blob: 5f6e08871efa50b364b9e497bb27a8a2453b936f [file] [log] [blame]
The Android Open Source Project1dc9e472009-03-03 19:28:35 -08001/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/*
13 * from: @(#)fdlibm.h 5.1 93/09/24
14 * $FreeBSD: src/lib/msun/src/math_private.h,v 1.20 2005/11/28 04:58:57 bde Exp $
15 */
16
17#ifndef _MATH_PRIVATE_H_
18#define _MATH_PRIVATE_H_
19
20#include <sys/types.h>
21#include <endian.h>
22
23/*
24 * The original fdlibm code used statements like:
25 * n0 = ((*(int*)&one)>>29)^1; * index of high word *
26 * ix0 = *(n0+(int*)&x); * high word of x *
27 * ix1 = *((1-n0)+(int*)&x); * low word of x *
28 * to dig two 32 bit words out of the 64 bit IEEE floating point
29 * value. That is non-ANSI, and, moreover, the gcc instruction
30 * scheduler gets it wrong. We instead use the following macros.
31 * Unlike the original code, we determine the endianness at compile
32 * time, not at run time; I don't see much benefit to selecting
33 * endianness at run time.
34 */
35
36/*
37 * A union which permits us to convert between a double and two 32 bit
38 * ints.
39 */
40
41#if (__BYTE_ORDER == __BIG_ENDIAN) || (defined(__arm__) && !defined(__VFP_FP__))
42
43typedef union
44{
45 double value;
46 struct
47 {
48 u_int32_t msw;
49 u_int32_t lsw;
50 } parts;
51} ieee_double_shape_type;
52
53#endif
54
55#if __BYTE_ORDER == __LITTLE_ENDIAN && !(defined(__arm__) && !defined(__VFP_FP__))
56
57typedef union
58{
59 double value;
60 struct
61 {
62 u_int32_t lsw;
63 u_int32_t msw;
64 } parts;
65} ieee_double_shape_type;
66
67#endif
68
69/* Get two 32 bit ints from a double. */
70
71#define EXTRACT_WORDS(ix0,ix1,d) \
72do { \
73 ieee_double_shape_type ew_u; \
74 ew_u.value = (d); \
75 (ix0) = ew_u.parts.msw; \
76 (ix1) = ew_u.parts.lsw; \
77} while (0)
78
79/* Get the more significant 32 bit int from a double. */
80
81#define GET_HIGH_WORD(i,d) \
82do { \
83 ieee_double_shape_type gh_u; \
84 gh_u.value = (d); \
85 (i) = gh_u.parts.msw; \
86} while (0)
87
88/* Get the less significant 32 bit int from a double. */
89
90#define GET_LOW_WORD(i,d) \
91do { \
92 ieee_double_shape_type gl_u; \
93 gl_u.value = (d); \
94 (i) = gl_u.parts.lsw; \
95} while (0)
96
97/* Set a double from two 32 bit ints. */
98
99#define INSERT_WORDS(d,ix0,ix1) \
100do { \
101 ieee_double_shape_type iw_u; \
102 iw_u.parts.msw = (ix0); \
103 iw_u.parts.lsw = (ix1); \
104 (d) = iw_u.value; \
105} while (0)
106
107/* Set the more significant 32 bits of a double from an int. */
108
109#define SET_HIGH_WORD(d,v) \
110do { \
111 ieee_double_shape_type sh_u; \
112 sh_u.value = (d); \
113 sh_u.parts.msw = (v); \
114 (d) = sh_u.value; \
115} while (0)
116
117/* Set the less significant 32 bits of a double from an int. */
118
119#define SET_LOW_WORD(d,v) \
120do { \
121 ieee_double_shape_type sl_u; \
122 sl_u.value = (d); \
123 sl_u.parts.lsw = (v); \
124 (d) = sl_u.value; \
125} while (0)
126
127/*
128 * A union which permits us to convert between a float and a 32 bit
129 * int.
130 */
131
132typedef union
133{
134 float value;
135 /* FIXME: Assumes 32 bit int. */
136 unsigned int word;
137} ieee_float_shape_type;
138
139/* Get a 32 bit int from a float. */
140
141#define GET_FLOAT_WORD(i,d) \
142do { \
143 ieee_float_shape_type gf_u; \
144 gf_u.value = (d); \
145 (i) = gf_u.word; \
146} while (0)
147
148/* Set a float from a 32 bit int. */
149
150#define SET_FLOAT_WORD(d,i) \
151do { \
152 ieee_float_shape_type sf_u; \
153 sf_u.word = (i); \
154 (d) = sf_u.value; \
155} while (0)
156
157#ifdef _COMPLEX_H
158/*
159 * Inline functions that can be used to construct complex values.
160 *
161 * The C99 standard intends x+I*y to be used for this, but x+I*y is
162 * currently unusable in general since gcc introduces many overflow,
163 * underflow, sign and efficiency bugs by rewriting I*y as
164 * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
165 * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
166 * to -0.0+I*0.0.
167 */
168static __inline float complex
169cpackf(float x, float y)
170{
171 float complex z;
172
173 __real__ z = x;
174 __imag__ z = y;
175 return (z);
176}
177
178static __inline double complex
179cpack(double x, double y)
180{
181 double complex z;
182
183 __real__ z = x;
184 __imag__ z = y;
185 return (z);
186}
187
188static __inline long double complex
189cpackl(long double x, long double y)
190{
191 long double complex z;
192
193 __real__ z = x;
194 __imag__ z = y;
195 return (z);
196}
197#endif /* _COMPLEX_H */
198
199/*
200 * ieee style elementary functions
201 *
202 * We rename functions here to improve other sources' diffability
203 * against fdlibm.
204 */
205#define __ieee754_sqrt sqrt
206#define __ieee754_acos acos
207#define __ieee754_acosh acosh
208#define __ieee754_log log
209#define __ieee754_atanh atanh
210#define __ieee754_asin asin
211#define __ieee754_atan2 atan2
212#define __ieee754_exp exp
213#define __ieee754_cosh cosh
214#define __ieee754_fmod fmod
215#define __ieee754_pow pow
216#define __ieee754_lgamma lgamma
217#define __ieee754_gamma gamma
218#define __ieee754_lgamma_r lgamma_r
219#define __ieee754_gamma_r gamma_r
220#define __ieee754_log10 log10
221#define __ieee754_sinh sinh
222#define __ieee754_hypot hypot
223#define __ieee754_j0 j0
224#define __ieee754_j1 j1
225#define __ieee754_y0 y0
226#define __ieee754_y1 y1
227#define __ieee754_jn jn
228#define __ieee754_yn yn
229#define __ieee754_remainder remainder
230#define __ieee754_scalb scalb
231#define __ieee754_sqrtf sqrtf
232#define __ieee754_acosf acosf
233#define __ieee754_acoshf acoshf
234#define __ieee754_logf logf
235#define __ieee754_atanhf atanhf
236#define __ieee754_asinf asinf
237#define __ieee754_atan2f atan2f
238#define __ieee754_expf expf
239#define __ieee754_coshf coshf
240#define __ieee754_fmodf fmodf
241#define __ieee754_powf powf
242#define __ieee754_lgammaf lgammaf
243#define __ieee754_gammaf gammaf
244#define __ieee754_lgammaf_r lgammaf_r
245#define __ieee754_gammaf_r gammaf_r
246#define __ieee754_log10f log10f
247#define __ieee754_sinhf sinhf
248#define __ieee754_hypotf hypotf
249#define __ieee754_j0f j0f
250#define __ieee754_j1f j1f
251#define __ieee754_y0f y0f
252#define __ieee754_y1f y1f
253#define __ieee754_jnf jnf
254#define __ieee754_ynf ynf
255#define __ieee754_remainderf remainderf
256#define __ieee754_scalbf scalbf
257#define __ieee754_ldexpf ldexpf
258
259/* fdlibm kernel function */
260int __ieee754_rem_pio2(double,double*);
261double __kernel_sin(double,double,int);
262double __kernel_cos(double,double);
263double __kernel_tan(double,double,int);
264int __kernel_rem_pio2(double*,double*,int,int,int,const int*);
265
266/* float versions of fdlibm kernel functions */
267int __ieee754_rem_pio2f(float,float*);
268float __kernel_sindf(double);
269float __kernel_cosdf(double);
270float __kernel_tandf(double,int);
271int __kernel_rem_pio2f(float*,float*,int,int,int,const int*);
272
273#endif /* !_MATH_PRIVATE_H_ */