| /* $OpenBSD: arc4random.c,v 1.19 2008/06/04 00:50:23 djm Exp $ */ |
| |
| /* |
| * Copyright (c) 1996, David Mazieres <dm@uun.org> |
| * Copyright (c) 2008, Damien Miller <djm@openbsd.org> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| /* |
| * Arc4 random number generator for OpenBSD. |
| * |
| * This code is derived from section 17.1 of Applied Cryptography, |
| * second edition, which describes a stream cipher allegedly |
| * compatible with RSA Labs "RC4" cipher (the actual description of |
| * which is a trade secret). The same algorithm is used as a stream |
| * cipher called "arcfour" in Tatu Ylonen's ssh package. |
| * |
| * Here the stream cipher has been modified always to include the time |
| * when initializing the state. That makes it impossible to |
| * regenerate the same random sequence twice, so this can't be used |
| * for encryption, but will generate good random numbers. |
| * |
| * RC4 is a registered trademark of RSA Laboratories. |
| */ |
| |
| #include <fcntl.h> |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <sys/types.h> |
| #include <sys/param.h> |
| #include <sys/time.h> |
| #include "private/thread_private.h" |
| |
| /* BIONIC-BEGIN */ |
| /* this lock should protect the global variables in this file */ |
| static pthread_mutex_t _arc4_lock = PTHREAD_MUTEX_INITIALIZER; |
| #define _ARC4_LOCK() pthread_mutex_lock(&_arc4_lock) |
| #define _ARC4_UNLOCK() pthread_mutex_unlock(&_arc4_lock) |
| /* BIONIC-END */ |
| |
| #ifdef __GNUC__ |
| #define inline __inline |
| #else /* !__GNUC__ */ |
| #define inline |
| #endif /* !__GNUC__ */ |
| |
| struct arc4_stream { |
| u_int8_t i; |
| u_int8_t j; |
| u_int8_t s[256]; |
| }; |
| |
| static int rs_initialized; |
| static struct arc4_stream rs; |
| static pid_t arc4_stir_pid; |
| static int arc4_count; |
| |
| static inline u_int8_t arc4_getbyte(void); |
| |
| static inline void |
| arc4_init(void) |
| { |
| int n; |
| |
| for (n = 0; n < 256; n++) |
| rs.s[n] = n; |
| rs.i = 0; |
| rs.j = 0; |
| } |
| |
| static inline void |
| arc4_addrandom(u_char *dat, int datlen) |
| { |
| int n; |
| u_int8_t si; |
| |
| rs.i--; |
| for (n = 0; n < 256; n++) { |
| rs.i = (rs.i + 1); |
| si = rs.s[rs.i]; |
| rs.j = (rs.j + si + dat[n % datlen]); |
| rs.s[rs.i] = rs.s[rs.j]; |
| rs.s[rs.j] = si; |
| } |
| rs.j = rs.i; |
| } |
| |
| static void |
| arc4_stir(void) |
| { |
| #if 1 /* BIONIC-BEGIN */ |
| int i, fd; |
| union { |
| struct timeval tv; |
| u_int rnd[128 / sizeof(u_int)]; |
| } rdat; |
| int n; |
| |
| if (!rs_initialized) { |
| arc4_init(); |
| rs_initialized = 1; |
| } |
| |
| fd = open("/dev/urandom", O_RDONLY); |
| if (fd != -1) { |
| read(fd, rdat.rnd, sizeof(rdat.rnd)); |
| close(fd); |
| } |
| else |
| { |
| /* fd < 0 ? Ah, what the heck. We'll just take |
| * whatever was on the stack. just add a little more |
| * time-based randomness though |
| */ |
| gettimeofday(&rdat.tv, NULL); |
| } |
| |
| arc4_stir_pid = getpid(); |
| arc4_addrandom((void *) &rdat, sizeof(rdat)); |
| #else /* BIONIC-END */ |
| int i, mib[2]; |
| size_t len; |
| u_char rnd[128]; |
| |
| if (!rs_initialized) { |
| arc4_init(); |
| rs_initialized = 1; |
| } |
| |
| mib[0] = CTL_KERN; |
| mib[1] = KERN_ARND; |
| |
| len = sizeof(rnd); |
| sysctl(mib, 2, rnd, &len, NULL, 0); |
| |
| arc4_stir_pid = getpid(); |
| arc4_addrandom(rnd, sizeof(rnd)); |
| #endif |
| /* |
| * Discard early keystream, as per recommendations in: |
| * http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Rc4_ksa.ps |
| */ |
| for (i = 0; i < 256; i++) |
| (void)arc4_getbyte(); |
| arc4_count = 1600000; |
| } |
| |
| static inline u_int8_t |
| arc4_getbyte(void) |
| { |
| u_int8_t si, sj; |
| |
| rs.i = (rs.i + 1); |
| si = rs.s[rs.i]; |
| rs.j = (rs.j + si); |
| sj = rs.s[rs.j]; |
| rs.s[rs.i] = sj; |
| rs.s[rs.j] = si; |
| return (rs.s[(si + sj) & 0xff]); |
| } |
| |
| static inline u_int32_t |
| arc4_getword(void) |
| { |
| u_int32_t val; |
| val = arc4_getbyte() << 24; |
| val |= arc4_getbyte() << 16; |
| val |= arc4_getbyte() << 8; |
| val |= arc4_getbyte(); |
| return val; |
| } |
| |
| void |
| arc4random_stir(void) |
| { |
| _ARC4_LOCK(); |
| arc4_stir(); |
| _ARC4_UNLOCK(); |
| } |
| |
| void |
| arc4random_addrandom(u_char *dat, int datlen) |
| { |
| _ARC4_LOCK(); |
| if (!rs_initialized) |
| arc4_stir(); |
| arc4_addrandom(dat, datlen); |
| _ARC4_UNLOCK(); |
| } |
| |
| u_int32_t |
| arc4random(void) |
| { |
| u_int32_t val; |
| _ARC4_LOCK(); |
| arc4_count -= 4; |
| if (arc4_count <= 0 || !rs_initialized || arc4_stir_pid != getpid()) |
| arc4_stir(); |
| val = arc4_getword(); |
| _ARC4_UNLOCK(); |
| return val; |
| } |
| |
| void |
| arc4random_buf(void *_buf, size_t n) |
| { |
| u_char *buf = (u_char *)_buf; |
| _ARC4_LOCK(); |
| if (!rs_initialized || arc4_stir_pid != getpid()) |
| arc4_stir(); |
| while (n--) { |
| if (--arc4_count <= 0) |
| arc4_stir(); |
| buf[n] = arc4_getbyte(); |
| } |
| _ARC4_UNLOCK(); |
| } |
| |
| /* |
| * Calculate a uniformly distributed random number less than upper_bound |
| * avoiding "modulo bias". |
| * |
| * Uniformity is achieved by generating new random numbers until the one |
| * returned is outside the range [0, 2**32 % upper_bound). This |
| * guarantees the selected random number will be inside |
| * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound) |
| * after reduction modulo upper_bound. |
| */ |
| u_int32_t |
| arc4random_uniform(u_int32_t upper_bound) |
| { |
| u_int32_t r, min; |
| |
| if (upper_bound < 2) |
| return 0; |
| |
| #if (ULONG_MAX > 0xffffffffUL) |
| min = 0x100000000UL % upper_bound; |
| #else |
| /* Calculate (2**32 % upper_bound) avoiding 64-bit math */ |
| if (upper_bound > 0x80000000) |
| min = 1 + ~upper_bound; /* 2**32 - upper_bound */ |
| else { |
| /* (2**32 - (x * 2)) % x == 2**32 % x when x <= 2**31 */ |
| min = ((0xffffffff - (upper_bound * 2)) + 1) % upper_bound; |
| } |
| #endif |
| |
| /* |
| * This could theoretically loop forever but each retry has |
| * p > 0.5 (worst case, usually far better) of selecting a |
| * number inside the range we need, so it should rarely need |
| * to re-roll. |
| */ |
| for (;;) { |
| r = arc4random(); |
| if (r >= min) |
| break; |
| } |
| |
| return r % upper_bound; |
| } |
| |
| #if 0 |
| /*-------- Test code for i386 --------*/ |
| #include <stdio.h> |
| #include <machine/pctr.h> |
| int |
| main(int argc, char **argv) |
| { |
| const int iter = 1000000; |
| int i; |
| pctrval v; |
| |
| v = rdtsc(); |
| for (i = 0; i < iter; i++) |
| arc4random(); |
| v = rdtsc() - v; |
| v /= iter; |
| |
| printf("%qd cycles\n", v); |
| } |
| #endif |