blob: a6720ce6f21545df57bdd8ce491ac02e6d13ccbd [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Thumb2 ISA. */
18
19#include "arm_lir.h"
20#include "codegen_arm.h"
21#include "dex/quick/mir_to_lir-inl.h"
22#include "oat/runtime/oat_support_entrypoints.h"
23
24namespace art {
25
26
27/* Return the position of an ssa name within the argument list */
28int ArmMir2Lir::InPosition(int s_reg)
29{
30 int v_reg = mir_graph_->SRegToVReg(s_reg);
31 return v_reg - cu_->num_regs;
32}
33
34/*
35 * Describe an argument. If it's already in an arg register, just leave it
36 * there. NOTE: all live arg registers must be locked prior to this call
37 * to avoid having them allocated as a temp by downstream utilities.
38 */
39RegLocation ArmMir2Lir::ArgLoc(RegLocation loc)
40{
41 int arg_num = InPosition(loc.s_reg_low);
42 if (loc.wide) {
43 if (arg_num == 2) {
44 // Bad case - half in register, half in frame. Just punt
45 loc.location = kLocInvalid;
46 } else if (arg_num < 2) {
47 loc.low_reg = rARM_ARG1 + arg_num;
48 loc.high_reg = loc.low_reg + 1;
49 loc.location = kLocPhysReg;
50 } else {
51 loc.location = kLocDalvikFrame;
52 }
53 } else {
54 if (arg_num < 3) {
55 loc.low_reg = rARM_ARG1 + arg_num;
56 loc.location = kLocPhysReg;
57 } else {
58 loc.location = kLocDalvikFrame;
59 }
60 }
61 return loc;
62}
63
64/*
65 * Load an argument. If already in a register, just return. If in
66 * the frame, we can't use the normal LoadValue() because it assumed
67 * a proper frame - and we're frameless.
68 */
69RegLocation ArmMir2Lir::LoadArg(RegLocation loc)
70{
71 if (loc.location == kLocDalvikFrame) {
72 int start = (InPosition(loc.s_reg_low) + 1) * sizeof(uint32_t);
73 loc.low_reg = AllocTemp();
74 LoadWordDisp(rARM_SP, start, loc.low_reg);
75 if (loc.wide) {
76 loc.high_reg = AllocTemp();
77 LoadWordDisp(rARM_SP, start + sizeof(uint32_t), loc.high_reg);
78 }
79 loc.location = kLocPhysReg;
80 }
81 return loc;
82}
83
84/* Lock any referenced arguments that arrive in registers */
85void ArmMir2Lir::LockLiveArgs(MIR* mir)
86{
87 int first_in = cu_->num_regs;
88 const int num_arg_regs = 3; // TODO: generalize & move to RegUtil.cc
89 for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
90 int v_reg = mir_graph_->SRegToVReg(mir->ssa_rep->uses[i]);
91 int InPosition = v_reg - first_in;
92 if (InPosition < num_arg_regs) {
93 LockTemp(rARM_ARG1 + InPosition);
94 }
95 }
96}
97
98/* Find the next MIR, which may be in a following basic block */
99// TODO: should this be a utility in mir_graph?
100MIR* ArmMir2Lir::GetNextMir(BasicBlock** p_bb, MIR* mir)
101{
102 BasicBlock* bb = *p_bb;
103 MIR* orig_mir = mir;
104 while (bb != NULL) {
105 if (mir != NULL) {
106 mir = mir->next;
107 }
108 if (mir != NULL) {
109 return mir;
110 } else {
111 bb = bb->fall_through;
112 *p_bb = bb;
113 if (bb) {
114 mir = bb->first_mir_insn;
115 if (mir != NULL) {
116 return mir;
117 }
118 }
119 }
120 }
121 return orig_mir;
122}
123
124/* Used for the "verbose" listing */
125//TODO: move to common code
126void ArmMir2Lir::GenPrintLabel(MIR* mir)
127{
128 /* Mark the beginning of a Dalvik instruction for line tracking */
129 char* inst_str = cu_->verbose ?
130 mir_graph_->GetDalvikDisassembly(mir) : NULL;
131 MarkBoundary(mir->offset, inst_str);
132}
133
134MIR* ArmMir2Lir::SpecialIGet(BasicBlock** bb, MIR* mir,
135 OpSize size, bool long_or_double, bool is_object)
136{
137 int field_offset;
138 bool is_volatile;
139 uint32_t field_idx = mir->dalvikInsn.vC;
140 bool fast_path = FastInstance(field_idx, field_offset, is_volatile, false);
141 if (!fast_path || !(mir->optimization_flags & MIR_IGNORE_NULL_CHECK)) {
142 return NULL;
143 }
144 RegLocation rl_obj = mir_graph_->GetSrc(mir, 0);
145 LockLiveArgs(mir);
146 rl_obj = ArmMir2Lir::ArgLoc(rl_obj);
147 RegLocation rl_dest;
148 if (long_or_double) {
149 rl_dest = GetReturnWide(false);
150 } else {
151 rl_dest = GetReturn(false);
152 }
153 // Point of no return - no aborts after this
154 ArmMir2Lir::GenPrintLabel(mir);
155 rl_obj = LoadArg(rl_obj);
156 GenIGet(field_idx, mir->optimization_flags, size, rl_dest, rl_obj, long_or_double, is_object);
157 return GetNextMir(bb, mir);
158}
159
160MIR* ArmMir2Lir::SpecialIPut(BasicBlock** bb, MIR* mir,
161 OpSize size, bool long_or_double, bool is_object)
162{
163 int field_offset;
164 bool is_volatile;
165 uint32_t field_idx = mir->dalvikInsn.vC;
166 bool fast_path = FastInstance(field_idx, field_offset, is_volatile, false);
167 if (!fast_path || !(mir->optimization_flags & MIR_IGNORE_NULL_CHECK)) {
168 return NULL;
169 }
170 RegLocation rl_src;
171 RegLocation rl_obj;
172 LockLiveArgs(mir);
173 if (long_or_double) {
174 rl_src = mir_graph_->GetSrcWide(mir, 0);
175 rl_obj = mir_graph_->GetSrc(mir, 2);
176 } else {
177 rl_src = mir_graph_->GetSrc(mir, 0);
178 rl_obj = mir_graph_->GetSrc(mir, 1);
179 }
180 rl_src = ArmMir2Lir::ArgLoc(rl_src);
181 rl_obj = ArmMir2Lir::ArgLoc(rl_obj);
182 // Reject if source is split across registers & frame
183 if (rl_obj.location == kLocInvalid) {
184 ResetRegPool();
185 return NULL;
186 }
187 // Point of no return - no aborts after this
188 ArmMir2Lir::GenPrintLabel(mir);
189 rl_obj = LoadArg(rl_obj);
190 rl_src = LoadArg(rl_src);
191 GenIPut(field_idx, mir->optimization_flags, size, rl_src, rl_obj, long_or_double, is_object);
192 return GetNextMir(bb, mir);
193}
194
195MIR* ArmMir2Lir::SpecialIdentity(MIR* mir)
196{
197 RegLocation rl_src;
198 RegLocation rl_dest;
199 bool wide = (mir->ssa_rep->num_uses == 2);
200 if (wide) {
201 rl_src = mir_graph_->GetSrcWide(mir, 0);
202 rl_dest = GetReturnWide(false);
203 } else {
204 rl_src = mir_graph_->GetSrc(mir, 0);
205 rl_dest = GetReturn(false);
206 }
207 LockLiveArgs(mir);
208 rl_src = ArmMir2Lir::ArgLoc(rl_src);
209 if (rl_src.location == kLocInvalid) {
210 ResetRegPool();
211 return NULL;
212 }
213 // Point of no return - no aborts after this
214 ArmMir2Lir::GenPrintLabel(mir);
215 rl_src = LoadArg(rl_src);
216 if (wide) {
217 StoreValueWide(rl_dest, rl_src);
218 } else {
219 StoreValue(rl_dest, rl_src);
220 }
221 return mir;
222}
223
224/*
225 * Special-case code genration for simple non-throwing leaf methods.
226 */
227void ArmMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
228 SpecialCaseHandler special_case)
229{
230 current_dalvik_offset_ = mir->offset;
231 MIR* next_mir = NULL;
232 switch (special_case) {
233 case kNullMethod:
234 DCHECK(mir->dalvikInsn.opcode == Instruction::RETURN_VOID);
235 next_mir = mir;
236 break;
237 case kConstFunction:
238 ArmMir2Lir::GenPrintLabel(mir);
239 LoadConstant(rARM_RET0, mir->dalvikInsn.vB);
240 next_mir = GetNextMir(&bb, mir);
241 break;
242 case kIGet:
243 next_mir = SpecialIGet(&bb, mir, kWord, false, false);
244 break;
245 case kIGetBoolean:
246 case kIGetByte:
247 next_mir = SpecialIGet(&bb, mir, kUnsignedByte, false, false);
248 break;
249 case kIGetObject:
250 next_mir = SpecialIGet(&bb, mir, kWord, false, true);
251 break;
252 case kIGetChar:
253 next_mir = SpecialIGet(&bb, mir, kUnsignedHalf, false, false);
254 break;
255 case kIGetShort:
256 next_mir = SpecialIGet(&bb, mir, kSignedHalf, false, false);
257 break;
258 case kIGetWide:
259 next_mir = SpecialIGet(&bb, mir, kLong, true, false);
260 break;
261 case kIPut:
262 next_mir = SpecialIPut(&bb, mir, kWord, false, false);
263 break;
264 case kIPutBoolean:
265 case kIPutByte:
266 next_mir = SpecialIPut(&bb, mir, kUnsignedByte, false, false);
267 break;
268 case kIPutObject:
269 next_mir = SpecialIPut(&bb, mir, kWord, false, true);
270 break;
271 case kIPutChar:
272 next_mir = SpecialIPut(&bb, mir, kUnsignedHalf, false, false);
273 break;
274 case kIPutShort:
275 next_mir = SpecialIPut(&bb, mir, kSignedHalf, false, false);
276 break;
277 case kIPutWide:
278 next_mir = SpecialIPut(&bb, mir, kLong, true, false);
279 break;
280 case kIdentity:
281 next_mir = SpecialIdentity(mir);
282 break;
283 default:
284 return;
285 }
286 if (next_mir != NULL) {
287 current_dalvik_offset_ = next_mir->offset;
288 if (special_case != kIdentity) {
289 ArmMir2Lir::GenPrintLabel(next_mir);
290 }
291 NewLIR1(kThumbBx, rARM_LR);
292 core_spill_mask_ = 0;
293 num_core_spills_ = 0;
294 fp_spill_mask_ = 0;
295 num_fp_spills_ = 0;
296 frame_size_ = 0;
297 core_vmap_table_.clear();
298 fp_vmap_table_.clear();
299 }
300}
301
302/*
303 * The sparse table in the literal pool is an array of <key,displacement>
304 * pairs. For each set, we'll load them as a pair using ldmia.
305 * This means that the register number of the temp we use for the key
306 * must be lower than the reg for the displacement.
307 *
308 * The test loop will look something like:
309 *
310 * adr rBase, <table>
311 * ldr r_val, [rARM_SP, v_reg_off]
312 * mov r_idx, #table_size
313 * lp:
314 * ldmia rBase!, {r_key, r_disp}
315 * sub r_idx, #1
316 * cmp r_val, r_key
317 * ifeq
318 * add rARM_PC, r_disp ; This is the branch from which we compute displacement
319 * cbnz r_idx, lp
320 */
321void ArmMir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
322 RegLocation rl_src)
323{
324 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
325 if (cu_->verbose) {
326 DumpSparseSwitchTable(table);
327 }
328 // Add the table to the list - we'll process it later
329 SwitchTable *tab_rec =
330 static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
331 ArenaAllocator::kAllocData));
332 tab_rec->table = table;
333 tab_rec->vaddr = current_dalvik_offset_;
334 int size = table[1];
335 tab_rec->targets = static_cast<LIR**>(arena_->NewMem(size * sizeof(LIR*), true,
336 ArenaAllocator::kAllocLIR));
337 switch_tables_.Insert(tab_rec);
338
339 // Get the switch value
340 rl_src = LoadValue(rl_src, kCoreReg);
341 int rBase = AllocTemp();
342 /* Allocate key and disp temps */
343 int r_key = AllocTemp();
344 int r_disp = AllocTemp();
345 // Make sure r_key's register number is less than r_disp's number for ldmia
346 if (r_key > r_disp) {
347 int tmp = r_disp;
348 r_disp = r_key;
349 r_key = tmp;
350 }
351 // Materialize a pointer to the switch table
352 NewLIR3(kThumb2Adr, rBase, 0, reinterpret_cast<uintptr_t>(tab_rec));
353 // Set up r_idx
354 int r_idx = AllocTemp();
355 LoadConstant(r_idx, size);
356 // Establish loop branch target
357 LIR* target = NewLIR0(kPseudoTargetLabel);
358 // Load next key/disp
359 NewLIR2(kThumb2LdmiaWB, rBase, (1 << r_key) | (1 << r_disp));
360 OpRegReg(kOpCmp, r_key, rl_src.low_reg);
361 // Go if match. NOTE: No instruction set switch here - must stay Thumb2
362 OpIT(kCondEq, "");
363 LIR* switch_branch = NewLIR1(kThumb2AddPCR, r_disp);
364 tab_rec->anchor = switch_branch;
365 // Needs to use setflags encoding here
366 NewLIR3(kThumb2SubsRRI12, r_idx, r_idx, 1);
367 OpCondBranch(kCondNe, target);
368}
369
370
371void ArmMir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
372 RegLocation rl_src)
373{
374 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
375 if (cu_->verbose) {
376 DumpPackedSwitchTable(table);
377 }
378 // Add the table to the list - we'll process it later
379 SwitchTable *tab_rec =
380 static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
381 ArenaAllocator::kAllocData));
382 tab_rec->table = table;
383 tab_rec->vaddr = current_dalvik_offset_;
384 int size = table[1];
385 tab_rec->targets =
386 static_cast<LIR**>(arena_->NewMem(size * sizeof(LIR*), true, ArenaAllocator::kAllocLIR));
387 switch_tables_.Insert(tab_rec);
388
389 // Get the switch value
390 rl_src = LoadValue(rl_src, kCoreReg);
391 int table_base = AllocTemp();
392 // Materialize a pointer to the switch table
393 NewLIR3(kThumb2Adr, table_base, 0, reinterpret_cast<uintptr_t>(tab_rec));
394 int low_key = s4FromSwitchData(&table[2]);
395 int keyReg;
396 // Remove the bias, if necessary
397 if (low_key == 0) {
398 keyReg = rl_src.low_reg;
399 } else {
400 keyReg = AllocTemp();
401 OpRegRegImm(kOpSub, keyReg, rl_src.low_reg, low_key);
402 }
403 // Bounds check - if < 0 or >= size continue following switch
404 OpRegImm(kOpCmp, keyReg, size-1);
405 LIR* branch_over = OpCondBranch(kCondHi, NULL);
406
407 // Load the displacement from the switch table
408 int disp_reg = AllocTemp();
409 LoadBaseIndexed(table_base, keyReg, disp_reg, 2, kWord);
410
411 // ..and go! NOTE: No instruction set switch here - must stay Thumb2
412 LIR* switch_branch = NewLIR1(kThumb2AddPCR, disp_reg);
413 tab_rec->anchor = switch_branch;
414
415 /* branch_over target here */
416 LIR* target = NewLIR0(kPseudoTargetLabel);
417 branch_over->target = target;
418}
419
420/*
421 * Array data table format:
422 * ushort ident = 0x0300 magic value
423 * ushort width width of each element in the table
424 * uint size number of elements in the table
425 * ubyte data[size*width] table of data values (may contain a single-byte
426 * padding at the end)
427 *
428 * Total size is 4+(width * size + 1)/2 16-bit code units.
429 */
430void ArmMir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src)
431{
432 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
433 // Add the table to the list - we'll process it later
434 FillArrayData *tab_rec =
435 static_cast<FillArrayData*>(arena_->NewMem(sizeof(FillArrayData), true,
436 ArenaAllocator::kAllocData));
437 tab_rec->table = table;
438 tab_rec->vaddr = current_dalvik_offset_;
439 uint16_t width = tab_rec->table[1];
440 uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
441 tab_rec->size = (size * width) + 8;
442
443 fill_array_data_.Insert(tab_rec);
444
445 // Making a call - use explicit registers
446 FlushAllRegs(); /* Everything to home location */
447 LoadValueDirectFixed(rl_src, r0);
448 LoadWordDisp(rARM_SELF, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode),
449 rARM_LR);
450 // Materialize a pointer to the fill data image
451 NewLIR3(kThumb2Adr, r1, 0, reinterpret_cast<uintptr_t>(tab_rec));
452 ClobberCalleeSave();
453 LIR* call_inst = OpReg(kOpBlx, rARM_LR);
454 MarkSafepointPC(call_inst);
455}
456
457/*
458 * Handle simple case (thin lock) inline. If it's complicated, bail
459 * out to the heavyweight lock/unlock routines. We'll use dedicated
460 * registers here in order to be in the right position in case we
461 * to bail to oat[Lock/Unlock]Object(self, object)
462 *
463 * r0 -> self pointer [arg0 for oat[Lock/Unlock]Object
464 * r1 -> object [arg1 for oat[Lock/Unlock]Object
465 * r2 -> intial contents of object->lock, later result of strex
466 * r3 -> self->thread_id
467 * r12 -> allow to be used by utilities as general temp
468 *
469 * The result of the strex is 0 if we acquire the lock.
470 *
471 * See comments in monitor.cc for the layout of the lock word.
472 * Of particular interest to this code is the test for the
473 * simple case - which we handle inline. For monitor enter, the
474 * simple case is thin lock, held by no-one. For monitor exit,
475 * the simple case is thin lock, held by the unlocking thread with
476 * a recurse count of 0.
477 *
478 * A minor complication is that there is a field in the lock word
479 * unrelated to locking: the hash state. This field must be ignored, but
480 * preserved.
481 *
482 */
483void ArmMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src)
484{
485 FlushAllRegs();
486 DCHECK_EQ(LW_SHAPE_THIN, 0);
487 LoadValueDirectFixed(rl_src, r0); // Get obj
488 LockCallTemps(); // Prepare for explicit register usage
489 GenNullCheck(rl_src.s_reg_low, r0, opt_flags);
490 LoadWordDisp(rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2);
491 NewLIR3(kThumb2Ldrex, r1, r0,
492 mirror::Object::MonitorOffset().Int32Value() >> 2); // Get object->lock
493 // Align owner
494 OpRegImm(kOpLsl, r2, LW_LOCK_OWNER_SHIFT);
495 // Is lock unheld on lock or held by us (==thread_id) on unlock?
496 NewLIR4(kThumb2Bfi, r2, r1, 0, LW_LOCK_OWNER_SHIFT - 1);
497 NewLIR3(kThumb2Bfc, r1, LW_HASH_STATE_SHIFT, LW_LOCK_OWNER_SHIFT - 1);
498 OpRegImm(kOpCmp, r1, 0);
499 OpIT(kCondEq, "");
500 NewLIR4(kThumb2Strex, r1, r2, r0,
501 mirror::Object::MonitorOffset().Int32Value() >> 2);
502 OpRegImm(kOpCmp, r1, 0);
503 OpIT(kCondNe, "T");
504 // Go expensive route - artLockObjectFromCode(self, obj);
505 LoadWordDisp(rARM_SELF, ENTRYPOINT_OFFSET(pLockObjectFromCode), rARM_LR);
506 ClobberCalleeSave();
507 LIR* call_inst = OpReg(kOpBlx, rARM_LR);
508 MarkSafepointPC(call_inst);
509 GenMemBarrier(kLoadLoad);
510}
511
512/*
513 * For monitor unlock, we don't have to use ldrex/strex. Once
514 * we've determined that the lock is thin and that we own it with
515 * a zero recursion count, it's safe to punch it back to the
516 * initial, unlock thin state with a store word.
517 */
518void ArmMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src)
519{
520 DCHECK_EQ(LW_SHAPE_THIN, 0);
521 FlushAllRegs();
522 LoadValueDirectFixed(rl_src, r0); // Get obj
523 LockCallTemps(); // Prepare for explicit register usage
524 GenNullCheck(rl_src.s_reg_low, r0, opt_flags);
525 LoadWordDisp(r0, mirror::Object::MonitorOffset().Int32Value(), r1); // Get lock
526 LoadWordDisp(rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2);
527 // Is lock unheld on lock or held by us (==thread_id) on unlock?
528 OpRegRegImm(kOpAnd, r3, r1,
529 (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
530 // Align owner
531 OpRegImm(kOpLsl, r2, LW_LOCK_OWNER_SHIFT);
532 NewLIR3(kThumb2Bfc, r1, LW_HASH_STATE_SHIFT, LW_LOCK_OWNER_SHIFT - 1);
533 OpRegReg(kOpSub, r1, r2);
534 OpIT(kCondEq, "EE");
535 StoreWordDisp(r0, mirror::Object::MonitorOffset().Int32Value(), r3);
536 // Go expensive route - UnlockObjectFromCode(obj);
537 LoadWordDisp(rARM_SELF, ENTRYPOINT_OFFSET(pUnlockObjectFromCode), rARM_LR);
538 ClobberCalleeSave();
539 LIR* call_inst = OpReg(kOpBlx, rARM_LR);
540 MarkSafepointPC(call_inst);
541 GenMemBarrier(kStoreLoad);
542}
543
544void ArmMir2Lir::GenMoveException(RegLocation rl_dest)
545{
546 int ex_offset = Thread::ExceptionOffset().Int32Value();
547 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
548 int reset_reg = AllocTemp();
549 LoadWordDisp(rARM_SELF, ex_offset, rl_result.low_reg);
550 LoadConstant(reset_reg, 0);
551 StoreWordDisp(rARM_SELF, ex_offset, reset_reg);
552 FreeTemp(reset_reg);
553 StoreValue(rl_dest, rl_result);
554}
555
556/*
557 * Mark garbage collection card. Skip if the value we're storing is null.
558 */
559void ArmMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg)
560{
561 int reg_card_base = AllocTemp();
562 int reg_card_no = AllocTemp();
563 LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
564 LoadWordDisp(rARM_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base);
565 OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
566 StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0,
567 kUnsignedByte);
568 LIR* target = NewLIR0(kPseudoTargetLabel);
569 branch_over->target = target;
570 FreeTemp(reg_card_base);
571 FreeTemp(reg_card_no);
572}
573
574void ArmMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method)
575{
576 int spill_count = num_core_spills_ + num_fp_spills_;
577 /*
578 * On entry, r0, r1, r2 & r3 are live. Let the register allocation
579 * mechanism know so it doesn't try to use any of them when
580 * expanding the frame or flushing. This leaves the utility
581 * code with a single temp: r12. This should be enough.
582 */
583 LockTemp(r0);
584 LockTemp(r1);
585 LockTemp(r2);
586 LockTemp(r3);
587
588 /*
589 * We can safely skip the stack overflow check if we're
590 * a leaf *and* our frame size < fudge factor.
591 */
592 bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
593 (static_cast<size_t>(frame_size_) <
594 Thread::kStackOverflowReservedBytes));
595 NewLIR0(kPseudoMethodEntry);
596 if (!skip_overflow_check) {
597 /* Load stack limit */
598 LoadWordDisp(rARM_SELF, Thread::StackEndOffset().Int32Value(), r12);
599 }
600 /* Spill core callee saves */
601 NewLIR1(kThumb2Push, core_spill_mask_);
602 /* Need to spill any FP regs? */
603 if (num_fp_spills_) {
604 /*
605 * NOTE: fp spills are a little different from core spills in that
606 * they are pushed as a contiguous block. When promoting from
607 * the fp set, we must allocate all singles from s16..highest-promoted
608 */
609 NewLIR1(kThumb2VPushCS, num_fp_spills_);
610 }
611 if (!skip_overflow_check) {
612 OpRegRegImm(kOpSub, rARM_LR, rARM_SP, frame_size_ - (spill_count * 4));
613 GenRegRegCheck(kCondCc, rARM_LR, r12, kThrowStackOverflow);
614 OpRegCopy(rARM_SP, rARM_LR); // Establish stack
615 } else {
616 OpRegImm(kOpSub, rARM_SP, frame_size_ - (spill_count * 4));
617 }
618
619 FlushIns(ArgLocs, rl_method);
620
621 FreeTemp(r0);
622 FreeTemp(r1);
623 FreeTemp(r2);
624 FreeTemp(r3);
625}
626
627void ArmMir2Lir::GenExitSequence()
628{
629 int spill_count = num_core_spills_ + num_fp_spills_;
630 /*
631 * In the exit path, r0/r1 are live - make sure they aren't
632 * allocated by the register utilities as temps.
633 */
634 LockTemp(r0);
635 LockTemp(r1);
636
637 NewLIR0(kPseudoMethodExit);
638 OpRegImm(kOpAdd, rARM_SP, frame_size_ - (spill_count * 4));
639 /* Need to restore any FP callee saves? */
640 if (num_fp_spills_) {
641 NewLIR1(kThumb2VPopCS, num_fp_spills_);
642 }
643 if (core_spill_mask_ & (1 << rARM_LR)) {
644 /* Unspill rARM_LR to rARM_PC */
645 core_spill_mask_ &= ~(1 << rARM_LR);
646 core_spill_mask_ |= (1 << rARM_PC);
647 }
648 NewLIR1(kThumb2Pop, core_spill_mask_);
649 if (!(core_spill_mask_ & (1 << rARM_PC))) {
650 /* We didn't pop to rARM_PC, so must do a bv rARM_LR */
651 NewLIR1(kThumbBx, rARM_LR);
652 }
653}
654
655} // namespace art