blob: eb0302e80f0cf989898e1371996a5d8ff025abfb [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Mips ISA */
18
19#include "codegen_mips.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mips_lir.h"
22#include "oat/runtime/oat_support_entrypoints.h"
23
24namespace art {
25
26void MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
27 SpecialCaseHandler special_case)
28{
29 // TODO
30}
31
32/*
33 * The lack of pc-relative loads on Mips presents somewhat of a challenge
34 * for our PIC switch table strategy. To materialize the current location
35 * we'll do a dummy JAL and reference our tables using r_RA as the
36 * base register. Note that r_RA will be used both as the base to
37 * locate the switch table data and as the reference base for the switch
38 * target offsets stored in the table. We'll use a special pseudo-instruction
39 * to represent the jal and trigger the construction of the
40 * switch table offsets (which will happen after final assembly and all
41 * labels are fixed).
42 *
43 * The test loop will look something like:
44 *
45 * ori rEnd, r_ZERO, #table_size ; size in bytes
46 * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
47 * nop ; opportunistically fill
48 * BaseLabel:
49 * addiu rBase, r_RA, <table> - <BaseLabel> ; table relative to BaseLabel
50 addu rEnd, rEnd, rBase ; end of table
51 * lw r_val, [rSP, v_reg_off] ; Test Value
52 * loop:
53 * beq rBase, rEnd, done
54 * lw r_key, 0(rBase)
55 * addu rBase, 8
56 * bne r_val, r_key, loop
57 * lw r_disp, -4(rBase)
58 * addu r_RA, r_disp
59 * jr r_RA
60 * done:
61 *
62 */
63void MipsMir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
64 RegLocation rl_src)
65{
66 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
67 if (cu_->verbose) {
68 DumpSparseSwitchTable(table);
69 }
70 // Add the table to the list - we'll process it later
71 SwitchTable *tab_rec =
72 static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
73 ArenaAllocator::kAllocData));
74 tab_rec->table = table;
75 tab_rec->vaddr = current_dalvik_offset_;
76 int elements = table[1];
77 tab_rec->targets =
78 static_cast<LIR**>(arena_->NewMem(elements * sizeof(LIR*), true, ArenaAllocator::kAllocLIR));
79 switch_tables_.Insert(tab_rec);
80
81 // The table is composed of 8-byte key/disp pairs
82 int byte_size = elements * 8;
83
84 int size_hi = byte_size >> 16;
85 int size_lo = byte_size & 0xffff;
86
87 int rEnd = AllocTemp();
88 if (size_hi) {
89 NewLIR2(kMipsLui, rEnd, size_hi);
90 }
91 // Must prevent code motion for the curr pc pair
92 GenBarrier(); // Scheduling barrier
93 NewLIR0(kMipsCurrPC); // Really a jal to .+8
94 // Now, fill the branch delay slot
95 if (size_hi) {
96 NewLIR3(kMipsOri, rEnd, rEnd, size_lo);
97 } else {
98 NewLIR3(kMipsOri, rEnd, r_ZERO, size_lo);
99 }
100 GenBarrier(); // Scheduling barrier
101
102 // Construct BaseLabel and set up table base register
103 LIR* base_label = NewLIR0(kPseudoTargetLabel);
104 // Remember base label so offsets can be computed later
105 tab_rec->anchor = base_label;
106 int rBase = AllocTemp();
107 NewLIR4(kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label),
108 reinterpret_cast<uintptr_t>(tab_rec));
109 OpRegRegReg(kOpAdd, rEnd, rEnd, rBase);
110
111 // Grab switch test value
112 rl_src = LoadValue(rl_src, kCoreReg);
113
114 // Test loop
115 int r_key = AllocTemp();
116 LIR* loop_label = NewLIR0(kPseudoTargetLabel);
117 LIR* exit_branch = OpCmpBranch(kCondEq, rBase, rEnd, NULL);
118 LoadWordDisp(rBase, 0, r_key);
119 OpRegImm(kOpAdd, rBase, 8);
120 OpCmpBranch(kCondNe, rl_src.low_reg, r_key, loop_label);
121 int r_disp = AllocTemp();
122 LoadWordDisp(rBase, -4, r_disp);
123 OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
124 OpReg(kOpBx, r_RA);
125
126 // Loop exit
127 LIR* exit_label = NewLIR0(kPseudoTargetLabel);
128 exit_branch->target = exit_label;
129}
130
131/*
132 * Code pattern will look something like:
133 *
134 * lw r_val
135 * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
136 * nop ; opportunistically fill
137 * [subiu r_val, bias] ; Remove bias if low_val != 0
138 * bound check -> done
139 * lw r_disp, [r_RA, r_val]
140 * addu r_RA, r_disp
141 * jr r_RA
142 * done:
143 */
144void MipsMir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
145 RegLocation rl_src)
146{
147 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
148 if (cu_->verbose) {
149 DumpPackedSwitchTable(table);
150 }
151 // Add the table to the list - we'll process it later
152 SwitchTable *tab_rec =
153 static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
154 ArenaAllocator::kAllocData));
155 tab_rec->table = table;
156 tab_rec->vaddr = current_dalvik_offset_;
157 int size = table[1];
158 tab_rec->targets = static_cast<LIR**>(arena_->NewMem(size * sizeof(LIR*), true,
159 ArenaAllocator::kAllocLIR));
160 switch_tables_.Insert(tab_rec);
161
162 // Get the switch value
163 rl_src = LoadValue(rl_src, kCoreReg);
164
165 // Prepare the bias. If too big, handle 1st stage here
166 int low_key = s4FromSwitchData(&table[2]);
167 bool large_bias = false;
168 int r_key;
169 if (low_key == 0) {
170 r_key = rl_src.low_reg;
171 } else if ((low_key & 0xffff) != low_key) {
172 r_key = AllocTemp();
173 LoadConstant(r_key, low_key);
174 large_bias = true;
175 } else {
176 r_key = AllocTemp();
177 }
178
179 // Must prevent code motion for the curr pc pair
180 GenBarrier();
181 NewLIR0(kMipsCurrPC); // Really a jal to .+8
182 // Now, fill the branch delay slot with bias strip
183 if (low_key == 0) {
184 NewLIR0(kMipsNop);
185 } else {
186 if (large_bias) {
187 OpRegRegReg(kOpSub, r_key, rl_src.low_reg, r_key);
188 } else {
189 OpRegRegImm(kOpSub, r_key, rl_src.low_reg, low_key);
190 }
191 }
192 GenBarrier(); // Scheduling barrier
193
194 // Construct BaseLabel and set up table base register
195 LIR* base_label = NewLIR0(kPseudoTargetLabel);
196 // Remember base label so offsets can be computed later
197 tab_rec->anchor = base_label;
198
199 // Bounds check - if < 0 or >= size continue following switch
200 LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL);
201
202 // Materialize the table base pointer
203 int rBase = AllocTemp();
204 NewLIR4(kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label),
205 reinterpret_cast<uintptr_t>(tab_rec));
206
207 // Load the displacement from the switch table
208 int r_disp = AllocTemp();
209 LoadBaseIndexed(rBase, r_key, r_disp, 2, kWord);
210
211 // Add to r_AP and go
212 OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
213 OpReg(kOpBx, r_RA);
214
215 /* branch_over target here */
216 LIR* target = NewLIR0(kPseudoTargetLabel);
217 branch_over->target = target;
218}
219
220/*
221 * Array data table format:
222 * ushort ident = 0x0300 magic value
223 * ushort width width of each element in the table
224 * uint size number of elements in the table
225 * ubyte data[size*width] table of data values (may contain a single-byte
226 * padding at the end)
227 *
228 * Total size is 4+(width * size + 1)/2 16-bit code units.
229 */
230void MipsMir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src)
231{
232 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
233 // Add the table to the list - we'll process it later
234 FillArrayData *tab_rec =
235 reinterpret_cast<FillArrayData*>(arena_->NewMem(sizeof(FillArrayData), true,
236 ArenaAllocator::kAllocData));
237 tab_rec->table = table;
238 tab_rec->vaddr = current_dalvik_offset_;
239 uint16_t width = tab_rec->table[1];
240 uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
241 tab_rec->size = (size * width) + 8;
242
243 fill_array_data_.Insert(tab_rec);
244
245 // Making a call - use explicit registers
246 FlushAllRegs(); /* Everything to home location */
247 LockCallTemps();
248 LoadValueDirectFixed(rl_src, rMIPS_ARG0);
249
250 // Must prevent code motion for the curr pc pair
251 GenBarrier();
252 NewLIR0(kMipsCurrPC); // Really a jal to .+8
253 // Now, fill the branch delay slot with the helper load
254 int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode));
255 GenBarrier(); // Scheduling barrier
256
257 // Construct BaseLabel and set up table base register
258 LIR* base_label = NewLIR0(kPseudoTargetLabel);
259
260 // Materialize a pointer to the fill data image
261 NewLIR4(kMipsDelta, rMIPS_ARG1, 0, reinterpret_cast<uintptr_t>(base_label),
262 reinterpret_cast<uintptr_t>(tab_rec));
263
264 // And go...
265 ClobberCalleeSave();
266 LIR* call_inst = OpReg(kOpBlx, r_tgt); // ( array*, fill_data* )
267 MarkSafepointPC(call_inst);
268}
269
270/*
271 * TODO: implement fast path to short-circuit thin-lock case
272 */
273void MipsMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src)
274{
275 FlushAllRegs();
276 LoadValueDirectFixed(rl_src, rMIPS_ARG0); // Get obj
277 LockCallTemps(); // Prepare for explicit register usage
278 GenNullCheck(rl_src.s_reg_low, rMIPS_ARG0, opt_flags);
279 // Go expensive route - artLockObjectFromCode(self, obj);
280 int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pLockObjectFromCode));
281 ClobberCalleeSave();
282 LIR* call_inst = OpReg(kOpBlx, r_tgt);
283 MarkSafepointPC(call_inst);
284}
285
286/*
287 * TODO: implement fast path to short-circuit thin-lock case
288 */
289void MipsMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src)
290{
291 FlushAllRegs();
292 LoadValueDirectFixed(rl_src, rMIPS_ARG0); // Get obj
293 LockCallTemps(); // Prepare for explicit register usage
294 GenNullCheck(rl_src.s_reg_low, rMIPS_ARG0, opt_flags);
295 // Go expensive route - UnlockObjectFromCode(obj);
296 int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pUnlockObjectFromCode));
297 ClobberCalleeSave();
298 LIR* call_inst = OpReg(kOpBlx, r_tgt);
299 MarkSafepointPC(call_inst);
300}
301
302void MipsMir2Lir::GenMoveException(RegLocation rl_dest)
303{
304 int ex_offset = Thread::ExceptionOffset().Int32Value();
305 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
306 int reset_reg = AllocTemp();
307 LoadWordDisp(rMIPS_SELF, ex_offset, rl_result.low_reg);
308 LoadConstant(reset_reg, 0);
309 StoreWordDisp(rMIPS_SELF, ex_offset, reset_reg);
310 FreeTemp(reset_reg);
311 StoreValue(rl_dest, rl_result);
312}
313
314/*
315 * Mark garbage collection card. Skip if the value we're storing is null.
316 */
317void MipsMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg)
318{
319 int reg_card_base = AllocTemp();
320 int reg_card_no = AllocTemp();
321 LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
322 LoadWordDisp(rMIPS_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base);
323 OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
324 StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0,
325 kUnsignedByte);
326 LIR* target = NewLIR0(kPseudoTargetLabel);
327 branch_over->target = target;
328 FreeTemp(reg_card_base);
329 FreeTemp(reg_card_no);
330}
331void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method)
332{
333 int spill_count = num_core_spills_ + num_fp_spills_;
334 /*
335 * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live. Let the register
336 * allocation mechanism know so it doesn't try to use any of them when
337 * expanding the frame or flushing. This leaves the utility
338 * code with a single temp: r12. This should be enough.
339 */
340 LockTemp(rMIPS_ARG0);
341 LockTemp(rMIPS_ARG1);
342 LockTemp(rMIPS_ARG2);
343 LockTemp(rMIPS_ARG3);
344
345 /*
346 * We can safely skip the stack overflow check if we're
347 * a leaf *and* our frame size < fudge factor.
348 */
349 bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
350 (static_cast<size_t>(frame_size_) < Thread::kStackOverflowReservedBytes));
351 NewLIR0(kPseudoMethodEntry);
352 int check_reg = AllocTemp();
353 int new_sp = AllocTemp();
354 if (!skip_overflow_check) {
355 /* Load stack limit */
356 LoadWordDisp(rMIPS_SELF, Thread::StackEndOffset().Int32Value(), check_reg);
357 }
358 /* Spill core callee saves */
359 SpillCoreRegs();
360 /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
361 DCHECK_EQ(num_fp_spills_, 0);
362 if (!skip_overflow_check) {
363 OpRegRegImm(kOpSub, new_sp, rMIPS_SP, frame_size_ - (spill_count * 4));
364 GenRegRegCheck(kCondCc, new_sp, check_reg, kThrowStackOverflow);
365 OpRegCopy(rMIPS_SP, new_sp); // Establish stack
366 } else {
367 OpRegImm(kOpSub, rMIPS_SP, frame_size_ - (spill_count * 4));
368 }
369
370 FlushIns(ArgLocs, rl_method);
371
372 FreeTemp(rMIPS_ARG0);
373 FreeTemp(rMIPS_ARG1);
374 FreeTemp(rMIPS_ARG2);
375 FreeTemp(rMIPS_ARG3);
376}
377
378void MipsMir2Lir::GenExitSequence()
379{
380 /*
381 * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
382 * allocated by the register utilities as temps.
383 */
384 LockTemp(rMIPS_RET0);
385 LockTemp(rMIPS_RET1);
386
387 NewLIR0(kPseudoMethodExit);
388 UnSpillCoreRegs();
389 OpReg(kOpBx, r_RA);
390}
391
392} // namespace art