| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <gtest/gtest.h> |
| |
| #include "private/ScopeGuard.h" |
| #include "BionicDeathTest.h" |
| #include "ScopedSignalHandler.h" |
| |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <limits.h> |
| #include <malloc.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <sys/mman.h> |
| #include <sys/syscall.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| |
| TEST(pthread, pthread_key_create) { |
| pthread_key_t key; |
| ASSERT_EQ(0, pthread_key_create(&key, NULL)); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| // Can't delete a key that's already been deleted. |
| ASSERT_EQ(EINVAL, pthread_key_delete(key)); |
| } |
| |
| TEST(pthread, pthread_keys_max) { |
| // POSIX says PTHREAD_KEYS_MAX should be at least 128. |
| ASSERT_GE(PTHREAD_KEYS_MAX, 128); |
| } |
| |
| TEST(pthread, _SC_THREAD_KEYS_MAX_big_enough_for_POSIX) { |
| // sysconf shouldn't return a smaller value. |
| int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX); |
| ASSERT_GE(sysconf_max, PTHREAD_KEYS_MAX); |
| } |
| |
| TEST(pthread, pthread_key_many_distinct) { |
| // We should be able to allocate at least this many keys. |
| int nkeys = sysconf(_SC_THREAD_KEYS_MAX) / 2; |
| std::vector<pthread_key_t> keys; |
| |
| auto scope_guard = make_scope_guard([&keys]{ |
| for (auto key : keys) { |
| EXPECT_EQ(0, pthread_key_delete(key)); |
| } |
| }); |
| |
| for (int i = 0; i < nkeys; ++i) { |
| pthread_key_t key; |
| // If this fails, it's likely that GLOBAL_INIT_THREAD_LOCAL_BUFFER_COUNT is |
| // wrong. |
| ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys; |
| keys.push_back(key); |
| ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i))); |
| } |
| |
| for (int i = keys.size() - 1; i >= 0; --i) { |
| ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back())); |
| pthread_key_t key = keys.back(); |
| keys.pop_back(); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| } |
| } |
| |
| TEST(pthread, pthread_key_EAGAIN) { |
| int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX); |
| |
| std::vector<pthread_key_t> keys; |
| int rv = 0; |
| // Two keys are used by gtest, so sysconf_max should be more than we are |
| // allowed to allocate now. |
| for (int i = 0; i < sysconf_max; i++) { |
| pthread_key_t key; |
| rv = pthread_key_create(&key, NULL); |
| if (rv == EAGAIN) { |
| break; |
| } |
| EXPECT_EQ(0, rv); |
| keys.push_back(key); |
| } |
| |
| // Don't leak keys. |
| for (auto key : keys) { |
| EXPECT_EQ(0, pthread_key_delete(key)); |
| } |
| keys.clear(); |
| |
| // We should have eventually reached the maximum number of keys and received |
| // EAGAIN. |
| ASSERT_EQ(EAGAIN, rv); |
| } |
| |
| TEST(pthread, pthread_key_delete) { |
| void* expected = reinterpret_cast<void*>(1234); |
| pthread_key_t key; |
| ASSERT_EQ(0, pthread_key_create(&key, NULL)); |
| ASSERT_EQ(0, pthread_setspecific(key, expected)); |
| ASSERT_EQ(expected, pthread_getspecific(key)); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| // After deletion, pthread_getspecific returns NULL. |
| ASSERT_EQ(NULL, pthread_getspecific(key)); |
| // And you can't use pthread_setspecific with the deleted key. |
| ASSERT_EQ(EINVAL, pthread_setspecific(key, expected)); |
| } |
| |
| TEST(pthread, pthread_key_fork) { |
| void* expected = reinterpret_cast<void*>(1234); |
| pthread_key_t key; |
| ASSERT_EQ(0, pthread_key_create(&key, NULL)); |
| ASSERT_EQ(0, pthread_setspecific(key, expected)); |
| ASSERT_EQ(expected, pthread_getspecific(key)); |
| |
| pid_t pid = fork(); |
| ASSERT_NE(-1, pid) << strerror(errno); |
| |
| if (pid == 0) { |
| // The surviving thread inherits all the forking thread's TLS values... |
| ASSERT_EQ(expected, pthread_getspecific(key)); |
| _exit(99); |
| } |
| |
| int status; |
| ASSERT_EQ(pid, waitpid(pid, &status, 0)); |
| ASSERT_TRUE(WIFEXITED(status)); |
| ASSERT_EQ(99, WEXITSTATUS(status)); |
| |
| ASSERT_EQ(expected, pthread_getspecific(key)); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| } |
| |
| static void* DirtyKeyFn(void* key) { |
| return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key)); |
| } |
| |
| TEST(pthread, pthread_key_dirty) { |
| pthread_key_t key; |
| ASSERT_EQ(0, pthread_key_create(&key, NULL)); |
| |
| size_t stack_size = 128 * 1024; |
| void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| ASSERT_NE(MAP_FAILED, stack); |
| memset(stack, 0xff, stack_size); |
| |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size)); |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key)); |
| |
| void* result; |
| ASSERT_EQ(0, pthread_join(t, &result)); |
| ASSERT_EQ(nullptr, result); // Not ~0! |
| |
| ASSERT_EQ(0, munmap(stack, stack_size)); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| } |
| |
| static void* IdFn(void* arg) { |
| return arg; |
| } |
| |
| static void* SleepFn(void* arg) { |
| sleep(reinterpret_cast<uintptr_t>(arg)); |
| return NULL; |
| } |
| |
| static void* SpinFn(void* arg) { |
| volatile bool* b = reinterpret_cast<volatile bool*>(arg); |
| while (!*b) { |
| } |
| return NULL; |
| } |
| |
| static void* JoinFn(void* arg) { |
| return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL)); |
| } |
| |
| static void AssertDetached(pthread_t t, bool is_detached) { |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_getattr_np(t, &attr)); |
| int detach_state; |
| ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state)); |
| pthread_attr_destroy(&attr); |
| ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED)); |
| } |
| |
| static void MakeDeadThread(pthread_t& t) { |
| ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL)); |
| ASSERT_EQ(0, pthread_join(t, NULL)); |
| } |
| |
| TEST(pthread, pthread_create) { |
| void* expected_result = reinterpret_cast<void*>(123); |
| // Can we create a thread? |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result)); |
| // If we join, do we get the expected value back? |
| void* result; |
| ASSERT_EQ(0, pthread_join(t, &result)); |
| ASSERT_EQ(expected_result, result); |
| } |
| |
| TEST(pthread, pthread_create_EAGAIN) { |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_attr_init(&attributes)); |
| ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1))); |
| |
| pthread_t t; |
| ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL)); |
| } |
| |
| TEST(pthread, pthread_no_join_after_detach) { |
| pthread_t t1; |
| ASSERT_EQ(0, pthread_create(&t1, NULL, SleepFn, reinterpret_cast<void*>(5))); |
| |
| // After a pthread_detach... |
| ASSERT_EQ(0, pthread_detach(t1)); |
| AssertDetached(t1, true); |
| |
| // ...pthread_join should fail. |
| ASSERT_EQ(EINVAL, pthread_join(t1, NULL)); |
| } |
| |
| TEST(pthread, pthread_no_op_detach_after_join) { |
| bool done = false; |
| |
| pthread_t t1; |
| ASSERT_EQ(0, pthread_create(&t1, NULL, SpinFn, &done)); |
| |
| // If thread 2 is already waiting to join thread 1... |
| pthread_t t2; |
| ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1))); |
| |
| sleep(1); // (Give t2 a chance to call pthread_join.) |
| |
| // ...a call to pthread_detach on thread 1 will "succeed" (silently fail)... |
| ASSERT_EQ(0, pthread_detach(t1)); |
| AssertDetached(t1, false); |
| |
| done = true; |
| |
| // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). |
| void* join_result; |
| ASSERT_EQ(0, pthread_join(t2, &join_result)); |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); |
| } |
| |
| TEST(pthread, pthread_join_self) { |
| ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL)); |
| } |
| |
| struct TestBug37410 { |
| pthread_t main_thread; |
| pthread_mutex_t mutex; |
| |
| static void main() { |
| TestBug37410 data; |
| data.main_thread = pthread_self(); |
| ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL)); |
| ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data))); |
| |
| // Wait for the thread to be running... |
| ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex)); |
| |
| // ...and exit. |
| pthread_exit(NULL); |
| } |
| |
| private: |
| static void* thread_fn(void* arg) { |
| TestBug37410* data = reinterpret_cast<TestBug37410*>(arg); |
| |
| // Let the main thread know we're running. |
| pthread_mutex_unlock(&data->mutex); |
| |
| // And wait for the main thread to exit. |
| pthread_join(data->main_thread, NULL); |
| |
| return NULL; |
| } |
| }; |
| |
| // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to |
| // run this test (which exits normally) in its own process. |
| |
| class pthread_DeathTest : public BionicDeathTest {}; |
| |
| TEST_F(pthread_DeathTest, pthread_bug_37410) { |
| // http://code.google.com/p/android/issues/detail?id=37410 |
| ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), ""); |
| } |
| |
| static void* SignalHandlerFn(void* arg) { |
| sigset_t wait_set; |
| sigfillset(&wait_set); |
| return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg))); |
| } |
| |
| TEST(pthread, pthread_sigmask) { |
| // Check that SIGUSR1 isn't blocked. |
| sigset_t original_set; |
| sigemptyset(&original_set); |
| ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set)); |
| ASSERT_FALSE(sigismember(&original_set, SIGUSR1)); |
| |
| // Block SIGUSR1. |
| sigset_t set; |
| sigemptyset(&set); |
| sigaddset(&set, SIGUSR1); |
| ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL)); |
| |
| // Check that SIGUSR1 is blocked. |
| sigset_t final_set; |
| sigemptyset(&final_set); |
| ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set)); |
| ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); |
| // ...and that sigprocmask agrees with pthread_sigmask. |
| sigemptyset(&final_set); |
| ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set)); |
| ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); |
| |
| // Spawn a thread that calls sigwait and tells us what it received. |
| pthread_t signal_thread; |
| int received_signal = -1; |
| ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal)); |
| |
| // Send that thread SIGUSR1. |
| pthread_kill(signal_thread, SIGUSR1); |
| |
| // See what it got. |
| void* join_result; |
| ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); |
| ASSERT_EQ(SIGUSR1, received_signal); |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); |
| |
| // Restore the original signal mask. |
| ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL)); |
| } |
| |
| #if defined(__BIONIC__) |
| #define HAVE_PTHREAD_SETNAME_NP |
| #elif defined(__GLIBC__) |
| #if __GLIBC_PREREQ(2, 12) |
| #define HAVE_PTHREAD_SETNAME_NP |
| #endif |
| #endif |
| |
| TEST(pthread, pthread_setname_np__too_long) { |
| #if defined(HAVE_PTHREAD_SETNAME_NP) |
| ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "this name is far too long for linux")); |
| #else |
| GTEST_LOG_(INFO) << "This test does nothing.\n"; |
| #endif |
| } |
| |
| TEST(pthread, pthread_setname_np__self) { |
| #if defined(HAVE_PTHREAD_SETNAME_NP) |
| ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1")); |
| #else |
| GTEST_LOG_(INFO) << "This test does nothing.\n"; |
| #endif |
| } |
| |
| TEST(pthread, pthread_setname_np__other) { |
| #if defined(HAVE_PTHREAD_SETNAME_NP) |
| pthread_t t1; |
| ASSERT_EQ(0, pthread_create(&t1, NULL, SleepFn, reinterpret_cast<void*>(5))); |
| ASSERT_EQ(0, pthread_setname_np(t1, "short 2")); |
| #else |
| GTEST_LOG_(INFO) << "This test does nothing.\n"; |
| #endif |
| } |
| |
| TEST(pthread, pthread_setname_np__no_such_thread) { |
| #if defined(HAVE_PTHREAD_SETNAME_NP) |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| // Call pthread_setname_np after thread has already exited. |
| ASSERT_EQ(ESRCH, pthread_setname_np(dead_thread, "short 3")); |
| #else |
| GTEST_LOG_(INFO) << "This test does nothing.\n"; |
| #endif |
| } |
| |
| TEST(pthread, pthread_kill__0) { |
| // Signal 0 just tests that the thread exists, so it's safe to call on ourselves. |
| ASSERT_EQ(0, pthread_kill(pthread_self(), 0)); |
| } |
| |
| TEST(pthread, pthread_kill__invalid_signal) { |
| ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1)); |
| } |
| |
| static void pthread_kill__in_signal_handler_helper(int signal_number) { |
| static int count = 0; |
| ASSERT_EQ(SIGALRM, signal_number); |
| if (++count == 1) { |
| // Can we call pthread_kill from a signal handler? |
| ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); |
| } |
| } |
| |
| TEST(pthread, pthread_kill__in_signal_handler) { |
| ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper); |
| ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); |
| } |
| |
| TEST(pthread, pthread_detach__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| ASSERT_EQ(ESRCH, pthread_detach(dead_thread)); |
| } |
| |
| TEST(pthread, pthread_detach__leak) { |
| size_t initial_bytes = 0; |
| // Run this loop more than once since the first loop causes some memory |
| // to be allocated permenantly. Run an extra loop to help catch any subtle |
| // memory leaks. |
| for (size_t loop = 0; loop < 3; loop++) { |
| // Set the initial bytes on the second loop since the memory in use |
| // should have stabilized. |
| if (loop == 1) { |
| initial_bytes = mallinfo().uordblks; |
| } |
| |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)); |
| |
| std::vector<pthread_t> threads; |
| for (size_t i = 0; i < 32; ++i) { |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, NULL)); |
| threads.push_back(t); |
| } |
| |
| sleep(1); |
| |
| for (size_t i = 0; i < 32; ++i) { |
| ASSERT_EQ(0, pthread_detach(threads[i])) << i; |
| } |
| } |
| |
| size_t final_bytes = mallinfo().uordblks; |
| int leaked_bytes = (final_bytes - initial_bytes); |
| |
| // User code (like this test) doesn't know how large pthread_internal_t is. |
| // We can be pretty sure it's more than 128 bytes. |
| ASSERT_LT(leaked_bytes, 32 /*threads*/ * 128 /*bytes*/); |
| } |
| |
| TEST(pthread, pthread_getcpuclockid__clock_gettime) { |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, NULL, SleepFn, reinterpret_cast<void*>(5))); |
| |
| clockid_t c; |
| ASSERT_EQ(0, pthread_getcpuclockid(t, &c)); |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(c, &ts)); |
| } |
| |
| TEST(pthread, pthread_getcpuclockid__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| clockid_t c; |
| ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c)); |
| } |
| |
| TEST(pthread, pthread_getschedparam__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| int policy; |
| sched_param param; |
| ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m)); |
| } |
| |
| TEST(pthread, pthread_setschedparam__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| int policy = 0; |
| sched_param param; |
| ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m)); |
| } |
| |
| TEST(pthread, pthread_join__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL)); |
| } |
| |
| TEST(pthread, pthread_kill__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0)); |
| } |
| |
| TEST(pthread, pthread_join__multijoin) { |
| bool done = false; |
| |
| pthread_t t1; |
| ASSERT_EQ(0, pthread_create(&t1, NULL, SpinFn, &done)); |
| |
| pthread_t t2; |
| ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1))); |
| |
| sleep(1); // (Give t2 a chance to call pthread_join.) |
| |
| // Multiple joins to the same thread should fail. |
| ASSERT_EQ(EINVAL, pthread_join(t1, NULL)); |
| |
| done = true; |
| |
| // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). |
| void* join_result; |
| ASSERT_EQ(0, pthread_join(t2, &join_result)); |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); |
| } |
| |
| TEST(pthread, pthread_join__race) { |
| // http://b/11693195 --- pthread_join could return before the thread had actually exited. |
| // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread. |
| for (size_t i = 0; i < 1024; ++i) { |
| size_t stack_size = 64*1024; |
| void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); |
| |
| pthread_attr_t a; |
| pthread_attr_init(&a); |
| pthread_attr_setstack(&a, stack, stack_size); |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL)); |
| ASSERT_EQ(0, pthread_join(t, NULL)); |
| ASSERT_EQ(0, munmap(stack, stack_size)); |
| } |
| } |
| |
| static void* GetActualGuardSizeFn(void* arg) { |
| pthread_attr_t attributes; |
| pthread_getattr_np(pthread_self(), &attributes); |
| pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg)); |
| return NULL; |
| } |
| |
| static size_t GetActualGuardSize(const pthread_attr_t& attributes) { |
| size_t result; |
| pthread_t t; |
| pthread_create(&t, &attributes, GetActualGuardSizeFn, &result); |
| pthread_join(t, NULL); |
| return result; |
| } |
| |
| static void* GetActualStackSizeFn(void* arg) { |
| pthread_attr_t attributes; |
| pthread_getattr_np(pthread_self(), &attributes); |
| pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg)); |
| return NULL; |
| } |
| |
| static size_t GetActualStackSize(const pthread_attr_t& attributes) { |
| size_t result; |
| pthread_t t; |
| pthread_create(&t, &attributes, GetActualStackSizeFn, &result); |
| pthread_join(t, NULL); |
| return result; |
| } |
| |
| TEST(pthread, pthread_attr_setguardsize) { |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_attr_init(&attributes)); |
| |
| // Get the default guard size. |
| size_t default_guard_size; |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size)); |
| |
| // No such thing as too small: will be rounded up to one page by pthread_create. |
| ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128)); |
| size_t guard_size; |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); |
| ASSERT_EQ(128U, guard_size); |
| ASSERT_EQ(4096U, GetActualGuardSize(attributes)); |
| |
| // Large enough and a multiple of the page size. |
| ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024)); |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); |
| ASSERT_EQ(32*1024U, guard_size); |
| |
| // Large enough but not a multiple of the page size; will be rounded up by pthread_create. |
| ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1)); |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); |
| ASSERT_EQ(32*1024U + 1, guard_size); |
| } |
| |
| TEST(pthread, pthread_attr_setstacksize) { |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_attr_init(&attributes)); |
| |
| // Get the default stack size. |
| size_t default_stack_size; |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size)); |
| |
| // Too small. |
| ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128)); |
| size_t stack_size; |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); |
| ASSERT_EQ(default_stack_size, stack_size); |
| ASSERT_GE(GetActualStackSize(attributes), default_stack_size); |
| |
| // Large enough and a multiple of the page size. |
| ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024)); |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); |
| ASSERT_EQ(32*1024U, stack_size); |
| ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); |
| |
| // Large enough but not a multiple of the page size; will be rounded up by pthread_create. |
| ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1)); |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); |
| ASSERT_EQ(32*1024U + 1, stack_size); |
| #if defined(__BIONIC__) |
| // Bionic rounds up, which is what POSIX allows. |
| ASSERT_EQ(GetActualStackSize(attributes), (32 + 4)*1024U); |
| #else // __BIONIC__ |
| // glibc rounds down, in violation of POSIX. They document this in their BUGS section. |
| ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlock_smoke) { |
| pthread_rwlock_t l; |
| ASSERT_EQ(0, pthread_rwlock_init(&l, NULL)); |
| |
| // Single read lock |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Multiple read lock |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Write lock |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Try writer lock |
| ASSERT_EQ(0, pthread_rwlock_trywrlock(&l)); |
| ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); |
| ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Try reader lock |
| ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); |
| ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Try writer lock after unlock |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| #ifdef __BIONIC__ |
| // EDEADLK in "read after write" |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // EDEADLK in "write after write" |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| #endif |
| |
| ASSERT_EQ(0, pthread_rwlock_destroy(&l)); |
| } |
| |
| static int g_once_fn_call_count = 0; |
| static void OnceFn() { |
| ++g_once_fn_call_count; |
| } |
| |
| TEST(pthread, pthread_once_smoke) { |
| pthread_once_t once_control = PTHREAD_ONCE_INIT; |
| ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); |
| ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); |
| ASSERT_EQ(1, g_once_fn_call_count); |
| } |
| |
| static std::string pthread_once_1934122_result = ""; |
| |
| static void Routine2() { |
| pthread_once_1934122_result += "2"; |
| } |
| |
| static void Routine1() { |
| pthread_once_t once_control_2 = PTHREAD_ONCE_INIT; |
| pthread_once_1934122_result += "1"; |
| pthread_once(&once_control_2, &Routine2); |
| } |
| |
| TEST(pthread, pthread_once_1934122) { |
| // Very old versions of Android couldn't call pthread_once from a |
| // pthread_once init routine. http://b/1934122. |
| pthread_once_t once_control_1 = PTHREAD_ONCE_INIT; |
| ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1)); |
| ASSERT_EQ("12", pthread_once_1934122_result); |
| } |
| |
| static int g_atfork_prepare_calls = 0; |
| static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 1; } |
| static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 2; } |
| static int g_atfork_parent_calls = 0; |
| static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 1; } |
| static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 2; } |
| static int g_atfork_child_calls = 0; |
| static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 1; } |
| static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 2; } |
| |
| TEST(pthread, pthread_atfork) { |
| ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); |
| ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); |
| |
| int pid = fork(); |
| ASSERT_NE(-1, pid) << strerror(errno); |
| |
| // Child and parent calls are made in the order they were registered. |
| if (pid == 0) { |
| ASSERT_EQ(0x12, g_atfork_child_calls); |
| _exit(0); |
| } |
| ASSERT_EQ(0x12, g_atfork_parent_calls); |
| |
| // Prepare calls are made in the reverse order. |
| ASSERT_EQ(0x21, g_atfork_prepare_calls); |
| } |
| |
| TEST(pthread, pthread_attr_getscope) { |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| |
| int scope; |
| ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope)); |
| ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope); |
| } |
| |
| TEST(pthread, pthread_condattr_init) { |
| pthread_condattr_t attr; |
| pthread_condattr_init(&attr); |
| |
| clockid_t clock; |
| ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); |
| ASSERT_EQ(CLOCK_REALTIME, clock); |
| |
| int pshared; |
| ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); |
| ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); |
| } |
| |
| TEST(pthread, pthread_condattr_setclock) { |
| pthread_condattr_t attr; |
| pthread_condattr_init(&attr); |
| |
| ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME)); |
| clockid_t clock; |
| ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); |
| ASSERT_EQ(CLOCK_REALTIME, clock); |
| |
| ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); |
| ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); |
| ASSERT_EQ(CLOCK_MONOTONIC, clock); |
| |
| ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID)); |
| } |
| |
| TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) { |
| #if defined(__BIONIC__) // This tests a bionic implementation detail. |
| pthread_condattr_t attr; |
| pthread_condattr_init(&attr); |
| |
| ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); |
| ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); |
| |
| pthread_cond_t cond_var; |
| ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr)); |
| |
| ASSERT_EQ(0, pthread_cond_signal(&cond_var)); |
| ASSERT_EQ(0, pthread_cond_broadcast(&cond_var)); |
| |
| attr = static_cast<pthread_condattr_t>(cond_var.value); |
| clockid_t clock; |
| ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); |
| ASSERT_EQ(CLOCK_MONOTONIC, clock); |
| int pshared; |
| ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); |
| ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); |
| #else // __BIONIC__ |
| GTEST_LOG_(INFO) << "This test does nothing.\n"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_mutex_timedlock) { |
| pthread_mutex_t m; |
| ASSERT_EQ(0, pthread_mutex_init(&m, NULL)); |
| |
| // If the mutex is already locked, pthread_mutex_timedlock should time out. |
| ASSERT_EQ(0, pthread_mutex_lock(&m)); |
| |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); |
| ts.tv_nsec += 1; |
| ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts)); |
| |
| // If the mutex is unlocked, pthread_mutex_timedlock should succeed. |
| ASSERT_EQ(0, pthread_mutex_unlock(&m)); |
| |
| ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); |
| ts.tv_nsec += 1; |
| ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts)); |
| |
| ASSERT_EQ(0, pthread_mutex_unlock(&m)); |
| ASSERT_EQ(0, pthread_mutex_destroy(&m)); |
| } |
| |
| TEST(pthread, pthread_attr_getstack__main_thread) { |
| // This test is only meaningful for the main thread, so make sure we're running on it! |
| ASSERT_EQ(getpid(), syscall(__NR_gettid)); |
| |
| // Get the main thread's attributes. |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); |
| |
| // Check that we correctly report that the main thread has no guard page. |
| size_t guard_size; |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); |
| ASSERT_EQ(0U, guard_size); // The main thread has no guard page. |
| |
| // Get the stack base and the stack size (both ways). |
| void* stack_base; |
| size_t stack_size; |
| ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); |
| size_t stack_size2; |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); |
| |
| // The two methods of asking for the stack size should agree. |
| EXPECT_EQ(stack_size, stack_size2); |
| |
| // What does /proc/self/maps' [stack] line say? |
| void* maps_stack_hi = NULL; |
| FILE* fp = fopen("/proc/self/maps", "r"); |
| ASSERT_TRUE(fp != NULL); |
| char line[BUFSIZ]; |
| while (fgets(line, sizeof(line), fp) != NULL) { |
| uintptr_t lo, hi; |
| char name[10]; |
| sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name); |
| if (strcmp(name, "[stack]") == 0) { |
| maps_stack_hi = reinterpret_cast<void*>(hi); |
| break; |
| } |
| } |
| fclose(fp); |
| |
| // The stack size should correspond to RLIMIT_STACK. |
| rlimit rl; |
| ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl)); |
| uint64_t original_rlim_cur = rl.rlim_cur; |
| #if defined(__BIONIC__) |
| if (rl.rlim_cur == RLIM_INFINITY) { |
| rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB. |
| } |
| #endif |
| EXPECT_EQ(rl.rlim_cur, stack_size); |
| |
| auto guard = make_scope_guard([&rl, original_rlim_cur]() { |
| rl.rlim_cur = original_rlim_cur; |
| ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); |
| }); |
| |
| // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size. |
| // Remember that the stack grows down (and is mapped in on demand), so the low address of the |
| // region isn't very interesting. |
| EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size); |
| |
| // |
| // What if RLIMIT_STACK is smaller than the stack's current extent? |
| // |
| rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already. |
| rl.rlim_max = RLIM_INFINITY; |
| ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); |
| |
| ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); |
| ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); |
| |
| EXPECT_EQ(stack_size, stack_size2); |
| ASSERT_EQ(1024U, stack_size); |
| |
| // |
| // What if RLIMIT_STACK isn't a whole number of pages? |
| // |
| rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages. |
| rl.rlim_max = RLIM_INFINITY; |
| ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); |
| |
| ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); |
| ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); |
| |
| EXPECT_EQ(stack_size, stack_size2); |
| ASSERT_EQ(6666U, stack_size); |
| } |
| |
| #if defined(__BIONIC__) |
| static void* pthread_gettid_np_helper(void* arg) { |
| *reinterpret_cast<pid_t*>(arg) = gettid(); |
| return NULL; |
| } |
| #endif |
| |
| TEST(pthread, pthread_gettid_np) { |
| #if defined(__BIONIC__) |
| ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self())); |
| |
| pid_t t_gettid_result; |
| pthread_t t; |
| pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result); |
| |
| pid_t t_pthread_gettid_np_result = pthread_gettid_np(t); |
| |
| pthread_join(t, NULL); |
| |
| ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result); |
| #else |
| GTEST_LOG_(INFO) << "This test does nothing.\n"; |
| #endif |
| } |
| |
| static size_t cleanup_counter = 0; |
| |
| static void AbortCleanupRoutine(void*) { |
| abort(); |
| } |
| |
| static void CountCleanupRoutine(void*) { |
| ++cleanup_counter; |
| } |
| |
| static void PthreadCleanupTester() { |
| pthread_cleanup_push(CountCleanupRoutine, NULL); |
| pthread_cleanup_push(CountCleanupRoutine, NULL); |
| pthread_cleanup_push(AbortCleanupRoutine, NULL); |
| |
| pthread_cleanup_pop(0); // Pop the abort without executing it. |
| pthread_cleanup_pop(1); // Pop one count while executing it. |
| ASSERT_EQ(1U, cleanup_counter); |
| // Exit while the other count is still on the cleanup stack. |
| pthread_exit(NULL); |
| |
| // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced. |
| pthread_cleanup_pop(0); |
| } |
| |
| static void* PthreadCleanupStartRoutine(void*) { |
| PthreadCleanupTester(); |
| return NULL; |
| } |
| |
| TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) { |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL)); |
| pthread_join(t, NULL); |
| ASSERT_EQ(2U, cleanup_counter); |
| } |
| |
| TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) { |
| ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT); |
| } |
| |
| TEST(pthread, pthread_mutexattr_gettype) { |
| pthread_mutexattr_t attr; |
| ASSERT_EQ(0, pthread_mutexattr_init(&attr)); |
| |
| int attr_type; |
| |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); |
| ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); |
| ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type); |
| |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)); |
| ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); |
| ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type); |
| |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)); |
| ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); |
| ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type); |
| } |
| |
| TEST(pthread, pthread_mutex_lock_NORMAL) { |
| pthread_mutexattr_t attr; |
| ASSERT_EQ(0, pthread_mutexattr_init(&attr)); |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); |
| |
| pthread_mutex_t lock; |
| ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); |
| |
| ASSERT_EQ(0, pthread_mutex_lock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_destroy(&lock)); |
| } |
| |
| TEST(pthread, pthread_mutex_lock_ERRORCHECK) { |
| pthread_mutexattr_t attr; |
| ASSERT_EQ(0, pthread_mutexattr_init(&attr)); |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)); |
| |
| pthread_mutex_t lock; |
| ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); |
| |
| ASSERT_EQ(0, pthread_mutex_lock(&lock)); |
| ASSERT_EQ(EDEADLK, pthread_mutex_lock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_trylock(&lock)); |
| ASSERT_EQ(EBUSY, pthread_mutex_trylock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&lock)); |
| ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_destroy(&lock)); |
| } |
| |
| TEST(pthread, pthread_mutex_lock_RECURSIVE) { |
| pthread_mutexattr_t attr; |
| ASSERT_EQ(0, pthread_mutexattr_init(&attr)); |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)); |
| |
| pthread_mutex_t lock; |
| ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); |
| |
| ASSERT_EQ(0, pthread_mutex_lock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_lock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_trylock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&lock)); |
| ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock)); |
| ASSERT_EQ(0, pthread_mutex_destroy(&lock)); |
| } |