The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2008 The Android Open Source Project |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * * Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * * Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in |
| 12 | * the documentation and/or other materials provided with the |
| 13 | * distribution. |
| 14 | * |
| 15 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 16 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 17 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 18 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 19 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 20 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 21 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| 22 | * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| 23 | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 24 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| 25 | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 26 | * SUCH DAMAGE. |
| 27 | */ |
| 28 | #include "pthread_internal.h" |
| 29 | #include <linux/time.h> |
| 30 | #include <string.h> |
| 31 | #include <errno.h> |
| 32 | |
| 33 | /* This file implements the support required to implement SIGEV_THREAD posix |
| 34 | * timers. See the following pages for additionnal details: |
| 35 | * |
| 36 | * www.opengroup.org/onlinepubs/000095399/functions/timer_create.html |
| 37 | * www.opengroup.org/onlinepubs/000095399/functions/timer_settime.html |
| 38 | * www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_04.html#tag_02_04_01 |
| 39 | * |
| 40 | * The Linux kernel doesn't support these, so we need to implement them in the |
| 41 | * C library. We use a very basic scheme where each timer is associated to a |
| 42 | * thread that will loop, waiting for timeouts or messages from the program |
| 43 | * corresponding to calls to timer_settime() and timer_delete(). |
| 44 | * |
| 45 | * Note also an important thing: Posix mandates that in the case of fork(), |
| 46 | * the timers of the child process should be disarmed, but not deleted. |
| 47 | * this is implemented by providing a fork() wrapper (see bionic/fork.c) which |
| 48 | * stops all timers before the fork, and only re-start them in case of error |
| 49 | * or in the parent process. |
| 50 | * |
| 51 | * the stop/start is implemented by the __timer_table_start_stop() function |
| 52 | * below. |
| 53 | */ |
| 54 | |
| 55 | /* normal (i.e. non-SIGEV_THREAD) timer ids are created directly by the kernel |
| 56 | * and are passed as is to/from the caller. |
| 57 | * |
| 58 | * on the other hand, a SIGEV_THREAD timer ID will have its TIMER_ID_WRAP_BIT |
| 59 | * always set to 1. In this implementation, this is always bit 31, which is |
| 60 | * guaranteed to never be used by kernel-provided timer ids |
| 61 | * |
| 62 | * (see code in <kernel>/lib/idr.c, used to manage IDs, to see why) |
| 63 | */ |
| 64 | |
| 65 | #define TIMER_ID_WRAP_BIT 0x80000000 |
| 66 | #define TIMER_ID_WRAP(id) ((timer_t)((id) | TIMER_ID_WRAP_BIT)) |
| 67 | #define TIMER_ID_UNWRAP(id) ((timer_t)((id) & ~TIMER_ID_WRAP_BIT)) |
| 68 | #define TIMER_ID_IS_WRAPPED(id) (((id) & TIMER_ID_WRAP_BIT) != 0) |
| 69 | |
| 70 | /* this value is used internally to indicate a 'free' or 'zombie' |
| 71 | * thr_timer structure. Here, 'zombie' means that timer_delete() |
| 72 | * has been called, but that the corresponding thread hasn't |
| 73 | * exited yet. |
| 74 | */ |
| 75 | #define TIMER_ID_NONE ((timer_t)0xffffffff) |
| 76 | |
| 77 | /* True iff a timer id is valid */ |
| 78 | #define TIMER_ID_IS_VALID(id) ((id) != TIMER_ID_NONE) |
| 79 | |
| 80 | /* the maximum value of overrun counters */ |
| 81 | #define DELAYTIMER_MAX 0x7fffffff |
| 82 | |
| 83 | #define __likely(x) __builtin_expect(!!(x),1) |
| 84 | #define __unlikely(x) __builtin_expect(!!(x),0) |
| 85 | |
| 86 | typedef struct thr_timer thr_timer_t; |
| 87 | typedef struct thr_timer_table thr_timer_table_t; |
| 88 | |
| 89 | /* The Posix spec says the function receives an unsigned parameter, but |
| 90 | * it's really a 'union sigval' a.k.a. sigval_t */ |
| 91 | typedef void (*thr_timer_func_t)( sigval_t ); |
| 92 | |
| 93 | struct thr_timer { |
| 94 | thr_timer_t* next; /* next in free list */ |
| 95 | timer_t id; /* TIMER_ID_NONE iff free or dying */ |
| 96 | clockid_t clock; |
| 97 | pthread_t thread; |
| 98 | pthread_attr_t attributes; |
| 99 | thr_timer_func_t callback; |
| 100 | sigval_t value; |
| 101 | |
| 102 | /* the following are used to communicate between |
| 103 | * the timer thread and the timer_XXX() functions |
| 104 | */ |
| 105 | pthread_mutex_t mutex; /* lock */ |
| 106 | pthread_cond_t cond; /* signal a state change to thread */ |
| 107 | int volatile done; /* set by timer_delete */ |
| 108 | int volatile stopped; /* set by _start_stop() */ |
| 109 | struct timespec volatile expires; /* next expiration time, or 0 */ |
| 110 | struct timespec volatile period; /* reload value, or 0 */ |
| 111 | int volatile overruns; /* current number of overruns */ |
| 112 | }; |
| 113 | |
| 114 | #define MAX_THREAD_TIMERS 32 |
| 115 | |
| 116 | struct thr_timer_table { |
| 117 | pthread_mutex_t lock; |
| 118 | thr_timer_t* free_timer; |
| 119 | thr_timer_t timers[ MAX_THREAD_TIMERS ]; |
| 120 | }; |
| 121 | |
| 122 | /** GLOBAL TABLE OF THREAD TIMERS |
| 123 | **/ |
| 124 | |
| 125 | static void |
| 126 | thr_timer_table_init( thr_timer_table_t* t ) |
| 127 | { |
| 128 | int nn; |
| 129 | |
| 130 | memset(t, 0, sizeof *t); |
| 131 | pthread_mutex_init( &t->lock, NULL ); |
| 132 | |
| 133 | for (nn = 0; nn < MAX_THREAD_TIMERS; nn++) |
| 134 | t->timers[nn].id = TIMER_ID_NONE; |
| 135 | |
| 136 | t->free_timer = &t->timers[0]; |
| 137 | for (nn = 1; nn < MAX_THREAD_TIMERS; nn++) |
| 138 | t->timers[nn-1].next = &t->timers[nn]; |
| 139 | } |
| 140 | |
| 141 | |
| 142 | static thr_timer_t* |
| 143 | thr_timer_table_alloc( thr_timer_table_t* t ) |
| 144 | { |
| 145 | thr_timer_t* timer; |
| 146 | |
| 147 | if (t == NULL) |
| 148 | return NULL; |
| 149 | |
| 150 | pthread_mutex_lock(&t->lock); |
| 151 | timer = t->free_timer; |
| 152 | if (timer != NULL) { |
| 153 | t->free_timer = timer->next; |
| 154 | timer->next = NULL; |
| 155 | timer->id = TIMER_ID_WRAP((timer - t->timers)); |
| 156 | } |
| 157 | pthread_mutex_unlock(&t->lock); |
| 158 | return timer; |
| 159 | } |
| 160 | |
| 161 | |
| 162 | static void |
| 163 | thr_timer_table_free( thr_timer_table_t* t, thr_timer_t* timer ) |
| 164 | { |
| 165 | pthread_mutex_lock( &t->lock ); |
| 166 | timer->id = TIMER_ID_NONE; |
| 167 | timer->thread = 0; |
| 168 | timer->next = t->free_timer; |
| 169 | t->free_timer = timer; |
| 170 | pthread_mutex_unlock( &t->lock ); |
| 171 | } |
| 172 | |
| 173 | |
| 174 | static void |
| 175 | thr_timer_table_start_stop( thr_timer_table_t* t, int stop ) |
| 176 | { |
| 177 | int nn; |
| 178 | |
| 179 | pthread_mutex_lock(&t->lock); |
| 180 | |
| 181 | for (nn = 0; nn < MAX_THREAD_TIMERS; nn++) { |
| 182 | thr_timer_t* timer = &t->timers[nn]; |
| 183 | |
| 184 | if (TIMER_ID_IS_VALID(timer->id)) { |
| 185 | /* tell the thread to start/stop */ |
| 186 | pthread_mutex_lock(&timer->mutex); |
| 187 | timer->stopped = stop; |
| 188 | pthread_cond_signal( &timer->cond ); |
| 189 | pthread_mutex_unlock(&timer->mutex); |
| 190 | } |
| 191 | } |
| 192 | pthread_mutex_unlock(&t->lock); |
| 193 | } |
| 194 | |
| 195 | |
| 196 | /* convert a timer_id into the corresponding thr_timer_t* pointer |
| 197 | * returns NULL if the id is not wrapped or is invalid/free |
| 198 | */ |
| 199 | static thr_timer_t* |
| 200 | thr_timer_table_from_id( thr_timer_table_t* t, |
| 201 | timer_t id, |
| 202 | int remove ) |
| 203 | { |
| 204 | unsigned index; |
| 205 | thr_timer_t* timer; |
| 206 | |
| 207 | if (t == NULL || !TIMER_ID_IS_WRAPPED(id)) |
| 208 | return NULL; |
| 209 | |
| 210 | index = (unsigned) TIMER_ID_UNWRAP(id); |
| 211 | if (index >= MAX_THREAD_TIMERS) |
| 212 | return NULL; |
| 213 | |
| 214 | pthread_mutex_lock(&t->lock); |
| 215 | |
| 216 | timer = &t->timers[index]; |
| 217 | |
| 218 | if (!TIMER_ID_IS_VALID(timer->id)) { |
| 219 | timer = NULL; |
| 220 | } else { |
| 221 | /* if we're removing this timer, clear the id |
| 222 | * right now to prevent another thread to |
| 223 | * use the same id after the unlock */ |
| 224 | if (remove) |
| 225 | timer->id = TIMER_ID_NONE; |
| 226 | } |
| 227 | pthread_mutex_unlock(&t->lock); |
| 228 | |
| 229 | return timer; |
| 230 | } |
| 231 | |
| 232 | /* the static timer table - we only create it if the process |
| 233 | * really wants to use SIGEV_THREAD timers, which should be |
| 234 | * pretty infrequent |
| 235 | */ |
| 236 | |
| 237 | static pthread_once_t __timer_table_once = PTHREAD_ONCE_INIT; |
| 238 | static thr_timer_table_t* __timer_table; |
| 239 | |
| 240 | static void |
| 241 | __timer_table_init( void ) |
| 242 | { |
| 243 | __timer_table = calloc(1,sizeof(*__timer_table)); |
| 244 | |
| 245 | if (__timer_table != NULL) |
| 246 | thr_timer_table_init( __timer_table ); |
| 247 | } |
| 248 | |
| 249 | static thr_timer_table_t* |
| 250 | __timer_table_get(void) |
| 251 | { |
| 252 | pthread_once( &__timer_table_once, __timer_table_init ); |
| 253 | return __timer_table; |
| 254 | } |
| 255 | |
| 256 | /** POSIX THREAD TIMERS CLEANUP ON FORK |
| 257 | ** |
| 258 | ** this should be called from the 'fork()' wrapper to stop/start |
| 259 | ** all active thread timers. this is used to implement a Posix |
| 260 | ** requirements: the timers of fork child processes must be |
| 261 | ** disarmed but not deleted. |
| 262 | **/ |
| 263 | void |
| 264 | __timer_table_start_stop( int stop ) |
| 265 | { |
| 266 | if (__timer_table != NULL) { |
| 267 | thr_timer_table_t* table = __timer_table_get(); |
| 268 | thr_timer_table_start_stop(table, stop); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | static thr_timer_t* |
| 273 | thr_timer_from_id( timer_t id ) |
| 274 | { |
| 275 | thr_timer_table_t* table = __timer_table_get(); |
| 276 | thr_timer_t* timer = thr_timer_table_from_id( table, id, 0 ); |
| 277 | |
| 278 | return timer; |
| 279 | } |
| 280 | |
| 281 | |
| 282 | static __inline__ void |
| 283 | thr_timer_lock( thr_timer_t* t ) |
| 284 | { |
| 285 | pthread_mutex_lock(&t->mutex); |
| 286 | } |
| 287 | |
| 288 | static __inline__ void |
| 289 | thr_timer_unlock( thr_timer_t* t ) |
| 290 | { |
| 291 | pthread_mutex_unlock(&t->mutex); |
| 292 | } |
| 293 | |
| 294 | /** POSIX TIMERS APIs */ |
| 295 | |
| 296 | /* first, declare the syscall stubs */ |
| 297 | extern int __timer_create( clockid_t, struct sigevent*, timer_t* ); |
| 298 | extern int __timer_delete( timer_t ); |
| 299 | extern int __timer_gettime( timer_t, struct itimerspec* ); |
| 300 | extern int __timer_settime( timer_t, int, const struct itimerspec*, struct itimerspec* ); |
| 301 | extern int __timer_getoverrun(timer_t); |
| 302 | |
| 303 | static void* timer_thread_start( void* ); |
| 304 | |
| 305 | /* then the wrappers themselves */ |
| 306 | int |
| 307 | timer_create( clockid_t clockid, struct sigevent* evp, timer_t *ptimerid) |
| 308 | { |
| 309 | /* if not a SIGEV_THREAD timer, direct creation by the kernel */ |
| 310 | if (__likely(evp == NULL || evp->sigev_notify != SIGEV_THREAD)) |
| 311 | return __timer_create( clockid, evp, ptimerid ); |
| 312 | |
| 313 | // check arguments |
| 314 | if (evp->sigev_notify_function == NULL) { |
| 315 | errno = EINVAL; |
| 316 | return -1; |
| 317 | } |
| 318 | |
| 319 | { |
| 320 | struct timespec dummy; |
| 321 | |
| 322 | /* check that the clock id is supported by the kernel */ |
| 323 | if (clock_gettime( clockid, &dummy ) < 0 && errno == EINVAL ) |
| 324 | return -1; |
| 325 | } |
| 326 | |
| 327 | /* create a new timer and its thread */ |
| 328 | { |
| 329 | thr_timer_table_t* table = __timer_table_get(); |
| 330 | thr_timer_t* timer = thr_timer_table_alloc( table ); |
| 331 | struct sigevent evp0; |
| 332 | |
| 333 | if (timer == NULL) { |
| 334 | errno = ENOMEM; |
| 335 | return -1; |
| 336 | } |
| 337 | |
| 338 | /* copy the thread attributes */ |
| 339 | if (evp->sigev_notify_attributes == NULL) { |
| 340 | pthread_attr_init(&timer->attributes); |
| 341 | } |
| 342 | else { |
| 343 | timer->attributes = ((pthread_attr_t*)evp->sigev_notify_attributes)[0]; |
| 344 | } |
| 345 | |
| 346 | /* Posix says that the default is PTHREAD_CREATE_DETACHED and |
| 347 | * that PTHREAD_CREATE_JOINABLE has undefined behaviour. |
| 348 | * So simply always use DETACHED :-) |
| 349 | */ |
| 350 | pthread_attr_setdetachstate(&timer->attributes, PTHREAD_CREATE_DETACHED); |
| 351 | |
| 352 | timer->callback = evp->sigev_notify_function; |
| 353 | timer->value = evp->sigev_value; |
| 354 | timer->clock = clockid; |
| 355 | |
| 356 | pthread_mutex_init( &timer->mutex, NULL ); |
| 357 | pthread_cond_init( &timer->cond, NULL ); |
| 358 | |
| 359 | timer->done = 0; |
| 360 | timer->stopped = 0; |
| 361 | timer->expires.tv_sec = timer->expires.tv_nsec = 0; |
| 362 | timer->period.tv_sec = timer->period.tv_nsec = 0; |
| 363 | timer->overruns = 0; |
| 364 | |
| 365 | /* create the thread */ |
| 366 | if (pthread_create( &timer->thread, &timer->attributes, timer_thread_start, timer ) < 0) { |
| 367 | thr_timer_table_free( __timer_table, timer ); |
| 368 | errno = ENOMEM; |
| 369 | return -1; |
| 370 | } |
| 371 | |
| 372 | *ptimerid = timer->id; |
| 373 | return 0; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | |
| 378 | int |
| 379 | timer_delete( timer_t id ) |
| 380 | { |
| 381 | if ( __likely(!TIMER_ID_IS_WRAPPED(id)) ) |
| 382 | return __timer_delete( id ); |
| 383 | else |
| 384 | { |
| 385 | thr_timer_table_t* table = __timer_table_get(); |
| 386 | thr_timer_t* timer = thr_timer_table_from_id(table, id, 1); |
| 387 | |
| 388 | if (timer == NULL) { |
| 389 | errno = EINVAL; |
| 390 | return -1; |
| 391 | } |
| 392 | |
| 393 | /* tell the timer's thread to stop */ |
| 394 | thr_timer_lock(timer); |
| 395 | timer->done = 1; |
| 396 | pthread_cond_signal( &timer->cond ); |
| 397 | thr_timer_unlock(timer); |
| 398 | |
| 399 | /* NOTE: the thread will call __timer_table_free() to free the |
| 400 | * timer object. the '1' parameter to thr_timer_table_from_id |
| 401 | * above ensured that the object and its timer_id cannot be |
| 402 | * reused before that. |
| 403 | */ |
| 404 | return 0; |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | /* return the relative time until the next expiration, or 0 if |
| 409 | * the timer is disarmed */ |
| 410 | static void |
| 411 | timer_gettime_internal( thr_timer_t* timer, |
| 412 | struct itimerspec* spec) |
| 413 | { |
| 414 | struct timespec diff; |
| 415 | |
| 416 | diff = timer->expires; |
| 417 | if (!timespec_is_zero(&diff)) |
| 418 | { |
| 419 | struct timespec now; |
| 420 | |
| 421 | clock_gettime( timer->clock, &now ); |
| 422 | timespec_sub(&diff, &now); |
| 423 | |
| 424 | /* in case of overrun, return 0 */ |
| 425 | if (timespec_cmp0(&diff) < 0) { |
| 426 | timespec_zero(&diff); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | spec->it_value = diff; |
| 431 | spec->it_interval = timer->period; |
| 432 | } |
| 433 | |
| 434 | |
| 435 | int |
| 436 | timer_gettime( timer_t id, struct itimerspec* ospec ) |
| 437 | { |
| 438 | if (ospec == NULL) { |
| 439 | errno = EINVAL; |
| 440 | return -1; |
| 441 | } |
| 442 | |
| 443 | if ( __likely(!TIMER_ID_IS_WRAPPED(id)) ) { |
| 444 | return __timer_gettime( id, ospec ); |
| 445 | } else { |
| 446 | thr_timer_t* timer = thr_timer_from_id(id); |
| 447 | |
| 448 | if (timer == NULL) { |
| 449 | errno = EINVAL; |
| 450 | return -1; |
| 451 | } |
| 452 | thr_timer_lock(timer); |
| 453 | timer_gettime_internal( timer, ospec ); |
| 454 | thr_timer_unlock(timer); |
| 455 | } |
| 456 | return 0; |
| 457 | } |
| 458 | |
| 459 | |
| 460 | int |
| 461 | timer_settime( timer_t id, |
| 462 | int flags, |
| 463 | const struct itimerspec* spec, |
| 464 | struct itimerspec* ospec ) |
| 465 | { |
| 466 | if (spec == NULL) { |
| 467 | errno = EINVAL; |
| 468 | return -1; |
| 469 | } |
| 470 | |
| 471 | if ( __likely(!TIMER_ID_IS_WRAPPED(id)) ) { |
| 472 | return __timer_settime( id, flags, spec, ospec ); |
| 473 | } else { |
| 474 | thr_timer_t* timer = thr_timer_from_id(id); |
| 475 | struct timespec expires, now; |
| 476 | |
| 477 | if (timer == NULL) { |
| 478 | errno = EINVAL; |
| 479 | return -1; |
| 480 | } |
| 481 | thr_timer_lock(timer); |
| 482 | |
| 483 | /* return current timer value if ospec isn't NULL */ |
| 484 | if (ospec != NULL) { |
| 485 | timer_gettime_internal(timer, ospec ); |
| 486 | } |
| 487 | |
| 488 | /* compute next expiration time. note that if the |
| 489 | * new it_interval is 0, we should disarm the timer |
| 490 | */ |
| 491 | expires = spec->it_value; |
| 492 | if (!timespec_is_zero(&expires)) { |
| 493 | clock_gettime( timer->clock, &now ); |
| 494 | if (!(flags & TIMER_ABSTIME)) { |
| 495 | timespec_add(&expires, &now); |
| 496 | } else { |
| 497 | if (timespec_cmp(&expires, &now) < 0) |
| 498 | expires = now; |
| 499 | } |
| 500 | } |
| 501 | timer->expires = expires; |
| 502 | timer->period = spec->it_interval; |
| 503 | thr_timer_unlock( timer ); |
| 504 | |
| 505 | /* signal the change to the thread */ |
| 506 | pthread_cond_signal( &timer->cond ); |
| 507 | } |
| 508 | return 0; |
| 509 | } |
| 510 | |
| 511 | |
| 512 | int |
| 513 | timer_getoverrun(timer_t id) |
| 514 | { |
| 515 | if ( __likely(!TIMER_ID_IS_WRAPPED(id)) ) { |
| 516 | return __timer_getoverrun( id ); |
| 517 | } else { |
| 518 | thr_timer_t* timer = thr_timer_from_id(id); |
| 519 | int result; |
| 520 | |
| 521 | if (timer == NULL) { |
| 522 | errno = EINVAL; |
| 523 | return -1; |
| 524 | } |
| 525 | |
| 526 | thr_timer_lock(timer); |
| 527 | result = timer->overruns; |
| 528 | thr_timer_unlock(timer); |
| 529 | |
| 530 | return result; |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | |
| 535 | static void* |
| 536 | timer_thread_start( void* _arg ) |
| 537 | { |
| 538 | thr_timer_t* timer = _arg; |
| 539 | |
| 540 | thr_timer_lock( timer ); |
| 541 | |
| 542 | /* we loop until timer->done is set in timer_delete() */ |
| 543 | while (!timer->done) |
| 544 | { |
| 545 | struct timespec expires = timer->expires; |
| 546 | struct timespec period = timer->period; |
| 547 | struct timespec now; |
| 548 | |
| 549 | /* if the timer is stopped or disarmed, wait indefinitely |
| 550 | * for a state change from timer_settime/_delete/_start_stop |
| 551 | */ |
| 552 | if ( timer->stopped || timespec_is_zero(&expires) ) |
| 553 | { |
| 554 | pthread_cond_wait( &timer->cond, &timer->mutex ); |
| 555 | continue; |
| 556 | } |
| 557 | |
| 558 | /* otherwise, we need to do a timed wait until either a |
| 559 | * state change of the timer expiration time. |
| 560 | */ |
| 561 | clock_gettime(timer->clock, &now); |
| 562 | |
| 563 | if (timespec_cmp( &expires, &now ) > 0) |
| 564 | { |
| 565 | /* cool, there was no overrun, so compute the |
| 566 | * relative timeout as 'expires - now', then wait |
| 567 | */ |
| 568 | int ret; |
| 569 | struct timespec diff = expires; |
| 570 | timespec_sub( &diff, &now ); |
| 571 | |
| 572 | ret = __pthread_cond_timedwait_relative( |
| 573 | &timer->cond, &timer->mutex, &diff); |
| 574 | |
| 575 | /* if we didn't timeout, it means that a state change |
| 576 | * occured, so reloop to take care of it. |
| 577 | */ |
| 578 | if (ret != ETIMEDOUT) |
| 579 | continue; |
| 580 | } |
| 581 | else |
| 582 | { |
| 583 | /* overrun was detected before we could wait ! */ |
| 584 | if (!timespec_is_zero( &period ) ) |
| 585 | { |
| 586 | /* for periodic timers, compute total overrun count */ |
| 587 | do { |
| 588 | timespec_add( &expires, &period ); |
| 589 | if (timer->overruns < DELAYTIMER_MAX) |
| 590 | timer->overruns += 1; |
| 591 | } while ( timespec_cmp( &expires, &now ) < 0 ); |
| 592 | |
| 593 | /* backtrack the last one, because we're going to |
| 594 | * add the same value just a bit later */ |
| 595 | timespec_sub( &expires, &period ); |
| 596 | } |
| 597 | else |
| 598 | { |
| 599 | /* for non-periodic timer, things are simple */ |
| 600 | timer->overruns = 1; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | /* if we get there, a timeout was detected. |
| 605 | * first reload/disarm the timer has needed |
| 606 | */ |
| 607 | if ( !timespec_is_zero(&period) ) { |
| 608 | timespec_add( &expires, &period ); |
| 609 | } else { |
| 610 | timespec_zero( &expires ); |
| 611 | } |
| 612 | timer->expires = expires; |
| 613 | |
| 614 | /* now call the timer callback function. release the |
| 615 | * lock to allow the function to modify the timer setting |
| 616 | * or call timer_getoverrun(). |
| 617 | * |
| 618 | * NOTE: at this point we trust the callback not to be a |
| 619 | * total moron and pthread_kill() the timer thread |
| 620 | */ |
| 621 | thr_timer_unlock(timer); |
| 622 | timer->callback( timer->value ); |
| 623 | thr_timer_lock(timer); |
| 624 | |
| 625 | /* now clear the overruns counter. it only makes sense |
| 626 | * within the callback */ |
| 627 | timer->overruns = 0; |
| 628 | } |
| 629 | |
| 630 | thr_timer_unlock( timer ); |
| 631 | |
| 632 | /* free the timer object now. there is no need to call |
| 633 | * __timer_table_get() since we're guaranteed that __timer_table |
| 634 | * is initialized in this thread |
| 635 | */ |
| 636 | thr_timer_table_free(__timer_table, timer); |
| 637 | |
| 638 | return NULL; |
| 639 | } |