| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include <pthread.h> |
| |
| #include <errno.h> |
| #include <limits.h> |
| #include <sys/atomics.h> |
| #include <sys/mman.h> |
| #include <unistd.h> |
| |
| #include "bionic_atomic_inline.h" |
| #include "bionic_futex.h" |
| #include "bionic_pthread.h" |
| #include "bionic_ssp.h" |
| #include "bionic_tls.h" |
| #include "debug_format.h" |
| #include "pthread_internal.h" |
| #include "thread_private.h" |
| |
| extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex); |
| extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex); |
| |
| extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg); |
| extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode); |
| extern void _exit_thread(int retCode); |
| |
| int __futex_wake_ex(volatile void *ftx, int pshared, int val) |
| { |
| return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val); |
| } |
| |
| int __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout) |
| { |
| return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout); |
| } |
| |
| #define __likely(cond) __builtin_expect(!!(cond), 1) |
| #define __unlikely(cond) __builtin_expect(!!(cond), 0) |
| |
| #ifdef __i386__ |
| #define ATTRIBUTES __attribute__((noinline)) __attribute__((fastcall)) |
| #else |
| #define ATTRIBUTES __attribute__((noinline)) |
| #endif |
| |
| void ATTRIBUTES _thread_created_hook(pid_t thread_id); |
| |
| static const int kPthreadInitFailed = 1; |
| |
| static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER; |
| |
| __LIBC_HIDDEN__ pthread_internal_t* gThreadList = NULL; |
| __LIBC_HIDDEN__ pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER; |
| static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER; |
| |
| static void _pthread_internal_remove_locked(pthread_internal_t* thread) { |
| if (thread->next != NULL) { |
| thread->next->prev = thread->prev; |
| } |
| if (thread->prev != NULL) { |
| thread->prev->next = thread->next; |
| } else { |
| gThreadList = thread->next; |
| } |
| |
| // The main thread is not heap-allocated. See __libc_init_tls for the declaration, |
| // and __libc_init_common for the point where it's added to the thread list. |
| if (thread->allocated_on_heap) { |
| free(thread); |
| } |
| } |
| |
| static void _pthread_internal_remove(pthread_internal_t* thread) { |
| pthread_mutex_lock(&gThreadListLock); |
| _pthread_internal_remove_locked(thread); |
| pthread_mutex_unlock(&gThreadListLock); |
| } |
| |
| __LIBC_ABI_PRIVATE__ void _pthread_internal_add(pthread_internal_t* thread) { |
| pthread_mutex_lock(&gThreadListLock); |
| |
| // We insert at the head. |
| thread->next = gThreadList; |
| thread->prev = NULL; |
| if (thread->next != NULL) { |
| thread->next->prev = thread; |
| } |
| gThreadList = thread; |
| |
| pthread_mutex_unlock(&gThreadListLock); |
| } |
| |
| __LIBC_ABI_PRIVATE__ pthread_internal_t* |
| __get_thread(void) |
| { |
| void** tls = (void**)__get_tls(); |
| |
| return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID]; |
| } |
| |
| |
| void* |
| __get_stack_base(int *p_stack_size) |
| { |
| pthread_internal_t* thread = __get_thread(); |
| |
| *p_stack_size = thread->attr.stack_size; |
| return thread->attr.stack_base; |
| } |
| |
| |
| void __init_tls(void** tls, void* thread) { |
| ((pthread_internal_t*) thread)->tls = tls; |
| |
| // Zero-initialize all the slots. |
| for (size_t i = 0; i < BIONIC_TLS_SLOTS; ++i) { |
| tls[i] = NULL; |
| } |
| |
| // Slot 0 must point to itself. The x86 Linux kernel reads the TLS from %fs:0. |
| tls[TLS_SLOT_SELF] = tls; |
| tls[TLS_SLOT_THREAD_ID] = thread; |
| // GCC looks in the TLS for the stack guard on x86, so copy it there from our global. |
| tls[TLS_SLOT_STACK_GUARD] = (void*) __stack_chk_guard; |
| |
| __set_tls((void*) tls); |
| } |
| |
| |
| /* |
| * This trampoline is called from the assembly _pthread_clone() function. |
| */ |
| void __thread_entry(int (*func)(void*), void *arg, void **tls) |
| { |
| // Wait for our creating thread to release us. This lets it have time to |
| // notify gdb about this thread before we start doing anything. |
| // |
| // This also provides the memory barrier needed to ensure that all memory |
| // accesses previously made by the creating thread are visible to us. |
| pthread_mutex_t* start_mutex = (pthread_mutex_t*) &tls[TLS_SLOT_SELF]; |
| pthread_mutex_lock(start_mutex); |
| pthread_mutex_destroy(start_mutex); |
| |
| pthread_internal_t* thread = (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID]; |
| __init_tls(tls, thread); |
| |
| if ((thread->internal_flags & kPthreadInitFailed) != 0) { |
| pthread_exit(NULL); |
| } |
| |
| int result = func(arg); |
| pthread_exit((void*) result); |
| } |
| |
| #include <private/logd.h> |
| |
| __LIBC_ABI_PRIVATE__ |
| int _init_thread(pthread_internal_t* thread, pid_t kernel_id, bool add_to_thread_list) { |
| int error = 0; |
| |
| thread->kernel_id = kernel_id; |
| |
| // Set the scheduling policy/priority of the thread. |
| if (thread->attr.sched_policy != SCHED_NORMAL) { |
| struct sched_param param; |
| param.sched_priority = thread->attr.sched_priority; |
| if (sched_setscheduler(kernel_id, thread->attr.sched_policy, ¶m) == -1) { |
| // For backwards compatibility reasons, we just warn about failures here. |
| // error = errno; |
| const char* msg = "pthread_create sched_setscheduler call failed: %s\n"; |
| __libc_format_log(ANDROID_LOG_WARN, "libc", msg, strerror(errno)); |
| } |
| } |
| |
| pthread_cond_init(&thread->join_cond, NULL); |
| thread->join_count = 0; |
| thread->cleanup_stack = NULL; |
| |
| if (add_to_thread_list) { |
| _pthread_internal_add(thread); |
| } |
| |
| return error; |
| } |
| |
| static void *mkstack(size_t size, size_t guard_size) |
| { |
| pthread_mutex_lock(&mmap_lock); |
| |
| int prot = PROT_READ | PROT_WRITE; |
| int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE; |
| void* stack = mmap(NULL, size, prot, flags, -1, 0); |
| if (stack == MAP_FAILED) { |
| stack = NULL; |
| goto done; |
| } |
| |
| if (mprotect(stack, guard_size, PROT_NONE) == -1) { |
| munmap(stack, size); |
| stack = NULL; |
| goto done; |
| } |
| |
| done: |
| pthread_mutex_unlock(&mmap_lock); |
| return stack; |
| } |
| |
| /* |
| * Create a new thread. The thread's stack is laid out like so: |
| * |
| * +---------------------------+ |
| * | pthread_internal_t | |
| * +---------------------------+ |
| * | | |
| * | TLS area | |
| * | | |
| * +---------------------------+ |
| * | | |
| * . . |
| * . stack area . |
| * . . |
| * | | |
| * +---------------------------+ |
| * | guard page | |
| * +---------------------------+ |
| * |
| * note that TLS[0] must be a pointer to itself, this is required |
| * by the thread-local storage implementation of the x86 Linux |
| * kernel, where the TLS pointer is read by reading fs:[0] |
| */ |
| int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr, |
| void *(*start_routine)(void *), void * arg) |
| { |
| int old_errno = errno; |
| |
| /* this will inform the rest of the C library that at least one thread |
| * was created. this will enforce certain functions to acquire/release |
| * locks (e.g. atexit()) to protect shared global structures. |
| * |
| * this works because pthread_create() is not called by the C library |
| * initialization routine that sets up the main thread's data structures. |
| */ |
| __isthreaded = 1; |
| |
| pthread_internal_t* thread = calloc(sizeof(*thread), 1); |
| if (thread == NULL) { |
| return EAGAIN; |
| } |
| thread->allocated_on_heap = true; |
| |
| if (attr == NULL) { |
| pthread_attr_init(&thread->attr); |
| } else { |
| thread->attr = *attr; |
| attr = NULL; // Prevent misuse below. |
| } |
| |
| // Make sure the stack size is PAGE_SIZE aligned. |
| size_t stack_size = (thread->attr.stack_size + (PAGE_SIZE-1)) & ~(PAGE_SIZE-1); |
| |
| if (thread->attr.stack_base == NULL) { |
| // The caller didn't provide a stack, so allocate one. |
| thread->attr.stack_base = mkstack(stack_size, thread->attr.guard_size); |
| if (thread->attr.stack_base == NULL) { |
| free(thread); |
| return EAGAIN; |
| } |
| } else { |
| // The caller did provide a stack, so remember we're not supposed to free it. |
| thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK; |
| } |
| |
| // Make room for TLS. |
| void** tls = (void**)((uint8_t*)(thread->attr.stack_base) + stack_size - BIONIC_TLS_SLOTS * sizeof(void*)); |
| |
| // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep |
| // it from doing anything until after we notify the debugger about it |
| // |
| // This also provides the memory barrier we need to ensure that all |
| // memory accesses previously performed by this thread are visible to |
| // the new thread. |
| pthread_mutex_t* start_mutex = (pthread_mutex_t*) &tls[TLS_SLOT_SELF]; |
| pthread_mutex_init(start_mutex, NULL); |
| pthread_mutex_lock(start_mutex); |
| |
| tls[TLS_SLOT_THREAD_ID] = thread; |
| |
| int flags = CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND | |
| CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED; |
| int tid = __pthread_clone((int(*)(void*))start_routine, tls, flags, arg); |
| |
| if (tid < 0) { |
| int clone_errno = errno; |
| pthread_mutex_unlock(start_mutex); |
| if ((thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) == 0) { |
| munmap(thread->attr.stack_base, stack_size); |
| } |
| free(thread); |
| errno = old_errno; |
| return clone_errno; |
| } |
| |
| int init_errno = _init_thread(thread, tid, true); |
| if (init_errno != 0) { |
| // Mark the thread detached and let its __thread_entry run to |
| // completion. (It'll just exit immediately, cleaning up its resources.) |
| thread->internal_flags |= kPthreadInitFailed; |
| thread->attr.flags |= PTHREAD_ATTR_FLAG_DETACHED; |
| pthread_mutex_unlock(start_mutex); |
| errno = old_errno; |
| return init_errno; |
| } |
| |
| // Notify any debuggers about the new thread. |
| pthread_mutex_lock(&gDebuggerNotificationLock); |
| _thread_created_hook(tid); |
| pthread_mutex_unlock(&gDebuggerNotificationLock); |
| |
| // Publish the pthread_t and let the thread run. |
| *thread_out = (pthread_t) thread; |
| pthread_mutex_unlock(start_mutex); |
| |
| return 0; |
| } |
| |
| |
| /* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions |
| * and thread cancelation |
| */ |
| |
| void __pthread_cleanup_push( __pthread_cleanup_t* c, |
| __pthread_cleanup_func_t routine, |
| void* arg ) |
| { |
| pthread_internal_t* thread = __get_thread(); |
| |
| c->__cleanup_routine = routine; |
| c->__cleanup_arg = arg; |
| c->__cleanup_prev = thread->cleanup_stack; |
| thread->cleanup_stack = c; |
| } |
| |
| void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute ) |
| { |
| pthread_internal_t* thread = __get_thread(); |
| |
| thread->cleanup_stack = c->__cleanup_prev; |
| if (execute) |
| c->__cleanup_routine(c->__cleanup_arg); |
| } |
| |
| void pthread_exit(void * retval) |
| { |
| pthread_internal_t* thread = __get_thread(); |
| void* stack_base = thread->attr.stack_base; |
| int stack_size = thread->attr.stack_size; |
| int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0; |
| sigset_t mask; |
| |
| // call the cleanup handlers first |
| while (thread->cleanup_stack) { |
| __pthread_cleanup_t* c = thread->cleanup_stack; |
| thread->cleanup_stack = c->__cleanup_prev; |
| c->__cleanup_routine(c->__cleanup_arg); |
| } |
| |
| // call the TLS destructors, it is important to do that before removing this |
| // thread from the global list. this will ensure that if someone else deletes |
| // a TLS key, the corresponding value will be set to NULL in this thread's TLS |
| // space (see pthread_key_delete) |
| pthread_key_clean_all(); |
| |
| // if the thread is detached, destroy the pthread_internal_t |
| // otherwise, keep it in memory and signal any joiners. |
| if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) { |
| _pthread_internal_remove(thread); |
| } else { |
| pthread_mutex_lock(&gThreadListLock); |
| |
| /* make sure that the thread struct doesn't have stale pointers to a stack that |
| * will be unmapped after the exit call below. |
| */ |
| if (!user_stack) { |
| thread->attr.stack_base = NULL; |
| thread->attr.stack_size = 0; |
| thread->tls = NULL; |
| } |
| |
| /* the join_count field is used to store the number of threads waiting for |
| * the termination of this thread with pthread_join(), |
| * |
| * if it is positive we need to signal the waiters, and we do not touch |
| * the count (it will be decremented by the waiters, the last one will |
| * also remove/free the thread structure |
| * |
| * if it is zero, we set the count value to -1 to indicate that the |
| * thread is in 'zombie' state: it has stopped executing, and its stack |
| * is gone (as well as its TLS area). when another thread calls pthread_join() |
| * on it, it will immediately free the thread and return. |
| */ |
| thread->return_value = retval; |
| if (thread->join_count > 0) { |
| pthread_cond_broadcast(&thread->join_cond); |
| } else { |
| thread->join_count = -1; /* zombie thread */ |
| } |
| pthread_mutex_unlock(&gThreadListLock); |
| } |
| |
| sigfillset(&mask); |
| sigdelset(&mask, SIGSEGV); |
| (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL); |
| |
| // destroy the thread stack |
| if (user_stack) |
| _exit_thread((int)retval); |
| else |
| _exit_with_stack_teardown(stack_base, stack_size, (int)retval); |
| } |
| |
| int pthread_join(pthread_t thid, void ** ret_val) |
| { |
| pthread_internal_t* thread = (pthread_internal_t*)thid; |
| if (thid == pthread_self()) { |
| return EDEADLK; |
| } |
| |
| // check that the thread still exists and is not detached |
| pthread_mutex_lock(&gThreadListLock); |
| |
| for (thread = gThreadList; thread != NULL; thread = thread->next) { |
| if (thread == (pthread_internal_t*)thid) { |
| goto FoundIt; |
| } |
| } |
| |
| pthread_mutex_unlock(&gThreadListLock); |
| return ESRCH; |
| |
| FoundIt: |
| if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) { |
| pthread_mutex_unlock(&gThreadListLock); |
| return EINVAL; |
| } |
| |
| /* wait for thread death when needed |
| * |
| * if the 'join_count' is negative, this is a 'zombie' thread that |
| * is already dead and without stack/TLS |
| * |
| * otherwise, we need to increment 'join-count' and wait to be signaled |
| */ |
| int count = thread->join_count; |
| if (count >= 0) { |
| thread->join_count += 1; |
| pthread_cond_wait( &thread->join_cond, &gThreadListLock ); |
| count = --thread->join_count; |
| } |
| if (ret_val) { |
| *ret_val = thread->return_value; |
| } |
| |
| /* remove thread descriptor when we're the last joiner or when the |
| * thread was already a zombie. |
| */ |
| if (count <= 0) { |
| _pthread_internal_remove_locked(thread); |
| } |
| pthread_mutex_unlock(&gThreadListLock); |
| return 0; |
| } |
| |
| int pthread_detach( pthread_t thid ) |
| { |
| pthread_internal_t* thread; |
| int result = 0; |
| |
| pthread_mutex_lock(&gThreadListLock); |
| for (thread = gThreadList; thread != NULL; thread = thread->next) { |
| if (thread == (pthread_internal_t*)thid) { |
| goto FoundIt; |
| } |
| } |
| |
| result = ESRCH; |
| goto Exit; |
| |
| FoundIt: |
| if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) { |
| result = EINVAL; // Already detached. |
| goto Exit; |
| } |
| |
| if (thread->join_count > 0) { |
| result = 0; // Already being joined; silently do nothing, like glibc. |
| goto Exit; |
| } |
| |
| thread->attr.flags |= PTHREAD_ATTR_FLAG_DETACHED; |
| |
| Exit: |
| pthread_mutex_unlock(&gThreadListLock); |
| return result; |
| } |
| |
| pthread_t pthread_self(void) |
| { |
| return (pthread_t)__get_thread(); |
| } |
| |
| int pthread_equal(pthread_t one, pthread_t two) |
| { |
| return (one == two ? 1 : 0); |
| } |
| |
| int pthread_getschedparam(pthread_t thid, int * policy, |
| struct sched_param * param) |
| { |
| int old_errno = errno; |
| |
| pthread_internal_t * thread = (pthread_internal_t *)thid; |
| int err = sched_getparam(thread->kernel_id, param); |
| if (!err) { |
| *policy = sched_getscheduler(thread->kernel_id); |
| } else { |
| err = errno; |
| errno = old_errno; |
| } |
| return err; |
| } |
| |
| int pthread_setschedparam(pthread_t thid, int policy, |
| struct sched_param const * param) |
| { |
| pthread_internal_t * thread = (pthread_internal_t *)thid; |
| int old_errno = errno; |
| int ret; |
| |
| ret = sched_setscheduler(thread->kernel_id, policy, param); |
| if (ret < 0) { |
| ret = errno; |
| errno = old_errno; |
| } |
| return ret; |
| } |
| |
| |
| /* a mutex is implemented as a 32-bit integer holding the following fields |
| * |
| * bits: name description |
| * 31-16 tid owner thread's kernel id (recursive and errorcheck only) |
| * 15-14 type mutex type |
| * 13 shared process-shared flag |
| * 12-2 counter counter of recursive mutexes |
| * 1-0 state lock state (0, 1 or 2) |
| */ |
| |
| /* Convenience macro, creates a mask of 'bits' bits that starts from |
| * the 'shift'-th least significant bit in a 32-bit word. |
| * |
| * Examples: FIELD_MASK(0,4) -> 0xf |
| * FIELD_MASK(16,9) -> 0x1ff0000 |
| */ |
| #define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift)) |
| |
| /* This one is used to create a bit pattern from a given field value */ |
| #define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift)) |
| |
| /* And this one does the opposite, i.e. extract a field's value from a bit pattern */ |
| #define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1)) |
| |
| /* Mutex state: |
| * |
| * 0 for unlocked |
| * 1 for locked, no waiters |
| * 2 for locked, maybe waiters |
| */ |
| #define MUTEX_STATE_SHIFT 0 |
| #define MUTEX_STATE_LEN 2 |
| |
| #define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) |
| #define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) |
| #define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) |
| |
| #define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */ |
| #define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */ |
| #define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */ |
| |
| #define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) |
| #define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) |
| |
| #define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED) |
| #define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED) |
| #define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED) |
| |
| /* return true iff the mutex if locked with no waiters */ |
| #define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED) |
| |
| /* return true iff the mutex if locked with maybe waiters */ |
| #define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED) |
| |
| /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */ |
| #define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) |
| |
| /* Mutex counter: |
| * |
| * We need to check for overflow before incrementing, and we also need to |
| * detect when the counter is 0 |
| */ |
| #define MUTEX_COUNTER_SHIFT 2 |
| #define MUTEX_COUNTER_LEN 11 |
| #define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN) |
| |
| #define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK) |
| #define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0) |
| |
| /* Used to increment the counter directly after overflow has been checked */ |
| #define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN) |
| |
| /* Returns true iff the counter is 0 */ |
| #define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0) |
| |
| /* Mutex shared bit flag |
| * |
| * This flag is set to indicate that the mutex is shared among processes. |
| * This changes the futex opcode we use for futex wait/wake operations |
| * (non-shared operations are much faster). |
| */ |
| #define MUTEX_SHARED_SHIFT 13 |
| #define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1) |
| |
| /* Mutex type: |
| * |
| * We support normal, recursive and errorcheck mutexes. |
| * |
| * The constants defined here *cannot* be changed because they must match |
| * the C library ABI which defines the following initialization values in |
| * <pthread.h>: |
| * |
| * __PTHREAD_MUTEX_INIT_VALUE |
| * __PTHREAD_RECURSIVE_MUTEX_VALUE |
| * __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE |
| */ |
| #define MUTEX_TYPE_SHIFT 14 |
| #define MUTEX_TYPE_LEN 2 |
| #define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN) |
| |
| #define MUTEX_TYPE_NORMAL 0 /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */ |
| #define MUTEX_TYPE_RECURSIVE 1 |
| #define MUTEX_TYPE_ERRORCHECK 2 |
| |
| #define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN) |
| |
| #define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL) |
| #define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE) |
| #define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK) |
| |
| /* Mutex owner field: |
| * |
| * This is only used for recursive and errorcheck mutexes. It holds the |
| * kernel TID of the owning thread. Note that this works because the Linux |
| * kernel _only_ uses 16-bit values for thread ids. |
| * |
| * More specifically, it will wrap to 10000 when it reaches over 32768 for |
| * application processes. You can check this by running the following inside |
| * an adb shell session: |
| * |
| OLDPID=$$; |
| while true; do |
| NEWPID=$(sh -c 'echo $$') |
| if [ "$NEWPID" -gt 32768 ]; then |
| echo "AARGH: new PID $NEWPID is too high!" |
| exit 1 |
| fi |
| if [ "$NEWPID" -lt "$OLDPID" ]; then |
| echo "****** Wrapping from PID $OLDPID to $NEWPID. *******" |
| else |
| echo -n "$NEWPID!" |
| fi |
| OLDPID=$NEWPID |
| done |
| |
| * Note that you can run the same example on a desktop Linux system, |
| * the wrapping will also happen at 32768, but will go back to 300 instead. |
| */ |
| #define MUTEX_OWNER_SHIFT 16 |
| #define MUTEX_OWNER_LEN 16 |
| |
| #define MUTEX_OWNER_FROM_BITS(v) FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN) |
| #define MUTEX_OWNER_TO_BITS(v) FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN) |
| |
| /* Convenience macros. |
| * |
| * These are used to form or modify the bit pattern of a given mutex value |
| */ |
| |
| |
| |
| /* a mutex attribute holds the following fields |
| * |
| * bits: name description |
| * 0-3 type type of mutex |
| * 4 shared process-shared flag |
| */ |
| #define MUTEXATTR_TYPE_MASK 0x000f |
| #define MUTEXATTR_SHARED_MASK 0x0010 |
| |
| |
| int pthread_mutexattr_init(pthread_mutexattr_t *attr) |
| { |
| if (attr) { |
| *attr = PTHREAD_MUTEX_DEFAULT; |
| return 0; |
| } else { |
| return EINVAL; |
| } |
| } |
| |
| int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) |
| { |
| if (attr) { |
| *attr = -1; |
| return 0; |
| } else { |
| return EINVAL; |
| } |
| } |
| |
| int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type) |
| { |
| if (attr) { |
| int atype = (*attr & MUTEXATTR_TYPE_MASK); |
| |
| if (atype >= PTHREAD_MUTEX_NORMAL && |
| atype <= PTHREAD_MUTEX_ERRORCHECK) { |
| *type = atype; |
| return 0; |
| } |
| } |
| return EINVAL; |
| } |
| |
| int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) |
| { |
| if (attr && type >= PTHREAD_MUTEX_NORMAL && |
| type <= PTHREAD_MUTEX_ERRORCHECK ) { |
| *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type; |
| return 0; |
| } |
| return EINVAL; |
| } |
| |
| /* process-shared mutexes are not supported at the moment */ |
| |
| int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared) |
| { |
| if (!attr) |
| return EINVAL; |
| |
| switch (pshared) { |
| case PTHREAD_PROCESS_PRIVATE: |
| *attr &= ~MUTEXATTR_SHARED_MASK; |
| return 0; |
| |
| case PTHREAD_PROCESS_SHARED: |
| /* our current implementation of pthread actually supports shared |
| * mutexes but won't cleanup if a process dies with the mutex held. |
| * Nevertheless, it's better than nothing. Shared mutexes are used |
| * by surfaceflinger and audioflinger. |
| */ |
| *attr |= MUTEXATTR_SHARED_MASK; |
| return 0; |
| } |
| return EINVAL; |
| } |
| |
| int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared) |
| { |
| if (!attr || !pshared) |
| return EINVAL; |
| |
| *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED |
| : PTHREAD_PROCESS_PRIVATE; |
| return 0; |
| } |
| |
| int pthread_mutex_init(pthread_mutex_t *mutex, |
| const pthread_mutexattr_t *attr) |
| { |
| int value = 0; |
| |
| if (mutex == NULL) |
| return EINVAL; |
| |
| if (__likely(attr == NULL)) { |
| mutex->value = MUTEX_TYPE_BITS_NORMAL; |
| return 0; |
| } |
| |
| if ((*attr & MUTEXATTR_SHARED_MASK) != 0) |
| value |= MUTEX_SHARED_MASK; |
| |
| switch (*attr & MUTEXATTR_TYPE_MASK) { |
| case PTHREAD_MUTEX_NORMAL: |
| value |= MUTEX_TYPE_BITS_NORMAL; |
| break; |
| case PTHREAD_MUTEX_RECURSIVE: |
| value |= MUTEX_TYPE_BITS_RECURSIVE; |
| break; |
| case PTHREAD_MUTEX_ERRORCHECK: |
| value |= MUTEX_TYPE_BITS_ERRORCHECK; |
| break; |
| default: |
| return EINVAL; |
| } |
| |
| mutex->value = value; |
| return 0; |
| } |
| |
| |
| /* |
| * Lock a non-recursive mutex. |
| * |
| * As noted above, there are three states: |
| * 0 (unlocked, no contention) |
| * 1 (locked, no contention) |
| * 2 (locked, contention) |
| * |
| * Non-recursive mutexes don't use the thread-id or counter fields, and the |
| * "type" value is zero, so the only bits that will be set are the ones in |
| * the lock state field. |
| */ |
| static __inline__ void |
| _normal_lock(pthread_mutex_t* mutex, int shared) |
| { |
| /* convenience shortcuts */ |
| const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; |
| const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; |
| /* |
| * The common case is an unlocked mutex, so we begin by trying to |
| * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED). |
| * __bionic_cmpxchg() returns 0 if it made the swap successfully. |
| * If the result is nonzero, this lock is already held by another thread. |
| */ |
| if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) { |
| const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; |
| /* |
| * We want to go to sleep until the mutex is available, which |
| * requires promoting it to state 2 (CONTENDED). We need to |
| * swap in the new state value and then wait until somebody wakes us up. |
| * |
| * __bionic_swap() returns the previous value. We swap 2 in and |
| * see if we got zero back; if so, we have acquired the lock. If |
| * not, another thread still holds the lock and we wait again. |
| * |
| * The second argument to the __futex_wait() call is compared |
| * against the current value. If it doesn't match, __futex_wait() |
| * returns immediately (otherwise, it sleeps for a time specified |
| * by the third argument; 0 means sleep forever). This ensures |
| * that the mutex is in state 2 when we go to sleep on it, which |
| * guarantees a wake-up call. |
| */ |
| while (__bionic_swap(locked_contended, &mutex->value) != unlocked) |
| __futex_wait_ex(&mutex->value, shared, locked_contended, 0); |
| } |
| ANDROID_MEMBAR_FULL(); |
| } |
| |
| /* |
| * Release a non-recursive mutex. The caller is responsible for determining |
| * that we are in fact the owner of this lock. |
| */ |
| static __inline__ void |
| _normal_unlock(pthread_mutex_t* mutex, int shared) |
| { |
| ANDROID_MEMBAR_FULL(); |
| |
| /* |
| * The mutex state will be 1 or (rarely) 2. We use an atomic decrement |
| * to release the lock. __bionic_atomic_dec() returns the previous value; |
| * if it wasn't 1 we have to do some additional work. |
| */ |
| if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) { |
| /* |
| * Start by releasing the lock. The decrement changed it from |
| * "contended lock" to "uncontended lock", which means we still |
| * hold it, and anybody who tries to sneak in will push it back |
| * to state 2. |
| * |
| * Once we set it to zero the lock is up for grabs. We follow |
| * this with a __futex_wake() to ensure that one of the waiting |
| * threads has a chance to grab it. |
| * |
| * This doesn't cause a race with the swap/wait pair in |
| * _normal_lock(), because the __futex_wait() call there will |
| * return immediately if the mutex value isn't 2. |
| */ |
| mutex->value = shared; |
| |
| /* |
| * Wake up one waiting thread. We don't know which thread will be |
| * woken or when it'll start executing -- futexes make no guarantees |
| * here. There may not even be a thread waiting. |
| * |
| * The newly-woken thread will replace the 0 we just set above |
| * with 2, which means that when it eventually releases the mutex |
| * it will also call FUTEX_WAKE. This results in one extra wake |
| * call whenever a lock is contended, but lets us avoid forgetting |
| * anyone without requiring us to track the number of sleepers. |
| * |
| * It's possible for another thread to sneak in and grab the lock |
| * between the zero assignment above and the wake call below. If |
| * the new thread is "slow" and holds the lock for a while, we'll |
| * wake up a sleeper, which will swap in a 2 and then go back to |
| * sleep since the lock is still held. If the new thread is "fast", |
| * running to completion before we call wake, the thread we |
| * eventually wake will find an unlocked mutex and will execute. |
| * Either way we have correct behavior and nobody is orphaned on |
| * the wait queue. |
| */ |
| __futex_wake_ex(&mutex->value, shared, 1); |
| } |
| } |
| |
| /* This common inlined function is used to increment the counter of an |
| * errorcheck or recursive mutex. |
| * |
| * For errorcheck mutexes, it will return EDEADLK |
| * If the counter overflows, it will return EAGAIN |
| * Otherwise, it atomically increments the counter and returns 0 |
| * after providing an acquire barrier. |
| * |
| * mtype is the current mutex type |
| * mvalue is the current mutex value (already loaded) |
| * mutex pointers to the mutex. |
| */ |
| static __inline__ __attribute__((always_inline)) int |
| _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype) |
| { |
| if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { |
| /* trying to re-lock a mutex we already acquired */ |
| return EDEADLK; |
| } |
| |
| /* Detect recursive lock overflow and return EAGAIN. |
| * This is safe because only the owner thread can modify the |
| * counter bits in the mutex value. |
| */ |
| if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) { |
| return EAGAIN; |
| } |
| |
| /* We own the mutex, but other threads are able to change |
| * the lower bits (e.g. promoting it to "contended"), so we |
| * need to use an atomic cmpxchg loop to update the counter. |
| */ |
| for (;;) { |
| /* increment counter, overflow was already checked */ |
| int newval = mvalue + MUTEX_COUNTER_BITS_ONE; |
| if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) { |
| /* mutex is still locked, not need for a memory barrier */ |
| return 0; |
| } |
| /* the value was changed, this happens when another thread changes |
| * the lower state bits from 1 to 2 to indicate contention. This |
| * cannot change the counter, so simply reload and try again. |
| */ |
| mvalue = mutex->value; |
| } |
| } |
| |
| __LIBC_HIDDEN__ |
| int pthread_mutex_lock_impl(pthread_mutex_t *mutex) |
| { |
| int mvalue, mtype, tid, shared; |
| |
| if (__unlikely(mutex == NULL)) |
| return EINVAL; |
| |
| mvalue = mutex->value; |
| mtype = (mvalue & MUTEX_TYPE_MASK); |
| shared = (mvalue & MUTEX_SHARED_MASK); |
| |
| /* Handle normal case first */ |
| if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) { |
| _normal_lock(mutex, shared); |
| return 0; |
| } |
| |
| /* Do we already own this recursive or error-check mutex ? */ |
| tid = __get_thread()->kernel_id; |
| if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) |
| return _recursive_increment(mutex, mvalue, mtype); |
| |
| /* Add in shared state to avoid extra 'or' operations below */ |
| mtype |= shared; |
| |
| /* First, if the mutex is unlocked, try to quickly acquire it. |
| * In the optimistic case where this works, set the state to 1 to |
| * indicate locked with no contention */ |
| if (mvalue == mtype) { |
| int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; |
| if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) { |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| /* argh, the value changed, reload before entering the loop */ |
| mvalue = mutex->value; |
| } |
| |
| for (;;) { |
| int newval; |
| |
| /* if the mutex is unlocked, its value should be 'mtype' and |
| * we try to acquire it by setting its owner and state atomically. |
| * NOTE: We put the state to 2 since we _know_ there is contention |
| * when we are in this loop. This ensures all waiters will be |
| * unlocked. |
| */ |
| if (mvalue == mtype) { |
| newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; |
| /* TODO: Change this to __bionic_cmpxchg_acquire when we |
| * implement it to get rid of the explicit memory |
| * barrier below. |
| */ |
| if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) { |
| mvalue = mutex->value; |
| continue; |
| } |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| |
| /* the mutex is already locked by another thread, if its state is 1 |
| * we will change it to 2 to indicate contention. */ |
| if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { |
| newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */ |
| if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) { |
| mvalue = mutex->value; |
| continue; |
| } |
| mvalue = newval; |
| } |
| |
| /* wait until the mutex is unlocked */ |
| __futex_wait_ex(&mutex->value, shared, mvalue, NULL); |
| |
| mvalue = mutex->value; |
| } |
| /* NOTREACHED */ |
| } |
| |
| int pthread_mutex_lock(pthread_mutex_t *mutex) |
| { |
| int err = pthread_mutex_lock_impl(mutex); |
| #ifdef PTHREAD_DEBUG |
| if (PTHREAD_DEBUG_ENABLED) { |
| if (!err) { |
| pthread_debug_mutex_lock_check(mutex); |
| } |
| } |
| #endif |
| return err; |
| } |
| |
| __LIBC_HIDDEN__ |
| int pthread_mutex_unlock_impl(pthread_mutex_t *mutex) |
| { |
| int mvalue, mtype, tid, shared; |
| |
| if (__unlikely(mutex == NULL)) |
| return EINVAL; |
| |
| mvalue = mutex->value; |
| mtype = (mvalue & MUTEX_TYPE_MASK); |
| shared = (mvalue & MUTEX_SHARED_MASK); |
| |
| /* Handle common case first */ |
| if (__likely(mtype == MUTEX_TYPE_BITS_NORMAL)) { |
| _normal_unlock(mutex, shared); |
| return 0; |
| } |
| |
| /* Do we already own this recursive or error-check mutex ? */ |
| tid = __get_thread()->kernel_id; |
| if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) ) |
| return EPERM; |
| |
| /* If the counter is > 0, we can simply decrement it atomically. |
| * Since other threads can mutate the lower state bits (and only the |
| * lower state bits), use a cmpxchg to do it. |
| */ |
| if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) { |
| for (;;) { |
| int newval = mvalue - MUTEX_COUNTER_BITS_ONE; |
| if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) { |
| /* success: we still own the mutex, so no memory barrier */ |
| return 0; |
| } |
| /* the value changed, so reload and loop */ |
| mvalue = mutex->value; |
| } |
| } |
| |
| /* the counter is 0, so we're going to unlock the mutex by resetting |
| * its value to 'unlocked'. We need to perform a swap in order |
| * to read the current state, which will be 2 if there are waiters |
| * to awake. |
| * |
| * TODO: Change this to __bionic_swap_release when we implement it |
| * to get rid of the explicit memory barrier below. |
| */ |
| ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */ |
| mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value); |
| |
| /* Wake one waiting thread, if any */ |
| if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) { |
| __futex_wake_ex(&mutex->value, shared, 1); |
| } |
| return 0; |
| } |
| |
| int pthread_mutex_unlock(pthread_mutex_t *mutex) |
| { |
| #ifdef PTHREAD_DEBUG |
| if (PTHREAD_DEBUG_ENABLED) { |
| pthread_debug_mutex_unlock_check(mutex); |
| } |
| #endif |
| return pthread_mutex_unlock_impl(mutex); |
| } |
| |
| __LIBC_HIDDEN__ |
| int pthread_mutex_trylock_impl(pthread_mutex_t *mutex) |
| { |
| int mvalue, mtype, tid, shared; |
| |
| if (__unlikely(mutex == NULL)) |
| return EINVAL; |
| |
| mvalue = mutex->value; |
| mtype = (mvalue & MUTEX_TYPE_MASK); |
| shared = (mvalue & MUTEX_SHARED_MASK); |
| |
| /* Handle common case first */ |
| if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) |
| { |
| if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED, |
| shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED, |
| &mutex->value) == 0) { |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| |
| return EBUSY; |
| } |
| |
| /* Do we already own this recursive or error-check mutex ? */ |
| tid = __get_thread()->kernel_id; |
| if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) |
| return _recursive_increment(mutex, mvalue, mtype); |
| |
| /* Same as pthread_mutex_lock, except that we don't want to wait, and |
| * the only operation that can succeed is a single cmpxchg to acquire the |
| * lock if it is released / not owned by anyone. No need for a complex loop. |
| */ |
| mtype |= shared | MUTEX_STATE_BITS_UNLOCKED; |
| mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; |
| |
| if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) { |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| |
| return EBUSY; |
| } |
| |
| int pthread_mutex_trylock(pthread_mutex_t *mutex) |
| { |
| int err = pthread_mutex_trylock_impl(mutex); |
| #ifdef PTHREAD_DEBUG |
| if (PTHREAD_DEBUG_ENABLED) { |
| if (!err) { |
| pthread_debug_mutex_lock_check(mutex); |
| } |
| } |
| #endif |
| return err; |
| } |
| |
| /* initialize 'ts' with the difference between 'abstime' and the current time |
| * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise. |
| */ |
| static int |
| __timespec_to_absolute(struct timespec* ts, const struct timespec* abstime, clockid_t clock) |
| { |
| clock_gettime(clock, ts); |
| ts->tv_sec = abstime->tv_sec - ts->tv_sec; |
| ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec; |
| if (ts->tv_nsec < 0) { |
| ts->tv_sec--; |
| ts->tv_nsec += 1000000000; |
| } |
| if ((ts->tv_nsec < 0) || (ts->tv_sec < 0)) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* initialize 'abstime' to the current time according to 'clock' plus 'msecs' |
| * milliseconds. |
| */ |
| static void |
| __timespec_to_relative_msec(struct timespec* abstime, unsigned msecs, clockid_t clock) |
| { |
| clock_gettime(clock, abstime); |
| abstime->tv_sec += msecs/1000; |
| abstime->tv_nsec += (msecs%1000)*1000000; |
| if (abstime->tv_nsec >= 1000000000) { |
| abstime->tv_sec++; |
| abstime->tv_nsec -= 1000000000; |
| } |
| } |
| |
| __LIBC_HIDDEN__ |
| int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs) |
| { |
| clockid_t clock = CLOCK_MONOTONIC; |
| struct timespec abstime; |
| struct timespec ts; |
| int mvalue, mtype, tid, shared; |
| |
| /* compute absolute expiration time */ |
| __timespec_to_relative_msec(&abstime, msecs, clock); |
| |
| if (__unlikely(mutex == NULL)) |
| return EINVAL; |
| |
| mvalue = mutex->value; |
| mtype = (mvalue & MUTEX_TYPE_MASK); |
| shared = (mvalue & MUTEX_SHARED_MASK); |
| |
| /* Handle common case first */ |
| if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) |
| { |
| const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; |
| const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; |
| const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; |
| |
| /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */ |
| if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) { |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| |
| /* loop while needed */ |
| while (__bionic_swap(locked_contended, &mutex->value) != unlocked) { |
| if (__timespec_to_absolute(&ts, &abstime, clock) < 0) |
| return EBUSY; |
| |
| __futex_wait_ex(&mutex->value, shared, locked_contended, &ts); |
| } |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| |
| /* Do we already own this recursive or error-check mutex ? */ |
| tid = __get_thread()->kernel_id; |
| if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) |
| return _recursive_increment(mutex, mvalue, mtype); |
| |
| /* the following implements the same loop than pthread_mutex_lock_impl |
| * but adds checks to ensure that the operation never exceeds the |
| * absolute expiration time. |
| */ |
| mtype |= shared; |
| |
| /* first try a quick lock */ |
| if (mvalue == mtype) { |
| mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; |
| if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) { |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| mvalue = mutex->value; |
| } |
| |
| for (;;) { |
| struct timespec ts; |
| |
| /* if the value is 'unlocked', try to acquire it directly */ |
| /* NOTE: put state to 2 since we know there is contention */ |
| if (mvalue == mtype) /* unlocked */ { |
| mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; |
| if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) { |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| /* the value changed before we could lock it. We need to check |
| * the time to avoid livelocks, reload the value, then loop again. */ |
| if (__timespec_to_absolute(&ts, &abstime, clock) < 0) |
| return EBUSY; |
| |
| mvalue = mutex->value; |
| continue; |
| } |
| |
| /* The value is locked. If 'uncontended', try to switch its state |
| * to 'contented' to ensure we get woken up later. */ |
| if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { |
| int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); |
| if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) { |
| /* this failed because the value changed, reload it */ |
| mvalue = mutex->value; |
| } else { |
| /* this succeeded, update mvalue */ |
| mvalue = newval; |
| } |
| } |
| |
| /* check time and update 'ts' */ |
| if (__timespec_to_absolute(&ts, &abstime, clock) < 0) |
| return EBUSY; |
| |
| /* Only wait to be woken up if the state is '2', otherwise we'll |
| * simply loop right now. This can happen when the second cmpxchg |
| * in our loop failed because the mutex was unlocked by another |
| * thread. |
| */ |
| if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) { |
| if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) { |
| return EBUSY; |
| } |
| mvalue = mutex->value; |
| } |
| } |
| /* NOTREACHED */ |
| } |
| |
| int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs) |
| { |
| int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs); |
| #ifdef PTHREAD_DEBUG |
| if (PTHREAD_DEBUG_ENABLED) { |
| if (!err) { |
| pthread_debug_mutex_lock_check(mutex); |
| } |
| } |
| #endif |
| return err; |
| } |
| |
| int pthread_mutex_destroy(pthread_mutex_t *mutex) |
| { |
| int ret; |
| |
| /* use trylock to ensure that the mutex value is |
| * valid and is not already locked. */ |
| ret = pthread_mutex_trylock_impl(mutex); |
| if (ret != 0) |
| return ret; |
| |
| mutex->value = 0xdead10cc; |
| return 0; |
| } |
| |
| |
| |
| int pthread_condattr_init(pthread_condattr_t *attr) |
| { |
| if (attr == NULL) |
| return EINVAL; |
| |
| *attr = PTHREAD_PROCESS_PRIVATE; |
| return 0; |
| } |
| |
| int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared) |
| { |
| if (attr == NULL || pshared == NULL) |
| return EINVAL; |
| |
| *pshared = *attr; |
| return 0; |
| } |
| |
| int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared) |
| { |
| if (attr == NULL) |
| return EINVAL; |
| |
| if (pshared != PTHREAD_PROCESS_SHARED && |
| pshared != PTHREAD_PROCESS_PRIVATE) |
| return EINVAL; |
| |
| *attr = pshared; |
| return 0; |
| } |
| |
| int pthread_condattr_destroy(pthread_condattr_t *attr) |
| { |
| if (attr == NULL) |
| return EINVAL; |
| |
| *attr = 0xdeada11d; |
| return 0; |
| } |
| |
| /* We use one bit in condition variable values as the 'shared' flag |
| * The rest is a counter. |
| */ |
| #define COND_SHARED_MASK 0x0001 |
| #define COND_COUNTER_INCREMENT 0x0002 |
| #define COND_COUNTER_MASK (~COND_SHARED_MASK) |
| |
| #define COND_IS_SHARED(c) (((c)->value & COND_SHARED_MASK) != 0) |
| |
| /* XXX *technically* there is a race condition that could allow |
| * XXX a signal to be missed. If thread A is preempted in _wait() |
| * XXX after unlocking the mutex and before waiting, and if other |
| * XXX threads call signal or broadcast UINT_MAX/2 times (exactly), |
| * XXX before thread A is scheduled again and calls futex_wait(), |
| * XXX then the signal will be lost. |
| */ |
| |
| int pthread_cond_init(pthread_cond_t *cond, |
| const pthread_condattr_t *attr) |
| { |
| if (cond == NULL) |
| return EINVAL; |
| |
| cond->value = 0; |
| |
| if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED) |
| cond->value |= COND_SHARED_MASK; |
| |
| return 0; |
| } |
| |
| int pthread_cond_destroy(pthread_cond_t *cond) |
| { |
| if (cond == NULL) |
| return EINVAL; |
| |
| cond->value = 0xdeadc04d; |
| return 0; |
| } |
| |
| /* This function is used by pthread_cond_broadcast and |
| * pthread_cond_signal to atomically decrement the counter |
| * then wake-up 'counter' threads. |
| */ |
| static int |
| __pthread_cond_pulse(pthread_cond_t *cond, int counter) |
| { |
| long flags; |
| |
| if (__unlikely(cond == NULL)) |
| return EINVAL; |
| |
| flags = (cond->value & ~COND_COUNTER_MASK); |
| for (;;) { |
| long oldval = cond->value; |
| long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK) |
| | flags; |
| if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0) |
| break; |
| } |
| |
| /* |
| * Ensure that all memory accesses previously made by this thread are |
| * visible to the woken thread(s). On the other side, the "wait" |
| * code will issue any necessary barriers when locking the mutex. |
| * |
| * This may not strictly be necessary -- if the caller follows |
| * recommended practice and holds the mutex before signaling the cond |
| * var, the mutex ops will provide correct semantics. If they don't |
| * hold the mutex, they're subject to race conditions anyway. |
| */ |
| ANDROID_MEMBAR_FULL(); |
| |
| __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter); |
| return 0; |
| } |
| |
| int pthread_cond_broadcast(pthread_cond_t *cond) |
| { |
| return __pthread_cond_pulse(cond, INT_MAX); |
| } |
| |
| int pthread_cond_signal(pthread_cond_t *cond) |
| { |
| return __pthread_cond_pulse(cond, 1); |
| } |
| |
| int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) |
| { |
| return pthread_cond_timedwait(cond, mutex, NULL); |
| } |
| |
| int __pthread_cond_timedwait_relative(pthread_cond_t *cond, |
| pthread_mutex_t * mutex, |
| const struct timespec *reltime) |
| { |
| int status; |
| int oldvalue = cond->value; |
| |
| pthread_mutex_unlock(mutex); |
| status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime); |
| pthread_mutex_lock(mutex); |
| |
| if (status == (-ETIMEDOUT)) return ETIMEDOUT; |
| return 0; |
| } |
| |
| int __pthread_cond_timedwait(pthread_cond_t *cond, |
| pthread_mutex_t * mutex, |
| const struct timespec *abstime, |
| clockid_t clock) |
| { |
| struct timespec ts; |
| struct timespec * tsp; |
| |
| if (abstime != NULL) { |
| if (__timespec_to_absolute(&ts, abstime, clock) < 0) |
| return ETIMEDOUT; |
| tsp = &ts; |
| } else { |
| tsp = NULL; |
| } |
| |
| return __pthread_cond_timedwait_relative(cond, mutex, tsp); |
| } |
| |
| int pthread_cond_timedwait(pthread_cond_t *cond, |
| pthread_mutex_t * mutex, |
| const struct timespec *abstime) |
| { |
| return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME); |
| } |
| |
| |
| /* this one exists only for backward binary compatibility */ |
| int pthread_cond_timedwait_monotonic(pthread_cond_t *cond, |
| pthread_mutex_t * mutex, |
| const struct timespec *abstime) |
| { |
| return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC); |
| } |
| |
| int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond, |
| pthread_mutex_t * mutex, |
| const struct timespec *abstime) |
| { |
| return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC); |
| } |
| |
| int pthread_cond_timedwait_relative_np(pthread_cond_t *cond, |
| pthread_mutex_t * mutex, |
| const struct timespec *reltime) |
| { |
| return __pthread_cond_timedwait_relative(cond, mutex, reltime); |
| } |
| |
| int pthread_cond_timeout_np(pthread_cond_t *cond, |
| pthread_mutex_t * mutex, |
| unsigned msecs) |
| { |
| struct timespec ts; |
| |
| ts.tv_sec = msecs / 1000; |
| ts.tv_nsec = (msecs % 1000) * 1000000; |
| |
| return __pthread_cond_timedwait_relative(cond, mutex, &ts); |
| } |
| |
| |
| // man says this should be in <linux/unistd.h>, but it isn't |
| extern int tgkill(int tgid, int tid, int sig); |
| |
| int pthread_kill(pthread_t tid, int sig) |
| { |
| int ret; |
| int old_errno = errno; |
| pthread_internal_t * thread = (pthread_internal_t *)tid; |
| |
| ret = tgkill(getpid(), thread->kernel_id, sig); |
| if (ret < 0) { |
| ret = errno; |
| errno = old_errno; |
| } |
| |
| return ret; |
| } |
| |
| |
| int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid) |
| { |
| const int CLOCK_IDTYPE_BITS = 3; |
| pthread_internal_t* thread = (pthread_internal_t*)tid; |
| |
| if (!thread) |
| return ESRCH; |
| |
| *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS); |
| return 0; |
| } |
| |
| |
| /* NOTE: this implementation doesn't support a init function that throws a C++ exception |
| * or calls fork() |
| */ |
| int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) ) |
| { |
| volatile pthread_once_t* ocptr = once_control; |
| |
| /* PTHREAD_ONCE_INIT is 0, we use the following bit flags |
| * |
| * bit 0 set -> initialization is under way |
| * bit 1 set -> initialization is complete |
| */ |
| #define ONCE_INITIALIZING (1 << 0) |
| #define ONCE_COMPLETED (1 << 1) |
| |
| /* First check if the once is already initialized. This will be the common |
| * case and we want to make this as fast as possible. Note that this still |
| * requires a load_acquire operation here to ensure that all the |
| * stores performed by the initialization function are observable on |
| * this CPU after we exit. |
| */ |
| if (__likely((*ocptr & ONCE_COMPLETED) != 0)) { |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| |
| for (;;) { |
| /* Try to atomically set the INITIALIZING flag. |
| * This requires a cmpxchg loop, and we may need |
| * to exit prematurely if we detect that |
| * COMPLETED is now set. |
| */ |
| int32_t oldval, newval; |
| |
| do { |
| oldval = *ocptr; |
| if ((oldval & ONCE_COMPLETED) != 0) |
| break; |
| |
| newval = oldval | ONCE_INITIALIZING; |
| } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0); |
| |
| if ((oldval & ONCE_COMPLETED) != 0) { |
| /* We detected that COMPLETED was set while in our loop */ |
| ANDROID_MEMBAR_FULL(); |
| return 0; |
| } |
| |
| if ((oldval & ONCE_INITIALIZING) == 0) { |
| /* We got there first, we can jump out of the loop to |
| * handle the initialization */ |
| break; |
| } |
| |
| /* Another thread is running the initialization and hasn't completed |
| * yet, so wait for it, then try again. */ |
| __futex_wait_ex(ocptr, 0, oldval, NULL); |
| } |
| |
| /* call the initialization function. */ |
| (*init_routine)(); |
| |
| /* Do a store_release indicating that initialization is complete */ |
| ANDROID_MEMBAR_FULL(); |
| *ocptr = ONCE_COMPLETED; |
| |
| /* Wake up any waiters, if any */ |
| __futex_wake_ex(ocptr, 0, INT_MAX); |
| |
| return 0; |
| } |
| |
| /* Return the kernel thread ID for a pthread. |
| * This is only defined for implementations where pthread <-> kernel is 1:1, which this is. |
| * Not the same as pthread_getthreadid_np, which is commonly defined to be opaque. |
| * Internal, not an NDK API. |
| */ |
| |
| pid_t __pthread_gettid(pthread_t thid) |
| { |
| pthread_internal_t* thread = (pthread_internal_t*)thid; |
| return thread->kernel_id; |
| } |
| |
| int __pthread_settid(pthread_t thid, pid_t tid) |
| { |
| if (thid == 0) |
| return EINVAL; |
| |
| pthread_internal_t* thread = (pthread_internal_t*)thid; |
| thread->kernel_id = tid; |
| |
| return 0; |
| } |