 case kRegImm: { // lir operands - 0: reg, 1: immediate
361 int reg = lir->operands[0];
362 // AX opcodes don't require the modrm byte.
363 return computeSize(entry, 0, false) - (reg == rAX ? 1 : 0);
364 }
365 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
366 CHECK_NE(lir->operands[0], static_cast<int>(rSP)); // TODO: add extra SIB byte
367 return computeSize(entry, lir->operands[1], false);
368 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
369 return computeSize(entry, lir->operands[3], true);
370 case kThreadImm: // lir operands - 0: disp, 1: imm
371 return computeSize(entry, lir->operands[0], false);
372 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
373 return computeSize(entry, 0, false);
374 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
375 CHECK_NE(lir->operands[1], static_cast<int>(rSP)); // TODO: add extra SIB byte
376 return computeSize(entry, lir->operands[2], false);
377 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
378 return computeSize(entry, lir->operands[4], true);
379 case kMovRegImm: // lir operands - 0: reg, 1: immediate
380 return 1 + entry->skeleton.immediate_bytes;
381 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
382 // Shift by immediate one has a shorter opcode.
383 return computeSize(entry, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
384 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
385 CHECK_NE(lir->operands[0], static_cast<int>(rSP)); // TODO: add extra SIB byte
386 // Shift by immediate one has a shorter opcode.
387 return computeSize(entry, lir->operands[1], false) - (lir->operands[2] == 1 ? 1 : 0);
388 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
389 // Shift by immediate one has a shorter opcode.
390 return computeSize(entry, lir->operands[3], true) - (lir->operands[4] == 1 ? 1 : 0);
391 case kShiftRegCl:
392 return computeSize(entry, 0, false);
393 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
394 CHECK_NE(lir->operands[0], static_cast<int>(rSP)); // TODO: add extra SIB byte
395 return computeSize(entry, lir->operands[1], false);
396 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
397 return computeSize(entry, lir->operands[3], true);
398 case kRegCond: // lir operands - 0: reg, 1: cond
399 return computeSize(entry, 0, false);
400 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
401 CHECK_NE(lir->operands[0], static_cast<int>(rSP)); // TODO: add extra SIB byte
402 return computeSize(entry, lir->operands[1], false);
403 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
404 return computeSize(entry, lir->operands[3], true);
405 case kJcc: case kJmp:
406 // Jumps only return the short form length, the correct length will be assigned to LIR
407 // flags.size during assembly.
408 return 2;
409 case kCall:
410 switch(lir->opcode) {
411 case kX86CallR: return 2; // opcode modrm
412 case kX86CallM: // lir operands - 0: base, 1: disp
413 return computeSize(entry, lir->operands[1], false);
414 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
415 return computeSize(entry, lir->operands[3], true);
416 default:
417 break;
418 }
419 break;
420 default:
421 break;
422 }
423 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
Ian Rogersde797832012-03-06 10:18:10 -0800424 return 0;
425}
buzbeee88dfbf2012-03-05 11:19:57 -0800426
Ian Rogersb5d09b22012-03-06 22:14:17 -0800427static uint8_t modrmForDisp(int disp) {
428 if (disp == 0) {
429 return 0;
430 } else if (IS_SIMM8(disp)) {
431 return 1;
432 } else {
433 return 2;
434 }
435}
436
437static void emitDisp(CompilationUnit* cUnit, int disp) {
438 if (disp == 0) {
439 return;
440 } else if (IS_SIMM8(disp)) {
441 cUnit->codeBuffer.push_back(disp & 0xFF);
442 } else {
443 cUnit->codeBuffer.push_back(disp & 0xFF);
444 cUnit->codeBuffer.push_back((disp >> 8) & 0xFF);
445 cUnit->codeBuffer.push_back((disp >> 16) & 0xFF);
446 cUnit->codeBuffer.push_back((disp >> 24) & 0xFF);
447 }
448}
449
450static void emitOpReg(CompilationUnit* cUnit, const X86EncodingMap* entry, uint8_t reg) {
451 if (entry->skeleton.prefix1 != 0) {
452 cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
453 if (entry->skeleton.prefix2 != 0) {
454 cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
455 }
456 } else {
457 DCHECK_EQ(0, entry->skeleton.prefix2);
458 }
459 cUnit->codeBuffer.push_back(entry->skeleton.opcode);
460 if (entry->skeleton.opcode == 0x0F) {
461 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
462 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
463 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
464 } else {
465 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
466 }
467 } else {
468 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
469 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
470 }
Ian Rogersf7d9ad32012-03-13 18:45:39 -0700471 if (FPREG(reg)) {
472 reg = reg & FP_REG_MASK;
473 }
Ian Rogersb5d09b22012-03-06 22:14:17 -0800474 DCHECK_LT(reg, 8);
475 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
476 cUnit->codeBuffer.push_back(modrm);
477 DCHECK_EQ(0, entry->skeleton.ax_opcode);
478 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
479}
480
481static void emitOpMem(CompilationUnit* cUnit, const X86EncodingMap* entry, uint8_t base, int disp) {
482 if (entry->skeleton.prefix1 != 0) {
483 cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
484 if (entry->skeleton.prefix2 != 0) {
485 cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
486 }
487 } else {
488 DCHECK_EQ(0, entry->skeleton.prefix2);
489 }
490 cUnit->codeBuffer.push_back(entry->skeleton.opcode);
491 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
492 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
493 DCHECK_LT(entry->skeleton.modrm_opcode, 8);
494 DCHECK_LT(base, 8);
495 uint8_t modrm = (modrmForDisp(disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
496 cUnit->codeBuffer.push_back(modrm);
497 emitDisp(cUnit, disp);
498 DCHECK_EQ(0, entry->skeleton.ax_opcode);
499 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
500}
501
502static void emitMemReg(CompilationUnit* cUnit, const X86EncodingMap* entry,
503 uint8_t base, int disp, uint8_t reg) {
504 if (entry->skeleton.prefix1 != 0) {
505 cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
506 if (entry->skeleton.prefix2 != 0) {
507 cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
508 }
509 } else {
510 DCHECK_EQ(0, entry->skeleton.prefix2);
511 }
512 cUnit->codeBuffer.push_back(entry->skeleton.opcode);
513 if (entry->skeleton.opcode == 0x0F) {
514 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
515 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
516 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
517 } else {
518 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
519 }
520 } else {
521 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
522 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
523 }
Ian Rogersf7d9ad32012-03-13 18:45:39 -0700524 if (FPREG(reg)) {
525 reg = reg & FP_REG_MASK;
526 }
Ian Rogersb5d09b22012-03-06 22:14:17 -0800527 DCHECK_LT(reg, 8);
528 DCHECK_LT(base, 8);
529 uint8_t modrm = (modrmForDisp(disp) << 6) | (reg << 3) | base;
530 cUnit->codeBuffer.push_back(modrm);
531 if (base == rSP) {
532 // Special SIB for SP base
533 cUnit->codeBuffer.push_back(0 << 6 | (rSP << 3) | rSP);
534 }
535 emitDisp(cUnit, disp);
536 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
537 DCHECK_EQ(0, entry->skeleton.ax_opcode);
538 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
539}
540
541static void emitRegMem(CompilationUnit* cUnit, const X86EncodingMap* entry,
542 uint8_t reg, uint8_t base, int disp) {
543 // Opcode will flip operands.
544 emitMemReg(cUnit, entry, base, disp, reg);
545}
546
547static void emitRegArray(CompilationUnit* cUnit, const X86EncodingMap* entry, uint8_t reg,
548 uint8_t base, uint8_t index, int scale, int disp) {
549 if (entry->skeleton.prefix1 != 0) {
550 cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
551 if (entry->skeleton.prefix2 != 0) {
552 cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
553 }
554 } else {
555 DCHECK_EQ(0, entry->skeleton.prefix2);
556 }
557 cUnit->codeBuffer.push_back(entry->skeleton.opcode);
558 if (entry->skeleton.opcode == 0x0F) {
559 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
560 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
561 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
562 } else {
563 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
564 }
565 } else {
566 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
567 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
568 }
Ian Rogersf7d9ad32012-03-13 18:45:39 -0700569 if (FPREG(reg)) {
570 reg = reg & FP_REG_MASK;
571 }
Ian Rogersb5d09b22012-03-06 22:14:17 -0800572 DCHECK_LT(reg, 8);
573 uint8_t modrm = (modrmForDisp(disp) << 6) | (reg << 3) | rSP;
574 cUnit->codeBuffer.push_back(modrm);
575 DCHECK_LT(scale, 4);
576 DCHECK_LT(index, 8);
577 DCHECK_LT(base, 8);
578 uint8_t sib = (scale << 6) | (index << 3) | base;
579 cUnit->codeBuffer.push_back(sib);
580 emitDisp(cUnit, disp);
581 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
582 DCHECK_EQ(0, entry->skeleton.ax_opcode);
583 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
584}
585
586static void emitRegReg(CompilationUnit* cUnit, const X86EncodingMap* entry,
587 uint8_t reg1, uint8_t reg2) {
588 if (entry->skeleton.prefix1 != 0) {
589 cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
590 if (entry->skeleton.prefix2 != 0) {
591 cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
592 }
593 } else {
594 DCHECK_EQ(0, entry->skeleton.prefix2);
595 }
596 cUnit->codeBuffer.push_back(entry->skeleton.opcode);
597 if (entry->skeleton.opcode == 0x0F) {
598 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
599 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
600 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
601 } else {
602 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
603 }
604 } else {
605 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
606 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
607 }
Ian Rogersf7d9ad32012-03-13 18:45:39 -0700608 if (FPREG(reg1)) {
609 reg1 = reg1 & FP_REG_MASK;
610 }
611 if (FPREG(reg2)) {
612 reg2 = reg2 & FP_REG_MASK;
613 }
614 DCHECK_LT(reg1, 8);
615 DCHECK_LT(reg2, 8);
Ian Rogersb5d09b22012-03-06 22:14:17 -0800616 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
617 cUnit->codeBuffer.push_back(modrm);
618 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
619 DCHECK_EQ(0, entry->skeleton.ax_opcode);
620 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
621}
622
623static void emitRegImm(CompilationUnit* cUnit, const X86EncodingMap* entry,
624 uint8_t reg, int imm) {
625 if (entry->skeleton.prefix1 != 0) {
626 cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
627 if (entry->skeleton.prefix2 != 0) {
628 cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
629 }
630 } else {
631 DCHECK_EQ(0, entry->skeleton.prefix2);
632 }
633 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
634 cUnit->codeBuffer.push_back(entry->skeleton.ax_opcode);
635 } else {
636 cUnit->codeBuffer.push_back(entry->skeleton.opcode);
637 if (entry->skeleton.opcode == 0x0F) {
638 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
639 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
640 cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
641 } else {
642 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
643 }
644 } else {
645 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
646 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
647 }
648 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
649 cUnit->codeBuffer.push_back(modrm);
650 }
651 switch (entry->skeleton.immediate_bytes) {
652 case 1:
653 DCHECK(IS_SIMM8(imm));
654 cUnit->codeBuffer.push_back(imm & 0xFF);
655 break;
656 case 2:
657 DCHECK(IS_SIMM16(imm));
658 cUnit->codeBuffer.push_back(imm & 0xFF);
659 cUnit->codeBuffer.push_back((imm >> 8) & 0xFF);
660 break;
661 case 4:
662 cUnit->codeBuffer.push_back(imm & 0xFF);
663 cUnit->codeBuffer.push_back((imm >> 8) & 0xFF);
664 cUnit->codeBuffer.push_back((imm >> 16) & 0xFF);
665 cUnit->codeBuffer.push_back((imm >> 24) & 0xFF);
666 break;
667 default:
668 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
669 << ") for instruction: " << entry->name;
670 break;
671 }
672}
673
buzbeee88dfbf2012-03-05 11:19:57 -0800674/*
675 * Assemble the LIR into binary instruction format. Note that we may
676 * discover that pc-relative displacements may not fit the selected
677 * instruction. In those cases we will try to substitute a new code
678 * sequence or request that the trace be shortened and retried.
679 */
680AssemblerStatus oatAssembleInstructions(CompilationUnit *cUnit,
Ian Rogersb5d09b22012-03-06 22:14:17 -0800681 intptr_t startAddr) {
682 LIR *lir;
683 AssemblerStatus res = kSuccess; // Assume success
buzbeee88dfbf2012-03-05 11:19:57 -0800684
Ian Rogersb5d09b22012-03-06 22:14:17 -0800685 for (lir = (LIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) {
686 if (lir->opcode < 0) {
687 continue;
buzbeee88dfbf2012-03-05 11:19:57 -0800688 }
Ian Rogersb5d09b22012-03-06 22:14:17 -0800689
690
691 if (lir->flags.isNop) {
692 continue;
693 }
694
695 if (lir->flags.pcRelFixup) {
696 UNIMPLEMENTED(WARNING) << "PC relative fix up";
697 }
698
699 /*
700 * If one of the pc-relative instructions expanded we'll have
701 * to make another pass. Don't bother to fully assemble the
702 * instruction.
703 */
704 if (res != kSuccess) {
705 continue;
706 }
707 const X86EncodingMap *entry = &EncodingMap[lir->opcode];
708 switch(entry->kind) {
709 case kData: // 4 bytes of data
710 cUnit->codeBuffer.push_back(lir->operands[0]);
711 break;
712 case kNullary: // 1 byte of opcode
713 DCHECK_EQ(0, entry->skeleton.prefix1);
714 DCHECK_EQ(0, entry->skeleton.prefix2);
715 cUnit->codeBuffer.push_back(entry->skeleton.opcode);
716 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
717 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
718 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
719 DCHECK_EQ(0, entry->skeleton.ax_opcode);
720 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
721 break;
722 case kReg: // lir operands - 0: reg
723 emitOpReg(cUnit, entry, lir->operands[0]);
724 break;
725 case kMem: // lir operands - 0: base, 1: disp
726 emitOpMem(cUnit, entry, lir->operands[0], lir->operands[1]);
727 break;
728 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
729 emitMemReg(cUnit, entry, lir->operands[0], lir->operands[1], lir->operands[2]);
730 break;
731 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
732 emitRegMem(cUnit, entry, lir->operands[0], lir->operands[1], lir->operands[2]);
733 break;
734 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
735 emitRegArray(cUnit, entry, lir->operands[0], lir->operands[1], lir->operands[2],
736 lir->operands[3], lir->operands[4]);
737 break;
738 case kRegReg: // lir operands - 0: reg1, 1: reg2
739 emitRegReg(cUnit, entry, lir->operands[0], lir->operands[1]);
740 break;
741 case kRegImm: // lir operands - 0: reg, 1: immediate
742 emitRegImm(cUnit, entry, lir->operands[0], lir->operands[1]);
743 break;
744 default:
745 UNIMPLEMENTED(FATAL) << "Unimplemented encoding for: " << entry->name;
746 break;
747 }
748 }
749 return res;
buzbeee88dfbf2012-03-05 11:19:57 -0800750}
751
buzbeee88dfbf2012-03-05 11:19:57 -0800752/*
753 * Target-dependent offset assignment.
754 * independent.
755 */
756int oatAssignInsnOffsets(CompilationUnit* cUnit)
757{
758 LIR* x86LIR;
759 int offset = 0;
760
761 for (x86LIR = (LIR *) cUnit->firstLIRInsn;
762 x86LIR;
763 x86LIR = NEXT_LIR(x86LIR)) {
764 x86LIR->offset = offset;
765 if (x86LIR->opcode >= 0) {
766 if (!x86LIR->flags.isNop) {
767 offset += x86LIR->flags.size;
768 }
769 } else if (x86LIR->opcode == kPseudoPseudoAlign4) {
770 if (offset & 0x2) {
771 offset += 2;
772 x86LIR->operands[0] = 1;
773 } else {
774 x86LIR->operands[0] = 0;
775 }
776 }
777 /* Pseudo opcodes don't consume space */
778 }
779
780 return offset;
781}
782
783} // namespace art