| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include "pthread_internal.h" |
| |
| #include <errno.h> |
| #include <linux/time.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| extern int __pthread_cond_timedwait(pthread_cond_t*, pthread_mutex_t*, const timespec*, clockid_t); |
| extern int __pthread_cond_timedwait_relative(pthread_cond_t*, pthread_mutex_t*, const timespec*); |
| |
| // Normal (i.e. non-SIGEV_THREAD) timers are created directly by the kernel |
| // and are passed as is to/from the caller. |
| // |
| // This file also implements the support required for SIGEV_THREAD ("POSIX interval") |
| // timers. See the following pages for additional details: |
| // |
| // www.opengroup.org/onlinepubs/000095399/functions/timer_create.html |
| // www.opengroup.org/onlinepubs/000095399/functions/timer_settime.html |
| // www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_04.html#tag_02_04_01 |
| // |
| // The Linux kernel doesn't support these, so we need to implement them in the |
| // C library. We use a very basic scheme where each timer is associated to a |
| // thread that will loop, waiting for timeouts or messages from the program |
| // corresponding to calls to timer_settime() and timer_delete(). |
| // |
| // Note also an important thing: Posix mandates that in the case of fork(), |
| // the timers of the child process should be disarmed, but not deleted. |
| // this is implemented by providing a fork() wrapper (see bionic/fork.c) which |
| // stops all timers before the fork, and only re-start them in case of error |
| // or in the parent process. |
| // |
| // This stop/start is implemented by the __timer_table_start_stop() function |
| // below. |
| // |
| // A SIGEV_THREAD timer ID will always have its TIMER_ID_WRAP_BIT |
| // set to 1. In this implementation, this is always bit 31, which is |
| // guaranteed to never be used by kernel-provided timer ids |
| // |
| // (See code in <kernel>/lib/idr.c, used to manage IDs, to see why.) |
| |
| #define TIMER_ID_WRAP_BIT 0x80000000 |
| #define TIMER_ID_WRAP(id) ((timer_t)((id) | TIMER_ID_WRAP_BIT)) |
| #define TIMER_ID_UNWRAP(id) ((timer_t)((id) & ~TIMER_ID_WRAP_BIT)) |
| #define TIMER_ID_IS_WRAPPED(id) (((id) & TIMER_ID_WRAP_BIT) != 0) |
| |
| /* this value is used internally to indicate a 'free' or 'zombie' |
| * thr_timer structure. Here, 'zombie' means that timer_delete() |
| * has been called, but that the corresponding thread hasn't |
| * exited yet. |
| */ |
| #define TIMER_ID_NONE ((timer_t)0xffffffff) |
| |
| /* True iff a timer id is valid */ |
| #define TIMER_ID_IS_VALID(id) ((id) != TIMER_ID_NONE) |
| |
| /* the maximum value of overrun counters */ |
| #define DELAYTIMER_MAX 0x7fffffff |
| |
| typedef struct thr_timer thr_timer_t; |
| typedef struct thr_timer_table thr_timer_table_t; |
| |
| /* The Posix spec says the function receives an unsigned parameter, but |
| * it's really a 'union sigval' a.k.a. sigval_t */ |
| typedef void (*thr_timer_func_t)( sigval_t ); |
| |
| struct thr_timer { |
| thr_timer_t* next; /* next in free list */ |
| timer_t id; /* TIMER_ID_NONE iff free or dying */ |
| clockid_t clock; |
| pthread_t thread; |
| pthread_attr_t attributes; |
| thr_timer_func_t callback; |
| sigval_t value; |
| |
| /* the following are used to communicate between |
| * the timer thread and the timer_XXX() functions |
| */ |
| pthread_mutex_t mutex; /* lock */ |
| pthread_cond_t cond; /* signal a state change to thread */ |
| int volatile done; /* set by timer_delete */ |
| int volatile stopped; /* set by _start_stop() */ |
| timespec volatile expires; /* next expiration time, or 0 */ |
| timespec volatile period; /* reload value, or 0 */ |
| int volatile overruns; /* current number of overruns */ |
| }; |
| |
| #define MAX_THREAD_TIMERS 32 |
| |
| struct thr_timer_table { |
| pthread_mutex_t lock; |
| thr_timer_t* free_timer; |
| thr_timer_t timers[ MAX_THREAD_TIMERS ]; |
| }; |
| |
| /** GLOBAL TABLE OF THREAD TIMERS |
| **/ |
| |
| static void |
| thr_timer_table_init( thr_timer_table_t* t ) |
| { |
| int nn; |
| |
| memset(t, 0, sizeof *t); |
| pthread_mutex_init( &t->lock, NULL ); |
| |
| for (nn = 0; nn < MAX_THREAD_TIMERS; nn++) |
| t->timers[nn].id = TIMER_ID_NONE; |
| |
| t->free_timer = &t->timers[0]; |
| for (nn = 1; nn < MAX_THREAD_TIMERS; nn++) |
| t->timers[nn-1].next = &t->timers[nn]; |
| } |
| |
| |
| static thr_timer_t* |
| thr_timer_table_alloc( thr_timer_table_t* t ) |
| { |
| thr_timer_t* timer; |
| |
| if (t == NULL) |
| return NULL; |
| |
| pthread_mutex_lock(&t->lock); |
| timer = t->free_timer; |
| if (timer != NULL) { |
| t->free_timer = timer->next; |
| timer->next = NULL; |
| timer->id = TIMER_ID_WRAP((timer - t->timers)); |
| } |
| pthread_mutex_unlock(&t->lock); |
| return timer; |
| } |
| |
| |
| static void |
| thr_timer_table_free( thr_timer_table_t* t, thr_timer_t* timer ) |
| { |
| pthread_mutex_lock( &t->lock ); |
| timer->id = TIMER_ID_NONE; |
| timer->thread = 0; |
| timer->next = t->free_timer; |
| t->free_timer = timer; |
| pthread_mutex_unlock( &t->lock ); |
| } |
| |
| |
| static void thr_timer_table_start_stop(thr_timer_table_t* t, int stop) { |
| if (t == NULL) { |
| return; |
| } |
| |
| pthread_mutex_lock(&t->lock); |
| for (int nn = 0; nn < MAX_THREAD_TIMERS; ++nn) { |
| thr_timer_t* timer = &t->timers[nn]; |
| if (TIMER_ID_IS_VALID(timer->id)) { |
| // Tell the thread to start/stop. |
| pthread_mutex_lock(&timer->mutex); |
| timer->stopped = stop; |
| pthread_cond_signal( &timer->cond ); |
| pthread_mutex_unlock(&timer->mutex); |
| } |
| } |
| pthread_mutex_unlock(&t->lock); |
| } |
| |
| |
| /* convert a timer_id into the corresponding thr_timer_t* pointer |
| * returns NULL if the id is not wrapped or is invalid/free |
| */ |
| static thr_timer_t* |
| thr_timer_table_from_id( thr_timer_table_t* t, |
| timer_t id, |
| int remove ) |
| { |
| unsigned index; |
| thr_timer_t* timer; |
| |
| if (t == NULL || !TIMER_ID_IS_WRAPPED(id)) |
| return NULL; |
| |
| index = (unsigned) TIMER_ID_UNWRAP(id); |
| if (index >= MAX_THREAD_TIMERS) |
| return NULL; |
| |
| pthread_mutex_lock(&t->lock); |
| |
| timer = &t->timers[index]; |
| |
| if (!TIMER_ID_IS_VALID(timer->id)) { |
| timer = NULL; |
| } else { |
| /* if we're removing this timer, clear the id |
| * right now to prevent another thread to |
| * use the same id after the unlock */ |
| if (remove) |
| timer->id = TIMER_ID_NONE; |
| } |
| pthread_mutex_unlock(&t->lock); |
| |
| return timer; |
| } |
| |
| /* the static timer table - we only create it if the process |
| * really wants to use SIGEV_THREAD timers, which should be |
| * pretty infrequent |
| */ |
| |
| static pthread_once_t __timer_table_once = PTHREAD_ONCE_INIT; |
| static thr_timer_table_t* __timer_table; |
| |
| static void __timer_table_init(void) { |
| __timer_table = reinterpret_cast<thr_timer_table_t*>(calloc(1, sizeof(*__timer_table))); |
| if (__timer_table != NULL) { |
| thr_timer_table_init(__timer_table); |
| } |
| } |
| |
| static thr_timer_table_t* __timer_table_get(void) { |
| pthread_once(&__timer_table_once, __timer_table_init); |
| return __timer_table; |
| } |
| |
| /** POSIX THREAD TIMERS CLEANUP ON FORK |
| ** |
| ** this should be called from the 'fork()' wrapper to stop/start |
| ** all active thread timers. this is used to implement a Posix |
| ** requirements: the timers of fork child processes must be |
| ** disarmed but not deleted. |
| **/ |
| void __timer_table_start_stop(int stop) { |
| // We access __timer_table directly so we don't create it if it doesn't yet exist. |
| thr_timer_table_start_stop(__timer_table, stop); |
| } |
| |
| static thr_timer_t* |
| thr_timer_from_id( timer_t id ) |
| { |
| thr_timer_table_t* table = __timer_table_get(); |
| thr_timer_t* timer = thr_timer_table_from_id( table, id, 0 ); |
| |
| return timer; |
| } |
| |
| |
| static __inline__ void |
| thr_timer_lock( thr_timer_t* t ) |
| { |
| pthread_mutex_lock(&t->mutex); |
| } |
| |
| static __inline__ void |
| thr_timer_unlock( thr_timer_t* t ) |
| { |
| pthread_mutex_unlock(&t->mutex); |
| } |
| |
| |
| static __inline__ void timespec_add(timespec* a, const timespec* b) { |
| a->tv_sec += b->tv_sec; |
| a->tv_nsec += b->tv_nsec; |
| if (a->tv_nsec >= 1000000000) { |
| a->tv_nsec -= 1000000000; |
| a->tv_sec += 1; |
| } |
| } |
| |
| static __inline__ void timespec_sub(timespec* a, const timespec* b) { |
| a->tv_sec -= b->tv_sec; |
| a->tv_nsec -= b->tv_nsec; |
| if (a->tv_nsec < 0) { |
| a->tv_nsec += 1000000000; |
| a->tv_sec -= 1; |
| } |
| } |
| |
| static __inline__ void timespec_zero(timespec* a) { |
| a->tv_sec = a->tv_nsec = 0; |
| } |
| |
| static __inline__ int timespec_is_zero(const timespec* a) { |
| return (a->tv_sec == 0 && a->tv_nsec == 0); |
| } |
| |
| static __inline__ int timespec_cmp(const timespec* a, const timespec* b) { |
| if (a->tv_sec < b->tv_sec) return -1; |
| if (a->tv_sec > b->tv_sec) return +1; |
| if (a->tv_nsec < b->tv_nsec) return -1; |
| if (a->tv_nsec > b->tv_nsec) return +1; |
| return 0; |
| } |
| |
| static __inline__ int timespec_cmp0(const timespec* a) { |
| if (a->tv_sec < 0) return -1; |
| if (a->tv_sec > 0) return +1; |
| if (a->tv_nsec < 0) return -1; |
| if (a->tv_nsec > 0) return +1; |
| return 0; |
| } |
| |
| /** POSIX TIMERS APIs */ |
| |
| extern "C" int __timer_create(clockid_t, sigevent*, timer_t*); |
| extern "C" int __timer_delete(timer_t); |
| extern "C" int __timer_gettime(timer_t, itimerspec*); |
| extern "C" int __timer_settime(timer_t, int, const itimerspec*, itimerspec*); |
| extern "C" int __timer_getoverrun(timer_t); |
| |
| static void* timer_thread_start(void*); |
| |
| int timer_create(clockid_t clock_id, sigevent* evp, timer_t* timer_id) { |
| // If not a SIGEV_THREAD timer, the kernel can handle it without our help. |
| if (__predict_true(evp == NULL || evp->sigev_notify != SIGEV_THREAD)) { |
| return __timer_create(clock_id, evp, timer_id); |
| } |
| |
| // Check arguments. |
| if (evp->sigev_notify_function == NULL) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| // Check that the clock id is supported by the kernel. |
| timespec dummy; |
| if (clock_gettime(clock_id, &dummy) < 0 && errno == EINVAL) { |
| return -1; |
| } |
| |
| // Create a new timer and its thread. |
| // TODO: use a single global thread for all timers. |
| thr_timer_table_t* table = __timer_table_get(); |
| thr_timer_t* timer = thr_timer_table_alloc(table); |
| if (timer == NULL) { |
| errno = ENOMEM; |
| return -1; |
| } |
| |
| // Copy the thread attributes. |
| if (evp->sigev_notify_attributes == NULL) { |
| pthread_attr_init(&timer->attributes); |
| } else { |
| timer->attributes = ((pthread_attr_t*) evp->sigev_notify_attributes)[0]; |
| } |
| |
| // Posix says that the default is PTHREAD_CREATE_DETACHED and |
| // that PTHREAD_CREATE_JOINABLE has undefined behavior. |
| // So simply always use DETACHED :-) |
| pthread_attr_setdetachstate(&timer->attributes, PTHREAD_CREATE_DETACHED); |
| |
| timer->callback = evp->sigev_notify_function; |
| timer->value = evp->sigev_value; |
| timer->clock = clock_id; |
| |
| pthread_mutex_init(&timer->mutex, NULL); |
| pthread_cond_init(&timer->cond, NULL); |
| |
| timer->done = 0; |
| timer->stopped = 0; |
| timer->expires.tv_sec = timer->expires.tv_nsec = 0; |
| timer->period.tv_sec = timer->period.tv_nsec = 0; |
| timer->overruns = 0; |
| |
| // Create the thread. |
| int rc = pthread_create(&timer->thread, &timer->attributes, timer_thread_start, timer); |
| if (rc != 0) { |
| thr_timer_table_free(table, timer); |
| errno = rc; |
| return -1; |
| } |
| |
| *timer_id = timer->id; |
| return 0; |
| } |
| |
| |
| int |
| timer_delete( timer_t id ) |
| { |
| if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) |
| return __timer_delete( id ); |
| else |
| { |
| thr_timer_table_t* table = __timer_table_get(); |
| thr_timer_t* timer = thr_timer_table_from_id(table, id, 1); |
| |
| if (timer == NULL) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| /* tell the timer's thread to stop */ |
| thr_timer_lock(timer); |
| timer->done = 1; |
| pthread_cond_signal( &timer->cond ); |
| thr_timer_unlock(timer); |
| |
| /* NOTE: the thread will call __timer_table_free() to free the |
| * timer object. the '1' parameter to thr_timer_table_from_id |
| * above ensured that the object and its timer_id cannot be |
| * reused before that. |
| */ |
| return 0; |
| } |
| } |
| |
| /* return the relative time until the next expiration, or 0 if |
| * the timer is disarmed */ |
| static void timer_gettime_internal(thr_timer_t* timer, itimerspec* spec) { |
| timespec diff = const_cast<timespec&>(timer->expires); |
| if (!timespec_is_zero(&diff)) { |
| timespec now; |
| |
| clock_gettime(timer->clock, &now); |
| timespec_sub(&diff, &now); |
| |
| /* in case of overrun, return 0 */ |
| if (timespec_cmp0(&diff) < 0) { |
| timespec_zero(&diff); |
| } |
| } |
| |
| spec->it_value = diff; |
| spec->it_interval = const_cast<timespec&>(timer->period); |
| } |
| |
| |
| int timer_gettime(timer_t id, itimerspec* ospec) { |
| if (ospec == NULL) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) { |
| return __timer_gettime( id, ospec ); |
| } else { |
| thr_timer_t* timer = thr_timer_from_id(id); |
| |
| if (timer == NULL) { |
| errno = EINVAL; |
| return -1; |
| } |
| thr_timer_lock(timer); |
| timer_gettime_internal( timer, ospec ); |
| thr_timer_unlock(timer); |
| } |
| return 0; |
| } |
| |
| |
| int |
| timer_settime(timer_t id, int flags, const itimerspec* spec, itimerspec* ospec) { |
| if (spec == NULL) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) { |
| return __timer_settime( id, flags, spec, ospec ); |
| } else { |
| thr_timer_t* timer = thr_timer_from_id(id); |
| timespec expires, now; |
| |
| if (timer == NULL) { |
| errno = EINVAL; |
| return -1; |
| } |
| thr_timer_lock(timer); |
| |
| /* return current timer value if ospec isn't NULL */ |
| if (ospec != NULL) { |
| timer_gettime_internal(timer, ospec ); |
| } |
| |
| /* compute next expiration time. note that if the |
| * new it_interval is 0, we should disarm the timer |
| */ |
| expires = spec->it_value; |
| if (!timespec_is_zero(&expires)) { |
| clock_gettime( timer->clock, &now ); |
| if (!(flags & TIMER_ABSTIME)) { |
| timespec_add(&expires, &now); |
| } else { |
| if (timespec_cmp(&expires, &now) < 0) |
| expires = now; |
| } |
| } |
| const_cast<timespec&>(timer->expires) = expires; |
| const_cast<timespec&>(timer->period) = spec->it_interval; |
| thr_timer_unlock( timer ); |
| |
| /* signal the change to the thread */ |
| pthread_cond_signal( &timer->cond ); |
| } |
| return 0; |
| } |
| |
| |
| int |
| timer_getoverrun(timer_t id) |
| { |
| if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) { |
| return __timer_getoverrun( id ); |
| } else { |
| thr_timer_t* timer = thr_timer_from_id(id); |
| int result; |
| |
| if (timer == NULL) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| thr_timer_lock(timer); |
| result = timer->overruns; |
| thr_timer_unlock(timer); |
| |
| return result; |
| } |
| } |
| |
| |
| static void* timer_thread_start(void* arg) { |
| thr_timer_t* timer = reinterpret_cast<thr_timer_t*>(arg); |
| |
| thr_timer_lock(timer); |
| |
| // Give this thread a meaningful name. |
| char name[32]; |
| snprintf(name, sizeof(name), "POSIX interval timer 0x%08x", timer->id); |
| pthread_setname_np(pthread_self(), name); |
| |
| // We loop until timer->done is set in timer_delete(). |
| while (!timer->done) { |
| timespec expires = const_cast<timespec&>(timer->expires); |
| timespec period = const_cast<timespec&>(timer->period); |
| |
| // If the timer is stopped or disarmed, wait indefinitely |
| // for a state change from timer_settime/_delete/_start_stop. |
| if (timer->stopped || timespec_is_zero(&expires)) { |
| pthread_cond_wait(&timer->cond, &timer->mutex); |
| continue; |
| } |
| |
| // Otherwise, we need to do a timed wait until either a |
| // state change of the timer expiration time. |
| timespec now; |
| clock_gettime(timer->clock, &now); |
| |
| if (timespec_cmp(&expires, &now) > 0) { |
| // Cool, there was no overrun, so compute the |
| // relative timeout as 'expires - now', then wait. |
| timespec diff = expires; |
| timespec_sub(&diff, &now); |
| |
| int ret = __pthread_cond_timedwait_relative(&timer->cond, &timer->mutex, &diff); |
| |
| // If we didn't time out, it means that a state change |
| // occurred, so loop to take care of it. |
| if (ret != ETIMEDOUT) { |
| continue; |
| } |
| } else { |
| // Overrun was detected before we could wait! |
| if (!timespec_is_zero(&period)) { |
| // For periodic timers, compute total overrun count. |
| do { |
| timespec_add(&expires, &period); |
| if (timer->overruns < DELAYTIMER_MAX) { |
| timer->overruns += 1; |
| } |
| } while (timespec_cmp(&expires, &now) < 0); |
| |
| // Backtrack the last one, because we're going to |
| // add the same value just a bit later. |
| timespec_sub(&expires, &period); |
| } else { |
| // For non-periodic timers, things are simple. |
| timer->overruns = 1; |
| } |
| } |
| |
| // If we get here, a timeout was detected. |
| // First reload/disarm the timer as needed. |
| if (!timespec_is_zero(&period)) { |
| timespec_add(&expires, &period); |
| } else { |
| timespec_zero(&expires); |
| } |
| const_cast<timespec&>(timer->expires) = expires; |
| |
| // Now call the timer callback function. Release the |
| // lock to allow the function to modify the timer setting |
| // or call timer_getoverrun(). |
| // NOTE: at this point we trust the callback not to be a |
| // total moron and pthread_kill() the timer thread |
| thr_timer_unlock(timer); |
| timer->callback(timer->value); |
| thr_timer_lock(timer); |
| |
| // Now clear the overruns counter. it only makes sense |
| // within the callback. |
| timer->overruns = 0; |
| } |
| |
| thr_timer_unlock(timer); |
| |
| // Free the timer object. |
| thr_timer_table_free(__timer_table_get(), timer); |
| |
| return NULL; |
| } |