The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 1992, 1993 |
| 3 | * The Regents of the University of California. All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. All advertising materials mentioning features or use of this software |
| 14 | * must display the following acknowledgement: |
| 15 | * This product includes software developed by the University of |
| 16 | * California, Berkeley and its contributors. |
| 17 | * 4. Neither the name of the University nor the names of its contributors |
| 18 | * may be used to endorse or promote products derived from this software |
| 19 | * without specific prior written permission. |
| 20 | * |
| 21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 31 | * SUCH DAMAGE. |
| 32 | */ |
| 33 | |
| 34 | #ifndef lint |
| 35 | static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93"; |
| 36 | #endif /* not lint */ |
| 37 | #include <sys/cdefs.h> |
| 38 | /* __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_log.c,v 1.8 2005/09/19 11:28:19 bde Exp $"); */ |
| 39 | |
| 40 | #include <math.h> |
| 41 | #include <errno.h> |
| 42 | |
| 43 | #include "mathimpl.h" |
| 44 | |
| 45 | /* Table-driven natural logarithm. |
| 46 | * |
| 47 | * This code was derived, with minor modifications, from: |
| 48 | * Peter Tang, "Table-Driven Implementation of the |
| 49 | * Logarithm in IEEE Floating-Point arithmetic." ACM Trans. |
| 50 | * Math Software, vol 16. no 4, pp 378-400, Dec 1990). |
| 51 | * |
| 52 | * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256, |
| 53 | * where F = j/128 for j an integer in [0, 128]. |
| 54 | * |
| 55 | * log(2^m) = log2_hi*m + log2_tail*m |
| 56 | * since m is an integer, the dominant term is exact. |
| 57 | * m has at most 10 digits (for subnormal numbers), |
| 58 | * and log2_hi has 11 trailing zero bits. |
| 59 | * |
| 60 | * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h |
| 61 | * logF_hi[] + 512 is exact. |
| 62 | * |
| 63 | * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ... |
| 64 | * the leading term is calculated to extra precision in two |
| 65 | * parts, the larger of which adds exactly to the dominant |
| 66 | * m and F terms. |
| 67 | * There are two cases: |
| 68 | * 1. when m, j are non-zero (m | j), use absolute |
| 69 | * precision for the leading term. |
| 70 | * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1). |
| 71 | * In this case, use a relative precision of 24 bits. |
| 72 | * (This is done differently in the original paper) |
| 73 | * |
| 74 | * Special cases: |
| 75 | * 0 return signalling -Inf |
| 76 | * neg return signalling NaN |
| 77 | * +Inf return +Inf |
| 78 | */ |
| 79 | |
| 80 | #define N 128 |
| 81 | |
| 82 | /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128. |
| 83 | * Used for generation of extend precision logarithms. |
| 84 | * The constant 35184372088832 is 2^45, so the divide is exact. |
| 85 | * It ensures correct reading of logF_head, even for inaccurate |
| 86 | * decimal-to-binary conversion routines. (Everybody gets the |
| 87 | * right answer for integers less than 2^53.) |
| 88 | * Values for log(F) were generated using error < 10^-57 absolute |
| 89 | * with the bc -l package. |
| 90 | */ |
| 91 | static double A1 = .08333333333333178827; |
| 92 | static double A2 = .01250000000377174923; |
| 93 | static double A3 = .002232139987919447809; |
| 94 | static double A4 = .0004348877777076145742; |
| 95 | |
| 96 | static double logF_head[N+1] = { |
| 97 | 0., |
| 98 | .007782140442060381246, |
| 99 | .015504186535963526694, |
| 100 | .023167059281547608406, |
| 101 | .030771658666765233647, |
| 102 | .038318864302141264488, |
| 103 | .045809536031242714670, |
| 104 | .053244514518837604555, |
| 105 | .060624621816486978786, |
| 106 | .067950661908525944454, |
| 107 | .075223421237524235039, |
| 108 | .082443669210988446138, |
| 109 | .089612158689760690322, |
| 110 | .096729626458454731618, |
| 111 | .103796793681567578460, |
| 112 | .110814366340264314203, |
| 113 | .117783035656430001836, |
| 114 | .124703478501032805070, |
| 115 | .131576357788617315236, |
| 116 | .138402322859292326029, |
| 117 | .145182009844575077295, |
| 118 | .151916042025732167530, |
| 119 | .158605030176659056451, |
| 120 | .165249572895390883786, |
| 121 | .171850256926518341060, |
| 122 | .178407657472689606947, |
| 123 | .184922338493834104156, |
| 124 | .191394852999565046047, |
| 125 | .197825743329758552135, |
| 126 | .204215541428766300668, |
| 127 | .210564769107350002741, |
| 128 | .216873938300523150246, |
| 129 | .223143551314024080056, |
| 130 | .229374101064877322642, |
| 131 | .235566071312860003672, |
| 132 | .241719936886966024758, |
| 133 | .247836163904594286577, |
| 134 | .253915209980732470285, |
| 135 | .259957524436686071567, |
| 136 | .265963548496984003577, |
| 137 | .271933715484010463114, |
| 138 | .277868451003087102435, |
| 139 | .283768173130738432519, |
| 140 | .289633292582948342896, |
| 141 | .295464212893421063199, |
| 142 | .301261330578199704177, |
| 143 | .307025035294827830512, |
| 144 | .312755710004239517729, |
| 145 | .318453731118097493890, |
| 146 | .324119468654316733591, |
| 147 | .329753286372579168528, |
| 148 | .335355541920762334484, |
| 149 | .340926586970454081892, |
| 150 | .346466767346100823488, |
| 151 | .351976423156884266063, |
| 152 | .357455888922231679316, |
| 153 | .362905493689140712376, |
| 154 | .368325561158599157352, |
| 155 | .373716409793814818840, |
| 156 | .379078352934811846353, |
| 157 | .384411698910298582632, |
| 158 | .389716751140440464951, |
| 159 | .394993808240542421117, |
| 160 | .400243164127459749579, |
| 161 | .405465108107819105498, |
| 162 | .410659924985338875558, |
| 163 | .415827895143593195825, |
| 164 | .420969294644237379543, |
| 165 | .426084395310681429691, |
| 166 | .431173464818130014464, |
| 167 | .436236766774527495726, |
| 168 | .441274560805140936281, |
| 169 | .446287102628048160113, |
| 170 | .451274644139630254358, |
| 171 | .456237433481874177232, |
| 172 | .461175715122408291790, |
| 173 | .466089729924533457960, |
| 174 | .470979715219073113985, |
| 175 | .475845904869856894947, |
| 176 | .480688529345570714212, |
| 177 | .485507815781602403149, |
| 178 | .490303988045525329653, |
| 179 | .495077266798034543171, |
| 180 | .499827869556611403822, |
| 181 | .504556010751912253908, |
| 182 | .509261901790523552335, |
| 183 | .513945751101346104405, |
| 184 | .518607764208354637958, |
| 185 | .523248143765158602036, |
| 186 | .527867089620485785417, |
| 187 | .532464798869114019908, |
| 188 | .537041465897345915436, |
| 189 | .541597282432121573947, |
| 190 | .546132437597407260909, |
| 191 | .550647117952394182793, |
| 192 | .555141507540611200965, |
| 193 | .559615787935399566777, |
| 194 | .564070138285387656651, |
| 195 | .568504735352689749561, |
| 196 | .572919753562018740922, |
| 197 | .577315365035246941260, |
| 198 | .581691739635061821900, |
| 199 | .586049045003164792433, |
| 200 | .590387446602107957005, |
| 201 | .594707107746216934174, |
| 202 | .599008189645246602594, |
| 203 | .603290851438941899687, |
| 204 | .607555250224322662688, |
| 205 | .611801541106615331955, |
| 206 | .616029877215623855590, |
| 207 | .620240409751204424537, |
| 208 | .624433288012369303032, |
| 209 | .628608659422752680256, |
| 210 | .632766669570628437213, |
| 211 | .636907462236194987781, |
| 212 | .641031179420679109171, |
| 213 | .645137961373620782978, |
| 214 | .649227946625615004450, |
| 215 | .653301272011958644725, |
| 216 | .657358072709030238911, |
| 217 | .661398482245203922502, |
| 218 | .665422632544505177065, |
| 219 | .669430653942981734871, |
| 220 | .673422675212350441142, |
| 221 | .677398823590920073911, |
| 222 | .681359224807238206267, |
| 223 | .685304003098281100392, |
| 224 | .689233281238557538017, |
| 225 | .693147180560117703862 |
| 226 | }; |
| 227 | |
| 228 | static double logF_tail[N+1] = { |
| 229 | 0., |
| 230 | -.00000000000000543229938420049, |
| 231 | .00000000000000172745674997061, |
| 232 | -.00000000000001323017818229233, |
| 233 | -.00000000000001154527628289872, |
| 234 | -.00000000000000466529469958300, |
| 235 | .00000000000005148849572685810, |
| 236 | -.00000000000002532168943117445, |
| 237 | -.00000000000005213620639136504, |
| 238 | -.00000000000001819506003016881, |
| 239 | .00000000000006329065958724544, |
| 240 | .00000000000008614512936087814, |
| 241 | -.00000000000007355770219435028, |
| 242 | .00000000000009638067658552277, |
| 243 | .00000000000007598636597194141, |
| 244 | .00000000000002579999128306990, |
| 245 | -.00000000000004654729747598444, |
| 246 | -.00000000000007556920687451336, |
| 247 | .00000000000010195735223708472, |
| 248 | -.00000000000017319034406422306, |
| 249 | -.00000000000007718001336828098, |
| 250 | .00000000000010980754099855238, |
| 251 | -.00000000000002047235780046195, |
| 252 | -.00000000000008372091099235912, |
| 253 | .00000000000014088127937111135, |
| 254 | .00000000000012869017157588257, |
| 255 | .00000000000017788850778198106, |
| 256 | .00000000000006440856150696891, |
| 257 | .00000000000016132822667240822, |
| 258 | -.00000000000007540916511956188, |
| 259 | -.00000000000000036507188831790, |
| 260 | .00000000000009120937249914984, |
| 261 | .00000000000018567570959796010, |
| 262 | -.00000000000003149265065191483, |
| 263 | -.00000000000009309459495196889, |
| 264 | .00000000000017914338601329117, |
| 265 | -.00000000000001302979717330866, |
| 266 | .00000000000023097385217586939, |
| 267 | .00000000000023999540484211737, |
| 268 | .00000000000015393776174455408, |
| 269 | -.00000000000036870428315837678, |
| 270 | .00000000000036920375082080089, |
| 271 | -.00000000000009383417223663699, |
| 272 | .00000000000009433398189512690, |
| 273 | .00000000000041481318704258568, |
| 274 | -.00000000000003792316480209314, |
| 275 | .00000000000008403156304792424, |
| 276 | -.00000000000034262934348285429, |
| 277 | .00000000000043712191957429145, |
| 278 | -.00000000000010475750058776541, |
| 279 | -.00000000000011118671389559323, |
| 280 | .00000000000037549577257259853, |
| 281 | .00000000000013912841212197565, |
| 282 | .00000000000010775743037572640, |
| 283 | .00000000000029391859187648000, |
| 284 | -.00000000000042790509060060774, |
| 285 | .00000000000022774076114039555, |
| 286 | .00000000000010849569622967912, |
| 287 | -.00000000000023073801945705758, |
| 288 | .00000000000015761203773969435, |
| 289 | .00000000000003345710269544082, |
| 290 | -.00000000000041525158063436123, |
| 291 | .00000000000032655698896907146, |
| 292 | -.00000000000044704265010452446, |
| 293 | .00000000000034527647952039772, |
| 294 | -.00000000000007048962392109746, |
| 295 | .00000000000011776978751369214, |
| 296 | -.00000000000010774341461609578, |
| 297 | .00000000000021863343293215910, |
| 298 | .00000000000024132639491333131, |
| 299 | .00000000000039057462209830700, |
| 300 | -.00000000000026570679203560751, |
| 301 | .00000000000037135141919592021, |
| 302 | -.00000000000017166921336082431, |
| 303 | -.00000000000028658285157914353, |
| 304 | -.00000000000023812542263446809, |
| 305 | .00000000000006576659768580062, |
| 306 | -.00000000000028210143846181267, |
| 307 | .00000000000010701931762114254, |
| 308 | .00000000000018119346366441110, |
| 309 | .00000000000009840465278232627, |
| 310 | -.00000000000033149150282752542, |
| 311 | -.00000000000018302857356041668, |
| 312 | -.00000000000016207400156744949, |
| 313 | .00000000000048303314949553201, |
| 314 | -.00000000000071560553172382115, |
| 315 | .00000000000088821239518571855, |
| 316 | -.00000000000030900580513238244, |
| 317 | -.00000000000061076551972851496, |
| 318 | .00000000000035659969663347830, |
| 319 | .00000000000035782396591276383, |
| 320 | -.00000000000046226087001544578, |
| 321 | .00000000000062279762917225156, |
| 322 | .00000000000072838947272065741, |
| 323 | .00000000000026809646615211673, |
| 324 | -.00000000000010960825046059278, |
| 325 | .00000000000002311949383800537, |
| 326 | -.00000000000058469058005299247, |
| 327 | -.00000000000002103748251144494, |
| 328 | -.00000000000023323182945587408, |
| 329 | -.00000000000042333694288141916, |
| 330 | -.00000000000043933937969737844, |
| 331 | .00000000000041341647073835565, |
| 332 | .00000000000006841763641591466, |
| 333 | .00000000000047585534004430641, |
| 334 | .00000000000083679678674757695, |
| 335 | -.00000000000085763734646658640, |
| 336 | .00000000000021913281229340092, |
| 337 | -.00000000000062242842536431148, |
| 338 | -.00000000000010983594325438430, |
| 339 | .00000000000065310431377633651, |
| 340 | -.00000000000047580199021710769, |
| 341 | -.00000000000037854251265457040, |
| 342 | .00000000000040939233218678664, |
| 343 | .00000000000087424383914858291, |
| 344 | .00000000000025218188456842882, |
| 345 | -.00000000000003608131360422557, |
| 346 | -.00000000000050518555924280902, |
| 347 | .00000000000078699403323355317, |
| 348 | -.00000000000067020876961949060, |
| 349 | .00000000000016108575753932458, |
| 350 | .00000000000058527188436251509, |
| 351 | -.00000000000035246757297904791, |
| 352 | -.00000000000018372084495629058, |
| 353 | .00000000000088606689813494916, |
| 354 | .00000000000066486268071468700, |
| 355 | .00000000000063831615170646519, |
| 356 | .00000000000025144230728376072, |
| 357 | -.00000000000017239444525614834 |
| 358 | }; |
| 359 | |
| 360 | #if 0 |
| 361 | double |
| 362 | #ifdef _ANSI_SOURCE |
| 363 | log(double x) |
| 364 | #else |
| 365 | log(x) double x; |
| 366 | #endif |
| 367 | { |
| 368 | int m, j; |
| 369 | double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0; |
| 370 | volatile double u1; |
| 371 | |
| 372 | /* Catch special cases */ |
| 373 | if (x <= 0) |
| 374 | if (x == zero) /* log(0) = -Inf */ |
| 375 | return (-one/zero); |
| 376 | else /* log(neg) = NaN */ |
| 377 | return (zero/zero); |
| 378 | else if (!finite(x)) |
| 379 | return (x+x); /* x = NaN, Inf */ |
| 380 | |
| 381 | /* Argument reduction: 1 <= g < 2; x/2^m = g; */ |
| 382 | /* y = F*(1 + f/F) for |f| <= 2^-8 */ |
| 383 | |
| 384 | m = logb(x); |
| 385 | g = ldexp(x, -m); |
| 386 | if (m == -1022) { |
| 387 | j = logb(g), m += j; |
| 388 | g = ldexp(g, -j); |
| 389 | } |
| 390 | j = N*(g-1) + .5; |
| 391 | F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */ |
| 392 | f = g - F; |
| 393 | |
| 394 | /* Approximate expansion for log(1+f/F) ~= u + q */ |
| 395 | g = 1/(2*F+f); |
| 396 | u = 2*f*g; |
| 397 | v = u*u; |
| 398 | q = u*v*(A1 + v*(A2 + v*(A3 + v*A4))); |
| 399 | |
| 400 | /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8, |
| 401 | * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits. |
| 402 | * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750 |
| 403 | */ |
| 404 | if (m | j) |
| 405 | u1 = u + 513, u1 -= 513; |
| 406 | |
| 407 | /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero; |
| 408 | * u1 = u to 24 bits. |
| 409 | */ |
| 410 | else |
| 411 | u1 = u, TRUNC(u1); |
| 412 | u2 = (2.0*(f - F*u1) - u1*f) * g; |
| 413 | /* u1 + u2 = 2f/(2F+f) to extra precision. */ |
| 414 | |
| 415 | /* log(x) = log(2^m*F*(1+f/F)) = */ |
| 416 | /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */ |
| 417 | /* (exact) + (tiny) */ |
| 418 | |
| 419 | u1 += m*logF_head[N] + logF_head[j]; /* exact */ |
| 420 | u2 = (u2 + logF_tail[j]) + q; /* tiny */ |
| 421 | u2 += logF_tail[N]*m; |
| 422 | return (u1 + u2); |
| 423 | } |
| 424 | #endif |
| 425 | |
| 426 | /* |
| 427 | * Extra precision variant, returning struct {double a, b;}; |
| 428 | * log(x) = a+b to 63 bits, with a rounded to 26 bits. |
| 429 | */ |
| 430 | struct Double |
| 431 | #ifdef _ANSI_SOURCE |
| 432 | __log__D(double x) |
| 433 | #else |
| 434 | __log__D(x) double x; |
| 435 | #endif |
| 436 | { |
| 437 | int m, j; |
| 438 | double F, f, g, q, u, v, u2; |
| 439 | volatile double u1; |
| 440 | struct Double r; |
| 441 | |
| 442 | /* Argument reduction: 1 <= g < 2; x/2^m = g; */ |
| 443 | /* y = F*(1 + f/F) for |f| <= 2^-8 */ |
| 444 | |
| 445 | m = logb(x); |
| 446 | g = ldexp(x, -m); |
| 447 | if (m == -1022) { |
| 448 | j = logb(g), m += j; |
| 449 | g = ldexp(g, -j); |
| 450 | } |
| 451 | j = N*(g-1) + .5; |
| 452 | F = (1.0/N) * j + 1; |
| 453 | f = g - F; |
| 454 | |
| 455 | g = 1/(2*F+f); |
| 456 | u = 2*f*g; |
| 457 | v = u*u; |
| 458 | q = u*v*(A1 + v*(A2 + v*(A3 + v*A4))); |
| 459 | if (m | j) |
| 460 | u1 = u + 513, u1 -= 513; |
| 461 | else |
| 462 | u1 = u, TRUNC(u1); |
| 463 | u2 = (2.0*(f - F*u1) - u1*f) * g; |
| 464 | |
| 465 | u1 += m*logF_head[N] + logF_head[j]; |
| 466 | |
| 467 | u2 += logF_tail[j]; u2 += q; |
| 468 | u2 += logF_tail[N]*m; |
| 469 | r.a = u1 + u2; /* Only difference is here */ |
| 470 | TRUNC(r.a); |
| 471 | r.b = (u1 - r.a) + u2; |
| 472 | return (r); |
| 473 | } |